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1. INTRODUCTION

The rapidly increasing complexity of modern System-on-Chip (SoC) designs and urgent
time-to-market requirements have made verification a major bottleneck in the design
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flow. Simulation-based verification methods are the most widely used techniques in
industry. However, they usually cannot exhaust the whole functionality of the design
under verification (DUV). Therefore, constrained random verification techniques [Yuan
et al. 2006] have been proposed to make the input stimuli more effective. They either
guide the simulation toward untriggered design behaviors [Yeh and Huang 2010] or
make the input patterns more evenly distributed [Wu et al. 2011]. Nevertheless, hard-
to-reach corner cases may stay untouched after random verification. In this context,
coverage-driven verification (CDV) [Benjamin et al. 1999] can dynamically bias the
constraints of stimuli generation based on the coverage status. Since deriving stimuli
manually requires deep comprehension of the DUV, which is very error prone and
laborious, automatic approaches for stimuli generation are desired.

In this article, we use Boolean satisfiability (SAT)-based techniques to quickly gener-
ate stimuli for the functional coverage model of SystemVerilog, which would be incorpo-
rated into a modern digital design flow. The functional coverage model of SystemVerilog
specifies certain scenarios on a set of signals as coverage targets, such as specific value
occurrences or value transitions, or even the cross-coverage of these value occurrences
and/or transitions.

To use a SAT-based method, the functional coverage model needs to be translated
into Conjunction Normal Form (CNF). Hence, the conversion techniques that we have
proposed in Cheng et al. [2012] are also presented in this article for completeness.
Briefly speaking, a coverage target is converted into a set of clauses, and there is a
representative variable in the clauses that is assigned true if and only if the coverage
target can be triggered by the generated stimulus.

A problem occurs when a functional coverage model contains a large set of cov-
erage targets: using typical directed test generation methods, each stimulus will be
derived separately, which is obviously not efficient. Recall that these coverage targets
are all associated with design behaviors. Each time that the SAT solver gets a stimulus
for a target, it learns additional knowledge about the DUV. Incremental SAT solvers
are able to retain this knowledge over multiple queries, and this can lead to major
speedups. However, the constraints must be formulated carefully to ensure the cor-
rectness of the learned information for the later queries. Accordingly, we propose two
SAT-based algorithms, the Property List Narrowing SAT (PLNSAT) and the Grouped
Property List Narrowing SAT (GPLNSAT) algorithms, that can simultaneously solve
multiple targets (make multiple representative variables be true) in one SAT query
and then, as targets are solved, incrementally refocus the solver toward the remaining
targets efficiently and correctly. PLNSAT is the general algorithm and applicable to
any coverage-driven stimulus generation, or other problem requiring solution of multi-
ple, possibly conflicting properties; GPLNSAT further exploits the structure inherent
in SystemVerilog covergroups.

The idea of solving multiple properties together was first proposed in Fraer et al.
[2002] for Bounded Model Checking (BMC). The authors formed a conjunction of all the
properties and checked the combined one. However, we cannot combine all the coverage
bins into a single one for stimulus generation, since some of them may be contradic-
tory. In the prior work [Cheng et al. 2012], we proposed the Minimum Rectangular
Range Segmentation (MRRS) algorithm, that could check whether the specifications
of the bins have intersections so these bins can be solved together. However, it may
not gain benefit if not much overlap of specification can be found. Khasidashvili et al.
[2005] proposed the Simultaneous SAT (SSAT) solver that maintains a watched list
of solving objectives. It iteratively assumes an objective in the list can be solved and
checks the validity of others in one solver run. This concept is inherited by the Multiple
Similar Properties SAT (MSPSAT) algorithm [Franzén et al. 2010], which implements
SSAT without any modifications to the SAT solver by using the solver’s application
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programming interface (API) of assumptions. Our approaches, on the other hand, in-
crementally update solving constraints that facilitate the SAT solver to focus on the
currently unsolved targets. Yang et al. [2013] also proposed a stimulus generation
method that considers all properties in each SAT solve, but their aim is to generate a
minimal set of stimuli, while we only care about the solving efficiency.

In the experimental results, we will demonstrate the improvements introduced by
our approaches over the traditional single-target method. The effectiveness of the new
approaches against the MRRS algorithm will also be presented. Furthermore, we will
also show that our techniques can achieve better performance than MSPSAT in seven
out of ten cases, while they also do not require any modifications of the SAT solver.

The rest of this article is organized as follows: The preliminaries and the problem for-
mulation are introduced in Section 2. In Section 3, we will detail the implementation of
translating SystemVerilog functional coverage constructs into CNF. Our simultaneous
SAT solving algorithms are described in Section 4 and the proposed approaches are
evaluated by experimental results in Section 5. In Section 6, we will give a comprehen-
sive review of incremental SAT and simultaneous SAT techniques. Section 7 concludes
this article.

2. PRELIMINARIES AND PROBLEM FORMULATION

In this article, the symbols “∧”, “∨”, and “¬” denote Boolean AND, OR, and COMPLE-
MENT operations, respectively.

This section first introduces an overview of the SystemVerilog functional coverage
constructs. Then, a short introduction to modern SAT solvers is described. The problem
formulation of our stimulus generation will be given in the end.

2.1. The SystemVerilog Functional Coverage Constructs

This section describes the basic syntax of the SystemVerilog functional coverage model,
namely coverage groups, coverage points, and cross-coverage. In addition, we will also
briefly describe the SystemVerilog Assertion (SVA) language to give a more complete
view.

2.1.1. The Covergroup Construct. In a SystemVerilog-based testbench, monitoring a spe-
cific value occurrence or transition of a variable can be easily done by the SystemVerilog
functional coverage model. The covergroup construct consists of functional coverage
specifications. It can encapsulate multiple coverage points (sampled locations) that are
monitored simultaneously during simulation. Each coverage point can further specify
a set of bins associated with a range of values or a set of value transitions. A rough
syntax of covergroup is as follows.

covergroup covergroup id [coverage event];
<coverage option>
<cover point>
<cover cross>

endgroup [: covergroup id]

A coverage event defines when a covergroup should be sampled; if it is not specified,
users must trigger samplings via the built-in sample() method. Options control the
behaviors of covergroup, coverpoint, or cross, such as the weight (used for comput-
ing coverage), the coverage goal (100% coverage by default), or the minimum number
of times that it should be triggered (one, by default). Syntax of coverage points and
cross-coverage is shown in the following sections.
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2.1.2. Coverage Points. A coverage point specifies an integral expression (represented
by one or more variables) to be covered and contains a set of bins associated with some
sampling values or value transitions of the expression. The syntax is given as follows.

[cover point id:] coverpoint expression {
wildcard bins bin id = {range list} | translist;
wildcard ignore bins bin id = {range list} | translist;
wildcard illegal bins bin id = {range list} | translist;

}

A bin declared wildcard is specified in bit-level in which all X, Z, and ? are treated
as 0 or 1. For example, a bin that specifies its sampling value is less than four is shown
next.

wildcard bins less than 4 = {4’b00XX};

The bin less than 4 is considered as 0000, 0001, 0010, or 0011, that is, from zero to
three. An ignored bin specifies sampling values or value transitions that should be
excluded from coverage computation, even if they are specified in other bins. On the
other hand, an illegal bin is similar to an ignored bin, but a runtime error will be
issued if the specified values or transitions occur.

Three kinds of repetition transition could be specified. First, the consecutive rep-
etition is specified using: trans item [∗ repeat range]. The trans item is repeated
for repeat range times continuously. For example, 2 [∗ 2:3] represents (2 =>2) or
(2=>2 =>2). Second, the goto repetition can be specified using: trans item [−> re-
peat range]. The trans item repeats repeat range times not necessarily on continuous
clock cycles, and the transition following the goto repetition must immediately fol-
low the last repeated trans item. For example, 1 => 2[−>3] => 4 means 1. . . =>2. . .
=>2. . . =>2=>4, where the dots (. . .) denote any sequence that does not contain the
value 2. Last, the nonconsecutive repetition is specified using: trans item [= re-
peat range]. It is very similar to the goto repetition, except that the transition fol-
lowing the nonconsecutive repetition could occur after any number of cycles, provided
that the trans item does not occur again. For example, 1 => 2[=3] => 4 is the same as
1. . . => 2 . . . => 2 . . . => 2 . . . => 4.

2.1.3. Cross-Coverage. A cross-coverage between two or more coverage points could be
specified in a covergroup by the cross-construct. These crossed coverage bins provide
higher levels of abstraction of design behavior. The syntax for specifying cross-coverage
is given as follows.

[cross id :] cross list of coverpoints {
bins bin id = select expression;
ignore bins bin id = select expression;
illegal bins bin id = select expression;

}

The select expression specifies which bins of each coverage point should be crossed.
For example, a bin that is the cross of bin a1 of coverage point a and bin b2 of coverage
point b could be specified as follows.

bins c0 = binsof(a.a1) && binsof(b.b2)

2.1.4. The SVA Property Construct. Assertion is widely used for design validation. Sys-
temVerilog also provides its own assertion syntax, namely the SVA language. In SVA,
the basic usage of the property construct is as follows.
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property property id;
<assertion variable declaration>
[clocking event] property expr;

endproperty [: property id]

The property can not only be used as ordinary assertion, that is, assert property,
but also as cover property to get property coverage, just like a coverage bin.

Covergroup and cover property have their individual advantages: covergroup pro-
vides additional coverage options and can define cross-coverage, whereas cover prop-
erty can precisely define complex sequential design behaviors such as a protocol, thus
transition bins are rarely used. Practically, they are used complementarily in a test-
bench. In this article, we only consider covergroup. Readers interested in using SVA for
BMC may refer to the work of Wille et al. [2008], or to the articles of Das et al. [2006],
Long and Seawright [2007], Boulé and Zilic [2008], Kastelan and Krajacevic [2009], or
Mammo et al. [2012], in which the authors synthesize SVA into hardware modules for
verification.

Complete semantics of covergroup, coverage points, transition bins, cross-coverage,
and SVA can be found in the IEEE standard for SystemVerilog [IEEE 2013].

2.2. Background of Modern SAT Solvers

Although SAT was the original NP-complete problem, modern SAT solvers can rou-
tinely solve very large instances in practice. The Davis-Putnam-Logemann-Loveland
(DPLL) algorithm [Davis and Putnam 1960; Davis et al. 1962] is the basic search
algorithm used by most SAT solvers. Modern SAT solvers enhance the original Boolean
constraint propagation (BCP) [Zabih and Mcallester 1988] method and also use several
new techniques such as conflict-driven learning [Marques-Silva and Sakallah 1999] and
dynamic variable ordering [Moskewicz et al. 2001]. The SAT solvers accept a formula in
CNF; such a formula is also called a SAT (or CNF) instance. The CNF is a conjunction
of clauses; a clause is a disjunction of literals, where a literal is a Boolean variable or
its negation. A solver tries to find a satisfiable assignment to all the clauses, namely a
model; if there is no satisfiable solution, the SAT instance is said unsatisfiable.

A key characteristic of modern SAT solvers that we exploit in this article is that they
expose an incremental API. Specifically, the practical efficiency of modern SAT solvers
arises from the clauses and variable weights heuristically learned during the solving
process. If we next need to solve a closely related SAT query, we would like to reuse as
much of this learned information as possible, which will greatly improve the efficiency
of solving the new problem, but we must not compromise logical correctness. A typical
modern SAT solver’s incremental interface allows adding clauses after solving a query
while still retaining all learned information. Deletion of clauses is problematic, how-
ever, because the solver may have learned a great deal of facts relying on the deleted
clauses. Nevertheless, it is possible to efficiently delete unit clauses, that is, clauses
that contain only a single literal. By constructing our algorithms specifically to conform
to this incremental API, the successive SAT queries in our algorithm can typically be
solved much faster than they otherwise could have been with a conventional, nonincre-
mental algorithm. A detailed discussion of these issues and related research is deferred
to Section 6.

2.3. Problem Formulation

This section briefly formalizes the stimulus generation problem of this article.

Definition 1. A coverage bin bi (0 ≤ i < n) defines a set of value occurrences, or
value transitions, or cross of value occurrences and/or value transitions over the set of
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DUV signals. The set of bins is denoted by

B = {b0, . . . , bn−1|n ≥ 1}.
Definition 2. A constraint c j (0 ≤ j < m) is a random simulation constraint, or

a functional constraint derived from the design specifications, over the set of DUV
signals. For the specification of a constraint, the general hardware description language
operators such as arithmetic operators, relation operators, and logical operators are
used. The set of constraints is denoted by

C = {c0, . . . , cm−1|m ≥ 1}.
During the procedure of stimulus generation, the DUV will be unrolled incrementally.

Because every coverage bin has its individual smallest bounds for reach, once a bin
is true in a smaller bound, it could be ignored from later time frames to improve the
solving efficiency. Hence, we address the following problem in this article.

Given a set of bins B, a set of constraints C, a DUV model D, and the known maximum
bound K of the bins, efficiently generate a set of stimuli that satisfies all the bins bi ∈ B
with arbitrary smallest bound k for each bin.

Essentially, a generated stimulus should satisfies the following Boolean formula.

I (s0) ∧
K−1∧

t=0

T (st, st+1) ∧
n−1∨

i=0

K∨

t=0

bi (st) ∧ C (1)

This formula contains four parts: (1) I (s0) is the initial state; (2) T (st, st+1) represents
the state transition from state st to state st+1; (3) bi(st) test whether any coverage bin
could be true on state st; and (4) C is the set of given constraints. In Section 3, we will
detail how to convert part 3 into CNF. Also recall that formula (1) is only a sufficient
condition for the satisfaction of a stimulus, while our approaches would add extra
constraints to boost the stimulus generation process.

2.3.1. A UART Register Access Coverage Example. Figure 1 shows a covergroup example
[Mentor Graphics 2013]. Its purpose is to check that all valid register accesses of a
Universal Asynchronous Receiver/Transmitter (UART) circuit have occurred. It has
named bins for each of the valid register addresses and for each state of the read/write
bit. These are crossed with an ignore bins to ensure that the read-only LSR and MSR
registers are not counted for write bit coverage. A constraint could be derived from the
ignore bins to prune the searching space.

!((addr == 8′h14 || addr == 8′h18) && (we == 1))

3. IMPLEMENTATION DETAILS

This section details the implementations of covergroup-to-CNF conversion.

3.1. Mapping Bins to Circuit Signals

In the example of Figure 1, there are two variables, namely we and addr. We always
add the definition of variables before covergroups, and insert instrument comments
after the definition to indicate the corresponding circuit signals. Taking addr as exam-
ple, the definition and comment are as follows.

bit[7 : 0]addr; //PI : PADDR

This means the 8-bit variable addr will be mapped to the primary input PADDR. In
our implementations, we only care about those bins associated with primary inputs/

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 7, Pub. date: November 2014.



Efficient Coverage-Driven Stimulus Generation 7:7

Fig. 1. A covergroup example for UART register access coverage. c© Mentor Graphics, the Verification
Academy. The code is under the Apache 2.0 license.

Fig. 2. The general monitor block.

outputs and flip-flops. It is possible to calculate coverage for testbench scope variables,
but generating stimuli for them is trivial, that is, they can be directly assigned values
in a testcase.

3.2. CNF Conversion

3.2.1. CNF Conversion of Circuit and Constraints. The Tseitin translation method [Tseitin
1970] can convert a propositional formula into CNF in polynomial time by introducing
additional variables.

3.2.2. Translating Covergroup Constructs into Monitors. Because each bin associates with a
set of sampled values or value transitions of one or more variables, it is intuitive to
model a bin as a monitor. A monitor is a kind of circuit that checks certain scenarios and
outputs true if the scenarios are matched, otherwise it outputs false. Figure 2 illustrates
the block diagram of a monitor. In this section, we discuss how to convert the covergroup
constructs into monitors, so they can be translated into CNF by existing methods
[Tseitin 1970]. Some further restrictions are applied for practical considerations.
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Fig. 3. The monitor for bins.

State (Value) Bins. A coverage bin that specifies a range of values could be converted
into a set of comparators. The output signal of the monitor is the logical OR of all the
comparators’ outputs. Figure 3(a) shows an example of a state bin a = {1, [4:9]}.

Transition Bins. To check a sequence of transitions, the time frame in which the
initial transition value occurs should be recognized first. Then, the following transition
values should be checked consecutively.

Figure 3(b) gives an example of a transition bin d = (1 => 2 => 3). The triangu-
lar blocks labeled “D” are delay blocks that consist of a 1-bit register. If an equality
comparator before a delay block outputs true in time frame t, then the delay block
would output true in time frame t + 1, otherwise it would outputs false. An equality
comparator with an enable input only checks the equality when the enable signal is
true.

Conversion of a consecutive repetition transition is very similar to that of a transition
sequence with different values. It could be more compact when a range of repetition
is specified, as shown in Figure 4(a). The bin c specifies that value two consecutively
repeats two or three times. Instead of constructing two modules for (2 => 2) and (2 =>
2 => 2) respectively, a module of (2 => 2 => 2) is constructed and the module output
is the logic OR of the second and the third equality comparators.

Before we describe how to convert the other two repetition transitions, we first
introduce a small circuit called the blocking delay (BD) block. Different from a delay
block, once its input signal is true, the blocking delay block’s output signal blocks to
true forever. It can be built by concatenating an OR gate and a 1-bit register. The output
of the OR gate is the input of the register, and the output of register branches into the
OR gate as one of the inputs.

To construct a goto repetition monitor, we first build a consecutive repetition moni-
tor and then replace all but the last delay block to BD blocks. Figure 4(b) demonstrates
a monitor for bins f = (1 => 2[−>3] => 4). When a BD block outputs true, it means
that a sequence of transitions currently meet the specification, either consecutively or
intermittently. The last transition must follow the last repetition value immediately,
thus a delay block is used.

Finally, as discussed in Section 2.1.2, a nonconsecutive repetition differs from a goto
repetition in that the transition follows the final repetition value. This transition
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Fig. 4. The monitors for repetition transition bins.

Fig. 5. The monitor for bins w = {4’b10XX}.

could occur after any other transitions, provided that the repetition value does not occur
again. Such a difference is shown in Figure 4(c). An additional equality comparator is
used to avoid an illegal repetition before the last transition.

Cross-Coverage Bins. A cross-bin includes a subset of bins from the coverage points
specified in the list of covepoint syntax. Therefore, to build a cross-bin monitor, we
just build all the monitors of its including bins, AND the output signals of crossed-bin
monitors, and then OR all the output signals of the AND gates. This could be a very
complicated circuit.

Ignored and Illegal Bins. The bins declared ignored or illegal should be excluded
from coverage computation. We do not convert these bins but conduct a preprocess-
ing to remove ignored/illegal values and sequences of transitions from any associated
coverage bins.

Wildcard Bins. Wildcard bins are specified in bit-level. To convert it as a monitor, we
just do logical AND for all its deterministic bits. For example, the monitor that checks
a bin: w = {4’b10XX} is shown in Figure 5.

Clocking Events.. A clocking event that defines when a covergroup should be sampled
may be a complex description. Generating test stimuli under such an event requires a
lot of analytic effort. On the other hand, if a clocking is not even specified, samplings
must be procedurally triggered by users. Recognizing these sampling points properly
is also a hard task, therefore, a single clock signal clk for a DUV is assumed in this
article, and all the covergroups are triggerd at the rising edge of this clock signal. As

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 7, Pub. date: November 2014.



7:10 A.-C. Cheng et al.

a result, we do not need to check the triggering points, and the solving procedure of
stimuli is consistent with an unrolled DUV model.

Coverage Options. Coverage options could be defined at the covergroup or cov-
erpoint (or cross-) syntactic level. They specify weights, target coverage goals, the
minimum number of hits for each bin, etc. In this work, our target is to validate un-
covered parts for one time at least, so the weights at different syntactic levels could be
neglected. The minimum number of hits for each bin could simply be seen as a solving
constraint of the iterative solving procedure, that is, the generated test patterns should
guarantee to hit target bins for some threshold times. For simplicity, we currently do
not incorporate options into the solving procedure.

4. STIMULUS GENERATION VIA SIMULTANEOUS SAT

This section details our SAT-based stimulus generation approach. It is an incremental
solving process: a set of target bins are considered simultaneously by a SAT solver and,
if the result is satisfiable, one or more solved bins are removed from the target list
and then a single new clause is added, permitting the solver to continue incrementally
from where it left off and thus benefitting from the learning already performed; if the
result is unsatisfiable, the bound will be extended by one, the clauses will be modified
slightly, and again the solver resumes solving incrementally. This procedure continues
until all targets are solved or the given maximum bound is reached.

We propose two simultaneous SAT approaches, namely Property List Narrowing
SAT (PLNSAT) and Grouped Property List Narrowing SAT (GPLNSAT). The term
“property” is adopted instead of “bin” to make the concept more general, since each bin
can be deemed as a property of a DUV.

Section 4.1 and Section 4.2 explain the single-pass PLNSAT and GPLNSAT algo-
rithms, respectively. In Section 4.3, the complete PLNSAT and GPLNSAT algorithms
are described.

4.1. Property List Narrowing SAT (PLNSAT)

To solve multiple bins at the same time, a constraint is introduced to the SAT instance,
namely that at least one of the bins should be solved [Cheng et al. 2012; Yang et al.
2012, 2013]. Recall that all the bins are translated into CNF clauses as monitors. Since
a bin monitor outputs true when its specifications are satisfied, conversely, we can
restrict the output signal to be true and then try to find a stimulus that satisfies this
constraint. Considering a set of bin monitors, we can OR all their outputs and then
restrict the output of the OR gate to be true. If a stimulus can be derived from such a
constraint, it means one or more bin monitors output true. This section will describe how
the PLNSAT algorithm translates this constraint into CNF and then, after finding a
solution, how the PLNSAT algorithm can refocus attention on the remaining properties
in an efficient, incremental manner.

4.1.1. Solving Constraints Formulation. The constraint clauses can be generated by a con-
ventional OR gate translation method, that will generate n+ 2 clauses for n bins (n+ 1
clauses for an n-input OR gate and a unit clause to restrict the output of the OR gate
to be true). However, PLNSAT uses a succinct encoding by adding a single clause that
contains all bins, that is, the property list clause. For example, if there are two bins
b1 and b2 and the output of the OR gate is represented by the variabley, a general
translation is (¬b1 ∨ y) ∧ (¬b2 ∨ y) ∧ (b1 ∨ b2 ∨ ¬y) ∧ (y), while the property list clause
is (b1 ∨ b2). Note that the variables bi in the clauses represent the output of the i-th
bin monitor. For simplicity, we just use the term “bin” instead of “the representative
variable of the output of a bin monitor” in this article.
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The efficient encoding via a property list clause itself is already known. But such an
encoding has an additional benefit: by such a translation method, an efficient simul-
taneous SAT solving procedure can be derived. Consider a SAT instance that contains
the following clause: (b1 ∨ b2 ∨ b3 ∨ b4 ∨ b5). Assume b1 and b4 are true in a satisfied
solution, so the solving constraint would be changed to focus on b2, b3, and b5 only.
An intuitive but wrong way to change the constraint is to add two unit clauses (¬b1)
and (¬b4) since, because there may be dependencies among the bins, blocking a bin
could make other satisfiable bins to be unsatisfiable. For example, assuming b2 is a
cross-bin specified as b1 && b3, preventing b1 will make b2 unsatisfiable. The PLNSAT
algorithm adds a narrowed property list clause, namely (b2 ∨ b3 ∨ b5), to formulate
the new constraint instead. There are two effects by adding this clause: (1) if the SAT
instance is satisfiable, at least one of b2, b3, and b5 is true; (2) the solved bins b1 and b4
are not prohibited from the searching space, thus all the conflict clauses can be reused.
And since the algorithm is only adding a clause and not removing any clauses, the SAT
solver can continue incrementally, reusing all facts that it had learned already while
solving for previous bins.

If the SAT instance is unsatisfiable under the new constraint, that is, (b1∨b2∨b3∨b4∨
b5) ∧ (b2 ∨ b3 ∨ b5), the bound will be extended and a new constraint clause for the next
bound is added: (b

′
2 ∨ b

′
3 ∨ b

′
5). However, the previous unsatisfiable constraints must be

removed before new solving starts. Because we want to reuse all the learned conflict
clauses, we do not actually remove the old constraint clauses, but just disable these
clauses. Disabling a clause can be achieved by adding an auxiliary literal to the clause.
Considering the clauses (b1∨b2∨b3∨b4∨b5∨a)∧(b2∨b3∨b5∨a), if the variable a is false,
the behavior of the clauses is just as the clauses (b1 ∨ b2 ∨ b3 ∨ b4 ∨ b5) ∧ (b2 ∨ b3 ∨ b5); on
the other hand, if the variable a is true, all the bins become don’t-care for the clauses,
which also means the constraints imposed on the bins are released. As in the satisfiable
case, the SAT solver can continue incrementally.

4.1.2. The Single-Pass PLNSAT Algorithm. Algorithm 1 describes the generic method for
single-pass PLNSAT and GPLNSAT. The inputs are a set of currently unsolved bins, a
SAT instance (constructed from formula (1)), and an auxiliary variable. The stimulus
is initialized in line 1. In line 2, the SAT instance is augmented by property list clauses,
while the clauses are generated by the currently unsolved bins and an auxiliary vari-
able. The two methods GenPLClause and GenGPLClause are described in Algorithms 2
and 3, respectively. The single-pass PLNSAT algorithm uses the GenPLClause method,
which puts all unsolved bins and an auxiliary variable in a single clause to form the
property list clause (line 1 of Algorithm 2). An assumption that a = false is parsed to
the SAT solver in line 3 and if there is an assignment that satisfies the SAT instance
and the assumption in line 4, a stimulus s and the unsolved bins are analyzed in line
5 and returned in line 7. The extension of a SAT solver to accept a set of unit literals
as assumptions can easily be added to any modern SAT solver [Eén et al. 2010]—the
first n decisions should be made on the assumption literals.

4.2. Grouped Property List Narrowing SAT (GPLNSAT)

Recall that the PLNSAT algorithm embeds the constraint that at least one of the bins
should be solved to the SAT instance. This simple constraint can be further refined
to improve the stimulus generation flow [Cheng et al. 2012; Yang et al. 2012]. In
Yang et al. [2012], design knowledge is introduced to the constraint: a set of unsolved
properties that can be triggered simultaneously are formed into a conjunction R′,
such that if R′ is satisfiable, then more than two properties are triggered by one
stimulus. However, this method is not fully automatic, that is, the properties in the
conjunctions are selected manually. In Cheng et al. [2012], the MRRS algorithm could
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ALGORITHM 1: Generic Method for Single-pass PLNSAT and GPLNSAT
Input: Unsolved bins, U ; A SAT instance, CNF; An auxiliary variable, a.
Output: A stimulus s; Unsolved bins, U .
1: s = ∅;
2: CNF = CNF ∪ Gen(G)PLClause (a,U ) ;
3: assumps = ¬a;
4: if SAT (assumps, CNF) == TRUE then
5: (s,U ) = Analyze();
6: end if
7: return (s,U ) ;

ALGORITHM 2: GenPLClause
Input: Unsolved bins, U ; An auxiliary variable, a.
Output: The property list clause, PLClause.
// assume bi ∈ U = {b0, . . . , bn−1|n ≥ 1}
1: PLClause = (

∨n−1
i=0 bi ∨ a)

2: return PLClause;

find the intersections of specifications of the bins for efficient CNF conversion. However,
empirically there are not many intersections among the specifications of bins in typical
test plans. Because the MRRS algorithm needs to compute the intersections first, if
there are few of them, the overall solving time may not be decreased. Another drawback
of the MRRS algorithm is that it can only handle two-dimensional cross-coverage
(cross-coverage of two coverpoints), while there may be three- or higher-dimensional
cross-coverage specifications. Comparisons between MRRS and (G)PLNSAT will be
demonstrated in Section 5.

In this section, we describe the GPLNSAT algorithm, that extends the PLNSAT
algorithm with new constraints introduced to refine the solving procedure. These con-
straints are derived automatically from the structure of SystemVerilog covergroups.

4.2.1. Solving Constraints Formulation. In the GPLNSAT algorithm, the bins are divided
into groups (put into different clauses) in a natural way: group the bins that come from
the same SystemVerilog coverpoint. Recall that the bins coming from the same cover-
point have the same source, namely the expression of the coverpoint (see Section 2.1.2).
Thus, in typical cases, if a bin b0 is determined to be true, the other bins of the same
coverpoint are also determined at the same time (wildcard bins may not have this
characteristic, but we can expand them into non-wildcard bins for GPLNSAT). Some
of the bins will be implied true, indicating that their specifications have intersections
with b0, and the solved value for b0 is in the intersections. Other bins will be implied
false, indicating that their specifications have no intersections with b0, or the solved
value of b0 is not in the intersections. In either case, once a bin is determined to be true,
the whole group (a clause) is fully assigned and then the SAT solver can focus on other
groups. Furthermore, this approach is fully automatic and does not require additional
computation to determine the relationships between bins.

The constraint is translated to a set of grouped property list clauses. For example, if
there are five bins in which b1, b2, and b3 come from the same coverpoint and b4 and b5
come from another coverpoint, the constraint clauses will be (b1 ∨b2 ∨b3 ∨¬q1)(b4 ∨b5 ∨
¬q2)(q1 ∨ q2). The variables q1 and q2 in the clauses are auxiliary variables: if the SAT
instance is satisfiable and q1 = true, at least one of the bins in the group {b1, b2, b3} is
solved and, if q2 = true, at least one of the bins in the group {b4, b5} is solved. By such
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encoding, the clause (q1 ∨ q2) guarantees at least one of the bins is solved. Note that, if
q1 = false, bins of {b1, b2, b3} could be either true or false. This gives the SAT solver more
flexibility in that it can leave a group unsatisfied temporarily, and try to solve another
group; on the other hand, if q1 is decided true prior to the assignments of {b1, b2, b3}
during search, at least one bin will be true if there is a satisfiable solution. Just as
in the PLNSAT algorithm, if the SAT instance is satisfied, new narrowed grouped
property list clauses will be added. For example, if b1 and b4 are solved, two clauses
will be added, namely (b2 ∨ b3 ∨¬q1) and (b5 ∨¬q2). A difference between PLNSAT and
GPLNSAT is that GPLNSAT adds more clauses while PLNSAT adds fewer, but longer,
clauses. Empirically, more clauses and longer clauses both decrease solving efficiency,
so it is hard to predict which algorithm will have better performance by the structure
of clauses only, but GPLNSAT is more likely to get a solution quickly, as we have
discussed. We will support this empirically in Section 5.

4.2.2. The Single-Pass GPLNSAT Algorithm. The single-pass GPLNSAT algorithm can
be achieved by Algorithm 1 and the GenGPLClause method, which is shown in
Algorithm 3. In Algorithm 3, the unsolved bins have been divided into groups accord-
ing to their belonging coverpoints. In line 4, each group is parsed to the GenPLClause
method with a negated auxiliary literal. The grouped property list clauses are aug-
mented by the clauses returned by the GenPLClause method, as well as a clause that
contains all the auxiliary literals. Algorithm 1 then merges these clauses and the
original SAT instance to generate a stimulus.

ALGORITHM 3: GenGPLClause
Input: Unsolved bins, U ; An auxiliary variable, a.
Output: The grouped property list clauses, GPLClauses.
// assume Bi ⊆ U = {B0, . . . , Bm−1|m ≥ 1}
// Bi is a set of bins come from a same coverpoint
1: GPLClauses = ∅;
2: for each Bi do
3: qi = newVar();
4: GPLClauses = GPLClauses ∪ GenPLClause (¬qi, Bi) ;
5: end for
6: GPLClauses = GPLClauses ∪ (

∨m−1
i=0 qi ∨ a)

7: return GPLClauses;

4.3. Stimulus Generation by PLNSAT or GPLNSAT

Algorithm 4 presents the PLNSAT/GPLNSAT algorithm. The inputs of the algorithm
are a DUV model, a set of input constraints, a set of coverage bins, and the maximum
bound. In line 1, the stimuli S, bound k, the unsolved bin list U , and the SAT instance
CNF are initialized. The outer while-loop in line 2 terminates when all bins are solved
or the maximum bound is reached. Line 3 augments the SAT instance by one frame,
while new auxiliary variables are generated for every bound in line 4. The Uold rep-
resents the unsolved bins before simultaneous SAT solving; it is initialized to empty
in line 5. The inner while-loop in line 6 terminates when the number of unsolved bins
cannot be further decreased in the current bound. After Uold is assigned asU in line 7,
line 8 uses the single-pass PLNSAT/GPLNSAT algorithm to generate a stimulus and
update currently unsolved bins. The new stimulus is recorded in line 9. In line 11,
a unit clause is added to the SAT instance to disable the constraints of the current
bound, as discussed in Section 4.1.1. The bound is increased by one in line 12. Finally,
the stimuli are returned in line 14.
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ALGORITHM 4: (G)PLNSAT
Input: DUV, D; Constraints, C; Bins B; Maximum bound K.
Output: Stimuli S
1: S = ∅, k = 0,U = B, CNF = ∅;
2: while U �= ∅ and k ≤ K do
3: CNF = CNF ∪ GenCNF(D, C,U, k);
4: ak = newVar();
5: Uold = ∅;
6: while Uold �= U do // new stimulus can be found
7: Uold = U ;
8: (s,U ) = Algorithm1(U, CNF, ak);
9: S = S ∪ s;
10: end while
11: CNF = CNF ∪ (ak); // disable previous constraints
12: k + +;
13: end while
14: return S;

5. EXPERIMENTAL RESULTS

We have implemented the proposed algorithms in C++. The adopted SAT solver is
MiniSAT [Eén and Sörensson 2003a] because it provides a practical API for adding
clauses incrementally and taking literals as assumptions. All the experiments are
conducted on a Linux PC using 2.53 GHz Intel Xeon CPU E5649 with 48GB RAM. The
experiments are designed to demonstrate the following:

—the efficiency of the simultaneous SAT approaches, in contrast with generating a
stimulus individually;

—the difference in solving potential between MSPSAT and our approaches;
—the ability for GPLNSAT to achieve better performance than PLNSAT; and
—the merits of (G)PLNSAT over MRRS.

A UART circuit and large circuits from the ITC99 benchmark are chosen. The circuit
and the specification of functional coverage model of UART are taken from Mentor
Graphics [2013]. For ITC99 circuits, we predetermine some reachable states and write
coverage models for them. The detailed steps are: (1) run SAT solving on interested
PIs/POs/FFs for all concerned values; for example, a 3-bit counter with value 0 to 7;
(2) from step 1, we can get reachable values in a given runtime or time frames, and
these values are chosen as the candidate bins; and (3) we then write cross-coverage on
these bins and use methods similar to steps 1 and 2 to select cross-bins for experiments.

5.1. Performance Evaluation of Simultaneous SAT Approaches

Table I shows the information of test circuits. The first column shows the name of
the circuits. The second and third columns show the number of coverage bins and the
maximum bound of the bins of the circuits. The fourth and fifth columns indicate the
size of initial SAT instance, including the number of variables and clauses.

Table II gives the stimulus generation results. The second column shows the stim-
ulus generation time of the single-objective-based method. Each of the bins is solved
individually and the learned clauses are reused across bounds (incremental SAT). The
third column presents the stimulus generation time of MSPSAT and the fourth column
gives the speedup compared with MiniSAT. The same timing information of PLNSAT
and GPLNSAT is shown in the columns 5 and 6, and in columns 7 and 8, respectively.
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Table I. Circuit Statistics

CNF Size
Circuit # Bin Max Bound # Variable # Clause

UART 391 1702 3904 7677
b12 38 216 1134 2782
b14 134 4 8006 24664
b15 421 20 6108 15253
b17 269 30 18679 54354
b18 29 34 58571 180528
b19 182 14 111840 341808
b20 512 8 17462 52255
b21 512 8 17304 51996
b22 640 8 25849 78506

Table II. Stimulus Generation Results

MiniSAT MSPSAT PLNSAT GPLNSAT
Circuit Time (s) Time (s) Speedup Time (s) Speedup Time (s) Speedup

UART 15762.86 7094.89 2.22 6663.36 2.37 6355.55 2.48
b12 241.32 36.79 6.56 194.07 1.24 147.94 1.63
b14 4.68 0.24 19.50∗ 0.25 18.72 0.24 19.50∗

b15 243.30 17.03 14.29 13.95 17.44 11.47 21.21
b17 105.13 44.58 2.36 37.95 2.77 36.50 2.88
b18 328.90 184.35 1.78 153.22 2.15 128.81 2.55
b19 62.89 3.94 15.96 3.41 18.44 3.20 19.65
b20 76.69 6.58 11.66 6.40 11.98 6.39 12.00
b21 68.85 4.87 14.14 5.01 13.74 4.83 14.25
b22 110.39 7.33 15.06 8.52 12.96 9.28 11.90

We have implemented the MSPSAT algorithm as the following procedures: (1) a list
of unsolved bins is maintained and, for each bound, the SAT solver takes the bins
in the list one-by-one as the assumption; (2) if an assumption is satisfied, the status
of the undetermined bins will be checked to see whether there are also other bins
being solved simultaneously, then all the solved bins will be removed from the list
and the remaining bins will be kept to the next bound. Also, during the whole process
of stimulus generation, all the learned clauses are passed across bounds. Thus, the
main difference between the MSPSAT algorithm and our approaches is that it only
considers one bin at a time (and learns knowledge from previously checked bins), while
our approaches consider all bins simultaneously.

For all the cases, the three simultaneous SAT approaches all outperform MiniSAT.
The GPLNSAT method has better performance in seven out of ten cases. On the other
hand, MSPSAT has better performance in two out of ten cases, and the result on b14
equals that of GPLNSAT. To figure out the different situations between the circuits,
we measured the solving time of each bound. The results are illustrated in Figure 6.
Figure 6(a) shows the solving time of the three simultaneous SAT approaches in each
bound of b12. In this benchmark, MSPSAT almost outperforms the other two meth-
ods in every bound. This indicates that the overheads introduced by the additional
constraint clauses might degrade the performance of SAT solving for small-size cir-
cuits. Figure 6(b) presents the solving situation of b15. The solving time of MSPSAT
during bounds 6 to 12 increases drastically and then suddenly drops. On the other
hand, PLNSAT and GPLNSAT have the same solving potential and are more stable
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Fig. 6. The solving time of individual bounds by MSPSAT, PLNSAT, and GPLNSAT.

and faster than MSPSAT. Another case where GPLNSAT has better performance is
b19; the result is illustrated in Figure 6(c). In this case, the solving times of the three
approaches are approximately the same in bounds 0 to 8, but are diverse in the re-
maining bounds. Figure 6(d) demonstrates the result of b22. From the graph, we can
see that bounds 4, 6, and 8 occupy most of the solving time because most of the target
bins are solved in these bounds. The GPLNSAT method has the worst performance in
this case, and this is the only case where PLNSAT outperforms GPLNSAT. Actually,
the 640 target bins come from only five coverpoints, each having 128 bins. The result of
b22 may indicate that PLNSAT and GPLNSAT are not good at dealing with intensive
targets from the same source with the same bound.

5.2. Performance Evaluation of Different Group Sizes

To show the effectiveness of the GPLNSAT approach, we randomly divided the bins
into groups of different sizes. The results are shown in Table III. The first column
indicates the name of each circuit. The rest of the columns present the solving time of
different group sizes. Size 1 means PLNSAT, and the letter “G” means GPLNSAT; sizes
2 to 10 mean the number of literals in each constraint clause. In each case the solving
time of different group sizes is normalized by dividing with the solving time of PLNSAT.
Hence, a solving time lower than 1 means better performance than PLNSAT. Moreover,
the lowest (best) time in each row is underlined. The total scores of each group size
are also presented in the last row. If a group size has the lowest time in a circuit case,
it gets 10 scores; otherwise, its score shrinks according to the ranking, and the lowest
score is zero. The results show that grouping bins randomly does not guarantee better
performance than PLNSAT. Besides, the solving times of random grouping methods
are average values, that is, the actual time depends on the grouping conditions and
may differ drastically. Of course, one can group the bins according to their affinities,
but this requires additional calculating effort. In contrast, GPLNSAT has a more stable
solving time and does not require any preprocessing effort. Furthermore, GPLNSAT

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 7, Pub. date: November 2014.



Efficient Coverage-Driven Stimulus Generation 7:17

Table III. Solving Time of Different Group Sizes

Group Size
Circuit 1 2 3 4 5 6 7 8 9 10 G

UART 1 0.92 0.98 1.05 1.01 1.04 1.44 1.03 1.16 0.96 0.95
b22 1 1.00 1.03 0.96 0.94 0.99 0.99 0.97 0.95 0.97 1.09
b21 1 0.89 0.93 0.91 0.91 0.97 0.94 0.93 0.94 0.94 0.96
b20 1 1.03 1.01 1.01 1.03 1.01 1.00 1.02 0.97 0.96 0.99
b19 1 0.96 0.94 0.93 0.93 1.04 0.89 0.91 0.96 0.96 0.94
b18 1 0.96 1.01 0.93 0.96 0.91 0.92 0.91 1.61 1.62 0.89
b17 1 1.11 0.98 1.06 1.01 0.93 1.01 1.04 0.94 0.98 0.96
b15 1 0.99 1.24 1.11 1.13 0.96 0.94 1.07 1.12 1.24 0.82
b14 1 0.98 0.99 0.98 0.98 0.97 0.98 0.98 0.98 0.97 0.96
b12 1 0.94 0.79 0.80 0.70 0.87 0.81 0.81 0.78 0.81 0.76

Score 29 46 42 54 54 48 52 51 54 50 70

outperforms PLNSAT in 9 out of 10 cases and also gets the highest total score among
all group sizes.

5.3. Comparison with the MRRS Algorithm

To compare with the MRRS algorithm, we design the following experimental settings:
in each case, two coverpoints for cross-coverage are selected and the size of cross-
coverage is gradually increased by 10 to test the scalabilities of different approaches.
The bins not belonging to the two coverpoints are filtered so their reachable bounds are
not too far from those of the cross-coverage bins. This can make the reported timing
more related to the cross-coverage bins. Furthermore, the MRRS algorithm proposed
in Cheng et al. [2012] was not incremental, so we also add auxiliary variables into the
OR constraint of monitors to make it incremental for fair comparison.

Figure 7(a) to Figure 7(f) demonstrate results of cases b12, b14, b15, b17, b19, and
b22, respectively. In Figure 7, the y-axes indicate the solving time, while the x-axes
represent the size of cross-coverage, ranging from 10 to 100. In general, GPLNSAT
outperforms PLNSAT, as we can expect from the experimental results of Table I. On
the other hand, PLNSAT is more efficient than MRRS in most cases. The only exception
is b17. In this case, none of the three approaches appears definitely better than the
others, but comparing the summing time of the 10 conditions, the MRRS algorithm
still takes the longest time.

Figure 8 shows the final number of clauses (the model is unrolled into the maximum
bound, together with all constraint clauses) in each condition of the three approaches
in each case. In each circuit case, the number of clauses is normalized by dividing with
the number of clauses of MRRS with cross-size 10. The y-axis indicates the accumu-
lated clause number of different cross-sizes, and the x-axis presents the approaches
used in each case. The results show that the clause number of MRRS increases rapidly
whenever the size of cross is raised. This result is predictable because: (1) as we have
mentioned, the specifications of the cross-bins have few in common, so the MRRS ap-
proach cannot gain benefit; and (2) each time a cross-bin is solved, the MRRS approach
will reconstruct a new set of monitors for all cross-bins, which are then converted
into additional clauses. In the cases of small circuits, the number of monitor clauses
produced by MRRS could be even larger than the number of model clauses, like b14.
On the other hand, PLNSAT and GPLNSAT do not reconstruct bins, so the number
of clauses increases linearly and slowly. In the case of b12, PLNSAT and GPLNSAT
with larger cross-sizes definitely do not have a larger number of clauses. For example,
GPLNSAT with cross-size 70 has a smaller number of clauses than that of the case
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Fig. 7. Solving time versus cross-size of the three different approaches.

with cross-size 60. This is possible since the circuit size is small; the learned conflict
clauses may occupy a greater percentage than property list clauses.

6. RELATED WORKS ON INCREMENTAL SAT AND SIMULTANEOUS SAT

This section reviews related work on incremental SAT and simultaneous SAT. Gen-
erally speaking, incremental SAT exploits the reusability of conflict clauses, while
simultaneous SAT tries to solve multiple objectives in one model. Incremental SAT is
naturally incorporated with simultaneous SAT because conflict clauses are shared by
all objectives.

6.1. Incremental SAT

As described in Section 2.2, SAT solvers use conflict learning to facilitate the searching
process. The basic idea of incremental SAT solving is to reuse the learned clauses dur-
ing solving closely related SAT instances [Whittemore et al. 2001; Strichman 2004; Jin
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Fig. 8. CNF size comparison of different cross-size. The numbers 10 to 100 are the number of cross-bins.

and Somenzi 2004; Novikov and Goldberg 2001; Eén and Sörensson 2003b; Hooker
1993]. However, due to the differences between each SAT instance, not all of the
learned clauses can (normally) be reused. Several approaches were proposed in this
context.

Whittemore et al. [2001] recorded each conflict clause and removed those learned
from clauses no longer existing in a newer SAT instance. However, tracking the depen-
dencies between the learned and the removed clauses can be costly. Strichman [2004]
was the first to observe that, in the case of BMC, those clauses learned solely from the
structure of the model are valid to all the remaining instances. These clauses learned
from the common part of all the instances are called pervasive conflict clauses [Silva
and Sakallah 1997]. By marking the common clauses, pervasive conflict clauses can be
easily identified: if all clauses leading to the conflict are marked, the derived conflict
clause is pervasive. This approach avoids the overheads of tracking the whole relation-
ships between clauses. Nevertheless, many profitable learned clauses are discarded.
Jin and Somenzi [2004] extend the approach of Strichman [2004] by reusing objective-
independent clauses. A primary objective is a proof objective literal (PO for short) that
tends to be true or false in a satisfied solution. If one of the ancestors of the conflict node
in the implication graph is a PO, the conflict clause is said to be objective dependent,
thus not forwarded. In contrast, objective-independent clauses are kept. However, the
authors proposed another technique to distill the objective-dependent clauses to be
forwarded. These two techniques drastically increase the number of forwarded clauses
compared with Strichman [2004], and also improve solving performance.

Novikov and Goldberg [2001] proposed a method that allows all conflict clauses to
be reused when checking whether multiple cubes (the conjunction of a set of literals)
are implications of a formula in Disjunctive Normal Form (DNF). The literals of a cube
are deemed as internal assumptions to the formula. Because the conflict clauses are
guaranteed independent of the assumptions (if the algorithm backtracks to one of the
initial assignments, the solving stops), all of them can be forwarded. Eén and Sörensson
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[2003b] mentioned that if only unit clauses are removed, all the learned clauses can be
reused. In their implementation, the POs of BMC are treated as assumptions during
individual solving. This idea is basically the same as Novikov and Goldberg [2001] in
the special case that cubes only contain one literal.

If an SAT instance is augmented by some clauses to form a new one, all the conflict
clauses can be reused because the new instance implies the old one [Hooker 1993].
But this kind of incremental method is too limited. The method of Eén and Sörensson
[2003b] treats unit clauses as assumptions, thus enabling the removal of unit clauses.
Moreover, this method can be extended to add-and-remove clauses with any length,
just as what we do to disable the constraint clauses.

6.2. Double Incremental SAT

Basically, the aim of Whittemore et al. [2001], Strichman [2004], Jin and Somenzi
[2004], Eén and Sörensson [2003b], and Hooker [1993] is to effectively or maximally
reuse the conflict clauses of a single PO through bounds. On the other hand, the goal
of Novikov and Goldberg [2001] is to share learned clauses through multiple cubes.
The SSAT algorithm [Khasidashvili et al. 2005] is a double incremental approach in
that the learned clauses are not only reused across bounds but also across properties
at each bound. Another important feature of SSAT is that it tries to resolve multi-
ple POs related to the same SAT instance by one model. This could possibly further
reduce the whole solving time. In this section, we will introduce double incremental
approaches that consider learning across bounds as well as across properties. And we
will leave those approaches that can resolve multiple POs by one model to the next
section.

In directed test generation, Chen and Mishra [2010] proposed a method to share
conflict clauses between a group of properties with given bounds. First, properties
are divided into several groups according to their similarity and then, for each group,
a base property is solved first and afterwards the conflict clauses learned from the
base property are filtered by the other properties in the same group to get individual
reusable clauses. However, determining base properties can be a bottleneck. Chen and
Mishra [2011] have proposed another learning technique: again, properties are divided
into groups, but the learning across properties is derived from the decision orders of
the variables. Since conflict clauses are not reused across properties, there is no need
to compute the intersections between properties to determine the base property. This
technique shows 2× speedup compared to Chen and Mishra [2010]. The idea of Qin et al.
[2010] is to synchronize the solving process of multiple properties for different bounds.
This method is an intuitive extension of Strichman [2004]. In each bound, properties
are solved individually and the pervasive clauses are forwarded across properties. If
a property is proved, it will be removed, otherwise it will be kept to next bound. Also,
the pervasive clauses are forwarded to the next bound as in Strichman [2004]. The
experimental results demonstrated that this approach is superior to the combination
of Strichman [2004] and Chen and Mishra [2010]. This approach is further applied to
multicore architectures in Qin and Mishra [2012].

6.3. Simultaneous SAT

As mentioned in the previous section, the method of Khasidashvili et al. [2005] is both
double incremental and simultaneously solves multiple properties. It is worth noting
that these two techniques are orthogonal, which means that they can be adopted
separately or combined. The benefit of solving multiple properties simultaneously is
the opportunity to share subsolutions and all the learned clauses, so there is no need to
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determine pervasive clauses. Besides, in the view of verification, the properties stand
for behaviors of the design model, so it is preferable to consider them together.

Fraer et al. [2002] formed a conjunction of properties and checked them simulta-
neously in BMC. If the conjunction can be proved, all the properties are resolved,
otherwise, the provable subset is found after several solving iterations. In each itera-
tion, some of the properties that cannot be proved are eliminated. The implementation
of this approach in Fraer et al. [2002] was not incremental, but can be easily made
so by the methods mentioned in Section 6.1. In SSAT [Khasidashvili et al. 2005], a
list of POs is maintained and each time a PO is selected (called the currently watched
PO, or CWPO) to be resolved. The CWPO is treated as an assumption in that if it can
be proved, the other properties are checked and possibly some of them are also re-
solved (also proved or determined as global conflicts), otherwise the CWPO cannot be
proved in the current bound, so it will be kept to the next bound. The solved properties
are removed from the list and then a next CWPO is picked and a new search starts.
Franzén et al. [2010] also proposed an algorithm called MSPSAT for simultaneously
solving multiple targets. Actually, their goal is to solve multiple formulae together, so
they create predicate literals pi for each formula ϕi, and add the formulae pi ≡ ϕi to
the solver. The basic idea of MSPSAT is the same as SSAT, but the authors use the
assumption API of the MathSAT [2013] solver for implementation, so it does not re-
quire any modification to the solver. Cabodi and Nocco [2011] also grouped properties
according to their mutual affinities as in Chen and Mishra [2010, 2011], then they
used SSAT to solve each group of properties. The solving orders of groups are predeter-
mined by their expected verification effort. The reason that they group the properties
is because properties are often associated with parts of local behaviors of the design, so
the effort to verify a subset of properties is much lower than that of verifying all prop-
erties together. However, they did not compare this approach with pure SSAT in the
experimental results. Khasidashvili and Nadel [2011] modified SSAT [Khasidashvili
et al. 2005] into an implicative version. In some applications, the POs are of the form
PO ≡ os ↔ oi, hence translating many of them into CNF can be a bottleneck for the
SAT solver. The new SSAT, called implicative SSAT, takes pairs of (os, oi) as inputs, and
can check their equivalence without translating them into CNF. This approach shows
great improvements in solving time of in-depth BMC and invariant strengthening.

Our stimulus generation methods use double incremental approaches so every con-
flict clause can be reused and they also simultaneously solve all the objectives. The
experimental results demonstrate the advantage of our simultaneous SAT approaches.

7. CONCLUSIONS

Coverage-driven verification is effective for functional verification because the coverage
targets for stimulus generation are dynamically adjusted. In this article, we utilize the
functional coverage model of SystemVerilog so that it may be integrated into modern
digital design flows. The language constructs of the functional coverage model are
studied and converted into CNF for SAT-based stimulus generation. Since there could
be a lot of coverage holes, we want to get a set of stimuli to trigger them efficiently. In
this context, the PLNSAT and GPLNSAT algorithms are proposed to simultaneously
solve all the targets. The experimental results on a UART circuit and the largest
ITC99 benchmark circuits show that both of the approaches can increase performance
drastically, with speedup 1.6x to 21.2x, compared to a single-target generation method.
They also are more efficient than the MRRS algorithm that we have proposed in Cheng
et al. [2012]. Furthermore, GPLNSAT can achieve better performance than the prior
best simultaneous SAT method, MSPSAT, in seven out of ten cases.
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Niklas Eén and Niklas Sörensson. 2003a. An extensible sat-solver. In Proceedings of the 6th International
Conference on Theory and Applications of Satisfiability Testing (SAT’03). 502–518.

Niklas Eén and Niklas Sörensson. 2003b. Temporal induction by incremental sat solving. Electron. Not.
Theor. Comput. Sci. 89, 4, 543–560.

Ranan Fraer, Shahid Ikram, Gila Kamhi, Tim Leonard, and Abdel Mokkedem. 2002. Accelerated verification
of rtl assertions based on satisfiability solvers. In Proceedings of the International High Level Design
Validation and Test Workshop (HLDVT’02). 107–110.

Anders Franzén, Alessandro Cimatti, Alexander Nadel, Roberto Sebastiani, and Jonathan Shalev. 2010.
Applying smt in symbolic execution of microcode. In Proceedings of the International Conference on
Formal Methods in Computer-Aided Design (FMCAD’10). 121–128.

John N. Hooker. 1993. Solving the incremental satisfiability problem. J. Logic Program 15, 1–2, 177–
186.

IEEE Std. 2013. IEEE standard for systemverilog–Unified hardware design, specification, and verifica-
tion language. IEEE Std 1800-2012 (revision of ieee std 1800-2009). 1–1315. http://dx.doi.org/10.1109/
IEEESTD.2013.6469140.

ITC’99 Benchmark. 1999. ITC’99 benchmark homepage. http://www.cerc.utexas.edu/itc99-benchmarks/
bench.html.

Hoonsang Jin and Fabio Somenzi. 2004. An incremental algorithm to check satisfiability for bounded model
checking. Electr. Not. Theor. Comput. Sci. 119, 2, 51–65.

Ivan Kastelan and Zoran Krajacevic. 2009. Synthesizable system verilog assertions as a methodology for
soc. In Proceedings of the 1st IEEE Eastern European Conference on the Engineering of Computer Based
Systems (ECBS-EERC’09). 120–127.

Zurab Khasidashvili and Alexander Nadel. 2011. Implicative simultaneous satisfiability and applications.
In Proceedings of the 7th International Haifa Verification Conference (HVC’11). 66–79.

Zurab Khasidashvili, Alexander Nadel, Amit Palti, and Ziyad Hanna. 2005. Simultaneous sat-based model
checking of safety properties. In Proceedings of the 1st International Haifa Verification Conference
(HVC’05). 56–75.

Jiang Long and Andrew Seawright. 2007. Synthesizing sva local variables for formal verification. In Pro-
ceedings of the Design Automation Conference (DAC’07). 75–80.

Biruk Mammo, Debapriya Chatterjee, Dmitry Pidan, Amir Nahir, Avi Ziv, Ronny Morad, and Valeria
Bertacco. 2012. Approximating checkers for simulation acceleration. In Proceedings of the Design, Au-
tomation and Test in Europe Conference (DATE’12). 153–158.

Joao P. Marques-Silva and Karem A. Sakallah. 1999. GRASP: A search algorithm for propositional satisfia-
bility. IEEE Trans. Comput. 48, 5, 506–521.

Joao P. Marques-Silva and Karem A. Sakallah. 1997. Robust search algorithms for test pattem generation.
In Proceedings of the 27thAnnual International Symposium on Fault-Tolerant Computing (FTCS’97).
152–161.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 7, Pub. date: November 2014.



Efficient Coverage-Driven Stimulus Generation 7:23

Davis Martin, George Logemann, and Donald Loveland. 1962. A machine program for theorem-proving.
Comm. ACM 5, 7, 394–397.

Davis Martin and Hilary Putnam. 1960. A computing procedure for quantification theory. J. ACM 7, 3,
201–215.

MathSAT. 2013. The mathsat 5 smt solver. http://mathsat.fbk.eu/.
Mentor Graphics. 2013. Coverage cookbook. https://verificationacademy.com/cookbook/coverage.
Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. 2001. Chaff:

Engineering an efficient sat solver. In Proceedings of the Design Automation Conference (DAC’01). 530–
535.

Yakov Novikov and Evgueni Goldberg. 2001. An efficient learning procedure for multiple implication checks.
In Proceedings of the Design, Automation and Test in Europe Conference (DATE’01). 127–133.

Xiaoke Qin, Mingsong Chen, and Prabhat Mishra. 2010. Synchronized generation of directed tests using
satisfiability solving. In Proceedings of the 23rd International Conference on VLSI Design (VLSID’10).
351–356.

Xiaoke Qin and Prabhat Mishra. 2012. Directed test generation for validation of multicore architectures.
ACM Trans. Des. Autom. Electron. Syst. 17, 3, 1–21.

Ofer Strichman. 2004. Accelerating bounded model checking of safety properties. J. Formal Methods Syst.
Des. 24, 1, 5–24.

Grigorii S. Tseitin. 1970. On the complexity of derivation in propositional calculus. In Studies in Constructive
Mathematics and Mathematical Logic, Part II, Consultants Bureau, 115–125.

Jesse Whittemore, Joonyoung Kim, and Karem Sakallah. 2001. SATIRE: A new incremental satisfiability
engine. In Proceedings of the Design Automation Conference (DAC’01). 542–545.
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