Reducing Contention in Shared Last-Level Cache
for Throughput Processors

HSIEN-KAI KUO and BO-CHENG CHARLES LA, National Chiao-Tung University
JING-YANG JOU, National Central University and National Chiao-Tung University

Deploying the Shared Last-Level Cache (SLLC) is an effective way to alleviate the memory bottleneck
in modern throughput processors, such as GPGPUs. A commonly used scheduling policy of throughput
processors is to render the maximum possible thread-level parallelism. However, this greedy policy usually
causes serious cache contention on the SLLC and significantly degrades the system performance. It is
therefore a critical performance factor that the thread scheduling of a throughput processor performs a
careful trade-off between the thread-level parallelism and cache contention. This article characterizes and
analyzes the performance impact of cache contention in the SLLC of throughput processors. Based on the
analyses and findings of cache contention and its performance pitfalls, this article formally formulates the
aggregate working-set-size-constrained thread scheduling problem that constrains the aggregate working-
set size on concurrent threads. With a proof to be NP-hard, this article has integrated a series of algorithms
to minimize the cache contention and enhance the overall system performance on GPGPUs. The simulation
results on NVIDIA’s Fermi architecture have shown that the proposed thread scheduling scheme achieves
up to 61.6% execution time enhancement over a widely used thread clustering scheme. When compared to
the state-of-the-art technique that exploits the data reuse of applications, the improvement on execution
time can reach 47.4%. Notably, the execution time improvement of the proposed thread scheduling scheme
is only 2.6% from an exhaustive searching scheme.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Cache memory, Shared
memory; D.3.4 [Programming Languages]: Processors—Optimization

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Throughput processors, thread-level parallelism, cache contention,
shared last-level cache, thread scheduling

ACM Reference Format:

Hsien-Kai Kuo, Bo-Cheng Charles Lai, and Jing-Yang Jou. 2014. Reducing contention in shared last-level
cache for throughput processors. ACM Trans. Des. Autom. Electron. Syst. 20, 1, Article 12 (November 2014),
28 pages.

DOI: http://dx.doi.org/10.1145/2676550

1. INTRODUCTION

The recently emerging throughput-oriented architectures dedicate most of the chip area
to thousands of simpler and smaller computing cores. Such architectures have been
proved to achieve great performance by leveraging the numerous computing cores
and the massive Thread-Level Parallelism (TLP) of applications. Up to the present,
there already have been plenty of such processors proposed by academic research

This work was supported in part by the National Science Council, Taiwan, under the grant NSC 102-2220-
E-009.

Authors’ addresses: H.-K. Kuo (corresponding author) and B.-C. C. Lai, National Chiao Tung University, 300,
Hsinchu City, East District, Taiwan; email: hsienkai.kuo@gmail.com; J.-Y. Jou, National Central University,
Taiwan and National Chiao Tung University, 300, Hsinchu City, East District, Taiwan.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in
other works requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
2014 Copyright held by the Owner/Author. Publication rights licensed to ACM. 1084-4309/2014/11-ART12
$15.00

DOI: http://dx.doi.org/10.1145/2676550

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

12:2 H.-K. Kuo et al.

Threads Threads

s So099958
/] A TANN

1 Per-thread working set (b)

Fig. 1. (a) Low-thread-level parallelism execution without cache contention; (b) massive thread-level-
parallelism execution with cache contention.

as well as commercial product vendors, such as Rigel [Johnson et al. 2011], Sun’s
Sparc T3 [Shin et al. 2010], and NVIDIA’s Fermi and Kepler GPGPU [Nvidia 2012a;
Wittenbrink et al. 2011]. Even with the numerous computing cores and massive TLP,
the peak performance of throughput processors is usually limited by the long latency
of off-chip memory accesses. To alleviate the memory bottleneck, a Shared Last-Level
Cache (SLLC) has been adopted in the latest throughput-oriented architectures to
better utilize the data locality inherent in applications [Nvidia 2012a; Wittenbrink
et al. 2011]. By keeping the frequently reused data on chip while allowing different
computing cores to share or exchange data, the SLLC can potentially mitigate the
performance penalty caused by the long latencies of off-chip memory accesses.

Nowadays, NVIDIA’s GPGPU has been become a widely used throughput proces-
sor that implements deep TLP with SLLC to achieve sheer computation throughput
[Garland and Kirk 2010; Keckler et al. 2011; Nickolls and Dally 2010]. In such
throughput-oriented architectures, allowing a high degree of TLP could boost the com-
putation throughput from massive concurrent execution; however, the concurrent ex-
ecution of a large amount of threads might also result in serious cache contention on
the SLLC. The contention on the SLLC could cause a large number of cache misses
that would generate a lot of off-chip memory traffic to the DRAM subsystem. This issue
could significantly degrade the system throughput. According to the measurements in
Section 3, without considering the cache contention on the SLLC, the number of DRAM
accesses can be increased by 11.8x.

In an SLLC, cache contention happens when its cache capacity is insufficient to sup-
port all the concurrent threads. In this situation, threads start replacing the useful
data of each other. As cache contention occurs, it generates a tremendous number of
unnecessary cache misses in an SLLC. These misses are converted into a lot of long-
latency off-chip memory accesses and therefore cause considerable execution time and
energy consumption. Moreover, the cache contention issue can be aggravated when a
throughput processor exposes a high degree of TLP and executes tens of thousands
of concurrent threads, such as NVIDIA’s Fermi and Kepler GPGPU [Nvidia 2012a;
Wittenbrink et al. 2011]. Figures 1(a) and 1(b) illustrate examples of how the cache
contention impairs the memory system performance by introducing numerous cache
misses. As shown in Figure 1(a), the SLLC capacity is large enough for low-TLP execu-
tion. However, as shown in Figure 1(b), when massive TLP are executed at the SLLC,
the cache capacity may be insufficient to support all the threads. These threads there-
fore start competing with each other for the insufficient cache resource. Consequently,
numerous undesired capacity misses and conflict misses are generated. As a result,
not only could the potential computation throughput of TLP be seriously compromised,
but also the energy consumption could increase significantly.

This article has demonstrated that avoiding cache contention on the SLLC is a criti-
cal performance factor and should be considered as one of the main optimization goals.
According to the measurements shown in Section 3, without considering the cache
contention on the SLLC, the performance of a throughput processor can be degraded

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

Reducing Contention in Shared Last-Level Cache 12:3

by 2.3x and the energy consumption can be increased by 3.2x. Nevertheless, the cache-
contention-related optimization has not been extensively studied for throughput pro-
cessors. Most of the existing studies focus on optimizing the memory access behavior by
exploiting specific memory features, such as utilizing scratch-pad memory [Deng et al.
2009], enhancing memory coalescing by thread clustering [Kuo et al. 2012], or data and
computation reordering [Wu et al. 2013; Zhang et al. 2011a]. With these approaches,
cache contention can be somehow mitigated while the memory access behavior is opti-
mized. However, without an appropriate characterization and optimization, the cache
contention can still happen and impair the system performance even after applying
these techniques. This is especially true when the sheer amount of concurrent threads
share a relatively small SLLC on throughput processors. Consequently, leveraging the
massive parallelism of TLP on enormous processing cores while appropriately avoiding
cache contention in an SLLC has become a critical design concern to achieve superior
performance and energy efficiency on a throughput processor.

This article concentrates on studying the cache contention avoidance of an SLLC
in throughput processors. To our best knowledge, this article is the first study that
characterizes the cache contention of an SLLC in throughput processors. Based on the
characterization, this article is also the first attempt to directly minimize the cache
contention of an SLLC by considering the aggregate working-set size. The term “ag-
gregate working-set size” refers to the amount of demanded memory space of a set
of threads that need to be serviced by an SLLC. In summary, this article has the fol-
lowing main contributions. First, this article performs comprehensive characterization
on the cache contention issue of the SLLC for throughput processors. Based on the
characterization, this work conducts the performance analysis of cache contention and
provides the fundamentals for further optimizations. Second, based on the analysis,
this research formulates a generic thread scheduling problem for avoiding the cache
contention of the SLLC in throughput processors, called the aggregate working-set-size-
constrained thread scheduling problem. This article also proves that this problem is
NP-hard. Third, to handle different architectural considerations, this article analyzes
several variants of the generic problem and proposes the thread scheduling algorithms
for these variants. Note that one of the variants implements the current architecture
of NVIDIA’s Fermi GPGPUs.

The simulation results on NVIDIA’s Fermi architecture have shown that the proposed
thread scheduling scheme achieves an average of 46.8% reduction in cache misses and
31.8% execution time enhancement over a commonly used thread clustering scheme.
For applications with more threads and higher complexity, the execution time im-
provement can reach up to 61.6%. When compared to the state-of-the-art scheme that
exploits the data reuse inherent in applications, the average improvement on execution
time is 22.9% and up to 47.4% in applications with a more complex workload. Notably,
the execution time improvement of the proposed thread scheduling scheme is only 2.6%
from an exhaustive searching scheme.

The rest of the article is organized as follows. Section 2 introduces the back-
ground of this work. Section 3 characterizes the cache contention issue in an SLLC,
while Section 4 introduces the problems, challenges, and potential of the aggregate
working-set-size-constrained thread scheduling. The details of aggregate working-set-
size-constrained thread scheduling are discussed in Section 5. Section 6 shows the
implementation details and experimental results. Section 7 surveys the related work
and, finally, Section 8 concludes this article.

2. BACKGROUND

This section introduces the background of this article. Section 2.1 introduces the
throughput-oriented architecture and the application characteristics are discussed in
Section 2.2.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

12:4 H.-K. Kuo et al.

2.1. Throughput-Oriented Architecture

This section introduces a representative throughput-oriented architecture, namely
NVIDIA Fermi [Wittenbrink et al. 2011] and its programming environment CUDA
[NVIDIA 2012]. The Fermi architecture implements several per-Stream Multiproces-
sor (SM) L1 caches of size up to 48KB, and a unified 768KB L2 cache. Each L1 cache
is shared among all the cores in an SM. The unified L2 cache is the Shared Last-Level
Cache (SLLC) shared by all the SMs in a GPGPU. In the CUDA environment, a parallel
application is described as a series of kernels. Each kernel contains a large number of
independent threads that are assembled into multiple thread groups, called Coopera-
tive Thread Arrays (CTAs), which can be concurrently executed. The kernels are then
executed sequentially based on the invocation order. In this way, the data dependency
can be maintained between kernels.

During the execution of a kernel, CTAs are dynamically dispatched to SMs by the
gigathread scheduler [Wittenbrink et al. 2011]. In order to achieve the maximum
TLP and hide the long latency of off-chip memory accesses, the gigathread scheduler
dispatches as many CTAs as possible to each SM, and performs context switching
when threads encounter stalls caused by off-chip memory accesses. With this scheme,
a great number of threads are executed in a time-multiplexing manner. Hence, the
system resources, such as registers, processing cores, and load/store (LD/ST) units in
an SM, can be extensively utilized with less idling. Note that, in the Fermi architecture,
the number of CTAs dispatched to an SM can be configured for different launches of a
kernel, but is fixed during the execution of a kernel.

Recently, several thread schedulers with dynamic reconfigurable TLP have been
proposed [Kayiran et al. 2012; Rogers et al. 2012]. An architecture with such schedulers
has the ability to change the number of concurrent CTAs during the kernel execution.
This article models this extension and integrates it into the GPGPU-Sim simulator
[Bakhoda et al. 2009]. To reflect the behavior of a real architecture synchronization is
also considered when reconfiguring the number of concurrent CTAs during the kernel
execution. The synchronization operation would first suspend the current execution in
a GPGPU architecture and then resume the execution after changing the number of
concurrent CTAs. A certain amount of execution cycles are needed for a synchronization
operation.

2.2. Application Characteristics on Throughput Processors

The applications running on throughput processors in general inherently have mas-
sive computation parallelism. However, the actual performance of these applications
is vastly determined by the associated memory access behavior. To facilitate the fol-
lowing discussion on the memory access behavior of applications on throughput pro-
cessors, this article categorizes the applications into two types, namely regular and
irregular, according to their memory access behavior. In regular applications, the cache
contention optimization is relatively straightforward because of the regularly coordi-
nated memory accesses. For example, the Fast Fourier Transform (FFT) and matrix
multiplications generate regular memory access behavior [NVIDIA 2012]. For this
type of regular applications, programmers can easily analyze and predict the concur-
rent execution as well as the memory access behavior. However, such optimization
becomes considerably more challenging when dealing with applications with uncoor-
dinated memory accesses. In contrast with regular applications, irregular applications
usually contain uncoordinated memory accesses and the sharing of data is nonuni-
formly behaved across different threads. Meanwhile, in the irregular application, the
working sets of threads also tend to be varying and nonuniformly distributed. This
article aims at tackling the challenges of cache contention minimization in irregular

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

Reducing Contention in Shared Last-Level Cache 12:5

applications, although, without losing generality, the proposed approach can also be
applied to regular applications. This article collects a variety of irregular applications
from different fields, namely Electronic Design Automation (EDA) [Kuo et al. 2012],
Molecular Dynamics (MD) [Han and Tseng 2006], and Computational Fluid Dynamics
(CFD) [Das et al. 1994]. Because of the irregularity, these applications often need an
input file to declare the required data in each thread. For example, the input netlist file
is needed in the gate-level logic simulation [Kuo et al. 2012]. Depending on different
application characteristics, the proposed scheduling approach can be performed before
or during the execution of an application. In the situation that the working sets of
threads behave statically for a given input file, this article can be used as an offline
optimization framework. For each application, the scheduling process only needs to be
performed once for the static execution characteristics of kernel calls. The overhead
of the scheduling can be amortized by the numerous following iterations of kernel
calls. Alternatively, the proposed scheduling can also be used as an online optimization
framework. The scheduling process is periodically performed to adapt to the changing
of the working sets and execution behavior throughout all the iterations of kernel calls.
In this case, one needs to consider the overhead of the online scheduling process, and
it would require enough iterations of kernel calls to attain performance enhancement.

3. CHARACTERIZING CACHE CONTNETION

To address the cache contention issue, this research proposes an analysis method that
can characterize cache contention in a quantitative manner. The analysis lays out a
solid foundation to characterize the cache contention of a throughput processor, and
provides guidelines for further research and optimization. Section 3.1 introduces an
approach for measuring and quantifying cache contention. Section 3.2 conducts the
measurement and analysis of the impact of cache contention on different performance
metrics, while Section 3.3 further summarizes the analyses and findings.

3.1. Quantifying Cache Contention

To understand the performance implications of cache contention, this section introduces
a quantitative measurement to reflect the level of cache contention. This approach will
then be used for the measurements and analysis in Section 3.3. In order to deploy
such quantitative measurement, Definition 1 defines the aggregate working-set size
that captures the amount of cache space that needs to be provided by an SLLC for a
set of threads.

Definition 1 (Aggregate Working-Set Size). Given a set of threads and corresponding
working-set sizes, the aggregate working-set size of such set of threads is defined as the
accumulation of the working-set sizes.

In Definition 1, the Aggregate Working-Set Size (AWSS) of a set of threads is defined
as the accumulated working-set size. That is to say, the working sets of threads are
assumed disjointed, or only overlapped slightly. This assumption will be demonstrated
as valid from the measurements and analysis in Section 3.2. Based on Definition 1,
Definition 2 introduces the Cache Contention Ratio (CCR) that provides an indication
of the severity of the cache contention for a given set of threads.

Definition 2 (Cache Contention Ratio). Given a set of threads and the aggregate
working-set size, the cache contention ratio of such a set of threads is defined as the
ratio of the aggregate working-set size to the capacity of shared cache.

AWSS

CCR = CaChei(;ap

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

12:6 H.-K. Kuo et al.

4.8 Execution cycles —6— SLLC misses
8 30 = T 12 o
- QQ,Q—V'VVVUUU o)
325 |t 10 3
z o 0@' s
£ 20 |HR—ut 8 O
3 H /du]
215 |—H— 6 @
x 1. (I [Z
& i 2 2
g 10 i & 4 8
N [=
g 05 ' 2
S 00 0 2
3 4 5 6 7

Cache Contention Ratio

Fig. 2. The comparison of execution cycles and SLLC misses with respect to cache contention ratio based on
the euler application. Numbers are normalized to the measurement that cache contention ratio equals one.

CCR: Cache contention ratio
AWSS': Aggregate-working-set-size of a set of threads
Cache_cap: Capacity of shared cache

In Definition 2, the cache contention ratio is defined as the ratio of the aggregate
working-set size to the capacity of shared cache. As defined in Definition 1, the ag-
gregate working-set size refers to the amount of demanded memory space of a set of
threads that needs to be serviced by an SLLC. With Definition 2, one can assess the
level of cache contention for a given set of threads. When the value of the cache con-
tention ratio is far higher than one, a serious cache contention is expected because the
cache capacity is deficient for the set of threads. Otherwise, when the value of the cache
contention ratio is below one, it means the set of threads receives sufficient cache space
for holding their data and therefore the cache contention is expected to be very slight.

3.2. Measurement and Analysis

To understand the performance implications of cache contention, this section performs
measurement on several performance metrics, including SLLC misses, execution cycles,
and energy consumption. In the measurement of each performance metric, the number
of concurrent threads is adjusted to achieve different aggregate working-set size and
cache contention ratios. Here the cache contention ratio is obtained by the ratio of
the aggregate working-set size to the capacity of an SLLC. In Figures 2 and 3, the
measurement is conducted by using the euler application, which will be one of the
benchmarks used in Section 6. As shown in Figure 2, when the cache contention ratio
is below one, the capacity of the SLLC is enough to support all the concurrent threads.
Hence, one can find very small numbers of SLLC misses in this region. In the region
where the ratio is within 20% larger than one, the capacity of the SLLC tends to match
the requirement of concurrent threads. Therefore, the SLLC misses still tend to remain
at the same level with just very slight increase. However, when the cache contention
ratio is further raised, cache contention starts taking place because the capacity of the
SLLC is insufficient for all the concurrent threads. As a result, the number of SLLC
misses drastically increases and reaches a saturated level when the ratio is within five
to six. According to Figure 2, like the SLLC misses, the execution cycles reflect very
similar behavior when the cache contention ratio is larger than one. The only difference
happens when the cache contention ratio is below one. In this region, the number of
concurrent threads is still too low to leverage the TLP, although the SLLC capacity is
enough for the concurrent threads. Consequently, the number of execution cycles gets
larger as the cache contention ratio decreases.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

Reducing Contention in Shared Last-Level Cache 12.7

BSM m Cache hierarchy M Interconnection EDRAM

N

w

-

Normalized System Energy
N

o

12 3/4 1 5/4 3/2 2 3 4 5 6 7
Cache Contention Ratio

Fig. 3. The comparison of energy consumption breakdown with respect to cache contention ratio based on
the euler application. Numbers are normalized to the measurement that cache contention ratio equals one.

To further understand the impact of cache contention on the system energy con-
sumption, Figure 3 illustrates the energy consumption breakdown for different cache
contention ratios. In Figure 3, due to the lower number of execution cycles and SLLC
misses, one can find that the lowest energy consumption is achieved when the cache
contention ratio is around one. Conversely, when the ratio decreases, the SM energy
consumption becomes higher due to the longer execution time, while on the other side,
when the cache contention ratio increases, the large amount of SLL.C misses causes
significant data request traffic on the interconnection network which consumes more
energy. Moreover, the SLLC misses also generate lots of accesses to DRAM. As a result,
the energy consumption of DRAM is drastically increased.

3.3. Summary of Analyses and Findings

By referring to the cache contention ratio in Definition 1 and the measurement and
analysis discussed in Section 3.2, one can find that the aggregate working-set size
of concurrent threads is highly correlated to the cache contention level in an SLLC.
Meanwhile, it also has significant impact on both computation throughput and energy
consumption of throughput processors. To be more specific, scheduling threads without
the awareness of its aggregate working-set size could cause severe cache contention
that generates up to 11.8x more misses in an SLLC and hurts the execution time
and energy consumption up to 2.3x and 3.3x, respectively. According to these find-
ings, the aggregate working-set size has become an important consideration for SLLC
performance optimization. The key optimization goal is to achieve superior perfor-
mance by rendering the maximum possible TLP while avoiding cache contention in an
SLLC. To address such an optimization requirement, this article introduces a schedul-
ing approach for minimizing cache contention. By controlling the execution behavior
of concurrent threads, the proposed approach can effectively constrain the aggregate
working-set size of the threads and thus minimize cache contention in an SLLC. This
scheduling approach called aggregate working-set-size-constrained thread scheduling
and will be formally formulated in Section 5.

4. EXAMPLES OF AGGREGATE WORKING-SET-SIZE-CONSTRAINED THREAD SCHEDULING

This section uses a series of simple examples to illustrate the main concept behind
this approach. As the example in Figure 4 shows, an application contains a set of
CTAs A to L with different working-set sizes. Assume the architecture allows at most
four concurrent CTAs and the capacity of the SLLC is ten. Recall that the aggregate
working-set size of a set of CTAs is defined as the accumulated working-set size. For
example, the aggregate working-set size for the set of CTAs {C, E, G} is six. As shown
in Figure 4(a), in order to maximize the TLP, a straightforward scheduling scheme is
to assign the maximum number of CTAs at each scheduling step. This simple greedy

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

12:8 H.-K. Kuo et al.

CTAs={A,B,C,D,E ,F, G, H I J K L}
Working setsizes={1,8,3,1,2,2,1,7,4,4, 2,5}
Cache capacity = 10
Maximum # of concurrent CTAs = 4
Aggregate-Working-Set-Size Agnostic Thread Scheduling
step1: A, B,C, D 1+8+3+1=13>10 = Cache Contention
step2: E, F, G, H 2+2+1+7=12>10 = Cache Contention

step3: LJ. K L 4+4+2+5=15> 10 = Cache Contention
ConcurrA/ent CTAs R Cache utilization\ Cache capacity

(@)
Aggregate-Working-Set-Size Constrained Thread Scheduling with
Static Number of CTAs

step1: B, E 8 +2 =10 <10 = Cache Contention Free
step2: C, H 3 +7 =10 <10 = Cache Contention Free
step3: L, J 5+4=9<10 = Cache Contention Free
step4: F, | 2+4=6<10 = Cache Contention Free
step5: A, K 1+2=3<10 = Cache Contention Free
step6: D, G 1+1=2<10 = Cache Contention Free

(b)
Aggregate-Working-Set-Size Constrained Thread Scheduling with

Dynamic Number of CTAs
step1: B, E 8 +2 =10 £10 = Cache Contention Free
step2: C, H 3+ 7 =10 <10 = Cache Contention Free

Synchronize and Reconfigure the Number of Concurrent CTAs
step3: L, K, F, A 5+5+2+1=10<10 = Cache Contention Free
stepd: J, |, D, G 4+4+1+1=10<10 = Cache Contention Free

(©)

Fig. 4. (a) The example of aggregate working-set-size-agnostic thread scheduling; (b) the example of ag-
gregate working-set-size-constrained thread scheduling with the architectural limitation; (c) the example of
aggregate working-set-size-constrained thread scheduling with flexibility to adjust the number of concurrent
CTAs.

thread scheduling scheme is commonly used in current throughput processors, such as
NVIDIA’s Fermi and Kepler architectures [Nvidia 2012a; Wittenbrink et al. 2011]. As
discussed in Section 3, the cache contention level of a set of concurrent CTAs is corre-
lated to its aggregate working-set size. Without the awareness of this circumstance, a
scheduling scheme could result in a schedule of CTAs where the aggregate working-set
size is far larger than the available capacity in the SLLC. As shown in Figure 4(a),
at the schedule from step 1 to step 3, severe cache contention is induced during the
execution of these scheduling steps. The cache contention will be aggravated when a
throughput processor schedules a large number of concurrent CTAs with higher ag-
gregate working-set size. Besides, the diverse working-set sizes in applications could
make the cache contention an even more intricate problem.

To avoid cache contention, the aggregate working-set size needs to be constrained.
An aggregate working-set-size-constrained scheme schedules CTAs to steps in which
the aggregate working-set size is constrained to be no larger than the cache capacity.
As mentioned in Section 2.1, the current throughput processors only allow a fixed
number of concurrent CTAs during kernel execution. A static number of concurrent
CTAs should be decided during thread scheduling. Figure 4(b) shows an example of this
case. In this example, the number of concurrent CTAs is reduced to a static number
and the corresponding scheduling result can successfully mitigate the cache contention.
Nevertheless, when the number of concurrent CTAs is fixed throughout a kernel, one
cannot assign more CTAs to a step, even though the SLLC still has the capacity
to accommodate more CTAs. For example, step 4 in Figure 4(b) still has four more

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

Reducing Contention in Shared Last-Level Cache 12:9

available cache space units. Also, fixing the number of concurrent CTAs could yield
more scheduling steps that might result in longer overall execution time.

To address the preceding two concerns, one may expect the architecture to enable
the flexibility to adjust the number of concurrent CTAs during kernel execution. This
article refers to this flexibility as the reconfiguration of the number of concurrent
CTAs. Figure 4(c) depicts an example of such a scenario. In this example, the aggre-
gate working-set-size-constrained scheme reconfigures the number of concurrent CTAs
to be four after step 2. Starting from step 3, more CTAs are allowed to be scheduled.
Therefore, steps 3 and 4 can contain four CTAs. However, as mentioned in Section 2.2,
such a reconfiguration incurs a synchronization operation between scheduling steps.
The synchronization operation would first suspend the current execution in a through-
put processor and then resume the execution after changing the number of concurrent
CTAs. As a matter of course, performing a synchronization operation consumes a cer-
tain amount of execution cycles determined by the implementation. Hence, in order to
achieve the best schedule of CTAs, the aggregate working-set-size-constrained scheme
should also take the cost of reconfiguration into account. In summary, the prior discus-
sions on the application- and architecture-related features indicate that the aggregate
working-set-size-constrained thread scheduling is a nontrivial and critical approach to
achieve superior performance in throughput processors.

5. AGGREGATE WORKING-SET-SIZE-CONSTRAINED THREAD SCHEDULING

This section introduces aggregate working-set-size-constrained thread scheduling, in-
cluding the problem formulation and proposed algorithms. Section 5.1 formulates this
problem according to the throughput-oriented architectures. Section 5.2 proposes an
algorithm to solve the problem with a general formulation. Section 5.3 illustrates this
problem on the architecture of a Fermi GPGPU system that can be solved as a special
case of the general formulation. Section 5.4 further extends the discussion to appro-
priately relax the constraint for thread scheduling, while Section 5.5 integrates all the
variants of thread scheduling algorithms and proposes a thread scheduling framework
to manage different thread scheduling constraints and architectural parameters.

5.1. Problem Formulation

To formulate the aggregate working-set-size-constrained thread scheduling problem,
let ¢® = {c1,cq,...,c,} denote a given collection of CTAs. Each CTA has a working-
set size w : ¢ — R,. For the sake of simplicity, CTAs are sorted so that w(c;) <
w(cg) < --- < wley,). The thread scheduling mechanism assigns CTAs into a schedule
s™ = {s1,8,...,Sn}. A schedule contains several scheduling steps from s; to s,. Each
scheduling step can contain one or more CTAs and the CTAs in the same scheduling step
will be concurrently dispatched to SMs. In this article, the Thread-Level Parallelism
(TLP) corresponds to the total number of CTAs that are concurrently executing on
SMs. Therefore, the TLP will be adjusted at the granularity of CTAs. Eq. (1) lists the
corresponding TLP of the SMs when executing a scheduling step s;.

TLP(SL‘)=|{CJ'|CJ‘ ES,‘}| (1)

Whereas, as in Definition 1, the Aggregate Working-Set Size (AWSS) refers to the
amount of demanded cache space of the SLLC for a set of CTAs, the aggregate working-
set size of a scheduling step s; is listed as in Eq. (2).

AWSS(s) = Y wic)) 2)
C‘J’ESL'

According the characterization and analysis in Section 3, the aggregate working-set
size is highly correlated to the cache contention level. In order to avoid cache contention,

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

12:10 H.-K. Kuo et al.

the aggregate working-set size of a scheduling step is constrained so as not to exceed
the SLLC capacity. This performance consideration is known as the aggregate working-
set-size-constraint and listed in Definition 3. In Definition 3, this constraint is satisfied
ifthe aggregate working-set size of a scheduling step is smaller than the SLLC capacity.

Definition 3 (Aggregate Working-Set-Size Constraint). Given a scheduling step s;
containing a set of CTAs, the aggregate working-set-size constraint is satisfied if the
aggregate working-set size of the scheduling step is smaller than the SLLC capacity.

Under the aggregate working-set-size constraint, the objective of the scheduling is to
find a schedule s™ while the total execution time is minimized. In a given schedule s™,
there are two causes deciding the span of its execution time. The first is the total number
of scheduling steps m. According to the modern Single-Instruction Multiple-Threads
(SIMT) execution model of GPGPU architectures, threads are deeply time-multiplexed
to execute the same sequence of instructions but on different data. In this article,
CTAs are assumed to contain threads among which the data reuse and divergence are
appropriately optimized. Hence, the behavior of a CTA and the corresponding execution
time turn out to be very similar to other CTAs. Since the CTAs have very similar
execution time, the aggregated execution time is proportional to the total number of
scheduling steps m. Therefore, more scheduling steps will take longer execution time.
The second cause is from the cost of changing the TLP between steps. According to
Section 2.2, a synchronization operation is required when changing the TLP from one
scheduling step to the next. Eq. (3) shows that the synchronization operation is needed
only when the concurrency of a scheduling step s; is different from the TLP of its next
step s;11. In other words, no synchronization is required when the two consecutive
steps s; and s;;1 apply the same TLP. Note that Eq. (3) returns a number 1 when a
synchronization operation is require.

1, TLP(s;) # TLP(si+1)
0, else

Sync (s;, si41) = { 3)
For a given schedule s™, one can obtain the total number of synchronization opera-
tions tot_Sync(s™) by simply traversing the schedule as listed in Eq. (4).

m—1
tot_Sync (s™) = Z Sync (s;, Sj41) (4)

i=1
In a throughput processor, a synchronization operation impairs the execution time in
various ways [Feng and Xiao 2010]. In this article the term Cost Per Synchronization
(CPS) is used to express the overall cost of a single synchronization operation. It is
a performance factor that combines the impact of two sources, namely the number of
scheduling steps and the synchronization cost. In this article, CPS is normalized to the
average execution time of CTAs, and is therefore a number between zero and a certain

constant CPS,,,, as shown in Eq. (5).

CPS e R:0 < CPS < CPS (5)

Combining Egs. (4) and (5), one can evaluate the overall cost of synchronization
through Eq. (6).

Sync_cost(s™) = CPS x tot_Sync(s™) (6)

With the preceding discussion, the aggregate working-set-size-constrained thread
scheduling problem is then formulated as in Problem 1.

Problem (Aggregate Working-Set-Size-Constrained Thread Scheduling Problem).
Given a collection of CTAs ¢" = {c1,c¢o,...,c,} with working-set size w : ¢" — R,

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

Reducing Contention in Shared Last-Level Cache 12:11

and SLLC capacity Cap SLLC, the aggregate working-set-size-constrained thread
scheduling problem is to find a schedule s™ = {sy,s,...,s,} where every scheduling
step has an aggregate working-set size smaller than Cap _SLLC, such that the number
of scheduling steps and the synchronization cost are minimized.

Minimize the number of scheduling steps and total synchronization cost
= m+ Sync_cost (s™)
Subject to Vs;: TLP(s;) < TLP,,,,
Vs;: AWSS (s;) < Cap SLLC
Vsi #sji5Ns; =0
s1UsgU---Us,, =c"

As in Problem 1, the aggregate working-set-size-constrained thread scheduling prob-
lem is formulated to minimize the number of scheduling steps of s™ and the total cost
of synchronization subject to: (1) the TLP in each scheduling step cannot exceed the
maximum possible TLP, namely TLP,,,, and meanwhile the aggregate working-set size
in each scheduling step should be within the SLLC capacity, namely Cap_SLLC; and
(2) each CTA is assigned to exactly one scheduling step. The following discussion gives
an example of this thread scheduling problem on NVIDIA’s Fermi architecture. As
mentioned, in a kernel, the cache contention issue in an SLLC heavily depends on its
aggregate working-set size. This issue is modeled by the first constraint in Problem 1.
Recall that, in the current GPGPU architecture, the TLP is fixed during the execution
of a kernel. To further optimize TLP, splitting the execution of the original kernel into
several kernels is one of the commonly used methods to vary the TLP during runtime.
Each of the split kernels completes a portion of the tasks but with different TLP. Under
the constraint on aggregate working-set size, it is possible to perform kernel splits to
increase the TLP for higher computation throughput. However, the splits of a kernel
would suffer the cost of launching extra kernels. These two issues are modeled by the
first and second objective factors in Problem 1. According to the previous discussion,
the aggregate working-set-size-constrained thread scheduling problem is therefore to
assign CTAs into a series of kernels to minimize the total execution time, including
both the execution time and launch cost of kernels, while satisfying the aggregate
working-set-size constraint.

From Lemma 1 that follows and its proof, one can conclude that such a scheduling
problem is NP-hard. It is therefore very difficult, if not impossible, to obtain an optimal
solution in polynomial time.

LemmA 1. Given a collection of CTAs ¢" = {c1,co,...,c,} with working-set size w :
¢" — R, and SLLC capacity Cap_SLLC, it is NP-hard to find a schedule s™ such that
the number of scheduling steps and the total cost of synchronization are minimized
while every scheduling step has an aggregate working-set size smaller than Cap_SLLC.

Proor. A well-known NP-hard problem, the bin packing problem [Garey et al. 1972]
can be reduced to the aggregate working-set-size-constrained thread scheduling prob-
lem. The bin packing problem is formulated as the following: Let a1, a2, ...,a, be a
given collection of items with sizes s(¢;) > 0,1 < i < n. A bin packing problem di-
vides all the items into a minimum number of blocks, called bins, subject to the sum
of the sizes of items in each bin being at most a given capacity. The reduction can be
derived because the bin packing problem is basically a special case of the aggregate
working-set-size-constrained thread scheduling problem, where synchronization takes
no cost. 0O

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

12:12 H.-K. Kuo et al.

5.2. Thread Scheduling Algorithm

In Problem 1, the general aggregate working-set-size-constrained thread scheduling
problem, the thread scheduling algorithm has the flexibility to change the TLP between
scheduling steps. With this flexibility, the scheduling algorithm can pack more CTAs
into one step to minimize the number of scheduling steps. However, the rearrange-
ment of TLP also incurs synchronization where the corresponding cost should also be
minimized. Lemmas 2 and 3 show the observations that become useful properties to
develop a thread scheduling algorithm.

LEmMA 2. For any schedule s™ to the aggregate working-set-size-constrained thread
scheduling problem, the execution time of the schedule s™, m~+ Sync_cost(s™) is less than
or equal to m x (CPSpu; + 1) — CPS,4.

Proor. The detailed proof is derived in Eq. (7). First, the number of synchronization
operations is bounded by m — 1. Next, by applying the constraint of CPS in Eq. (5), one
can find that m + Sync_cost(s™) is less than or equal to m x (CPS,ux +1) — CPSpx. O

Sync_cost (s™) < CPS x (m—1)
= Sync_cost (s™) < CPS,,ux x (m— 1), when 0 < CPS < CPS, .
= m+ Sync_cost (s™) < m x (CPS,u + 1) — CPS, 4, when 0 < CPS < CPS,,0, (7)

In Lemma 2, for any schedule s™, the overall execution time, including the num-
ber of scheduling steps m and the cost of synchronization Sync_cost(s™), is at most
m x (CPS,ux + 1) — CPS,,,4x. Since the CPS,,,. is a constant (as will be discussed in
Section 6.2), this property implies that the minimum number of steps m presents a
theoretical bound on the execution time of a schedule s™. Therefore, minimizing the
number of steps m becomes a good optimization goal to the problem.

Even though Lemma 2 delivers a useful property for designing the thread scheduling
algorithm, it still cannot directly minimize the cost of synchronization. In order to
minimize the cost of synchronization, this article shows another interesting finding
that derives and guarantees the minimum number of synchronizations in a given
schedule s™.

LEmMA 3. Given a schedule s™ in which the scheduling steps are permutable, the
number of synchronization operations of s™, namely tot_Sync(s™), is minimum if the
scheduling steps are sorted by the TLP.

Proor. According to Eqs. (3) and (4), considering a schedule s™ with a certain order
of scheduling steps, the number of synchronization operations equals the number of
transitions of TLP between adjacent steps. Therefore, sorting yields the order with the
minimum number of transitions and thus the minimum number of synchronization
operations. O

For a given schedule s, Lemma 3 shows that sorting s™ by the TLP of each schedul-
ing step yields the minimum number of the synchronization operations and thus the
minimum cost of synchronization. Also, one can find that the sorting process does not
affect the number of scheduling steps m.

According to Lemma 2, the thread scheduling algorithm is designed to first minimize
the number of scheduling steps m without the consideration of synchronization. Next,
Lemma 3 is leveraged to minimize the number of synchronization operations. As a
result, by means of Lemma 2, the synchronization in Problem 1 can be removed and
the problem turns out to be very similar to a variant of the classical bin packing prob-
lem, called k-cardinality bin packing problem [Krause et al. 1975]. In the k-cardinality

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

Reducing Contention in Shared Last-Level Cache 12:13

ALGORITHM 1: Aggregate Working-Set-Size-Constrained Thread Scheduling

: k < TLP

: cap < Cap SLLC

s™ <« k-Cardinality _Bin_Packing (c", cap, k)

: sort s™ by TLP to minimize Sync_cost(s™)

s <« s™

: while cost(s™) < cost(s™) do

s« s

k<—k—-1

s™ « k-Cardinality Bin_Packing (c", cap, k)
10: sort s™ by TLP to minimize Sync_cost(s™)
11: end while

12: return s™

N e A A S e

bin packing problem, the number of items, called cardinality, that can be placed in a
bin is at most %. In the past few decades, the bin packing problem and its variants
have been extensively studied. Although it is difficult to get the best solution due
to its NP-hard nature, its acceptable solutions can still be found in polynomial time
by using approximation or heuristic methods. Several existing polynomial-time algo-
rithms have been proven with low approximation ratio. This research leverages two
well-studied algorithms, Largest Memory First (LMF) and Iterated Worst-Case Decreas-
ing (IWFD) [Krause et al. 1975], to solve the aggregate working-set-size-constrained
thread scheduling problem. Note that one can also utilize other k-cardinality bin pack-
ing algorithms to solve this problem.

The thread scheduling algorithm is shown in Algorithm 1. In Algorithm 1, the £
is first set as the maximum possible TLP of a scheduling step. Lines 3 to 5 obtain
an initial solution and lines 6 to 10 iteratively try different & to see if any possible
improvement can be achieved. In each iteration, by using k-cardinality bin packing
algorithms, the number of scheduling steps m is first minimized without the consider-
ation of synchronization. After that, the schedule s™ is sorted to minimize the number
of synchronization operations. The algorithm terminates when a local optimum has
been reached.

5.3. Handling Static Thread-Level Parallelism

In order to deal with different architectural limitations, this section further discusses
the thread scheduling problem for handling the static TLP. Recall that, in NVIDIA’s
Fermi architecture, the number of allowed CTAs of each SM is static throughout the
execution of a kernel. This architectural limitation is referred to as the static thread-
level parallelism constraint and listed in Definition 4. In Definition 4, the aforesaid
is satisfied if all the scheduling steps in an arbitrary schedule s have the same and
static TLP. This is to say, a thread scheduling algorithm has no way to change the TLP
between scheduling steps.

Definition 4 (Static Thread-Level Parallelism Constraint). Given a schedule s™, the
static thread-level parallelism constraint is satisfied if every scheduling step has the
same TLP.

This finding implies that there requires no synchronization in the schedule s™.
This is because, according to Eq. (3), a synchronization operation is needed only
when adjusting the TLP between two steps. With the static thread-level parallelism
constraint as described in Definition 4, the term Sync_cost(s™) in Problem 1 can be
removed to achieve the static TLP and aggregate working-set-size-constrained thread
scheduling problem as in Problem 2.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

12:14 H.-K. Kuo et al.

Problem 2 (Static TLP and Aggregate-Working-Set-Size-Constrained Thread
Scheduling Problem). Given a collection of CTAs ¢" = {cy, co, ..., ¢} with working-set
size w : ¢" — R, and SLLC capacity Cap_SLLC, the static TLP and aggregate working-
set-size-constrained thread scheduling problem is to find a schedule s™ = {sy,s, ..., sp}
where every scheduling step has the same TLP and an aggregate working-set size
smaller than Cap_SLLC, such that the number of scheduling steps is minimized.

Minimize the number of scheduling steps = m
Subject to Vs; : TLP(s;) < TLP

Vs; # sj: TLP (s;) = TLP(s;)

Vs; : AWSS (s;) < Cap_SLLC

Vs #sjisinNs; =0

$1USg - 8 =c"

Problem 2, the static TLP and aggregate working-set-size-constrained thread
scheduling problem, is formulated to minimize the number of scheduling steps of s™
subject to the following: (1) every scheduling step has the same TLP that cannot exceed
the maximum possible TLP, namely TLP,,,; (2) the aggregate working-set size in each
scheduling step cannot exceed the SLLC capacity, namely Cap SLLC; and (3) each CTA
is assigned to exactly one scheduling step.

With the formulation of Problem 2, one can find that it is essentially like the k-
cardinality bin packing problem [Krause et al. 1975]. Hence, one can leverage any
existing algorithms to solve the static TLP and aggregate working-set-size-constrained
thread scheduling problem. The thread scheduling algorithm is shown in Algorithm 2.
In line 1 of Algorithm 2, the TLP £ is first set to the maximum number of concurrent
CTAs of the architecture. Lines 2 to 7 decide the appropriate TLP by finding the
largest acceptable & without violating the aggregate working-set-size-constraint. Once
the appropriate % is decided, any k-cardinality bin packing algorithm can be applied to
solve this problem.

ALGORITHM 2: Static TLP and Aggregate Working-Set-Size-Constrained Thread Scheduling

: B < TLP,

repeat
cap < wlcy) + wlcp-1), ..., wCnrt+1)
k<~k—-1

: until Cap SLLC > cap

cap < Cap SLLC

™ <« k-Cardinality Bin_Packing(c", cap, k)

: return s™

S N

5.4. Relaxing Aggregate Working-Set Size Constraint

With the aggregate working-set size constraint as detailed in Definition 3, a thread
scheduling algorithm avoids arranging too high a TLP that might cause serious cache
contention. Nevertheless, in order to satisfy the hard constraint on aggregate working-
set size, it can be too restrictive on the TLP to efficiently make use of the last piece
of cache space in every scheduling step. To address this disadvantage, the aggregate
working-set size constraint could be appropriately relaxed. In the meantime, the re-
laxation should also be careful to keep the nature of the aggregate working-set size
constraint. The measurement in Section 3 provides an interesting observation that

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

Reducing Contention in Shared Last-Level Cache 12:15

becomes a useful property to develop such a relaxation. According to the discussions
in Section 3, for a scheduling step of a set of CTAs, the cache contention is very minor
when the corresponding cache contention ratio is slightly larger than one. In other
words, a slight violation of the aggregate working-set-size-constraint would not induce
stiff penalty from cache contention. With this property, the aggregate working-set-size-
constraint is further relaxed as in Definition 5.

Definition 5 (Relaxed Aggregate Working-Set-Size-Constraint). Given a scheduling
step s; containing a set of CTAs, the relaxed aggregate working-set size constraint is
satisfied if there exists a designated CTA in the scheduling step such that the removal
of this CTA brings the aggregate working-set size of the scheduling step within the
SLLC capacity.

In Definition 5, different from the ordinary aggregate working-set-size-constraint,
the relaxed aggregate working-set-size Constraint is still satisfied if the removal of a
designated CTA brings the aggregate working-set size within the SLLC capacity. Under
the relaxed aggregate working-set size constraint, a thread scheduling algorithm has
the flexibility to fully make use of the cache capacity in every scheduling step. As a
result, the performance is improved by increasing the TLP while avoiding severe cache
contention. With the relaxed aggregate working-set size constraint in Definition 3,
Problem 1 can be rewritten the relaxed aggregate working-set size-constrained thread
scheduling problem as outlined in Problem 3.

In Problem 3, the relaxed aggregate working-set-size-constrained thread scheduling
problem is formulated to minimize the number of scheduling steps of s™ and the total
cost of synchronization subject to the following: (1) the TLP in each scheduling step
cannot exceed the maximum possible TLP, namely TLP,,,,; (2) the aggregate working-
set size after the removal of a designated CTA in each scheduling step cannot exceed
the SLLC capacity, namely Cap_SLLC; and (3) each CTA is assigned to exactly one
scheduling step.

Problem 3 (Relaxed Aggregate Working-Set-Size-Constrained Thread Scheduling
Problem). Given a collection of CTAs ¢" = {c1,co,...,c,} with working-set size
w : ¢" — R, and cache capacity of SLLC Cap_SLLC, the relaxed aggregate working-
set-size-constrained thread scheduling problem is to find a schedule s™ = {sy,s, ..., sy}
where the removal of a designated CTA in every scheduling step brings its aggregate
working-set size smaller than Cap_SLLC, such that the number of scheduling steps
and the synchronization cost are minimized.

Minimize the number of scheduling steps and total synchronization cost
= m+ Sync_cost (s™)
Subject to Vs;: TLP(s;) < TLP
Vsi:dcj es; |AWSS(si —c¢;) <Cap_SLLC
Vs #sjisiNs; =0
siUsgU---U s, =c"

Similar to Algorithm 1, Lemmas 2 and 3 are also leveraged to design the thread
scheduling, in which the number of scheduling steps m is first minimized without the
consideration of synchronization and then the number of synchronization operations
is minimized. Different from Algorithm 1, in order to handle the relaxed aggregate
working-set-size-constraint, another variant of the bin packing problem, namely the

open-end bin packing problem, is considered. In the open-end bin packing problem,
a bin can be filled to a level exceeding its capacity so long as there is a designated

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

12:16 H.-K. Kuo et al.

last item in the bin such that the removal of this item brings the bin’s level back
to below its capacity. There exist several polynomial-time approximation algorithms
proposed for this problem. These algorithms include Mixed Fit (MXF) and Greedy
LookAhead Next Fit (GLANF) [Yang and Leung 2003]. This article leverages these
existing and well-studied algorithms to solve the relaxed aggregate working-set-size
constrained thread scheduling problem. Note that one can also utilize other open-end
bin packing algorithms to solve this problem. The same algorithm (i.e., Algorithm 1)
can be leveraged for this problem. In order solve it, the open-end bin packing algorithm
is used in lines 3 and 9 of Algorithm 1.

ALGORITHM 3: Integrated Thread Scheduling Framework

input: A collection of CTAs ¢" = {c1, ¢c2, ..., ¢c,} and, working set sizes of CTAs
wlcy), wlez), ..., w(cy), the capacity of SLLC Cap _SLLC and the maximum possible
thread-level-parallelism TLP,,,,.

Parameter: 1) Boolean value: Static_TLP, for enabling the Static Thread-Level-Parallelism
Constraint, 2) Boolean value: Relax AWSS, for enabling the Relaxed Aggregate-Working-Set-
Size Constraint.
Output: A CTA schedule s™.

1: k< TLP,,,

2: if Static_ TLP then

3: repeat

4: cap < w(c,) + wlcp_1), ..., w(Cp-r+1)

5: k<—k-1

6 until Cap SLLC > cap

7: end if

8: cap < Cap_SLLC

9: if Relax AWSS then

10: s™ <« Open-End_Bin_Packing(c", cap, k)

11: else

12: s™ <« k-Cardinality _Bin_Packing(c", cap, k)

13: end if

14: sort s™ by TLP to minimize Sync_cost(s™)

15: s <« s™

16: while cost (s™) < cost(s™) do

17: s« g™

18: k<—k-1

19: if Rela?cAWSS = true then

20: s™ <« Open-End _Bin _Packing(c", cap, k)
21: else

22: s"™ « k-Cardinality Bin_Packing(c®, cap, k)
23: end if

24: sort s™ by TLP to minimize Sync_cost(s™)
25: end while
26: return s™

5.5. Integrated Thread Scheduling Framework

Combining the thread scheduling variants introduced in Sections 5.2 to 5.4, this section
proposes an integrated thread scheduling framework in Algorithm 3. In order to deal
with the requirements of different types of aggregate working-set-size-constrained
thread scheduling, the thread scheduling framework is designed to have the flexibility
to: (1) handle the static thread-level parallelism constraint one can explicitly specify
the constraint of TLP for the thread scheduling where; and (2) adapt to the relax

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

Reducing Contention in Shared Last-Level Cache 12:17

aggregate working-set-size-constraint one can explicitly specify whether the relaxation
of aggregate working-set size is enabled for the thread scheduling.

In Algorithm 3, with user-specified parameter Static. TLP, lines 2 to 7 decide an
appropriate setting for TLP. Once the TLP is decided, an initial thread schedule can
be obtained as follows. First, according to the condition of the parameter Relax AWSS,
lines 9 to 13 select the proper bin packing algorithm to minimize the number of schedul-
ing steps m. Then, the sorting is applied to further minimize the number of synchro-
nization operations in line 14. After this, lines 16 to 25 iteratively try different TLP
to see whether any possible improvement can be achieved. In each iteration, by using
the appropriate bin packing algorithms, the aggregated execution time of scheduling
steps is first minimized without considering the synchronization. The schedule s™ is
then sorted to minimize the cost of synchronization operations. The algorithm will
terminate when it reaches a local optimum.

6. EXPERIMENTAL EVALUATION

This section discusses the experiment evaluations. Sections 6.1 and 6.2 introduce the
implementation details and experiment setup. Further evaluations and analyses are
discussed in Sections 6.3 to 6.8.

6.1. Implementation of Thread Scheduling

Figure 5 illustrates the implementation flow of the proposed thread scheduling. Recall
that all the threads in a kernel are independent and can be executed concurrently by
any available SMs. However, data dependency may still exist between kernels. In order
to avoid violating the inter-kernel data dependency, this article takes only one kernel
at a time and performs the compilation and thread scheduling on the independent
threads in this kernel. Before launching the kernel, threads are first grouped to obtain
the collection of CTAs, numCTAs, and threadPerCTA as in step 1 of Figure 5. Also, the
kernel launch in step 1 triggers a process to dynamically compile the kernel code by
using gpuocelot, a dynamic compilation framework for GPGPUs [Diamos et al. 2010].
As depicted in step 2, the gpuocelot framework first performs the working-set analysis
on the given kernel to obtain the working-set size of each CTA. With the information
of working-set sizes, step 3 issues the thread scheduling processes as discussed in
Section 5 to generate the CTA schedule s™. Next, the gpuocelot framework continues the
generation of the executable codes for the given kernel as in step 4. Finally, the kernel
is launched with the thread scheduling information as shown in step 5. In the practical
implementation, in order to enforce a specific CTA schedule s™, one can leverage the
drivers and/or runtime APIs to pass the scheduling information to the GPGPU, or
one can also apply persistent thread techniques as a pure software-based approach
[Gupta et al. 2012]. To simplify the implementation, this article passes the scheduling
information through an explicitly specified file to the GPGPU-Sim simulator, a cycle-
accurate performance simulator for GPGPU [Bakhoda et al. 2009]. As depicted in
Figure 5, when the flag update is not set, the proposed flow is statically performed
once for the numerous kernel calls. In contrast, when the flag update is set, the flow is
applied in a dynamic manner as in step 6. The flow is periodically performed to adapt
to the change of working set sizes throughout all the iterations of kernel calls. In this
research, the thread scheduling is performed statically because the working-set size is
fixed throughout all the iterations of kernel calls. As a result, the working-set analysis
only needs to be performed once. The overhead of analysis and thread scheduling can be
amortized by the numerous following iterations of kernel calls. For example, a study in
Lai et al. [2014] has shown that the Electronic Design Automation (EDA) applications
require several thousands of iterations to even break the overhead of a similar prerun

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

12:18 H.-K. Kuo et al.

int main() {
while (!done) {
if (update) { _
{A[], B[], C[]} = Update(A[], B[], C[]); Dynamically
Re-Compile and

kernel foo <<<umCTA, threadPerCTA>>> (A[L BIL ClL, ..); _ Re-Schedule

|
kernel foo <<<numCTAs, threadPerCTA>>> (A[], B[]. C[], ...):
! o Dynamic Compilation
] @
[Compilation and Thread Y i 1
| /* CTA Working Set Size */ |, Scheduling Flow V V I
CTAD: 84 Y [
| | cTAL 120 AN Gpuocelot
CTA2: 450 Py - Framework |
[Crasao | Working 3
| Loe 1./ Set Sizes 4 [
”””””””””””””””” Working Set
[|4 @ Analysis |
read Scheduling: i
| | |Thread Schedui } I
+Aggregate-Working-Set-Size Agnostic \ 4 |
| +Aggregate-Working-Set-Size Constrained Kernel
[s Compilation [
o e @ |
/* CTA Schedule */ P ® v — X |
I Step0: CTAO, CTA7, CTAI3 ... | ™ L E tabl
| | Stepl: CTAL CTA3, CTAIS. .. | : CTA xecutable |
Step2: CTA2, CTA5,CTA17... |/ Schedules Files |
| | Step3:CTA6, CTAS, CTAIT... | - |
|] .
______________ _a_; — — — — — —
GPGPU-Sim ®
Simulator

Fig. 5. The example of the implementation flow of the proposed thread scheduling approaches.

analysis. However, the typical number of iterations for the practical usage of EDA
applications can easily reach millions.

6.2. Experiment Setup and Benchmarks

The experimental environment is based on Nvidia’s Fermi architecture [Wittenbrink
et al. 2011] and its CUDA programming environment [NVIDIA 2012b]. Without loss of
generality, the proposed scheme can also be applied to the Kepler architectures [Nvidia
2012a] and the OpenCL programming environment [Khronos 2011]. In the baseline
architecture, a Fermi architecture is modeled and integrated into the GPGPU-Sim
simulator [Bakhoda et al. 2009]. Table I lists the configurations of the baseline ar-
chitecture. In order to perform the thread scheduling, the scheduling algorithms take
the cache capacity parameter, Cap _SLLC, which is 768KB as specified in Table I. The
cost of the NVIDIA’'s GPGPU synchronization function syncthreads() has been pro-
filed and reported to take about 70 cycles per call as shown in Table I [Wong et al.
2010]. Besides, the resultant energy consumption of different thread scheduling
schemes is also evaluated by using the GPUWattch, an architecture-level power model
that has been integrated into GPGPU-Sim [Wu et al. 2013]. Table II lists the parameter
configuration of GPUWattch.

The proposed thread scheduling schemes are evaluated with a set of irregular appli-
cations. In contrast with regular applications, the working sets of threads are varying
and nonuniformly distributed. Because of the irregularity, these applications often need
input files to declare the required data in each thread. For example, the input netlist

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

Reducing Contention in Shared Last-Level Cache 12:19

Table I. Baseline Architectural Configurations in GPGPU-Sim Table Il. Baseline Parameter
‘ Number of SMs H 5 ‘ Configurations in GPUWattch
1.4 GHz, 32-wide pipeline, 32 threads Tecﬁgé’é"gy 40nm
per warp, 32768 registers per SM, 1536 ‘
SM confi t threads per SM,Greedy-Then-Oldest Temperature | 380 K
contiguration (GTO) warp scheduler, CTAs per SM Device type ITRS's hich perfor
(reconfigurable TLP, default 8) yP anes gh p
‘ Synchronization H 70 cycles per synchronization ‘ Long channel | yes
‘ L1 cache H 48 KB per SM, 6 way, 128 byte per line ‘ transistor
L2 cache (shared unified 768 KB, 16 way, 128 byte per line Interconnect | aggressive
last-level cache) wire model
DRAM 1.84 GHz, 6 GDDR5 channels, 2 chips
per channel, 16 banks, 16 entries per
chip, FR-FCFS policy
Interconnection 1.4 GHz, crossbar (15 SMs and 6 memory
network controllers), 32-byte flit it size
Table Ill. Irregular and Massively Parallel Applications
Data set Number of
Applications Fields Descriptions sizes kernels
bfs Electronic Breadth first search 2.6 MB 2
sta Design Static timing analysis 3.0 MB 2
gsim Automation Gate level logic simulation 3.5 MB 2
nbf kernel abstracted from the 6.3 MB 2
Molecular GROMOS
moldyn Dynamics Non-bonded force calculation in the 10.2 MB 2
CHARMM
irreg Kernel of iterative partial 6.3 MB 2
Computational differential equation solver
euler Fluid Finite-difference approximations 8.5 MB 1
Dynamics on Eulerian mesh
unstructured Fluid dynamics with unstructured 10.2 MB 2
mesh model

file is needed in the gate-level logic simulation. This article collects a variety of irreg-
ular applications from different fields and uses these applications to demonstrate the
effectiveness of the proposed scheduling methods. Three EDA applications are adopted
from Kuo et al. [2012], and five scientific simulation benchmarks are taken from the
COSMIC project [Han and Tseng 2006] and Chaos group [Das et al. 1994]. Table III
lists all the applications used in this article. In Table III, the circuit file 618 (114k gates
and 219k interconnections) from ITC’99 circuit suite [Rogers et al. 2012] is applied for
the three EDA applications, while the mesh file foil (144k nodes and 1074k edges)
from the COSMIC project [Han and Tseng 2006] is used for the remaining scientific
applications.

To better clarify the discussion, the following terms are used to represent differ-
ent schemes. The first scheme, referred to as nvcc+Coal, applies a simple coalescing
optimization technique and uses the NVIDIA’s nvce compiler with -O3 optimization
level [NVIDIA 2012; Zhang et al. 2011a]. The nvcc compiler performs a series of loop
and memory optimizations, such as loop strength reduction, loop unrolling, memory
space optimization, and rematerialization. Although such a scheme accomplishes co-
alescing optimization and some transformations within the scope of a single thread,
it is unaware of cache contention between threads. The term cluster represents the

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

12:20 H.-K. Kuo et al.

mnvcc+Coal o Cluster ®ReOrder mOptTLP
OAwssSche-Static BAwssSche m AwssSche-Relax
g 14 1.45
3 1.2 :
=
o 1.0
% 0.8
B 0.6
N 04
£ 0.2
2 00
bfs sta gsim nbf moldyn irreg euler unstru.

Fig. 6. The SLLC misses comparison of various schemes. Numbers are normalized to the cluster scheme.

essential approach for mitigating cache contention, in which threads are grouped to
minimize the working-set size [Kuo et al. 2012]. Based on the cluster scheme, this
article evaluates several schemes with different further considerations and optimiza-
tions. First, by combining the data and computation reordering techniques [Wu et al.
2013; Zhang et al. 2011a] and data reuse optimization techniques [Chen et al. 2007;
Zhang et al. 2011b], this work implements a sophisticated scheme, namely reOrder,
that adjusts the scheduling order to exploit data reuse between thread groups. The pro-
posed aggregate working-set-size-constrained thread scheduling scheme is represented
as AwssSche, which takes the aggregate working-set size as a constraint during the
thread scheduling. The variants of the thread scheduling are represented as suffixes to
AwssSche. The static TLP scheduling is abbreviated as AwssSche-Static. The relaxed
aggregate working-set size scheduling is represent as AwssSche-Relax. Finally, OptTLP
achieves the optimal execution time through exhaustively searching every possible TLP
[Kayiran et al. 2012; Rogers et al. 2012].

6.3. Cache Misses, Thread-Level Parallelism and Synchronization Operation

This section discusses the cache misses, thread-level-parallelism, and synchronization
operations of different schemes. Figure 6 compares the cache miss reduction of the
SLLC, unified L2 cache. Although the nvcc+Coal scheme leverages several optimiza-
tions in nvcc and also optimizes the memory coalescing, it is still unaware of the cache
contention of an application. In such a situation, this greatest number of causes very
severe cache contention and thus the cache misses among all schemes. By grouping the
threads and reducing the corresponding working-set size, the cluster scheme mitigates
the cache contention issue and reduces an average 19.5% of the cache misses when com-
pared to the nvcc+Coal scheme. Particularly, the cluster scheme reduces more cache
misses in applications with heavy memory traffic, such as moldyn and euler applica-
tions. Based on a cluster scheme, the reOrder scheme further adjusts the execution
order of threads to exploit the data reuse inherent in applications and reduces an
average 39 % of cache misses.

Figure 7 depicts the corresponding TLP of different schemes. Note that the minimum
and maximum TLP are also shown for the AwssSche and AwssSche-Relax schemes.
One can find that all of the nvcc+Coal, cluster and reorder schemes render the
maximum possible TLP to maximize system throughput. However, in such a high-TLP
configuration, the cache contention can happen and impairs the system performance,
for example, in moldyn and euler applications. By taking the aggregate working-set
size constraint, the AwssSche scheme adjusts the TLP during the execution and
reduces the cache misses by 46.8% on average. As shown in Figure 6, the AwssSche
scheme delivers a cache-miss reduction very close to that of the OptTLP scheme. Note
that the OptTLP scheme only considers the optimal execution time, hence can deliver

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

Reducing Contention in Shared Last-Level Cache 12:21

mnvcct+Coal O Cluster mReOrder mOptTLP
OAwssSche-Static BAwssSche B AwssSche-Relax
1.0

0.8

0.6

0.4

Normalized TLP

0.2

0.0

nbf moldyn irreg euler unstru.

Fig. 7. The TLP comparison of various schemes. Numbers are normalized to the cluster scheme.

Table V. Comparison of Number of Synchronization Operations and the Cost Per Synchronization

Characteristics bfs | sta | gsim | nbf | moldyn | irreg | euler | unstructured
Number of AwssSche 2 3 4 8 7 8 7 8
Synchronizations | AwssSche-Relax | 1 1 3 6 7 6 7 7
Cost Per Synchronization (CPS) 0.93 1082 | 0.79 | 0.11 | 0.01 0.12 | 0.02 0.01

for slightly more cache misses than other schemes. According to Figure 7, one can
find that all the schemes perform limited reduction on the three EDA applications
except for the reorder scheme. This is because the three EDA applications have
reorder smaller sizes of working sets and only cause very mild cache contention. In
this situation, due to the further data reuse consideration, the reorder scheme has
higher potential to reduce cache misses. In contrast, the other scientific applications
have much larger working sets and also a higher possibility to cause severe cache
contention. This gives the AwssSche scheme more room to reduce the cache misses.

When considering the static thread-level parallelism constraint, the AwssSche-Static
scheme can select static TLP and perform the thread scheduling. As shown in Figure 7,
when compared to the AwssSche scheme, the AwssSche-Static scheme selects a lower
TLP to satisfy such a static TLP constraint. By contrast, with the relaxed aggregate
working-set size constraint, the AwssSche-Relax scheme can schedule more CTAs and
efficiently make use of the cache capacity of SLLC. Meanwhile, the AwssSche-Relax
scheme also performs the trade-off between TLP and the number of synchronization
operations. Table IV lists the corresponding numbers of synchronization operations of
AwssSche and AwssSche-Relax schemes together with the Cost Per Synchronization
(CPS). Because of the relaxed aggregate working-set size constraint, AwssSche-Relax
has the flexibility to search a larger solution space to achieve higher TLP and fewer syn-
chronization operations. Note that, in some applications, AwssSche-Relax selects lower
TLP to mitigate the cost of synchronization, such as in the sta application. Although
these variants have different considerations of TLP and the number of synchronization
operations, the cache contention can be successfully alleviated through constraining the
aggregate working-set size. The difference in cache miss reduction between variants
is within a small range from —1.1% to 2.6%. In a brief summary, we demonstrate an
average of 46.8% reduction of cache misses by using the proposed aggregate working-
set-size-constrained thread scheduling scheme. In fact, in some applications with heavy
memory traffic, the reduction is up to 94.6%.

6.4. Thread Scheduling Overhead, Execution Time and System Energy

This section discusses the overhead of thread scheduling, execution time, and the
corresponding system energy. Recall that the overhead can be amortized by the nu-
merous following iterations of kernel calls. Figure 8 compares the overhead of different

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

12:22 H.-K. Kuo et al.

mnvce+Coal o Cluster ® ReOrder
OAwssSche-Static DAwssSche B AwssSche-Relax
1.4

1.2
1.0
0.8
0.6
0.4
0.2
0.0

Normalized Overhead

bfs sta gsim nbf moldyn irreg euler unstru.

Fig. 8. The overhead comparison of various schemes. Numbers are normalized to the cluster scheme.

mnvcc+Coal O Cluster m ReOrder mOptTLP
DOAwssSche-Static BAwssSche ®AwssSche-Relax

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

Normalized Execution Cycles

bfs sta gsim nbf moldyn irreg euler unstru.

Fig. 9. The execution-cycle comparison of various schemes. Numbers are normalized to the cluster scheme.

schemes. In Figure 8, one can find that all of the schemes have similar overhead except
for the reorder scheme. This is because the reorder scheme relies on an analysis of data
reuse and performs a data-reuse-oriented scheduling that has higher complexity than
the other schemes. This would require more iterations of kernel calls to amortize the
extra overhead. On the other hand, AwssSche and its variants only cost an average
2.1% of runtime overhead that can be easily amortized with a few iterations of kernel
calls. In our implementation, the overheads of AwssSche and its variants are under
0.13 seconds. To simplify the discussions and provide a single baseline for further com-
parisons, a reasonable and yet large enough number of iterations of kernel calls are
used for the evaluations in the following paragraphs and sections.

The execution cycles of different schemes are shown in Figure 9, where a strong cor-
relation between cache misses and execution cycles is shown. In general, in the three
EDA applications with mild cache contention, all the cache-contention-aware schemes,
namely cluster, reorder, and AwssSche, have very similar improvement. The reorder
scheme achieves a slightly better improvement than the AwssSche scheme by further
exploiting the data reuse. However, it becomes more complicated in the other scien-
tific applications in which cache contention takes place and impacts the performance
significantly. This gives the AwssSche scheme more room to improve the execution
cycles. Compared to the nvce-Coal scheme, the cluster scheme improves the execution
cycle by 27.6% on average, the reorder scheme achieves an average 9% execution-
cycle improvement over the cluster scheme. By means of the aggregate working-set
size constraint, AwssSche delivers an average of 31.8% improvement over the cluster,
which is only 2.6% from the OptTLP scheme. Compared to AwssSche, the AwssSche-
Static has to render lower TLP and thus achieves less improvement. In contrast, the
AwssSche-Relax scheme delivers further improvement over the AwssSche scheme in
some applications, such as moldyn and euler.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

Reducing Contention in Shared Last-Level Cache 12:23

mnvcc+Coal O Cluster m ReOrder mOptTLP
OAwssSche-Static BAwssSche mAwssSche-Relax
§ 14
212
[im|
c 10
Q
% 0.8
- 0.6
N 04
£ 02
2 00
bfs sta gsim nbf moldyn irreg euler unstru.

Fig. 10. The system energy comparison of various schemes. Numbers are normalized to the cluster scheme.

Finally, the energy consumption of different schemes is summarized in Figure 10. In
general, Figure 10 shows a strong correlation between cache misses and system energy.
As a result, by mitigating the cache contention, AwssSche reduces the system energy
by 31.3% on average.

6.5. Sensitivity to Synchronization Cost

Different synchronization implementations could have different cost on the execution
time. For the hardware-based implementation, recall that the cost of the synchroniza-
tion function syncthreads() has been reported to take about 70 cycles per call [Wong
et al. 2010]. On the other hand, this article also measures the cost of the software-
based synchronization such as the kernel splitting. According to the measurements on
the three NVIDIA GPGPUs (Tesla C1060, Tesla C2050, and Tesla K20), the cost of
software-based implementation varies from 2k to 8k cycles. Knowing the large gap be-
tween hardware and software implementation, it is important to know how effectively
the proposed thread scheduling scheme could perform in terms of different synchro-
nization costs. This characteristic is known as the sensitivity to synchronization cost.
This article defines this sensitivity on the basis of the invariance of the performance
of a thread scheduling scheme when applied on architectures with different synchro-
nization costs. This section uses different synchronization costs as the key parameter
to stress this sensitivity.

Figure 11 shows the normalized execution cycle of the AwssSche and AwssSche-Relax
schemes when the synchronization cost is increased from 50 to 200 cycles and from 2k
to 8k cycles. Note that the other schemes do not issue any synchronization opera-
tion and thus are not shown in the figure. One can find that both the AwssSche and
AwssSche-Relax schemes deliver have a very similar characteristic in terms of varied
synchronization costs. Meanwhile, one can also find that the AwssSche-Relax scheme
can slightly outperform the AwssSche. This is because AwssSche-Relax has the flexibil-
ity to search a larger solution space to achieve higher TLP and fewer synchronization
operations. In summary, both AwssSche and AwssSche-Relax deliver good performance
sensitivity with different synchronization costs.

6.6. Adaptability to Number of Cores

This section evaluates adaptbility to number of cores, defined as how effective a thread
scheduling scheme is when being applied on architectures with different numbers of
cores. This section uses different numbers of SMs as the key parameter to stress this
adaptability experiment.

Figure 12 shows the adaptability when the architecture is configured to issue 8 to
32 SMs. Similar to the discussion in Section 6.2, when 8 SMs are used for the three
EDA applications, the cache contention is very mild and the reorder scheme achieves

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

12:24 H.-K. Kuo et al.

mAwssSche DAwssSche-Relax

8 14
[&]
>
S 12
& 10
35
2 08 HHHIH H A
d o6 JHHHHHHHHHHHH
e
[}
N 04 H-HIH H A A
T
£
o
=z 0.0

000X X X000 XX X000 XX XO000XXXO000XX X000 XX X000 XXXO00O0 XXX

- -

bfs sta gsim nbf | moldyn | ireg euler unstru. |

Synchronization Cost (cycles)

Fig. 11. The execution-time comparison of AwssSche and AwssSche-Relax schemes with different synchro-
nization costs. Numbers are normalized to the cluster scheme.

Dnvcc+Coal m Cluster ® ReOrder DAwssSche mAwssSche-Relax

$ 15

L%%’] 1.53 }

- 1.2

S

3 0.9 H -

i

- 06 H H .

8

T 0.3 H H H

E

2 0.0

Tl © o © |w © |w © N|lo © alo © oo © o|w © o

— ™ -~ o™ -~ 32} ~ [s2] -~ ™ -~ (5] ~ o -~ (5]
bfs sta gsim nbf moldyn irreg euler unstru.

Number of SMs

Fig. 12. The execution-time comparison of various of schemes with different numbers of SMs. Numbers are
normalized to the cluster scheme with 15 SMs.

a slight improvement over AwssSche by further exploiting the data reuse. Another
interesting observation is that, without the aggregate working-set size constraint, the
nvce-Coal, cluster, and reorder schemes can cause even worse performance when the
number of SMs is increased. This is because when the number of SMs is increased,
cache contention takes place and impacts the performance significantly. In contrast, by
means of the cache contention constraint, AwssSche demonstrates better adaptability
through avoiding the cache contention in SLLC.

6.7. Adaptability to Cache Capacity

This section further extends the adaptabilty evaluation to the SLLC capacity. This
adaptability is defined as how effective a thread scheduling scheme is when applied
on architectures with different SLLC capacities. This section uses SLLC capacity as
the key parameter to stress such an adaptability experiment. Figure 13 shows the
adaptability when the architecture is configured with 384k to 1536k of SLLC capacity.
As shown in the figure, AwssSche behaves generally better than other schemes with
different SLLC capacity. None the less, when 384k SLLC is used for the bfs and sta ap-
plications with very mild cache contention, the data reuse becomes more important and
the reorder scheme achieves a slight improvement over AwssSche by further exploiting
the data reuse. Besides, when 384k SLLC is used for the moldyn application, AwssSche
tends to render too low TLP for avoiding cache contention. As a result, this causes slight
performance degradation. AwssSche-Relax alleviates the performance degradation by
rendering higher TLP.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

Reducing Contention in Shared Last-Level Cache 12:25

Dnvec+Coal m Cluster B ReOrder OAwssSche B AwssSche-Relax

8 25

[5]

5 L

S 20 I

c

S I '|

315 Il

i

L 10

X

© 0.5

S 0.0

z X X X X X X X X X X X X X X X X X X
< @ © <t «© © < © © < [~} © <t @ © < [<e} ©
« o (523 Q © [92] oo} © [52] [+ © (523 [+ © [32] o] © [52]
(32 ~ v [3p] ~ [o ~ wn (32 ~ w0 [3p] ~ 2] o ~ w

s < < ls - <
gsim nbf moldyn irreg euler unstru.

SLLC Capacity

Fig. 13. The execution-time comparison of various schemes with different SLLC sizes. Numbers are nor-
malized to the cluster scheme with a 768k SLLC.

Table V. Irregular Circuits and Unstructured Meshes

Irregular Circuits Unstructured Meshes
Characteristics b17 b18 b19 b20 foil moll mol2 auto
Number of 32,160 | 114,442 | 230,960 | 20,204 | 144,649 131,072 442,368 448,695
nodes
Number of 63,497 | 219,735 | 443,039 | 38,703 | 1,074,393 | 1,179,648 | 3,981,312 | 3,314,611
edges

6.8. Scalability on Problem Size

This section evaluates the scalability on problem sizes. This article defines this scala-
bility as how well a thread scheduling scheme can handle a problem when the problem
size increases. This section uses different input files as the key parameter to stress this
scalability experiment. Table V shows the statistics of the irregular circuits and un-
structured meshes. The three EDA applications take the input files 517 to 620 from the
ITC99 circuit suite [Rogers et al. 2012], whereas the scientific applications take the
input files foil to auto obtained from the COSMIC project [Han and Tseng 2006]. To
observe the scalability with scaled problem sizes, in the following discussions, all the
input files are sorted in ascending order of number of nodes and edges.

Figure 14 shows the scalability of different schemes. In the three EDA applica-
tions with mild cache contention, one can observe that the execution time of all the
cache-contention-aware schemes cluster, reorder and AwssSche have very similar per-
formance except in the 19 dataset. In the 19 dataset, there is greater potential of
data reuse and the reorder scheme achieves a slight improvement over AwssSche by
further exploiting the data reuse. However, it becomes more complicated in the other
scientific applications in which cache contention takes place and impacts the perfor-
mance significantly. In the scientific applications, one can observe that the execution
time of the three schemes nvcc-Coal, cluster, and reorder grows extremely fast as the
problem size increases. On the other hand, AwssSche and AwssSche-Relax achieve the
best scalability by effectively constraining the aggregate working-set size to avoid cache
contention in SLLC.

7. RELATED WORK

Optimizing shared last-level cache is remarkably critical to alleviate the memory bot-
tleneck in modern Chip MultiProcessors (CMPs). For CMPs that integrate multiple
conventional CPUs, some studies optimized the data reuse of the shared last-level
cache by using thread scheduling techniques [Chen et al. 2007; Zhang et al. 2011b]
and manual program transformations [Zhang et al. 2012]. GPGPUs are emerging as

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

12:26 H.-K. Kuo et al.

@nvec+Coal m Cluster ® ReOrder OAwssSche mAwssSche-Relax
é 6.0
3 50 [
§ |
= 4.0
o
X 30
E 2.0
£ 1.0
2 |
zZ 00 s
greegree 5 29
Q9 0 o ala o a o g = g
bfs | sta | gsim | nbf | moldyn | irreg | euler | unstru.

Fig. 14. The execution-time comparison of various schemes with different datasets. Numbers are normalized
to the cluster scheme with 518 and foil dataset.

a popular throughput-oriented architecture in modern CMP systems. For GPGPUs,
most of the existing studies enhanced the performance by using the on-chip scratch-
pad memory (also known as shared memory in NVIDIA’s terminology) and the coa-
lescing techniques. The related studies on handling regular memory access behavior
include the compiler-based approaches Baskaran et al. [2008] and Yang et al. [2010],
and auto-tuning [Ryoo et al. 2008]. To handle the irregular data accesses on GPG-
PUs, the authors of Deng et al. [2009] proposed a programming technique to use only
the scratch-pad memory to manage the irregularity of data accesses. Different from
relying on the scratch-pad memory, this article concentrates on the shared last-level
cache in GPGPUs. In GPGPUs, data and computation reordering have been adopted
to improve the coalescing [Wu et al. 2013; Zhang et al. 2011a]. Recently, a thread
clustering technique had been proposed to consider both the coalescing and the data
reuse in the shared L1 cache of GPGPUs [Kuo et al. 2012]. By combining the data
and computation reordering techniques [Wu et al. 2013; Zhang et al. 2011a] and data
reuse optimization techniques [Chen et al. 2007; Zhang et al. 2011b], this article im-
plements the reorder scheme to exploit data reuse by adjusting the scheduling order
of thread groups. Cache contention can be somehow mitigated while the data reuse
is optimized, however, without an appropriate optimization, cache contention can still
happen and impair the system performance even after applying these techniques. In
order to address this requirement, recent works proposed hardware-based schedulers
to dynamically manage the cache contention in an L1 cache. Some works tried to detect
the contention of the L1 cache by the scheduler and scaled down the number of warps
sharing the cache to alleviate the contention [Kayiran et al. 2012; Rogers et al. 2012].
Other works proposed schedulers to predict the memory footprint of warps and proac-
tively prevented the cache contention in the L1 cache [Rogers et al. 2013]. Based on the
consideration of cache contention, a further hardware-based scheduling technique was
proposed to improve DRAM utilization [Jog et al. 2013]. Despite the hardware overhead
induced in these works, this technique has shown its effectiveness at achieving appro-
priate thread-level parallelism and improving the system performance. In contrast
to hardware-based approaches, this article concentrates on the software-based mini-
mization of cache contention in the shared last-level cache. Furthermore, this work is
orthogonal to the hardware-based approaches as the proposed aggregate working-set
size constrained thread scheduling performs the scheduling at the cooperative-thread-
array level while the previous works are at the warp level. As a result, aggregate
working-set-size-constrained thread scheduling can be implemented together with any
of the warp schedulers. To our best knowledge, this article is the first software-based
approach that introduces the aggregate working-set-size-constraint to minimize the
cache contention of the shared last-level cache in throughput processors.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

Reducing Contention in Shared Last-Level Cache 12:27

8. CONCLUSIONS

This article has characterized and analyzed the performance impact of cache con-
tention on the shared last-level cache of throughput processors. Based on the analyses
and findings of cache contention and its performance pitfalls, this research formally
formulates the aggregate working-set-size-constrained thread scheduling problem,
which applies a constraint of aggregate working-set size on concurrent threads. With
a proof of its NP-hardness, this article has adopted a series of algorithms for the
thread scheduling problem and its variants. These algorithms are integrated into a
generic framework for the further consideration of different architectural parameters
and limitations. By applying the aggregate working-set size constraint, the proposed
aggregate working-set-size-constrained thread scheduling successfully minimizes the
cache contention and enhances the overall system performance on GPGPUs. The
simulation results on NVIDIA’s Fermi architecture have shown that the proposed
thread scheduling scheme achieves an average of 46.8% reduction in cache misses and
31.8% execution-time enhancement over a thread clustering scheme. For applications
with more threads and higher complexity, the execution-time improvement can
reach up to 61.6%. When compared to a more sophisticated scheme that exploits the
data reuse inherent in applications, the average improvement in execution time is
22.9% and up to 47.4% for applications with more complex workloads. Notably, the
execution-time improvement of the proposed thread scheduling scheme is only 2.6%
from an exhaustively searching scheme.

REFERENCES

Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M. Aamodt. 2009. Analyzing cuda
workloads using a detailed GPU simulator. In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS’09). 163-174.

Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Krishnamoorthy, Jagannathan Ramanujam,
Atanas Rountev, and Ponnuswamy Sadayappan. 2008. A compiler framework for optimization of affine
loop nests for GPGPUs. In Proceedings of the 22" Annual International Conference on Supercomputing
(ICS08). 225-234.

Shimin Chen, Phillip B. Gibbons, Michael Kozuch, Vasileios Liaskovitis, Anastassia Ailamaki, Guy E.
Blelloch, Babak Falsafi, Limor Fix, Nikos Hardavellas, Todd C. Mowry, and Chris Wilkerson. 2007.
Scheduling threads for constructive cache sharing on CMPs. In Proceedings of the 19th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA07).

Raja Das, Mustafa Uysal, Joel Saltz, and Yuan-Shin Hwang. 1994. Communication optimizations for
irregular scientific computations on distributed memory architectures. JJ. Parallel Distrib. Comput. 22,
462-478.

Yangdong Deng, Bo David Wang, and Shuai Mu. 2009. Taming irregular EDA applications on GPUs. In
Proceedings of the International Conference on Computer-Aided Design (ICCAD’09). 539-546.

Gregory Frederick Diamos, Andrew Robert Kerr, Sudhakar Yalamanchili, and Nathan Clark. 2010. Ocelot:
A dynamic optimization framework for bulk-synchronous applications in heterogeneous systems. In
Proceedings of the 19th International Conference on Parallel Architectures and Compilation Techniques
(PACT’10). 353-364.

Wu-Chun Feng and Shucai Xiao. 2010. To GPU synchronize or not GPU synchronize? In Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS’10). 3801-3804.

Michael R. Garey, Ronald L. Graham, and Jeffery D. Ullman. 1972. Worst-case analysis of memory allocation
algorithms. In Proceedings of the 4th Annual ACM Symposium on Theory of Computing (STOC’72).
143-150.

Michael Garland and David B. Kirk. 2010. Understanding throughput-oriented architectures. Comm. ACM
53, 58-66.

Kshitij Gupta, Jeff A. Stuart, and John D. Owens. 2012. A study of persistent threads style GPU programming
for GPGPU workloads. In Proceedings of the Conference on Innovative Parallel Computing (InPar’12).

Hwansoo Han and Chau-Wen Tseng. 2006. Exploiting locality for irregular scientific codes. IEEE Trans.
Parallel Distrib. Syst. 17, 606—618.

Adwait Jog, Onur Kayiran, Nachiappan Chidambaram Nachiappan, Asit K. Mishra, Mahmut T. Kandemir,
Onur Mutlu, Ravishankar Iyer, and Chita R. Das. 2013. OWL: Cooperative thread array aware

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

12:28 H.-K. Kuo et al.

scheduling techniques for improving GPGPU performance. In Proceedings of the 18th International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’13).
395-406.

Daniel R. Johnson, Matthew R. Johnson, John H. Kelm, William Tuohy, Steven S. Lumetta, and Sanjay J.
Patel. 2011. Rigel: A 1,024-core single-chip accelerator architecture. IEEE Micro 31, 30—-41.

Onur Kayiran, Adwait Jog, Mahmut T. Kandemir, and Chita R. Das. 2012. Neither more nor less: Optimizing
thread-level parallelism for GPGPUs. http://www.cse.psu.edu/~0ik5019/docs/pdf/NMNL-PACT2013.pdf.

Stephen W. Keckler, William J. Dally, Brucek Khailany, Michael Garland, and David Glasco. 2011. GPUs
and the future of parallel computing. IEEE Micro. 31, 7-17.

Khronos. 2011. The opencl specification version 1.1. http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf.

Kenneth L. Krause, Vincent Y. Shen, and Herb D. Schwetman. 1975. Analysis of several task-scheduling
algorithms for a model of multiprogramming computer systems. J. ACM. 22, 522-550.

Hsien-Kai Kuo, Kuan-Ting Chen, Bo-Cheng Charles Lai, and Jing-Yang Jou. 2012. Thread affinity mapping
for irregular data access on shared cache GPGPU. In Proceedings of the 17th Asia and South Pacific
Design Automation Conference (ASP-DAC’12). 659-664.

Bo-Cheng Charles Lai, Hsien-Kai Kuo, and Jing-Yang Jou. 2014. A cache hierarchy aware thread mapping
methodology for GPGPUs. IEEE Trans. Comput. PP, 99, 1-1.

John Nickolls and William J. Dally. 2010. The GPU computing era. IEEE Micro 30, 56—69.

Nvidia. 2012a. NVIDIA kepler compute architecture whitepaper. http:/www.nvidia.com/object/nvidia-
kepler.html.

Nvidia. 2012b. NVIDIA cuda C programming guide 4.1. https:/developer.nvidia.com/cuda-toolkit-41-
archive/.

Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2012. Cache-conscious wavefront scheduling. In
Proceedings of the 45th Annual IEEE | ACM International Symposium on Microarchitecture (MICRO’12).
72-83.

Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2013. Divergence-aware warp scheduling. In Proceed-
ings of the 46th Annual IEEE /| ACM International Symposium on Microarchitecture (MICRO’13). 99-110.

Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Baghsorkhi, Sain-Zee Ueng, John A. Stratton,
and Wen-Mei W. Hwu. 2008. Program optimization space pruning for a multithreaded GPU. In Proceed-
ings of the 6th Annual IEEE/ACM International Symposium on Code Generation and Optimization
(CGO08). 195-204.

Jinuk Luke Shin, Kenway Tam, Dawei Huang, Bruce Petrick, Ha Pham, Changku Hwang, Hongping Li,
Alan Smith, Timothy Johnson, Francis Schumacher, David Greenhill, Ana Sonia Leon, and Allan
Strong. 2010. A 40nm 16-core 128-thread CMT SPARC SoC processor. In Proceedings of the IEEE
International Solid-State Circuits Conference Digest of Technical Papers (ISSCC’10). 98-99.

Craig M. Wittenbrink, Emmett Kilgariff, and Arjun Prabhu. 2011. Fermi GF100 GPU architecture. IEEE
Micro 31, 50-59.

Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and Andreas Moshovos. 2010. Demys-
tifying GPU microarchitecture through microbenchmarking. In Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS’10). 235-246.

Bo Wu, Zhijia Zhao, Eddy Zheng Zhang, Yunlian Jiang, and Xipeng Shen. 2013. Complexity analysis
and algorithm design for reorganizing data to minimize non-coalesced memory accesses on GPU. In
Proceedings of the 18th ACM SIGPLAN Symposium Principles and Practice of Parallel Programming
(PPoPP’13). 57-68.

Jian Yang and Joseph Y.-T. Leung. 2003. The ordered open-end bin-packing problem. Oper. Res. 51, 759-770.

Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. 2010. A GPGPU compiler for memory optimization
and parallelism management. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’10). 86-97.

Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen. 2011a. On-the-fly elimination of
dynamic irregularities for GPU computing. In Proceedings of the 16th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS’11). 369-380.

Yuanrui Zhang, Mahmut Kandemir, and Taylan Yemliha. 2011b. Studying inter-core data reuse in multi-
cores. In Proceedings of the ACM SIGMETRICS joint International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS’11). 25-36.

Eddy Zheng Zhang, Yunlian Jiang, and Xipeng Shen. 2012. The significance of CMP cache sharing on
contemporary multithreaded applications. IEEE Trans. Parallel Distrib. Syst. 23, 367-374.

Received September 2013; revised May 2014; accepted June 2014

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 12, Pub. date: November 2014.

