
9

Compiler Optimization for Reducing Leakage Power in Multithread
BSP Programs

WEN-LI SHIH, National Tsing Hua University
YI-PING YOU, National Chiao Tung University
CHUNG-WEN HUANG and JENQ KUEN LEE, National Tsing Hua University

Multithread programming is widely adopted in novel embedded system applications due to its high perfor-
mance and flexibility. This article addresses compiler optimization for reducing the power consumption of
multithread programs. A traditional compiler employs energy management techniques that analyze compo-
nent usage in control-flow graphs with a focus on single-thread programs. In this environment the leakage
power can be controlled by inserting on and off instructions based on component usage information generated
by flow equations. However, these methods cannot be directly extended to a multithread environment due
to concurrent execution issues.

This article presents a multithread power-gating framework composed of multithread power-gating anal-
ysis (MTPGA) and predicated power-gating (PPG) energy management mechanisms for reducing the leakage
power when executing multithread programs on simultaneous multithreading (SMT) machines. Our mul-
tithread programming model is based on hierarchical bulk-synchronous parallel (BSP) models. Based on
a multithread component analysis with dataflow equations, our MTPGA framework estimates the energy
usage of multithread programs and inserts PPG operations as power controls for energy management. We
performed experiments by incorporating our power optimization framework into SUIF compiler tools and
by simulating the energy consumption with a post-estimated SMT simulator based on Wattch toolkits. The
experimental results show that the total energy consumption of a system with PPG support and our power
optimization method is reduced by an average of 10.09% for BSP programs relative to a system without a
power-gating mechanism on leakage contribution set to 30%; and the total energy consumption is reduced
by an average of 4.27% on leakage contribution set to 10%. The results demonstrate our mechanisms are
effective in reducing the leakage energy of BSP multithread programs.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifications—
Concurrent; distributed; parallel languages; D.3.4 [Programming Languages]: Processors—Compiler;
optimization

General Terms: Design, Language

Additional Key Words and Phrases: Compilers for low power, leakage power reduction, power-gating mech-
anisms, multithreading

ACM Reference Format:
Wen-Li Shih, Yi-Ping You, Chung-Wen Huang, and Jenq Kuen Lee. 2014. Compiler optimization for reducing
leakage power in multithread BSP programs. ACM Trans. Des. Autom. Electron. Syst. 20, 1, Article 9
(November 2014), 34 pages.
DOI: http://dx.doi.org/10.1145/2668119

This work is supported in part by Ministry of Science and Technology (under grant no. 103-2220-E-007-019)
and Ministry of Economic Affairs (under grant no. 103-EC-17-A-02-S1-202) in Taiwan.
Author’s addresses: W.-L. Shih, Department of Computer Science, National Tsing Hua University, Hsinchu,
Taiwan; Y.-P. You, Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan;
C.-W. Huang and J. K. Lee (corresponding author), Department of Computer Science, National Tsing Hua
University, Hsinchu, Taiwan; email: jklee@cs.nthu.edu.tw.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2014 ACM 1084-4309/2014/11-ART9 $15.00

DOI: http://dx.doi.org/10.1145/2668119

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



9:2 W.-L. Shih et al.

1. INTRODUCTION

Approaches for minimizing power dissipation can be applied at the algorithmic, com-
piler, architectural, logic, and circuit levels [Chandrakasan et al. 1992]. Aspects rel-
ative to combining architecture design and software arrangement at the instruction
level have been addressed with the aim of reducing power consumption [Bellas et al.
2000; Chang and Pedram 1995; Horowitz et al. 1994; Lee et al. 1997, 2003, 2013; Su
and Despain 1995; Tiwari et al. 1997, 1998]. Major efforts in power optimization in-
clude dynamic and leakage power optimization. Works in dynamic power optimization
include utilizing the value locality of registers [Chang and Pedram 1995], scheduling
VLIW (very long instruction word) instructions to reduce the power consumption on
the instruction bus [Lee et al. 2003], reducing instruction encoding to reduce code
size and power consumption [Lee et al. 2013], and gating the clock to reduce work-
loads [Horowitz et al. 1994; Tiwari et al. 1997, 1998]. Compiler code for reducing
leakage power can employ power gating [Kao and Chandrakasan 2000; Butts and Sohi
2000; Hu et al. 2004]. Various studies have attempted to reduce the leakage power using
integrated architectures and compiler-based power gating mechanisms [Dropsho et al.
2002; Yang et al. 2002; You et al. 2002, 2007; Rele et al. 2002; Zhang et al. 2003; Li and
Xue 2004]. These approaches involve compilers inserting instructions into programs to
shut down and wake up components as appropriate, based on a dataflow analysis or a
profiling analysis. The power analysis and instruction insertion are further integrated
into trace-based binary translation [Li and Xue 2004]. The Sink-N-Hoist framework
[You et al. 2005, 2007] has been used to reduce the number of power-gating instructions
generated by compilers. However, these power-gating control frameworks are only ap-
plicable to single-thread programs, and care is needed in multithread programs since
some of the threads might share the same hardware resources. Turning resources on
and off requires careful consideration of cases where multiple threads are present.
Herein, we extend previous work to deal with the case of multithread systems in a
bulk-synchronous parallel (BSP) model.

The BSP model, proposed by Valiant [1990], is designed to bridge between theory
and practice of parallel computations. The BSP model structures multiple processors
with local memory and a global barrier synchronous mechanism. Threads processed by
processors are separated by synchronous points, called supersteps, that form the basic
unit of the BSP model. A superstep consists of a computation phase and a communica-
tion phase, allowing processors to compute data in local memory until encountering a
global synchronous point in the computation phase and synchronizing local data with
each other in the communication phase. The algorithm complexity of parallel programs
can then be analyzed in the BSP model by considering both locality and parallelism
issues. The BSP model works well for a family of parallel applications in which the
tasks are balanced. However, global barrier synchronization was found inflexible in the
practice [McColl 1996], which promoted proposals for several enhanced BSP models
presenting hierarchical groupings. NestStep [Keßler 2000] is a programming language
for the BSP model that adopts nested parallelism with support for virtual shared
memory. The H-BSP model [Cha and Lee 2001] splits processors into groups and dy-
namically runs BSP programs within each group in a bulk-synchronous fashion, while
the multicore BSP [Valiant 2008, 2011] provides hierarchical multicore environments
with independent communication costs. In the present study we adopted the concept
of hierarchical BSP models [Keßler 2000; Cha and Lee 2001; Torre and Kruskal 1996]
as the basis for a power reduction framework for use in parallel programming.

Several methods have been proposed for analyzing the concurrency of multithread
programs. May-happen-in-parallel (MHP) analysis computes which statements may
be executed concurrently in a multithread program [Callahan and Sublok 1989;

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



Compiler Optimization for Reducing Leakage Power in BSP Programs 9:3

Duesterwald and Soffa 1991; Masticola and Ryder 1993; Naumovich and Avrunin
1998; Naumovich et al. 1999; Li and Verbrugge 2004; Barik 2005]. The problem of
precisely computing all pairs of statements that may execute in parallel is undecidable
[Ramalingam 2000]; however, it was proved that the problem is NP-complete if we
assume that all control paths are executable [Taylor 1983]. The general approach
involves using a dataflow framework to compute a conservative estimate of MHP
information.

This article presents a multithread power-gating (MTPG) framework, composed of
MTPG Analysis (MTPGA) and predicated power-gating (PPG) energy management
mechanisms for reducing leakage power when executing multithread programs on si-
multaneous multithreading (SMT) machines. SMT is a widely adopted processor tech-
nique that allows multithread programs to utilize functional units more efficiently
by fetching and executing instructions from multiple threads at the same time. Our
multithread programming model is based on hierarchical BSP models. We propose us-
ing thread fragment concurrency analysis (TFCA) to analyze MHP information among
threads and MTPGA to report the component usages shared by multiple threads in hi-
erarchical BSP models. TFCA reports the concurrency of threads, which allows power-
gating candidates to be classified into those used by multiple threads and those used
by a single thread. A conventional power-gating optimization framework [You et al.
2005, 2007] can be employed for candidates used by a single thread, with the compiler
inserting instructions into the program to shut down and wake up components as ap-
propriate. For candidates used concurrently by different threads, PPG instructions are
adopted to turn components on and off as appropriate. Based on the TFCA, our MTPGA
framework estimates the energy usage of multithread programs with our proposed cost
model and inserts a pair of predicated power-on and predicated power-off operations at
those positions where a power-gating candidate is first activated and last deactivated
within a thread.

To our best knowledge, this is the first work to attempt to devise an analysis scheme
for reducing leakage power in multithread programs. We performed experiments by
incorporating TFCA and MTPGA into SUIF compiler tools and by simulating the
energy consumption with a post-estimated SMT simulator based on Wattch toolkits.
Our preliminary experimental results on a system with leakage contribution set to
30% show that the total energy consumption of a system with PPG support and our
power optimization method is reduced by an average of 10.09% for BSP programs
converted from the OpenCL kernel and by up to 10.49% for D-BSP programs relative
to the system without a power-gating mechanism, and is reduced by an average of
4.27% for BSP programs and by up to 6.68% for D-BSP programs on a system with
leakage contribution set to 10%, demonstrating our mechanisms effective in reducing
the leakage power in hierarchical BSP multithread environments.

The remainder of the article is organized as follows. Section 2 gives a motivating
example for the problem addressed by our study. Section 3 presents the technical
rationale of our work, first presenting the PPG instruction and architectures, and
then summarizing our compilation flow. Section 4 presents the method of TFCA for
hierarchical BSP programs while Section 5 presents our MTPGA compiler framework
for power optimizations. Section 6 presents the experimental results, discussion is
given in Section 7, and conclusions are drawn in Section 8.

2. MOTIVATION

A system might be equipped with a power-gating mechanism to activate and deac-
tivate components in order to reduce the leakage current [Goodacre 2011]. In such
systems, programmers or compilers should analyze the behavior of programs, inves-
tigate component utilization based on execution sequences, and insert power-gating

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



9:4 W.-L. Shih et al.

Fig. 1. The traditional power-gating mechanism adopted in a single-thread or SMT environment. Both
environments are equipped with two categories of components C0 and C1, where C0 is capable of controlling
the power-gating status of C1: (a) Two code segments of threads T1 and T2, where power-gating instructions
are inserted by power-gating analysis results for threads T1 and T2 individually. Note that op1 of T1 and
op2 and op5 of T2 demonstrate those cases where instructions might need more than one component (in this
case, C0 and C1) to complete operation; (b); (c) how the code segments in (a) are executed in a single-thread
and SMT environment, respectively. All component usages of instructions for the two threads are labeled as
square boxes with corresponding labels, and power-off instructions are labeled as boxes with a cross.

instructions into programs [You et al. 2002, 2006] to ensure that the leakage current
is gated appropriately. Traditional compiler analysis algorithms for low power focus
on single-thread programs, and the methods cannot be directly applied to multithread
programs. We use the example in Figure 1 to illustrate the scenario for motivating
the need of new compiler schemes for reducing the power consumption in multithread
environments. Assume we have hardware equipped with two categories of functional
units, named C0 and C1, where C0 is capable of controlling the power-gating status of
C1, and the hardware is configurable as a single-thread or SMT environment. We first
present two pseudocode segments for threads T1 and T2 in Figure 1(a), that are ana-
lyzed and processed by traditional low-power optimization analysis. Note that op1 of T1
and op2 and op5 of T2 demonstrate the cases where instructions might need more than
one component (in this case, C0 and C1) to complete operation. Traditional sequential
analysis of the compiler will yield the component utilization for every instruction. As
shown in Figure 1(a), the compiler inserts two power-gating instructions “pg-off C1”
at the end of both code segments because C1 is no longer used for those segments in
subsequent codes. These code segments work smoothly when executed individually in
single-thread environments as shown in Figure 1(b). In the figure, all component us-
ages of instructions for the two threads are labeled as square boxes with corresponding
labels, and power-off instructions are labeled as boxes with a cross. For thread T1, after
instructions op1 and op2 are executed, the power-off instruction is executed at t4; hence
the system could save leakage energy from idle component C1. For thread T2, after five
instructions are executed, the power-off instruction is executed at t6, which turns off
component C1 to stop the leakage current.

However, when the multithread program is executed in an SMT system, the system
could concurrently execute threads T1 and T2 with shared components C0 and C1 as
illustrated in Figure 1(c). At time t4, thread T1 powers off C1 because the traditional
compiler analysis reports that C1 will no longer be used in T1 and a power-off instruction

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



Compiler Optimization for Reducing Leakage Power in BSP Programs 9:5

is inserted. However, T2 actually still uses C1 at time t4 and t5, which means that
powering off C1 at t4 will make the system fail if the powered-off components fully
rely on power-gating instructions; or the system would pay the penalty associated with
executing T2 at t4 if the system could internally turn on the components according to
the status of instruction queues.

The prior example indicates that the traditional single-thread analyzer cannot be
naively applied to the MTPG case, as it will likely break the logic that a unit must be in
the active state (i.e., powered on) before being used for processing, since the unit might
be powered off by a thread while other concurrent threads are still using or about to
use it. Moreover, a unit might be powered on multiple times by a set of concurrent
threads. The preceding problems must be appropriately addressed when constructing
power-gating controls for multithread programs. This article presents our solution for
addressing this issue.

3. TECHNICAL RATIONALE

3.1. PPG Operations

Predicated execution support provides an effective means to eliminate branches from
an instruction stream. Predicated or guarded execution refers to the conditional exe-
cution of an instruction based on the value of a Boolean source operand, referred to as
the predicate [Hsu and Davidson 1986]. Predicated instructions are fetched regardless
of their predicate value. Instructions whose predicate is true are executed normally,
while those whose predicate is false are nullified and thus prevented from modifying
the processor state.

We include the concept of predicated execution in power-gating devices for controlling
the power gating of a set of concurrent threads. We combine the predicated executions
into three special power-gating operations: predicated power-on, predicated power-off,
and initialization operations. The main ideas are: (1) to turn on a component only
when it is actually in the off state; (2) to keep track of the number of threads using the
component; and (3) to turn off the component when this is the last exit of all threads
using this component. Note that these operations must be atomic with respect to each
other in order to prevent multiple threads from accessing control at the same time.

—Initialization operation. An initialization operation is designed to clean all predicated
bits (i.e., pgp1, pgp2, . . . , pgpN) and empty all reference counters (i.e., rc1, rc2, . . . ,
rcN) when the processor is starting up.

—Predicated power-on operation. The predicated power-on operation takes an explicit
operand and two implicit operands to record component usage and conditionally turn
on a power-gating candidate. The explicit operand is power-gating candidate Ci, and
the implicit operands include predicated bit pgpi of Ci and a reference counter rci of
Ci. The operation consists of the following steps:
(1) power on Ci if pgpi (i.e., the predicated bit of Ci) is set;
(2) increase rci (i.e., the reference counter of Ci) by 1. The reference counter keeps

track of the number of threads that reference the power-gating candidate at this
time; and

(3) unset predicated bit pgpi.
—Predicated power-off operation. The predicated power-off operation also takes an

explicit operand Ci and two implicit operands pgpi and rci. Predicated power-off
instructions update component usage rci and conditionally turn off a power-gating
candidate Ci by predicated bit pgpi. The operation consists of the following steps:
(1) decrease the reference counter rci by 1;
(2) set predicate bit pgpi if reference counter rci is 0; and
(3) power off Ci if predicated bit pgpi is set.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



9:6 W.-L. Shih et al.

Fig. 2. Pseudocode segments to illustrate the specification of PPG operations for a power-gating candidate
C1: (a) Initialization operation for the power-gating mechanism; (b); (c) operations to atomically predicated
power-on and predicated power-off C1, respectively.

Figure 2 illustrates the specification of these PPG instructions in pseudocode seg-
ments. Consider a power-gating candidate C1 in an SMT system with PPG support.
Figure 2(a) shows the initialization operation for all PPG operations, and Figures 2(b)
and 2(c) show pseudocode segments for predicated power-on and power-off operations
for C1, respectively. To support the atomicity, a lock lc1 is used before and after the code
segments to guarantee that these operations are executed exclusively. For efficiency
reasons, hardware circuits should be used to implement this behavior in practice.

3.2. Multithread Power-Gating Framework

Algorithm 1 summarizes our proposed compiler flow of the MTPG framework for BSP
models. To generate code with power-gating control in a multithread BSP program,
the compiler should compute concurrency information and analyze component usage
with respect to concurrent threads. Step 1 of the algorithm applies TFCA to compo-
nent usages shared by multiple threads in hierarchical BSP models (the details of
this algorithm are presented in Section 4); this is the hierarchical BSP version of MHP
analysis. In step 2, detailed component usages can be calculated via dataflow equations
by referencing component-activity dataflow analysis (CADFA) [You et al. 2002, 2006].
Steps 3 and 4 insert PPG instructions according to the information gathered in the pre-
vious steps while considering the cost model (Section 5 presents our MTPGA compiler
framework for power optimizations). In step 3, MTPGA arranges power-gating control
among threads. In step 4, CADFA calculates the detailed component usage with regard
to the arrangement of step 3. Steps 5 and 6 further merge the generated power-gating
controls into a single compound instruction based on the sink-n-hoist framework [You
et al. 2005, 2007]. This is a compiler solution to merge power-gating instructions into
a single compound instruction and reduce the number of power-gating instructions
issued. Step 5 decides if and where power-gating instructions should be inserted, while

ALGORITHM 1: Multithread Power-Gating Framework
Input: A source program
Output: A program with power-gating control
begin

1 Perform thread fragment concurrency analysis for BSP programs
2 Perform component-activity data-flow analysis to get detailed component usage
3 Perform multithread power-gating analysis to arrange power-gating control among

threads
4 Perform component-activity data-flow analysis with advise from MTPGA
5 Perform power-gating-instruction scheduling
6 Perform sink-n-hoist analysis to merge generated power-gating controls
7 Produce predicated-power-gating instructions and power-gating instruction

end

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



Compiler Optimization for Reducing Leakage Power in BSP Programs 9:7

Fig. 3. Illustration of one superstep of a BSP program, where eight threads (T1 to T8) are divided into six
subgroups (G1 to G6). Each subgroup contains a subsuperstep. In a hierarchical BSP program, programmers
are allowed to divide threads into groups and the synchronization of threads would be limited in the groups,
which form subsupersteps inside the groups. A barrier is a synchronous point of a group in the hierarchical
BSP model; therefore all the barriers in program must belong to a specific group as shown in the figure.

step 6 attempts to merge the power-gating instructions with the sink-n-hoist frame-
work. Finally, step 7 produces the power-control assembly codes.

4. TFCA FOR BSP PROGRAMS

This section presents the concurrency analysis method for BSP programs. We con-
sider hierarchical BSP models with a fixed number of threads. Operations of BSP
programs are assumed well structured and correctly maintained by programmers, and
the scheduling of threads is assumed explicit and correctly maintained by programmers
or a static scheduler. Figure 3 presents an example for a superstep of the hierarchical
BSP model, in which vertical black lines indicate threads and horizontal gray bars indi-
cate barriers. Eight individual threads and two barriers form the superstep, where the
eight threads join and are divided into six groups. In a hierarchical BSP program, pro-
grammers are allowed to divide threads into groups and the synchronization of threads
would be limited in the groups, which form subsupersteps inside groups. A barrier is a
synchronous point of a group in a hierarchical BSP model; therefore, all the barriers in
a program must belong to a specific group. The threads in each group are synchronized
by barriers belonging to the group, which form subsupersteps inside the groups.

The threads do not have a constant relationship. Computing the concurrency between
threads actually involves considering the relation between threads that are present
during a specific period, which are indicated by a set of neighboring nodes in the control-
flow graph (CFG), denoted by a thread fragment. We calculate the thread concurrency
in a superstep of a group rather than of the entire BSP program. Since every superstep
is executed sequentially, solving the thread concurrency of all supersteps will solve the
thread concurrency of the BSP program. This analysis is performed by first constructing
a thread fragment graph (TFG) that represents the relationships in a superstep, and
then computing lineal thread fragments and the may-happen-in-parallel regions (MHP
regions) that represent thread fragments that have a lineal relationship and thread
fragments that may happen in parallel, respectively.

4.1. Thread Fragment Graph

The relationships between thread fragments in a superstep are abstracted into a di-
rected graph named the TFG, in which a node represents a thread fragment and an edge
represents the control flow. A TFG might be constructed with a single CFG or multiple

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



9:8 W.-L. Shih et al.

Fig. 4. Hierarchical BSP program presented in a CFG, where four threads (T1 to T4) are divided into four
supersteps by barriers. In the second superstep, four threads are further grouped into two groups (g1 to g2).
Each subgroup has its own supersteps.

CFGs, depending on the adopted programming model. For a single-program multiple-
data programming model, a multithread program is a single executable file and is ex-
ecuted heterogeneously by conditional branches of unique thread identification; a TFG
for a single-program multiple-data program is thus constructed from a CFG where
certain control paths are recognized as thread operations. For a multiple-program
multiple-data programming model, a multithread program is composed of multiple
individual executable files that are executed on different processors; in such a case, a
TFG is constructed from several CFGs of the individual programs. This article adopts a
single-program multiple-data programming model to construct our TFG; however, the
method could be applied to multiple-program multiple-data programming models with
minor revisions. Figure 4 presents a hierarchical BSP program in CFG, where four
threads (T1 to T4) are divided into four supersteps. In the first superstep, four threads
are further grouped into two groups (g1 to g2). Each subgroup has its own supersteps.

The notations used are presented in Table I. Given a CFG G = (V, E), comprising
a set of nodes V and a set of edges E, we denote the set of immediate successors of a
node v by Succ(v) and the set of immediate predecessors of v by Pred(v) (e.g., if there
exists an edge e(v1, v2) ∈ E, then Succ(v1) = v2 and Pred(v2) = v1). For convenience,
we denote a set of immediate successors and immediate predecessors of a set V0 as
Succ(V0) and Pred(V0), respectively.

Succ(V0) =
⋃

v∈V0

Succ(v)

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



Compiler Optimization for Reducing Leakage Power in BSP Programs 9:9

Table I. Notation

G a CFG G = (V, E), comprising a set of nodes V and a set of edges E
e(v, u) a directed edge from v to u
w(v, u) a walk from v to u, which is a sequence of connected nodes
W (v, u) the set of all walks from v to u
Succ(v) the set of immediate successors of node v

Pred(v) the set of immediate predecessors of node v

Succ(V ) the set of immediate successors of a set of node V
Pred(V ) the set of immediate predecessors of a set of node V

O the set of groups in a BSP program
g a group in a BSP program

VS(g) the set of begin nodes of group g
VE(g) the set of end nodes of group g

OSUB(g) the set of immediate subgroups of group g
VB a set of barrier nodes

VT F a set of nodes that belong to a thread fragment
G′ a TFG G′ = (V ′, E′), comprising a set of nodes V ′ and a set of edges E′

VT (t) the set of nodes with thread t
T (v) the thread that node v belongs to

�T FG(VT F ) a mapping function that maps a thread fragment VTF ⊂ V to a node v ∈ G
�CFG(v) a mapping function that maps a node v ∈ V ′ to a thread fragment VTF ⊂ V

Pred(V0) =
⋃

v∈V0

Pred(v)

A walk in the graph is a sequence of connected nodes that are not necessarily distinct.
We denote a walk from v0 to vn in G by w(v0, vn)

w(v0, vn) =< v0, v1, . . . , vn−1, vn >,∀(1 ≤ k ≤ n) ∧ (k ∈ N) : vk ∈ Succ(vk−1),

where N is the set of natural numbers. Let W(u, v) be a set of all walks from u to v in
G; note that A W(u, v) wills an infinite set if there is a loop between u and v.

A hierarchical BSP program might have several groups in a superstep. A group is a
set of threads that are present during a certain period of time; all threads in the set
are executed simultaneously and synchronized by barriers belonging to the group. A
hierarchical BSP program has an implicit group that contains all threads. Figure 4
contains an implicit group g0 that contains all threads in the graph. Let O be the set
of all groups in a BSP program. A subgroup g′ of a group g is a set of threads such that
g′ ⊆ g. We say that a group g′ is an immediate subgroup of a group g if and only if g′
is a subgroup of g and there does not exist a group g′′ such that g′′ is a subgroup of g
and g′ is a subgroup of g′′. The set of immediate subgroups for a group g is denoted by
OSUB(g).

Barriers belonging to a group could synchronize threads in the group. Given a group
g ∈ O, a set of BSP barrier nodes is denoted by VB(g), which includes all BSP synchro-
nization nodes in group g. Sets of beginning nodes and ending nodes of a BSP thread
are denoted by VS(g) and VE(g), respectively, that contain all beginning nodes and all
ending nodes of a BSP program in group g.

Barrier nodes block threads, dividing them into thread fragments and forming su-
persteps. A thread fragment might belong to multiple supersteps, depending on the
numbers of prior barriers along a control flow. We say that a barrier that has n prior
barriers along a control flow belongs to generation n. A barrier node might belong to
more than one generation if there are multiple control flows with different numbers
of barriers reaching the barrier. For a given group g, let the numbers of BSP barrier

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



9:10 W.-L. Shih et al.

Fig. 5. Supersteps for Figure 4. Nodes inside the dashed area are a superstep, named VSS. Four supersteps
are shown in the figure: VSS(g0, 0), VSS(g0, 1), VSS(g0, 2), and VSS(g0, 3).

nodes in a walk w be NumBarr(w, g). We denote a set of the BSP barriers that have n
prior barriers by VB(g, n), and the sets of the first BSP barriers and last BSP barriers
of group g are denoted by VB(g, entry) and VB(g, exit), respectively.

vs ∈ VS(g), VB(g, n) = {v ∈ VB | ∃w ∈ W(vs, v) ∧ NumBarr(w, g) = n}

vs ∈ VS(g), VB(g, entry) = {v ∈ VB | ∃w ∈ W(vs, v) ∧ NumBarr(w, g) = 0}

ve ∈ VE(g), VB(g, exit) = {v ∈ VB | ∃w ∈ W(v, ve) ∧ NumBarr(w, g) = 0}
A superstep in a BSP model is formed by nodes between two adjacent barriers of the

same group. Figure 5 shows supersteps for Figure 4, where four supersteps are divided
by VB(g0). For a given group g and two given adjacent barrier generations n and n+ 1,
a set of nodes of superstep VSS(g, n) in G could be derived by traversing nodes from
successors of VB(g, n) to VB(g, n + 1).

VSS(g, n) = Succ(VB(g, n)) ∪ {v ∈ V | v ∈ Succ(VSS(g, n)) ∧ v /∈ VB(g, n + 1)}
A walk in a superstep is defined as a sequence of nodes that contains no barriers of

the superstep.

WSS(u, v, g) = {w ∈ W(u, v) | o ∈ OSU B(g), NumBarr(w, o) = 0 ∧ NumBarr(w, g) = 0}
A thread fragment, denoted by VT F , is a set of neighboring nodes of a superstep

that contains no BSP barriers of a group g or its immediate subgroups, which means
that a thread fragment of group g in generation n can be characterized into one of the
following three cases:

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



Compiler Optimization for Reducing Leakage Power in BSP Programs 9:11

Fig. 6. Superstep VSS(g0, 1) of Figure 5. Nodes inside a superstep are divided into thread fragments that
are used to build a TFG. Nodes v11 and v19 are overlapped because there is a barrier node v15 inside the
loop structure. With a barrier node inside a loop, nodes inside the loop may be executed multiple times in
different thread fragments; therefore nodes v11 and v19 appear in different thread fragments, resulting in
the thread fragments overlapping.

(a) starts from a successor of barriers VB(g, n) and ends in a predecessor of barriers in
next generation VB(g, n + 1) or barriers in entry barriers of immediate subgroup o
of g, VB(o, entry);

(b) starts from a successor of exit barriers of immediate subgroup o of g, VB(o, exit),
and ends in a predecessor of barriers in next generation VB(g, n + 1) or barriers in
entry barriers of another immediate subgroup o′ of g, VB(o′, entry); or

(c) starts from the entry barrier of an immediate subgroup o of g, VB(o, entry), and
ends in the exit barrier of o, VB(o, exit).

For case a, we have a thread fragment VTF(v, g) for each node v ∈ Succ(VB(g, n)).

VTF(v, g) = {u |o′ ∈ OSUB(g), v′ ∈ VB(g, n + 1) ∪ VB(o′, entry),
WSS(v, u) �= ∅ ∧ WSS(u, v′) �= ∅} (1)

For case b, we have a thread fragment VTF(v, o, g) for each node v ∈ Succ(VB(o, exit)).

VTF(v, o, g) = {u |o′ ∈ OSUB(g) ∧ o′ �= o, v′ ∈ VB(o′, entry) ∪ VB(g, n + 1),
WSS(v, u) �= ∅ ∧ WSS(u, v′) �= ∅} (2)

For case c, we have a thread fragment VTF(o) where o is a subgroup and o ∈ OSUB(g).

VTF(o) = {v | v′ ∈ VB(o, entry), v′′ ∈ VB(o, exit), W(v′, v) �= ∅ ∧ W(v, v′′) �= ∅} (3)

Figure 6 shows the thread fragments in superstep VSS(g0, 1) of Figure 5. Nodes v11
and v19 are overlapped because there is a barrier node v15 inside the loop structure.
With a barrier node inside a loop, nodes inside the loop may be executed multiple times
in different thread fragments; therefore nodes v11 and v19 appear in different thread
fragments, resulting in the thread fragments overlapping.

We now can construct a TFG for a superstep n of group g in GCFG. A TFG, denoted by
G′ = (V ′, E′), is a directed graph in which each node is a thread fragment or a grouped
thread fragment and each edge is a control flow between nodes. For each VTF, we add
a node v to V ′ to represent VTF. The relation from VTF to the relevant v is denoted by
v = �TFG(VTF). Conversely, we denote the relation from v ∈ V ′ to VTF by VTF = �CFG(v).

For two given nodes vi ∈ V ′ and v j ∈ V ′, an edge e(vi, v j) is added to E′ if and only if
there exists an edge e ∈ E from a node of �CFG(vi) to a node of �CFG(v j).

e(vi, v j) ∈ E′ ⇐⇒ ∃e(va, vb) ∈ E : va ∈ �CFG(vi), vb ∈ �CFG(v j)

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



9:12 W.-L. Shih et al.

Fig. 7. A TFG for Figure 6.

Nodes of a graph having no predecessor are called entry nodes, while those that have
no successor are called exit nodes. There are multiple entry nodes and exit nodes in
a TFG, denoted by V ′(entry) and V ′(exit), respectively. A thread might have several
entry nodes and exit nodes in a TFG. To unify these nodes for each thread, an initial
node and a final node for each thread are introduced into the TFG as an immediate
predecessor of all entry nodes of the same thread or an immediate successor of all exit
nodes of the same thread, respectively. Given a thread with a thread identification t of
a thread, we denote initial nodes and final nodes by V ′(t, initial) and V ′(t, f inal). The
connections between nodes are indicated as

Succ(V ′(t, initial)) = {v | v ∈ V ′(entry) ∧ T (v) = t}
and

Pred(V ′(t, f inal)) = {v | v ∈ V ′(exit) ∧ T (v) = t},
where T () is a function that returns the thread identification of a thread fragment.

Figure 7 presents a TFG that abstracts the relationship of thread fragments for Fig-
ure 6. Nodes u9 and u10 are nodes for thread fragments derived from immediate sub-
groups with Eq. (3), while the other nodes for thread fragments are derived with Eqs. (1)
and (2). Node u5 is the node for thread fragment {v1, v5, v9}, that is derived with Eq. (1).
Node u11 is the node for thread fragment {v24, v28, v32} that is derived with Eq. (2). Node
u9 is the node for thread fragment {v13, v14, v17, v18, v21, v22} that is derived with Eq. (3).
Entry nodes V ′(entry) are {u5, u6, u7, u8}, exit nodes V ′(exit) are {u11, u12, u13, u14}, the
initial nodes are {u1, u2, u3, u4}, and the final nodes are {u15, u16, u17, u18}.

We say that two TFGs G′
0 and G′

1 are identical if and only if every node in G′
0 has a

node in G′
1 that is related to the same set of fragments, and vice versa.

G′
0 ≡ G′

1 ⇐⇒ (∀v ∈ G′
0)(∃u ∈ G′

1)(u = �TFG(�′
CFG(v)))

∧

(∀v ∈ G′
1)(∃u ∈ G′

0)(u = �′
TFG(�CFG(v)))

4.2. Constructing TFGs

We designed a TFG construction algorithm that builds the TFG for each BSP superstep
from a CFG and performs the lineal thread fragments analysis for each TFG. The idea
involves recursively computing concurrency information inside a group. The algorithm
ends when any thread encounters an end of a thread or a built TFG is identical to any
previously built one.

Algorithm 2 is the kernel algorithm that collects the thread fragment of a designated
group as well as constructs the TFG of the group and computes the concurrency infor-
mation. Algorithm 2 collects thread fragments in case c as mentioned in Section 4.1.
The output of the algorithm would be a set of nodes between the entry barrier of an

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



Compiler Optimization for Reducing Leakage Power in BSP Programs 9:13

ALGORITHM 2: TraverseGroup(CFG G, group g, start nodes Varg, blocked nodes Vblk)

Input: G: The CFG to be analyzed
Input: g: the group to analyze
Input: Varg: a set of starting nodes
Output: Vblk: a set of nodes blocked by barriers
Output: Vgtf : a set of nodes of CFG, which contains all nodes in the group
Used Data: Vitr : a set of nodes of CFG, where nodes are iterators
Used Data: V ′

arg: a set of starting nodes for a subgroup
Used Data: V ′

blk: a set of blocked nodes for a subgroup
Used Data: VTF : a set of nodes of CFG, which represents a thread fragment
Used Data: va, vb : nodes of CFG
Used Data: G′: a TFG for a superstep
Used Data: vi , v j : nodes of TFG
begin

Initialize Vitr with Vitr ← Varg
repeat

repeat /* Traverse a superstep of BSP */
Let G′ = (V ′, E′) be a TFG for the superstep
foreach va ∈ Vitr do /* Traverse thread fragments */

VTF ← TraverseThreadFragment (v, VT F , Vblk)
Add a node vi into G′ and let �CFG(vi) = VTF
Collect traversed nodes by Vgtf ← Vgtf ∪ VTF

end
Vitr ← ∅
foreach g′ ∈ OSU B(g) do /* Traverse subgroups */

Check Vblk to determine if every thread belongs to subgroup g′ is ready.
if g′ is ready then

Let V ′
arg be the set of nodes encountering barriers of group g′

Update blocked nodes by Vblk ← Vblk − V ′
arg

Cross barriers before traverse subgroups: V ′
arg ← CrossBarrier (V ′

arg)
VTF ← TraverseGroup (G, g′, V ′

arg, V ′
blk)

Add a node vi into G′ and let �CFG(vi) = VTF
Collect traversed nodes by Vgtf ← Vgtf ∪ VTF
Update iterators by Vitr ← CrossBarrier(V ′

blk)
end

end
until Vitr is empty;
foreach vi, v j ∈ V ′ do /* Build up edges of G′ */

if ∃e(va, vb) ∈ E, where va ∈ �CFG(vi), vb ∈ �CFG(v j) then
Add e(vi, v j) into E′

end
end
Add initial nodes and final nodes, and construct edges for initial and final nodes

/* All iterators encountered BSP sync nodes. */
ComputeMHPRegion (G′)
Vitr ← CrossBarrier (Vblk)

until Vblk ⊆ VB(g, exit) or two TFGs are identical;
return Vgtf

end

immediate subgroup o of g, VB(o, entry) and the exit barrier of o, VB(o, exit), which
means that Algorithm 2 is an implementation of Eq. (3). Algorithm 3 collects thread
fragments of a designated node until barriers, namely cases a and b as mentioned in
Section 4.1. Algorithm 3 is an implementation of Eq. (3).

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



9:14 W.-L. Shih et al.

ALGORITHM 3: TraverseThreadFragment(CFG node v, nodes VT F , nodes Vblk)
Input: v: a CFG node to be traversed
Input: VT F : a set of traversed nodes
Output: Vblk: a set of blocked nodes
Used Data: g′: a CFG node
begin

if v ∈ VT F then return VT F /* The node is traversed. */
if v ∈ VB then /* The node encounter a barrier */

Add v to Vblk and return VT F
end
Add v into VT F
foreach v′ ∈ Succ(v) do /* Recursively traverse successors */

VT F ← VT F∪ TraverseThreadFragment (v, VT F , Vblk)
end
return VT F

end

In Algorithm 2, Vgtf collects all nodes in the group. Certain temporal variables are
introduced to aid the collecting of nodes. Varg is a set of starting nodes in a group, Vitr is
a set of iterator nodes for recording the locations of iterators, and Vblk is a set of blocked
nodes that are barrier nodes to identify where iterators are blocked. Algorithm 2 begins
by initializing Vitr initialized as Varg; nodes in Vitr are then traversed recursively based
on Algorithm 3. Each node in Algorithm 3 will conform to one of the following conditions:

—be in VTF: the function returns because the iterator is in a circular path;
—be blocked by a barrier: the node is added to Vblk and returns to Algorithm 2 because

a thread fragment is found; or
—keep traversing to its successors.

Each collected VTF set has a relevant TFG node, and a VTF is added into Vgtf for all nodes
in a group, which will eventually be a thread fragment of the outer group according to
Eq. (3).

Once all of the nodes in Vitr have been traversed, we check blocked set Vblk be-
cause some nodes might be blocked by barriers of subgroups. In such a case we recur-
sively perform TraverseGroup() to traverse a subgroup with designated V ′

arg and get
a thread fragment according to Eq. (3). Two operations are required before invoking
TraverseGroup() for subgroups:

—remove nodes of V ′
arg from Vblk because they no longer belong to Vblk; and

—since V ′
arg now contains nodes that are blocked, we have to allow Varg to cross barriers.

CrossBarrier() is a function that helps the input nodes to cross a barrier and outputs a
set of nodes after such barriers. After performing TraverseGroup() for each subgroup,
the output blocked set V ′

blk needs to cross barriers; then the processed V ′
blk set is added

to Vitr so that thread fragments are collected in the subsequent iterations.
Thread fragments of a superstep are collected when Vitr is empty. The next step

involves adding edges to complete the TFG. Lineal thread fragments and MHP thread
fragments (MTFs) are then analyzed, as explained in detail in Section 4.3.

After processing a superstep, we update Vitr with CrossBarrier(Vblk) and repeat the
procedure to process the next superstep. The algorithm iterates for each superstep
until one of two cases is obtained: (1) all blocked nodes Vblk are a subset of VB(g, exit),
which means that there are no further supersteps in this group; or (2) two TFGs in a

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



Compiler Optimization for Reducing Leakage Power in BSP Programs 9:15

GEN(v) ← {v} (4)

KILL(v) ← ∅ (5)

IN(v) ←
⋃

v′ :Pred(v)

OU T (v′) (6)

OU T (v) ← IN(v) ∪ GEN(v) − KILL(v) (7)

LT F(v) ← OU T (v) ∪ {v′ | OU T (v′) � v} (8)

Fig. 8. Dataflow equations for lineal thread fragments information.

group are identical, which means that there is a loop in the BSP program and we have
already explored all possible combinations.

4.3. Lineal Thread Fragments Analysis and MTF

Once the TFG has been constructed, we can compute the concurrent thread fragments
of a hierarchical BSP program. Instead of gathering MHP information, we gather nodes
that cannot happen in parallel; that is, they have a lineal relation. We collect all nodes
along the TFG in our dataflow analysis and maintain the set of entire lineal thread
fragments by adding nodes symmetrically so as to keep this set symmetric.

The GEN set obtained by lineal thread fragments analysis is the node itself; the
KILL set is always empty; the IN set is the set of ancestor nodes, which is the union of
all the predecessor’s OUT set; the OUT set is the reached ancestor nodes, which is the
union of the IN set and GEN set; and the LTF set is the set of lineal thread fragments
derived from the OUT set as follows.

LTF(v) ← OUT(v) ∪ {v′ | OUT(v′) � v}
The LTF set gets its ancestor nodes and its children nodes by a symmetric step [Barik
2005]. Figure 8 presents the dataflow equations used to gather lineal thread fragment
nodes in a TFG.

After the LTF set of all nodes has been computed, the MTF for each thread fragment
is computed as

MTF(v) ← V ′ − ∪v′∈VT (T (t))LTF(v′),

where VT (t) denotes a set of nodes with thread t, and T (v) denotes a thread to which
node v belongs.

An MHP region is a subgraph of the TFG where thread fragments may be executed
concurrently. Nodes belonging to different MHP regions must not be executed in paral-
lel. The MHP regions are determined by first constructing an MHP graph G′′ = (V ′, E′′),
that is an indirected graph whose nodes are thread fragments and edges are nodes that
may happen in parallel; that is, they are related to the MTF set.

e(v, u) ∈ E′′ ⇐⇒ ∃u ∈ MTF(v) : v ∈ V ′

The connected components of a MHP graph, denoted by {R1, . . . , RN}, are sets of nodes
having a walk relationship. We then construct MHP regions {S1, . . . , SN} for each
connected component. An MHP region, as a subgraph of G′, is denoted by Sn = (Rn, En),
where Rn is a connected component of G′′ and where En is a set of edges.

e(v, u) ∈ En ⇐⇒ ∃e(v, u) ∈ E′ : v ∈ Rn ∧ u ∈ Rn (9)

We compute the lineal thread fragments of nodes and MHP regions for each TFG by
running Algorithm 4 with dataflow equations. Table II lists the results of GEN, OUT,

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



9:16 W.-L. Shih et al.

Table II. The GEN, OUT, and LTF Sets for the Example in Figure 7

GEN OUT LTF
u1 {u1} {u1} {u1, u5, u9, u11, u12, u15, u16}
u2 {u2} {u2} {u2, u6, u9, u11, u12, u15, u16}
u3 {u3} {u3} {u3, u7, u10, u13, u14, u17, 18}
u4 {u4} {u4} {u4, u8, u10, u13, u14, u17, 18}
u5 {u5} {u1, u5} {u1, u5, u9, u11, u12, u15, u16}
u6 {u6} {u2, u6} {u2, u6, u9, u11, u12, u15, u16}
u7 {u7} {u3, u7} {u3, u7, u10, u13, u14, u17, 18}
u8 {u8} {u4, u8} {u4, u8, u10, u13, u14, u17, 18}
u9 {u9} {u1, u2, u5, u6} {u1, u2, u5, u6, u9, u11, u12, u15, u16}
u10 {u10} {u3, u4, u7, u8} {u3, u4, u7, u8, u10, u13, u14, u17, u18}
u11 {u11} {u1, u2, u5, u6, u11} {u1, u2, u5, u6, u9, u11, u15}
u12 {u12} {u1, u2, u5, u6, u12} {u1, u2, u5, u6, u9, u12, u16}
u13 {u13} {u3, u4, u7, u8, u13} {u3, u4, u7, u8, u10, u13, u17}
u14 {u14} {u3, u4, u7, u8, u14} {u3, u4, u7, u8, u10, u14, u18}
u15 {u15} {u1, u2, u5, u6, u11, u15} {u1, u2, u5, u6, u9, u11, u15}
u16 {u16} {u1, u2, u5, u6, u12, u16} {u1, u2, u5, u6, u9, u12, u16}
u17 {u17} {u3, u4, u7, u8, u13, u17} {u3, u4, u7, u8, u10, u13, u17}
u18 {u18} {u3, u4, u7, u8, u14, u18} {u3, u4, u7, u8, u10, u14, u18}

Table III. The MTF Set for the Example in Figure 7

MTF
u1 {u2, u3, u4, u6, u7, u8, u10, u13, u14, u17, u18}
u2 {u1, u3, u4, u5, u7, u8, u10, u13, u14, u17, u18}
u3 {u1, u2, u4, u5, u6, u8, u9, u11, u12, u15, u16}
u4 {u1, u2, u3, u5, u7, u8, u9, u11, u12, u15, u16}
u5 {u2, u3, u4, u6, u7, u8, u10, u13, u14, u17, u18}
u6 {u1, u5, u3, u4, u7, u8, u10, u13, u14, u17, u18}
u7 {u1, u2, u4, u5, u6, u8, u9, u11, u12, u15, u16}
u8 {u1, u2, u3, u5, u7, u8, u9, u11, u12, u15, u16}
u9 {u3, u4, u7, u8, u10, u13, u14, u17, u18}
u10 {u1, u2, u5, u6, u9, u11, u12, u15, u16}
u11 {u3, u4, u7, u8, u10, u12, u13, u14, u16, u17, u18}
u12 {u3, u4, u7, u8, u10, u11, u13, u14, u15, u17, u18}
u13 {u1, u2, u5, u6, u9, u11, u12, u14, u15, u16, u18}
u14 {u1, u2, u5, u6, u9, u11, u12, u13, u15, u16, u17}
u15 {u3, u4, u7, u8, u10, u12, u13, u14, u16, u17, u18}
u16 {u3, u4, u7, u8, u10, u11, u13, u14, u15, u17, u18}
u17 {u1, u2, u5, u6, u9, u11, u12, u14, u15, u16, u18}
u18 {u1, u2, u5, u6, u9, u11, u12, u13, u15, u16, u17}

and LTF sets for the example in Figure 5. As listed in Table II, the GEN set contains
the node itself; the OUT set is the collection of GEN sets along the TFG; and the LTF
set is derived from the OUT set by a symmetric step. The MTF set of the example is
listed in Table III, which is derived from LTF set by subtraction.

5. MULTITHREAD POWER-GATING ANALYSIS

The TFCA results and the component usage for a power-gating candidate Ci of all
concurrent thread fragments can be categorized in the following three cases.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



Compiler Optimization for Reducing Leakage Power in BSP Programs 9:17

ALGORITHM 4: ComputeMHPRegion(TFG G′): Computing the lineal thread fragments of
nodes and the MHP region for TFG G′

Input: G′: a TFG G′ = (V ′, E′)
Output: The MHP regions
Used Data: v, v′: TFG nodes
begin

foreach v ∈ V ′ do /* Initialize GEN() sets */
GEN(v) ← {v}

end
repeat /* Perform data-flow analysis */

foreach v ∈ V ′ do
IN(v) ← ⋃

v′∈Pred(v) OU T (v′)
OU T (v) ← IN(v) ∪ GEN(v)
foreach v′ ∈ OU T (v) do /* Compute lineal thread fragments */

Perform symmetric step: LTF(v′) ← LTF(v′) ∪ OU T (v′) ∪ {v}
end

end
until for all v ∈ V ′, IN(v) and OU T (v) are converge;
foreach v ∈ V ′ do /* Compute the MHP thread fragments */

MTF(v) ← V ′ − ∪v′∈VT (T (t))LTF(v′)
end
foreach v ∈ V ′ do /* Construct the MHP graph */

foreach u ∈ MTF(v) do
Add edge e(v, u) to E′′

end
end
Find all connected components {R1, . . . , RN} of MHP graph G′′

Construct MHP regions {M1, . . . , MN} of G′ from {R1, . . . , RN}
end

—Ci is used by only one thread fragment. In this case the Sink-N-Hoist framework
should be applied to the thread fragment to insert traditional power-gating instruc-
tions because the uncertainty of component usage in a multithread program is not
present.

—Ci is not used. In this case we do not need to handle Ci because a power-gating
candidate is defined to be turned off at the beginning of a superstep. This is the
optimal case to use because there will be no extra cost and the power savings will be
maximal.

—Ci is used by multiple thread fragments. When the analysis results indicate that
multiple thread fragments might use Ci in an MHP region, we have two strategies
for placing PPG instructions. The evaluation is described in detail next.

In this section we present an MTPGA scheme based on the PPG mechanism and
TFCA scheme results to estimate energy consumption and to insert power-gating in-
structions. MTPGA generally inserts a pair of predicated power-on and predicated
power-off operations at the positions where a power-gating candidate is first activated
and last deactivated for each thread within a MHP region according to the proposed
cost model. Figure 9 illustrates a simple scenario in which thread fragments TF1 and
TF2 may happen in parallel—and thus TF1 and TF2 form an MHP region—and CADFA
exposes the utilization status of three power-gating candidates, labeled as C1, C2, and
C3; in-use units are depicted with light gray boxes in the figure.

Figure 10 demonstrates two possible placements of PPG operations based on the
MTPGA results. In most cases, MTPGA will place a pair of PPG operations for each

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



9:18 W.-L. Shih et al.

Fig. 9. Two thread fragments TF1 and TF2 in an MHP region and their utilization status for the power-
gating candidates C1, C2, and C3; in-use units are depicted with light gray boxes.

Fig. 10. Two kinds of instruction placement for power gating: (a) Two concurrent thread fragments TF1 and
TF2 using a power-gating candidate C1 and their component usage; (b); (c) two strategies for placing power-
gating instructions among TF1 and TF2; (b) the leakage energy of thread fragments is worthy of being gated
(i.e., the calculation result of Eq. 10); thus all thread fragments would be inserted with ppg instructions;
(c) the leakage energy of thread fragments is not worth gating; in such a case, we insert conventional
power-gating instructions before and after the MHP region.

power gating candidate if appropriate. With the support of conditional execution of
power-gating instructions, power gating will only occur when a unit is first activated
and last deactivated within an MHP region. Recall that the proposed PPG mecha-
nism incorporates a set of reference counters (N reference counters for N power-gating
candidates) for tracking the number of threads that have been referenced, and predi-
cated bits are set only when the value of their corresponding reference counters is 0.
Therefore, within the MHP region there will be only a pair of power-gating operations,
namely the first power-on and the last power-off operations, belonging to a pair of PPG
operations being executed, whereas the power gating of the other PPG operations will
be disabled. This ensures that a unit will be alive whenever it is required for processing.

PPG is not cost free, and we now take this into consideration when building a model
for determining which PPG placement strategy should be employed. The model is
based on the comparison of the energy cost between normal power gating and the
PPG in an MHP region. Suppose that there are N power-gating candidate units, C1,
C2, . . . , CN, and K thread fragments in an MHP region, TF1, TF2, . . . , TFK. We define
two functions, named �pro and �epi, that take a thread and a power-gating candidate
as their parameters for computing the inactive period of the power-gating candidate
before/after the candidate operates for the first/last time within the thread as

�pro(TFi, C j) = start(TFi, C j) − start(TFi)

and

�epi(TFi, C j) = end(TFi) − end(TFi, C j),

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



Compiler Optimization for Reducing Leakage Power in BSP Programs 9:19

where start(TFi, C j) returns the time that Cj is first used in TFi and start(TFi) re-
turns the start time of TFi, while end(TFi, C j) returns the time that Cj is last used in
TFi and end(TFi) returns the end time of TFi. Figure 10 portrays the implications of
the aforesaid functions with TF1 and C1 as parameters. Furthermore, we define that
�

pro
min(C j) and �

epi
min(C j) return the minimum of �pro(TFi, C j) and �epi(TFi, C j) in terms

of all Ti as

�
pro
min(C j) = MIN∀i∈K�pro(TFi, C j)

and

�
epi
min(C j) = MIN∀i∈K�epi(TFi, C j),

where �
pro
min(C j) represents the earliest time that Cj might be used after the MHP

region starts, �
epi
min(C j) represents the latest time that Cj might be used prior to the

MHP region ending, and MIN is a function that returns the minimum value of its
parameters. Accordingly, the energy consumption Epred of the PPG control within the
MHP region is

Epred(TF, C j) = Eon(C j) + Eof f (C j) + Kj × (Ep−on + Ep−of f )

+ (�pro
min(C j) + �

epi
min(C j)) × Prleak(C j),

(10)

where functions Eon(C j) and Eof f (C j) return the energy consumption of issuing power-
on and power-off instructions for component Cj , respectively; Kj represents the num-
ber of threads in the MHP region that requires Cj to operate; Ep−on and Ep−of f are
the energy consumptions associated with operating a set of predicated power-on and
predicated power-off manipulation operations described in Section 3.1, excluding the
power-on and power-off operations, respectively; and Prleak(C j) represents the leakage-
power consumption of Cj in a cycle when the power supply is gated. In contrast, when
we employ normal power-gating control at the beginning and end of the MHP region
rather than applying the PPG management, the energy consumption Enormal of such
operations and the potential leakage dissipation is

Enormal(TF, Cj) = Eon(C j) + Eof f (C j) + (�pro
min(C j) + �

epi
min(C j)) × Pleak(C j), (11)

where Pleak(C j) represents the leakage power consumption of unit Cj during a cycle.
Accordingly, we can derive the following inequality for ensuring the worthiness of

PPG

Epred(TF, Cj) < Enormal(TF, Cj),

and substituting Epred(TF, C j) and Enormal(TF, C j) into Eqs. (10) and (11), respectively,
yields

Eon(C j) + Eof f (C j) + Kj × (Epred−on + Epred−of f ) + (�pro
min(C j) + �

epi
min(C j)) × Prleak(C j)

< Eon(C j) + Eof f (C j) + (�pro
min(C j) + �

epi
min(C j)) × Pleak(C j).

Thus we have

�
pro
min(C j) + �

epi
min(C j) >

Kj × (Epred−on + Epred−of f )
Pleak(C j) − Prleak(C j)

as the criterion for determining whether a PPG should be applied. Algorithm 5 is an
implementation of the proposed MTPGA. The algorithm receives an MHP region as its
input and decides which power-gating policy to adopt. Basically, it determines whether
a PPG should be employed for each MHP region.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



9:20 W.-L. Shih et al.

ALGORITHM 5: Algorithm of MTPGA.
Input : A multithread program and its MHP and CADFA with Sink-N-Hoist information.
Output: The program with power-gating controls.

foreach MHP region do
foreach power-gating candidate C do

Find entry nodes and exit nodes of the MHP region and compute �
pro
min(C) and

�
epi
min(C)

if �
pro
min(C) + �

epi
min(C) ≤ T HRESHOLD† then

Place a power-on and a power-off instruction for C at the beginning and the end
of the MHP region, respectively.

else
foreach thread do

Place a predicated-power-on and a predicated-power-off operation
before/after the candidate operates for the first/last time within the thread.

end
end

end
end
†T HRESHOLD = Kj × (Epred−on + Epred−of f )

Pleak(C) − Prleak(C)

6. EXPERIMENT AND DISCUSSION

6.1. Platform

We used a DEC-Alpha-compatible architecture with the PPG controls and two-way
to 8-way simultaneous multithreading as the target architecture for our experiments.
The equipped SMT machine replicated certain resources for each thread such as pro-
gram counter and registers, while function units were shared with both threads. The
proposed MTPG framework was evaluated by a post-estimated SMT simulator based
on Wattch toolkits with a 0.10μm process parameter and a 1.9-V supply voltage. The
SMT simulator schedules multiple Wattch simulators to execute programs separately,
and then reschedules the component usage on a cycle-by-cycle basis (according to ex-
ecution traces gathered from Wattch simulators) to estimate the execution time and
power consumption.

Table IV summarizes the baseline configuration of the Wattch simulators in our
experiments. By default, the simulator performs out-of-order execution. We used the
“-issue:inorder” option in the configuration so that instructions would be executed in
order, which ensures the correctness of execution. Nevertheless, our approach could
also be applied to machines issuing out-of-order execution commands when addi-
tional hardware supports are employed such as in the hardware proposed in You et al.
[2006].

Figure 11 illustrates the phases of the compilation. Two phases were added in or-
der to analyze the component usage of a BSP program: the concurrent thread frag-
ments phase (see Section 4) and the low-power optimization phase (see Section 5).
The TFCA phase is performed in low SUIF, which constructs the TFG and analyzes
the concurrency among threads. We incorporate the low-power optimization phase just
before code generation, that is, after all traditional performance optimizations were per-
formed. Hence, the additional phase hardly influences the performance; it only inserts
power-gating instructions or PPG instructions and thus barely affects the execution
behavior. The implementation was based on SUIF2 and the CFG and machine libraries
from Machine-SUIF. Programs were first transformed from high SUIF into low SUIF

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



Compiler Optimization for Reducing Leakage Power in BSP Programs 9:21

Table IV. Baseline Processor Configuration

Parameter Configuration
Clock 600 MHz

Processor parameters 0.10 μm,1.9V
Issue In-order

Decode width 8 instruction/cycle
Issue width 8 instruction/cycle

Commit width 8 instruction/cycle
RUU size 128
LSQ size 64

Parameter Configuration
Function units 4 integer ALU

1 integer mul/div unit
4 floating-point ALU

1 floating-point mul/div unit
Register File 32 64-bit integer registers

32 64-bit floating-point registers
1 power-gating control register

Fig. 11. Power management in the compilation phases of multithread programs.

format with SUIF, processed by concurrent thread fragment analysis, and then trans-
lated to the machine- or instruction-level CFG form with Machine-SUIF. Four compo-
nents of the low-power optimization phase for multithread programs (implemented as
a Machine-SUIF pass) were then performed, and finally, the compiler generated DEC
Alpha assembly code with extended power-gating controls.

The power-gating mechanism is absent in the original DEC Alpha processor, hence
there are no power-gating instructions in its instruction set. Moreover, programs could
be roughly categorized into compiled user source codes and libraries, and there are
no directives in executables for distinguishing one from another; however, the absence
of source codes prevents power-gating analysis. We therefore defined a set of special
instructions as power-gating instructions so that they could be recognized by the DEC
Alpha assembler and linker: “stl $24, negative offset($31)”, where the negative offset
is a negative integer used for indicating the function units to be powered on or off and
the boundary for kernel extraction. The $31 register in the DEC Alpha processor is
a constant zero register, and so the instruction stores a value at a negative address
that is invalid and should not be generated by a standard compiler. We made a small
modification in Wattch to prevent the processor from accessing such invalid memory
addresses: when the instruction decoder deciphered such instructions, it extracted
the user directive information and converted it to an NOP (no-operation) instruction.
Furthermore, since Wattch does not model leakage at the component level per se, we
assumed that leakage power contributes 10% or 30% of the total power consumption
[Butts and Sohi 2000; Rusu et al. 2007]. We also assumed that wakeup operations of

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



9:22 W.-L. Shih et al.

Table V. Parameter Settings Used for Generating TFGs

Parameter Setting A Setting B Setting C
Number of nodes 6-10 11-16 11-20
Out degree 2 2 4
In degree 2 2 4
Number of layers 5 8 5
Size of layer 2 2 4
Number of samples 3592 4971 2283

power-gating controls have an eight-cycle latency and that it took 14× the leakage en-
ergy per cycle to power a component off and on [Hu et al. 2004]. It was further assumed
that the energy consumption associated with fetching and decoding a power-gating
instruction was twice the leakage power. The overhead energy of the additional predi-
cated power-gating controller (PPGC) was also considered. According to the synthesis
result of PPGC by Synopsys Design Compiler, we assumed that the PPGC took 4×10−4

times the power of integer ALU.
We report the power usage of analyzed code regions (i.e., source codes from the

user), not including the power usage that is not associated with the user program (e.g.,
libraries and the C runtime system). Also, the baseline data was provided by the power
estimation of Wattch cc3 with a clock-gating mechanism that gates the clocks of unused
resources in multiport hardware to reduce the dynamic power; however, leakage power
still exists.

6.2. Simulation Results

To verify our proposed MTPGA algorithm and PPG mechanism, we focused on in-
vestigating component utilization in the supersteps. We report two sets of simulation
results: one for random TFGs and the other for BSP programs converted from OpenCL
kernels. Each set of results compares three types of experiments: (1) no power-gating
mechanism (baseline), (2) CADFA with a conventional power-gating mechanism from
a previous work [You et al. 2002, 2006], and (3) MTPG with the PPG mechanism.

We first generated random TFGs and applied small programs as thread fragments.
Random TFGs were generated using GGen, which is a random graph generator for
scheduling simulations [Cordeiro et al. 2010]. The generation method was a slightly
modified version of fanin/fanout method. We added a parameter for the size of layer
to control the shape of generated graphs, where a layer is a set of nodes without
edges. We generated random edges between adjacent layers only, which forced the
generated graphs to fit the D-BSP communication rule. Also, a label swapping phase
was added immediately before generating the graph to increase the randomness of
thread fragments. Each node in the generated TFGs was mapped to a floating-point
DSPstone [Zivojnovic et al. 1994] program. The random TFGs were all DAGs and
generated with parameters as follows:

—number of nodes: the number of thread fragments in the graph;
—out-degree: the out-degree of each node controls the number of success of a thread

fragment;
—in-degree: the in-degree of each node controls the number of predecessors of a thread

fragment;
—number of layers: the number of layers in the graph;
—size of layer: the number of nodes in a layer controls the size of hardware threads.

The energy consumption results for the parameter settings in Table V are listed in
Tables VI, VIII, IX, and X. We used 10,756 graph instances to evaluate all settings. All

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



Compiler Optimization for Reducing Leakage Power in BSP Programs 9:23

Table VI. Normalized Total Energy Consumptions of Randomly Generated TFGs for Setting A
on Leakage Contribution Set to 10% and 30% (see Table V), Categorized by the Number

of MHP Regions for Cases with Two Hardware Threads

Leakage contribution set to 10%
number of MHP regions method dynamic leakagea leakageb overhead total

1
baseline 52.55% 12.35% 35.10% 0.00% 100.00%
CADFA 52.66% 2.74% 36.91% 9.14% 101.46%
MTPG 52.57% 9.96% 35.26% 0.45% 98.24%

2
baseline 50.60% 12.86% 36.54% 0.00% 100.00%
CADFA 50.70% 2.73% 38.31% 7.63% 99.36%
MTPG 50.63% 7.72% 36.90% 0.89% 96.14%

3
baseline 49.80% 13.07% 37.13% 0.00% 100.00%
CADFA 49.89% 2.74% 38.90% 7.20% 98.72%
MTPG 49.83% 6.03% 37.76% 1.33% 94.96%

4
baseline 48.70% 13.35% 37.94% 0.00% 100.00%
CADFA 48.80% 2.73% 39.85% 6.40% 97.77%
MTPG 48.75% 4.82% 38.81% 1.71% 94.09%

5
baseline 47.64% 13.63% 38.73% 0.00% 100.00%
CADFA 47.73% 2.70% 40.71% 5.68% 96.83%
MTPG 47.70% 4.08% 40.01% 2.11% 93.90%

Leakage contribution set to 30%
number of MHP regions method dynamic leakagea leakageb overhead total

1
baseline 22.52% 20.15% 57.33% 0.00% 100.00%
CADFA 22.56% 4.50% 60.29% 15.28% 102.63%
MTPG 22.53% 16.26% 57.60% 0.73% 97.12%

2
baseline 21.11% 20.52% 58.37% 0.00% 100.00%
CADFA 21.15% 4.36% 61.18% 12.39% 99.08%
MTPG 21.12% 12.35% 58.95% 1.43% 93.84%

3
baseline 20.56% 20.66% 58.78% 0.00% 100.00%
CADFA 20.60% 4.33% 61.56% 11.55% 98.05%
MTPG 20.58% 9.55% 59.77% 2.09% 91.99%

4
baseline 19.85% 20.84% 59.30% 0.00% 100.00%
CADFA 19.89% 4.26% 62.26% 10.13% 96.55%
MTPG 19.87% 7.56% 60.64% 2.67% 90.74%

5
baseline 19.22% 21.01% 59.77% 0.00% 100.00%
CADFA 19.26% 4.18% 62.78% 8.89% 95.11%
MTPG 19.25% 6.34% 61.68% 3.24% 90.52%

aleakage energy consumed by power-gateable units.
bleakage energy consumed by other units.

results are normalized to the situation without a power-gating mechanism. The total
energy consumption is divided into four categories: (1) the dynamic energy dissipated by
the processor, (2) the leakage energy dissipated by power-gateable units, (3) the leakage
energy dissipated by the entire processor except for power-gateable units, and (4) the
overhead due to extra power-gating instructions. The overhead includes the energy
consumed by power-gating instructions, the energy consumed due to the latency caused
by powering on components that have been incorrectly powered off, and the energy
consumed by the predicated power-gating controller. Settings A and B are for machines
equipped with two hardware threads, while Setting C is for those equipped with four
hardware threads. With MTPG, the total power consumption for each setting was
reduced to 93.90%, 93.32%, and 95.12%, respectively, relative to the baseline (i.e., no

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



9:24 W.-L. Shih et al.

Fig. 12. Selected best cases of randomly generated TFGs.

Table VII. Mapping from Node Labels to Benchmark Programs

label benchmarks
0, 14 complex multiply
1, 15 complex update
2, 16 convolution
3, 17 dot product
4, 18 fir2dim
5, 19 fir
6, 20 iir biquard n section

label benchmarks
7, 21 iir biquard one section
8, 22 lms
9, 23 mat1x3
10, 24 matrix1
11, 25 n complex updates
12, 26 n real updates
13, 27 real update

power-gating mechanism) on leakage contribution set to 10%. On leakage contribution
set to 30% with MTPG, the total power consumption for each setting was reduced to
90.52%, 89.51%, and 91.94%, respectively, relative to the baseline.

Figure 12 demonstrates six TFGs representing the best cases for Setting A. As
mentioned previously, the graph nodes in the figure are thread fragments and graph
edges are dependencies between thread fragments. The color of a node represents
the MHP region the node belongs to, which is computed via Algorithm 4; nodes with
the same color belong to the same MHP region. There are three MHP regions in
Figures 12(a), 12(b), 12(c), and 12(e), four MHP regions in Figure 12(d), and two MHP
regions in Figure 12(f). The line styles of the node borders represent their types in
an MHP region: dashed lines indicate entry thread fragments, dotted lines indicate
exit thread fragments, and solid lines indicate both entry and exit thread fragments.
The type of nodes is used to evaluate the insertion of power-gating instructions using
Algorithm 5. Each node is labeled with a unique number that maps to a program.
Table VII lists the mapping from the node labels to DSPstone programs. Note that each
DSPstone program is mapped to labels twice for samples with two hardware threads
in order to generate random graphs covering both heterogeneous and homogeneous
cases; for samples with four hardware threads, each DSPstone program is mapped to
four labels for the same reason. MTPG reduced the total energy consumption by an
average of about 11% in the cases shown in Figure 12 on leakage contribution set to
30%, namely to 87.79%, 88.15%, 88.27%, 88.39%, 88.59%, and 88.78% relative to the
baseline for the cases shown in Figure 12(a) to 12(f), respectively.

Table VI lists the energy consumption results for Setting A with different numbers
of MHP regions: on leakage power contribution set to 10% with MTPG, the total energy
consumption was 98.24%, 96.14%, 94.96%, 94.09%, and 93.90% for one to five MHP
regions, respectively; while on leakage power contribution set to 30% with MTPG, the
total energy consumption was 97.12%, 93.84%, 91.99%, 90.74%, and 90.52% for one to
five MHP regions, respectively. The results indicate that the energy consumption by
the random sample reduced as the number of MHP regions increased, with the trend
stabilizing for more than four MHP regions. As indicated in Table VI, while CADFA
results in less leakage energy in power-gateable units (about 30% energy consumption

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



Compiler Optimization for Reducing Leakage Power in BSP Programs 9:25

Table VIII. Normalized Total Energy Consumptions of Randomly Generated TFGs for Setting B

Leakage contribution set to 10%
number of MHP regions method dynamic leakagea leakageb overhead total

1
baseline 54.79% 11.77% 33.44% 0.00% 100.00%
CADFA 54.89% 2.70% 35.13% 10.30% 103.02%
MTPG 54.80% 10.54% 33.53% 0.26% 99.13%

2
baseline 51.23% 12.69% 36.07% 0.00% 100.00%
CADFA 51.33% 2.68% 37.71% 7.62% 99.34%
MTPG 51.25% 9.67% 36.25% 0.56% 97.73%

3
baseline 51.26% 12.69% 36.05% 0.00% 100.00%
CADFA 51.36% 2.68% 37.67% 7.74% 99.45%
MTPG 51.29% 8.42% 36.32% 0.76% 96.79%

4
baseline 51.20% 12.70% 36.10% 0.00% 100.00%
CADFA 51.29% 2.69% 37.65% 7.53% 99.16%
MTPG 51.23% 6.86% 36.45% 1.01% 95.55%

5
baseline 50.64% 12.85% 36.51% 0.00% 100.00%
CADFA 50.73% 2.69% 38.20% 7.29% 98.91%
MTPG 50.67% 6.06% 37.04% 1.26% 95.04%

6
baseline 50.45% 12.90% 36.65% 0.00% 100.00%
CADFA 50.54% 2.64% 38.24% 6.99% 98.41%
MTPG 50.49% 5.46% 37.26% 1.47% 94.69%

7
baseline 48.05% 13.52% 38.43% 0.00% 100.00%
CADFA 48.15% 2.67% 40.13% 5.56% 96.50%
MTPG 48.10% 4.77% 39.13% 1.65% 93.65%

8
baseline 48.75% 13.34% 37.91% 0.00% 100.00%
CADFA 48.83% 2.72% 39.37% 5.29% 96.21%
MTPG 48.79% 4.50% 38.60% 1.42% 93.32%

aleakage energy consumed by power-gateable units.
bleakage energy consumed by other units.

relative to MTPG), it suffers the overhead of traditional power-gating instructions
(about 11× the energy consumption relative to MTPG). This overhead is mostly due
to the additional cycles required to internally turn on components that are incorrectly
turned off. The leakage energy consumed by ones other than power-gateable ones
increases in both CADFA and MTPG because of the extra power-gating instructions in
that extra power-gating instructions affect instruction fetching, which results in more
execution cycles when power-gating instructions are not present and thus increase the
leakage energy.

Tables VIII and IX list energy consumption results for Setting B categorized by
the number of MHP regions. Compared to Setting A, Setting B generates TFGs with
more thread fragments and more layers. The best energy-saving result for Setting B
with MTPG was 89.51% energy consumption relative to no power-gating mechanism
when there are eight MHP regions on leakage contribution set to 30%. Similar to the
experimental results for Setting A, the trend stabilizes when there are more than five
MHP regions. Table X lists the energy consumption results for Setting C categorized
by the number of MHP regions. Setting C generates TFGs for hardware equipped with
four hardware threads. The best energy-saving result for Setting C with MTPG was
91.94% energy consumption relative to no power-gating mechanism when there are five
MHP regions on leakage contribution set to 30%. The CADFA results indicates how
a large amount of overhead energy could be consumed by incorrectly inserted power-
gating instructions. With the traditional CADFA method, the samples in one MHP
region consumed 117.43% energy relative to no power-gating mechanism on leakage

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



9:26 W.-L. Shih et al.

Table IX. Normalized Total Energy Consumptions of Randomly Generated TFGs for Setting B

Leakage contribution set to 30%
number of MHP regions method dynamic leakagea leakageb overhead total

1
baseline 24.06% 19.75% 56.19% 0.00% 100.00%
CADFA 24.11% 4.56% 59.03% 17.57% 105.26%
MTPG 24.07% 17.69% 56.34% 0.44% 98.54%

2
baseline 21.48% 20.42% 58.10% 0.00% 100.00%
CADFA 21.52% 4.32% 60.73% 12.37% 98.95%
MTPG 21.49% 15.57% 58.38% 0.89% 96.33%

3
baseline 21.52% 20.41% 58.07% 0.00% 100.00%
CADFA 21.56% 4.32% 60.67% 12.60% 99.14%
MTPG 21.53% 13.55% 58.50% 1.23% 94.81%

4
baseline 21.45% 20.43% 58.12% 0.00% 100.00%
CADFA 21.49% 4.32% 60.62% 12.21% 98.65%
MTPG 21.46% 11.04% 58.69% 1.62% 92.81%

5
baseline 21.09% 20.52% 58.39% 0.00% 100.00%
CADFA 21.13% 4.30% 61.07% 11.76% 98.26%
MTPG 21.10% 9.69% 59.23% 2.02% 92.05%

6
baseline 20.93% 20.56% 58.51% 0.00% 100.00%
CADFA 20.97% 4.21% 61.05% 11.22% 97.45%
MTPG 20.95% 8.71% 59.49% 2.35% 91.49%

7
baseline 19.41% 20.96% 59.63% 0.00% 100.00%
CADFA 19.45% 4.14% 62.23% 8.64% 94.46%
MTPG 19.43% 7.40% 60.71% 2.56% 90.09%

8
baseline 19.79% 20.86% 59.35% 0.00% 100.00%
CADFA 19.82% 4.25% 61.64% 8.28% 93.99%
MTPG 19.80% 7.04% 60.45% 2.22% 89.51%

aleakage energy consumed by power-gateable units.
bleakage energy consumed by other units.

contribution set to 30%. These results reveal that our method is practical for both
hardware configurations.

Focus is now directed to examining our method using BSP benchmarks. We used
three BSP programs from BSPedupack, a library of numerical algorithms written in
C according to the BSP model [Bisseling 2004]. Four programs of BSPedupack were
applied to examine our optimization method, including fft, inprod, lu, and matvec.
Figure 13 shows the the energy consumption normalized to the baseline case with no
power-gating mechanism. On leakage contribution set to 10%, the average reduction in
total energy consumption was 4.32%, and was largest for mv (7.52%) and the smallest
for lu (2.27%). On leakage contribution set to 30%, the average reduction in total
energy consumption was 8.32%, and was largest for mv (13.23%) and the smallest for
lu (5.30%).

We then evaluated our method using BSP programs from OpenCL-based kernels.
OpenCL is an industry attempt to provide standards for GPGPU and heterogeneous
multicore programming. An OpenCL program can be roughly divided into host code
and kernel code, where the host code is executed on an MPU and the kernel code on
OpenCL devices. The OpenCL kernel codes comprise concurrent threads with global
barriers, making it easy to transfer them into BSP programs. We incorporated ker-
nel serialization to avoid the threading overhead in parallel kernel execution and to
handle synchronization for barriers in kernel functions. We adopt a work-item coalesc-
ing scheme [Lee et al. 2010] for kernel serialization, which serializes kernel execution
by enclosing kernel functions within triply nested loops to iterate these kernel functions

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



Compiler Optimization for Reducing Leakage Power in BSP Programs 9:27

Table X. Normalized Total Energy Consumptions of Randomly Generated TFGs with Setting C

Leakage contribution set to 10%
number of MHP regions method dynamic leakagea leakageb overhead total

1
baseline 62.23% 9.83% 27.94% 0.00% 100.00%
CADFA 62.35% 2.55% 29.14% 15.16% 109.19%
MTPG 62.25% 8.33% 28.04% 0.34% 98.95%

2
baseline 58.90% 10.70% 30.40% 0.00% 100.00%
CADFA 59.01% 2.57% 31.59% 12.74% 105.91%
MTPG 58.93% 7.25% 30.60% 0.72% 97.50%

3
baseline 55.87% 11.49% 32.64% 0.00% 100.00%
CADFA 55.97% 2.60% 33.89% 10.96% 103.42%
MTPG 55.91% 6.11% 33.04% 1.19% 96.25%

4
baseline 55.85% 11.49% 32.65% 0.00% 100.00%
CADFA 55.96% 2.67% 34.04% 10.05% 102.73%
MTPG 55.89% 5.27% 33.19% 1.10% 95.45%

5
baseline 52.79% 12.29% 34.92% 0.00% 100.00%
CADFA 52.90% 2.67% 36.23% 10.73% 102.53%
MTPG 52.84% 4.00% 35.94% 2.34% 95.12%

Leakage contribution set to 30%
number of MHP regions method dynamic leakagea leakageb overhead total

1
baseline 30.21% 18.15% 51.64% 0.00% 100.00%
CADFA 30.26% 4.73% 53.87% 28.56% 117.43%
MTPG 30.22% 15.40% 51.83% 0.62% 98.06%

2
baseline 27.28% 18.91% 53.80% 0.00% 100.00%
CADFA 27.34% 4.57% 55.90% 22.91% 110.72%
MTPG 27.30% 12.85% 54.15% 1.28% 95.57%

3
baseline 24.82% 19.55% 55.63% 0.00% 100.00%
CADFA 24.86% 4.44% 57.75% 18.87% 105.93%
MTPG 24.83% 10.40% 56.31% 2.03% 93.58%

4
baseline 24.86% 19.54% 55.60% 0.00% 100.00%
CADFA 24.91% 4.55% 57.96% 17.20% 104.61%
MTPG 24.88% 9.00% 56.49% 1.87% 92.24%

5
baseline 22.48% 20.16% 57.36% 0.00% 100.00%
CADFA 22.53% 4.38% 59.51% 17.62% 104.04%
MTPG 22.50% 6.57% 59.03% 3.84% 91.94%

aleakage energy consumed by power-gateable units.
bleakage energy consumed by other units.

in a given index range. Each thread computed the workload of a work group. The sources
of OpenCL kernels were as follows: kernel DCT, DwtHaar1D, FastWalshTransform,
Histogram, MatrixTranspose, Permute, PrefixSum, RadixSort, and SimpleConvolution
are from AMD OpenCL SDK, while kernel BP msg is an OpenCL implementation of
the BP application.

Figures 14 through 19 show our experimental results for BSP programs from
OpenCL-based kernels. Figures 14 through 17 show the energy consumption normal-
ized to the baseline case with no power-gating mechanism with different experimental
parameters including leakage contribution and number of SMT threads. With a four-
way SMT architecture, Figures 14 and 15 show the energy consumption on leakage
contribution set to 10% and 30%, respectively. On leakage contribution set to 30%,
the average reduction in total energy consumption was 10.09%, and was largest for
DCT (10.84%) and the smallest for Permute (9.20%). On leakage contribution set to

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



9:28 W.-L. Shih et al.

Fig. 13. Normalized total energy consumptions of BSP programs from BSPedupack.

Fig. 14. Normalized total energy consumptions of BSP programs from OpenCL kernels on four-way SMT
system with leakage contribution set to 10%.

10%, the average reduction in total energy consumption was 4.27%, and was largest
for DCT (4.74%) and the smallest for Permute (3.86%). The energy breakdown of the
BSP program from OpenCL kernels differs slightly from that for randomly generated
D-BSP programs. On leakage contribution set to 30%, the leakage energies dissipated
by power-gateable units were 3.16% and 3.19% in CADFA and MTPG, respectively.
CADFA consumed nearly the same amount of leakage energy in power-gateable units
as MTPG (about 99% energy consumption relative to MTPG), which explains why
MTPG saves more energy in this setting than it does in randomly generated D-BSP
programs. Figures 16 and 17 show the energy consumption in an experimental en-
vironment with eight-way SMT and the leakage contribution set to 10% and 30%,
respectively. Experimental results show that our method could be applied to eight-way
SMT architectures. As shown in Figure 17, while energy consumption of a system
with CADFA grew, the system with MTPG successfully sustained the growing energy
consumption and reduced 10% total energy on average.

The code sizes of OpenCL-based BSP programs relative to the baseline are shown
in Figure 18. The comparison is based on the text section of a user program, exclud-
ing libraries and C runtime codes that could not be analyzed in our experimental
environment. The average increases in code size due to the insertion of power-gating

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



Compiler Optimization for Reducing Leakage Power in BSP Programs 9:29

Fig. 15. Normalized total energy consumptions of BSP programs from OpenCL kernels on four-way SMT
system with leakage contribution set to 30%.

Fig. 16. Normalized total energy consumptions of BSP programs from OpenCL kernels on eight-way SMT
system with leakage contribution set to 10%.

instructions were about 13% (ranging from 10.17% to 15.25%) and 3% (ranging from
1.45% to 5.26%) with CADFA and MTPG, respectively. The number of power-gating
instructions of CADFA was reduced to about 89% using MTPGA, which reveals that
MTPG efficiently inserts power-gating instructions for multithread programs.

Figure 19 shows the experimental results for OpenCL-based BSP programs with
different configurations of the leakage contribution on a four-way SMT machine. MTPG
reduced the total energy consumption from 4.28% to 18.54% for leakage contribution
from 10% to 90%, respectively; in contrast, CADFA consumed more energy (from 1.13
to 1.56×) than the baseline case of no power-gating mechanism. The PPG and MTPG
reduce leakage energy consumption by carefully managing the component status using
predicated bits and appropriately inserting power-gating instructions. On the other
hand, a large number of incorrect power-off instructions inserted by CADFA introduce
many extra cycles while waiting for the internal powering on of components, and this
deteriorates further as the leakage contribution increases. These observations indicate

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



9:30 W.-L. Shih et al.

Fig. 17. Normalized total energy consumptions of BSP programs from OpenCL kernels on eight-way SMT
system with leakage contribution set to 30%.

Fig. 18. Increases in code size.

that our technique is more effective than existing technologies at improving leakage
control for BSP multithread programs.

7. DISCUSSION

In this section, we discuss the impact of latency and the capability to apply MTPGA on
real hardware. Latency in processors affects execution time, which directly affects the
result of power-gating optimization. Latencies in processors include pipelining latency
and memory access latency. Pipelining latency is caused by pipeline hazards, where
instructions are stalled because of structure hazards or nonresolved data dependencies.
Memory access latency is caused by the memory hierarchy, such as cache miss.

Pipelining latency and memory access latency are both discussed in traditional
power-gating analyses for single-thread environments such as CADFA [You et al. 2006]
and sink-n-hoist [You et al. 2005, 2007]. These methods analyze component usage with
regard to the shortest latency, which guarantees that leakage energy would be reduced
in any case. CADFA is a conservative method because it estimates the saved leakage
energy with the worst case of power gating [You et al. 2006]. The proposed MTPGA,

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



Compiler Optimization for Reducing Leakage Power in BSP Programs 9:31

Fig. 19. Normalized energy consumptions for different leakage contributions.

based on CADFA, considers both pipelining latency and memory access latency as does
CADFA. The latency of an instruction is considered with its minimal delay in our
estimation; thus a multiply operation is considered with its shortest operation time
and caches are considered perfect, which means that cache miss never occurs. Never-
theless, MTPGA also conservatively estimates the inactive period in an MHP region
with the worst case, namely the minimal thread execution time among threads. With
conservative estimation, the experimental results reveal that our method could save
about 10% energy consumption on BSP programs (on leakage contribution set to 30%);
the energy reduction can be further improved by using more precise analyses if the
memory access time could be modeled at compile time. When the instruction fetching
policy changes in SMT, our method is also applied because it estimates energy con-
sumption with the worst case of concurrent threads, which guarantees that leakage
energy would be reduced in any case. With a more precise performance analysis model
for SMT, it is possible to further reduce the leakage energy. To apply our method to
real systems or different processor architectures, one should update the estimation
model with designated latency. Furthermore, one might be interested in incorporating
varying latency analysis with the ILP estimation model [Li and Xue 2004] into a power
model to improve the leakage energy savings.

Our method is capable of dealing with out-of-order execution with certain hardware
support [You et al. 2006]. By dynamic scheduling techniques, superscalar processors
fetch a bunch of instructions and issue these instructions concurrently with regard
to data dependence among them, which may break the arrangement of power-gating
operations in a thread inserted by a sequential compiler if the dependence between
power-gating instructions and normal instructions is not properly considered. To en-
sure the inserted power-gating instructions are issued correctly, a power management
controller could be implemented in chip to issue power-gating instructions at correct
timing. The power management controller consists of a power direction buffer and
component usage monitors. Once a power-gating instruction is decoded, the instruc-
tion dispatcher dispatches the instruction to the power direction buffer of the power
management controller. The power management controller is capable of knowing the
component usage by monitoring instructions at reservation stations. When the power
management controller detects that all instructions using the component are com-
pleted, it would issue the power-gating instructions in the power direction buffer and
turn off the component according to a power directive. Finally, the power manage-
ment controller removes the power-gating instructions from the power-gating direction
buffer. In this regard, the situation where an instruction finds its function unit turned
off can be avoided, meaning our approach can be applied to out-of-order machines.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



9:32 W.-L. Shih et al.

The key idea of this study is to save leakage energy of shared execution resources in
a system by special hardware support and a compiler analysis method. In this work,
we focus on examining the energy efficiency of MTPG on SMT-based systems with our
proposed mechanisms, but the method is not limited to SMT-based systems. Rather, it
is capable of being applied to systems with shared execution resources. OpenCL is a
programming model for GPUs, where several features are similar to the hierarchical
BSP model, such as multithread, global synchronization operation, and private memory
in the memory hierarchy. It would be a possible direction for future research to apply
our method on GPU architectures.

8. CONCLUSION

This article has presented a foundation framework for compilation optimization that
reduces the power consumption on SMT architectures. It has also presented PPG oper-
ations for improving the energy management of multithread programs in hierarchical
BSP models. Based on a multithread component analysis with dataflow equations, our
MTPGA framework estimates the energy usage of multithread programs and inserts
PPG operations as power controls for energy management. Our preliminary experi-
mental results on a system with leakage contribution set to 30% show that using a
system with PPG support and using the MTPGA method reduced the total energy con-
sumption by an average of 10.09% for BSP programs and by up to 10.49% for D-BSP
programs relative to the system without a power-gating mechanism, and reduced the
total energy consumption by an average of 4.27% for BSP programs and by up to 6.68%
for D-BSP programs on a system with leakage contribution set to 10%, demonstrating
that our mechanisms are effective in reducing the leakage power in hierarchical BSP
multithread environments.

REFERENCES

R. Barik. 2005. Efficient computation of may-happen-in-parallel information for concurrent Java programs.
In Proceedings of the 18th International Conference on Languages and Compilers for Parallel Computing
(LCPC’05). Lecture Notes in Computer Science, vol. 4339, Springer, 152–169.

N. Bellas, I. N. Hajj, and C. D. Polychronopoulos. 2000. Architectural and compiler techniques for energy
reduction in high-performance microprocessors. IEEE Trans. VLSI 8, 3, 317–326.

R. H. Bisseling. 2004. Parallel Scientific Computation: A Structured Approach using BSP and MPI. Oxford
University Press.

J. A. Butts and G. S. Sohi. 2000. A static power model for architects. In Proceedings of the 33rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’00). 191–201.

D. Callahan and J. Sublok. 1989. Static analysis of low level synchronization. In Proceedings of the ACM
SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging (PADD’89). 100–111.

H. Cha and D. Lee. 2001. H-BSP: A hierarchical bsp computation model. J. Supercomput. 18, 2, 179–200.
A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. 1992. Low-power cmos digital design. IEEE J. Solid-

State Circ. 27, 4, 473–484.
J.-M. Chang and M. Pedram. 1995. Register allocation and binding for low power. In Proceedings of the

Design Automation Conference (DAC’95). 29–35.
D. Cordeiro, G. Mounie, S. Perarnau, D. Trystram, J.-M. Vincent, and F. Wagner. 2010. Random graph

generation for scheduling simulations. In Proceedings of the 3rd International ICST Conference on
Simulation Tools and Techniques (SIMUTools’10). 60:1–60:10.

S. Dropsho, V. Kursun, D. H. Albonesi, S. Dwarkadas, and E. G. Friedman. 2002. Managing static leak-
age energy in microprocessor functional units. In Proceedings of the 35th International Symposium on
Microarchitecture (MICRO’02). 321–332.

E. Duesterwald and M. L. Soffa. 1991. Concurrency analysis in the presence of procedures using a data-flow
framework. In Proceedings of the Symposium on Testing, Analysis, and Verification (TAV’91). 36–48.

J. Goodacre. 2011. Understanding what those 250 million transistors are doing. In Proceedings of the 11th

International Forum on Embedded MPSoC and Multicore (MPSoC’11).

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



Compiler Optimization for Reducing Leakage Power in BSP Programs 9:33

M. Horowitz, T. Indermaur, and R. Gonzalez. 1994. Low-power digital design. In Proceedings of the IEEE
Symposium on Low Power Electronics. 8–11.

P. Y. T. Hsu and E. S. Davidson. 1986. Highly concurrent scalar processing. In Proceedings of the 13th Annual
International Symposium on Computer Architecture (ISCA’86). 386–395.

Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose. 2004. Microarchitectural
techniques for power gating of execution units. In Proceedings of the International Symposium on Low
Power Electronics and Design (ISLPED’04). 32–37.

J. T. Kao and A. P. Chandrakasan. 2000. Dual-threshold voltage techniques for low-power digital circuits.
IEEE J. Solid-State Circ. 35, 7, 1009–1018.

C. W. Kessler. 2000. NestStep: Nested parallelism and virtual shared memory for the bsp model. J. Super-
comput. 17, 3, 245–262.

C. Lee, J. K. Lee, T.-T. Hwang, and S.-C. Tsai. 2003. Compiler optimizations on vliw instruction scheduling
for low power. ACM Trans. Des. Autom. Electron. Syst. 8, 2, 252–268.

J. Lee, J. Kim, S. Seo, S. Kim, J. Park, H. Kim, T. T. Dao, Y. Cho, S. J. Seo, S. H. Lee, S. M. Cho, H. J. Song,
S.-B. Suh, and J.-D. Choi. 2010. An opencl framework for heterogeneous multicores with local memory. In
Proceedings of the 19th International Conference on Parallel Architectures and Compilation Techniques
(PACT’10). ACM Press, New York, 193–204.

J. Lee, J. M. Youn, D. Cho, and Y. Paek. 2013. Reducing instruction bit-width for low-power vliw architectures.
ACM Trans. Des. Autom. Electron. Syst. 18, 2, 25:1–25:32.

M. T.-C. Lee, V. Tiwari, S. Malik, and M. Fujita. 1997. Power analysis and minimization techniques for
embedded dsp software. IEEE Trans. VLSI Syst. 5, 1, 123–133.

L. Li and C. Verbrugge. 2004. A practical mhp information analysis for concurrent java programs. In Proceed-
ings of the 17th International Conference on Languages and Compilers for Parallel Computing (LCPC’04).
Lecture Notes in Computer Science, vol. 3602, Springer, 194–208.

L. Li and J. Xue. 2004. A trace-based binary compilation framework for energy-aware computing. In Pro-
ceedings of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES’04). ACM Press, New York, 95–106.

S. P. Masticola and B. G. Ryder. 1993. Non-concurrency analysis. In Proceedings of the 4th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP’93). 129–138.

W. F. McColl. 1996. Universal computing. In Proceedings of the 2nd International Euro-Par Conference on
Parallel Processing (Euro-Par’96). Lecture Notes in Computer Science, vol. 1123, Springer, 25–36.

G. Naumovich and G. S. Avrunin. 1998. A conservative data flow algorithm for detecting all pairs of state-
ments that may happen in parallel for rendezvous-based concurrent programs. In Proceedings of the 6th

ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE’98). 24–34.
G. Naumovich, G. S. Avrunin, and L. A. Clarke. 1999. An efficient algorithm for computing mhp information

for concurrent java programs. In Proceedings of the 7th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE’99). Lecture Notes in Computer Science, vol. 1687, Springer, 338–354.

G. Ramalingam. 2000. Context-sensitive synchronization-sensitive analysis is undecidable. ACM Trans.
Program. Lang. Syst. 22, 2, 416–430.

S. Rele, S. Pande, S. Onder, and R. Gupta. 2002. Optimizing static power dissipation by functional units in
superscalar processors. In Proceedings of the 11th International Conference on Compiler Construction
(CC’02). 261–275.

S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang, B. Cherkauer, J. Stinson, J. Benoit, R. Varada, J. Leung,
et al. 2007. A 65-nm dual-core multithreaded xeon R© processor with 16-mb l3 cache. IEEE J. Solid-State
Circ. 42, 1, 17–25.

C.-L. Su and A. M. Despain. 1995. Cache designs for energy efficiency. In Proceedings of the 28th Annual
Hawaii International Conference on System Sciences (HICSS’95). 306–315.

R. N. Taylor. 1983. Complexity of analyzing the synchronization structure of concurrent programs. Acta
Informatica 19, 57–84.

V. Tiwari, R. Donnelly, S. Malik, and R. Gonzalez. 1997. Dynamic power management for microprocessors:
A case study. In Proceedings of the International Conference on VLSI Design (VLSID’97). 185–192.

V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez. 1998. Reducing power in high-performance
microprocessors. In Proceedings of the 35th Annual Design Automation Conference (DAC’98). 732–737.

P. D. L. Torre and C. P. Kruskal. 1996. Submachine locality in the bulk synchronous setting (extended
abstract). In Proceedings of the 2nd International Euro-Par Conference on Parallel Processing (Euro-
Par’96). Vol. 2. Springer, 352–358.

L. G. Valiant. 1990. A bridging model for parallel computation. Comm. ACM 33, 8, 103–111.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.



9:34 W.-L. Shih et al.

L. G. Valiant. 2008. A bridging model for multi-core computing. In Proceedings of the 16th Annual European
Symposium on Algorithms (ESA’08). 13–28.

L. G. Valiant. 2011. A bridging model for multi-core computing. J. Comput. Syst. Sci. 77, 1, 154–166.
H. Yang, R. Govindarajan, G. R. Gao, G. Cai, and Z. Hu. 2002. Exploiting schedule slacks for rate-optimal

power-minimum software pipelining. In Proceedings of the 3rd Workshop on Compilers and Operating
Systems for Low Power (COLP’02).

Y.-P. You, C.-W. Huang, and J. K. Lee. 2005. A sink-n-hoist framework for leakage power reduction. In
Proceedings of the ACM International Conference on Embedded Software (EMSOFT’05). 83–94.

Y.-P. You, C.-W. Huang, and J. K. Lee. 2007. Compilation for compact power-gating controls. ACM Trans. Des.
Autom. Electron. Syst. 12, 4.

Y.-P. You, C. Lee, and J. K. Lee. 2002. Compiler analysis and supports for leakage power reduction on
microprocessors. In Proceedings of the International Workshop on Languages and Compilers for Parallel
Computing (LCPC’02). Lecture Notes in Computer Science, vol. 2481, Springer, 63–73.

Y.-P. You, C. Lee, and J. K. Lee. 2006. Compilers for leakage power reduction. ACM Trans. Des. Autom.
Electron. Syst. 11, 1, 147–164.

W. Zhang, M. T. Kandemir, N. Vijaykrishnan, M. J. Irwin, and V. De. 2003. Compiler support for reducing
leakage energy consumption. In Proceedings of the 6th Design Automation and Test in Europe Conference
(DATE’03). 1146–1147.

V. Zivojnovic, J. M. Velarde, and C. Schlager. 1994. DSPstone: A dsp-oriented benchmarking methodology. In
Proceedings of 5th International Conference on Signal Processing Applications and Technology.

Received October 2013; revised August 2014; accepted September 2014

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 9, Pub. date: November 2014.


