
3

Clock Tree Synthesis Considering Slew Effect on Supply
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This work tackles a problem of clock power minimization within a skew constraint under supply voltage
variation. This problem is defined in the ISPD 2010 benchmark. Unlike mesh and cross link that reduce clock
skew uncertainty by multiple driving paths, our focus is on controlling skew uncertainty in the structure
of the tree. We observe that slow slew amplifies supply voltage variation, which induces larger path delay
variation and skew uncertainty. To obtain the optimality, we formulate a symmetric clock tree synthesis as
a mathematical programming problem in which the slew effect is considered by an NLDM-like cell delay
variation model. A symmetry-to-asymmetry tree transformation is proposed to further reduce wire loading.
Experimental results show that the proposed four methods save up to 20% of clock tree capacitance loading.
Beyond controlling slew to suppress supply-voltage-variation-induced skew, we also discuss the strategies of
clock tree synthesis under variant variation scenarios and the limitations of the ISPD 2010 benchmark.
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1. INTRODUCTION

Clock network costs the most power for a synchronous design and directly affects circuit
speed. With shrinking technology, variations result from manufacturing, the operating
environment, and even analysis [Blaauw et al. 2008]. These variations require more
guard band in the design process. In addition, to achieve lower power dissipation, a
voltage scaling technique is broadly adopted in modern design, which introduces severe
voltage variation.

One way to reduce clock skew uncertainty is improving the delay correlation between
clock paths by using a multiple-driving-paths clock network such as mesh [Restle et al.
2001; Xiao et al. 2010], cross link [Rajaram et al. 2006; Mittal and Koh 2011], and
multilevel tree [Lee and Markov 2011]. However, this work adopts the other way, that
is, to reduce skew uncertainty by reducing path delay variability. Therefore we focus
on the network structure of the tree.

To reduce voltage-variation-induced path delay variability, previous works [Shih
et al. 2010; Bujimalla and Koh 2011] minimize the number of buffer stages by full-filling
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buffers. However, the mapping from voltage variation to delay variation depends on
the buffer’s input signal transition. Slow transition amplifies supply-voltage-variation-
induced path delay variation and skew uncertainty. In this work, the slew effect is
considered so that a clock buffer insertion and wire sizing method can efficiently reduce
clock latency variation and skew uncertainty.

The contributions of this work are as follows.

—We formulate buffer insertion and wire sizing on a symmetric clock tree as a mathe-
matical programming problem, which ensures the optimality.

—The slew effect on voltage variation to delay variation is considered by a NonLinear
Delay Model (NLDM)-like cell delay variation model.

—A technique projecting a symmetric tree to an asymmetric tree is proposed to further
reduce clock wire loading.

—We discuss the strategies of Clock Tree Synthesis (CTS) for different variation sce-
narios and the limitations of the ISPD 2010 benchmark using Sze [2010].

The organization of this article is as follows. Section 2 introduces the problem formu-
lation, our observation/motivation on the slew effect, and the overall flow in this work.
Section 3 introduces a global optimization for the problem involving buffer insertion
and wire sizing on a symmetric tree. Section 4 introduces a local optimization that
projects a symmetric tree solution to an asymmetric tree. Section 5 presents experi-
mental results, the discussion of CTS strategies under different variation scenarios,
and the limitations of the ISPD 2010 benchmark.

2. PRELIMINARIES

In this section, we first review the problems of the ISPD 2010 benchmark and then
deliver our observation about the slew effect and the overall flow optimizing a clock
tree.

2.1. Review of ISPD 2010 Problem

To achieve a low-power and robust clock network, ISPD held a High-Performance
Clock Network Contest in 2009 and 2010 [Sze et al. 2009; Sze 2010]. To reflect the
variation effect realistically, instead of the clock latency range used in 2009, which is
the maximum difference of clock arrival time of arbitrary sink pairs by two different
supply voltages, ISPD 2010 measured the skew using a Monte Carlo method with the
variation source of wire dimension and supply voltage. The details of the ISPD 2010
problem are as follows.

A synchronous circuit layout with edge-triggered flip-flops as sinks of the clock
network is the starting input.

Given.

(1) a set of sinks S = {s1, s2, . . . , sn} with physical position and capacitance loading,
(2) a clock source s0 and its position,
(3) a buffer library,
(4) a wire library,
(5) two variation sources: the width of a wire segment varies uniformly in ±5%, and

the voltage source of a buffer varies uniformly in ±7.5%,
(6) a set of placement blockages B = {b1, b2, . . . , bm},
(7) a W × H layout region, and
(8) a Local Clock Skew (LCS) distance: a skew is negligible if the distance of its sink

pair is larger than the LCS distance.
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Objective.
Minimize the capacitance loading of a clock network.

Constraints.

(1) no 95% LCS violation: only max 5% LCS (in 500 times Monte Carlo simulations)
can exceed a skew limit,

(2) no slew-rate violation, and
(3) no buffer overlaps a blockage.

The blockages are placement blockage, and clock routing can go through them. How-
ever, the clock buffers cannot be placed on the blockages. LCS is the worst local clock
skew for a sample of NGSPICE simulation under wire dimension variation and supply
voltage variation. To evaluate the robustness of a clock network, 95% LCS is measured.
A clock network with lower value of 95% LCS is more robust, and 95% LCS is a value
that cuts off 95% samples’ LCS with the rest 5%. In the ISPD 2010 benchmark, the
evaluator performs 500-sample Monte Carlo to derive 95% LCS of a clock network.
In general, max loading and transition speed are defined in the cell library for sig-
nal integrity, and the ISPD 2010 benchmark defines a slew constraint that the slew
transition in any position of a clock network must be faster than 100ps.

2.2. Our Observation on Slew Effect and Overall Flow

To reduce voltage-variation-induced skew, previous works [Bujimalla and Koh 2011;
Shih and Chang 2010; Shih et al. 2010] minimized the number of buffer stages by full-
filling buffers, or minimizing nominal clock latency by assuming that latency variation
is proportional to nominal latency [Lee et al. 2010]. In Bujimalla and Koh [2011],
the authors assumed that, for a buffer stage, voltage variation to delay variation is
constant. However, the influence of voltage variation to delay variation depends on the
slew rate; slow input slew would amplify voltage variation to delay variation of a buffer
stage. Figure 1 shows the slew effect for the case of a single-buffer stage by two input
slews, 30ps and 50ps. Regardless of a rising or falling transition, the 30ps input slew
has a more compact histogram of arrival time. The reason is that a faster input slew
reduces the fuzziness of a gate’s switching time, as shown in Figure 2.

The slew effect is also experimented as shown in Figure 3 in cases of multiple-
buffer stages. A slew of 0.4mm buffer distance is about 30ps and a slew of 0.9mm
buffer distance is about 50ps. Results show that minimizing buffer levels does not
sufficiently minimize voltage-variation-induced skew, and a smaller clock latency does
not guarantee less clock latency variation.

Although the example demonstrates that controlling slew is effective to reduce
voltage-variation-induced skew, inserting buffers with a slew consideration is still a
problem. Conventional Ginneken’s buffer insertion [van Ginneken 1990] minimizes
nominal delay by dynamic programming (DP) from sinks toward the source; however,
it is not suitable to minimize delay variation because, when minimizing delay vari-
ation, slew has to be considered. Nevertheless, slew is propagated from predecessor
buffer stages that are unknown during DP bottom up. Hu et al. [2007] proposed a slew-
constrained buffer insertion based on Ginneken’s method. But applying this method
induced another problem: which value should be used as the constraint? In addition, it
gives up more solution space than only applying a single value as the slew constraint.

We propose a two-stage overall flow shown in Figure 4. In the first stage, we solve
buffer insertion and wire sizing for a symmetric tree. There are two buffer inser-
tion methods in first stage: (1) length-based buffer insertion and (2) mathematical-
programming-based buffer insertion and wire sizing. Either one of the two buffer
insertion methods will be selected. The length-based buffer insertion runs fast, but
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Fig. 1. Slew effect in single-buffer stage. (a) Two ramp input signals with different slew rate 30ps and
50ps are experimented to drive a buffer stage; (b) Monte Carlo simulations are performed by the voltage
variation setting of the ISPD 2010 benchmark. The histogram shows that the slower input slew amplifies
the supply-voltage-variation-induced delay variation.

Fig. 2. Consider a gate switch when the input signal is VDD/2. A gate of slow input slew has more uncertainty
than that of sharp input slew.

the mathematical-programming-based buffer insertion and wire sizing explores better
solutions. The results of the first stage could be viewed as a final solution, or could be
the input of the second stage. The second stage further saves wire loading by projecting
a symmetric tree to an asymmetric tree. The two-stage overall flow is a heuristic that
the first stage sacrifices solution space to facilitate global optimization, and the sec-
ond stage searches unexplored solution space of the asymmetric structure to improve
quality.

The two-stage method can avoid some difficulties when a process directly attempts
to design buffer stages for an asymmetric tree. First, the fine-tuning for an asymmetry
tree is a complex process. Assuming a skew estimation reports that variation-induced
skew is too large for an asymmetry tree, a process may adjust the buffer position,
buffer size, and wire size to reduce clock latency variation. However, at the same time,
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Fig. 3. Slew effect in multiple-buffer stages. Two buffer insertions drive the same loading. Their costs of
buffer loading are the same. (a) One is 9 buffer stages with 12x inv-1, and the other is 4 buffer stages
with 27x inv-1; (b) variation of arrival time of 9 stages is less than that of 4 stages. The experiment shows:
(1) minimizing the number of buffer stages results in slow slew and may enlarge timing uncertainty; (2) a
smaller latency does not guarantee less latency variation.

these adjustments on an asymmetry clock tree always generate new nominal skew.
The process of rebalancing nominal skew and that of reducing clock latency variation
are coupled to each other, which is complex and time consuming. Second, it is difficult
to analyze variation-induced skew for an asymmetric tree because the paths from the
clock source to sinks are all different. In contrast, the identical path of a symmetric
tree can facilitate the analysis of path delay variation. Third, it is difficult to design a
slew rate, to design buffer stages, and to ensure a valid variation-induced sKew at the
same time for an asymmetry tree. Assuming that the slew of a node has been planned,
to achieve this plan, it needs to know the driving buffer of this node and the input slew
of the driving buffer; therefore, it must know every stage of input slew and buffer size.
Nevertheless, it will not be known whether the plan of buffer insertion and wire sizing
is able to completely drive an asymmetric tree until a Deferred Merging Embedding
(DME) bottom-up phase is finished. So the process becomes that of first guessing a
buffer insertion and wire sizing solution and then performing DME to verify whether
the solution is feasible or not, and a method guessing a new solution is needed when
the current solution is unfeasible.

3. GLOBAL OPTIMIZATION ON A SYMMETRIC TREE

To facilitate global optimization of CTS with a slew effect consideration, in the first
stage we sacrifice solution space, only considering the symmetric structure. We explain
the first stage in Section 3.1 by introducing a symmetric tree generation. Section 3.2
then introduces a skew estimation that will be utilized in buffer insertion and wire
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Fig. 4. Overview of optimizing a clock tree. The first stage is a global optimization by the symmetric
structure, and the second stage is local optimization that transforms a symmetric tree to an asymmetric
tree. Two buffer insertion methods are proposed, and either one of two methods would be selected in the first
stage. The slew effect is considered by an NLDM-like cell delay variation model.

sizing later. Two types of buffer insertion and wire sizing are introduced. Section 3.3
introduces a length-based buffer insertion and wire sizing that generates quality solu-
tions in fast runtime. And Section 3.4 introduces a mathematical-programming-based
buffer insertion and wire sizing that applies a mathematical programming solver to
boost solution performance.

3.1. The Symmetric Tree

We adopt a symmetric tree generation method proposed by Shih et al. [2010]. A
weakness in nature of the symmetric structure is that it costs longer wire length
to maintain symmetry. If we adopt a traditional H-tree, the longer wire length would
need more buffer stages to drive the tree. Consequently, it costs more wire and buffer
capacitance loading, and variation-induced skew increases. Second, when the gap be-
tween a symmetric and an asymmetric tree is large, the projection from symmetry to
asymmetry would be less accurate. Shih et al. [2010] proposed a method to minimize
the wire length of a symmetric tree, which is adopted in this work as the starting point.
The difference between Shih et al. [2010] and this work is that Shih et al. [2010] adopt
a symmetric tree to drive a mesh, but this work adopts a symmetric tree to drive a
set of subtrees. These subtrees are all in asymmetric structure. Before applying the
symmetric tree generation by Shih et al. [2010], we have to generate a set of subtrees.

The set of subtrees must have an identical driving buffer so that the top-level sym-
metric tree can see an identical loading. The other parameter to be decided is the
number of subtrees; since this work applies a symmetric tree in binary structure, the
number of subtrees must be a power of two.
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ALGORITHM 1: subtreeGeneration(allsinks, B)
Input: allsinks and buffer library B
Output: driving buffer b and the number of sub-trees n

1 sort buffer in B in increase order of size;
2 min cost ← inf ;
3 for b′ ∈ B do
4 V ← generating a set of sub-trees by b′, using DME;
5 n′ ← 2�log‖V ‖�;
6 cost ← power dissipation of b′ and n′;
7 if min cost > cost then
8 min cost ← cost;
9 b ← b′;

10 n ← n′;
11 end
12 end
13 return b and n

The subtree generation steps are listed in Algorithm 1. To decide the number of
subtrees and the type of their driving buffer, we sweep buffer types in the library to
generate sets of subtrees by DME. If the number generated by the procedure is not
a power of two, the one closest to and larger than the generated one will be selected.
And each set has a cost for its power dissipation, the lowest cost one of which would be
selected for the number of subtrees and the driving buffer.

After Algorithm 1 returns the target number of subtrees and the driving buffer, these
two values are used as the arguments for the DME function. Then the DME function
uses the driving buffer to bottom-up subtrees and terminates when the number of
subtrees is equal to the target.

3.2. Skew Estimation

Skew estimation can prevent keeping too much guard band. An asymptotic approxima-
tion for the mean and variance of clock skew is proposed by Kugelmass and Steighlitz
[1990] as

E(skew) = σ

[
4 ln N − ln ln N − ln 4π + 2C

(2 ln N)1/2 + O
(

1
log N

)]
, (1)

Var(skew) = σ 2

ln N
π2

6
+ O

(
1

log2 N

)
, (2)

where σ is the standard deviation of clock latency, N the number of sinks, and
C(= 0.05772 . . .) is Euler’s constant. Bujimalla and Koh [2011] applied (1) and (2)
with an assumption that skew is a normal distribution to estimate 95%skew:

95%skew = [
E(skew) + 2 × V ar(skew)

]
. (3)

To utilize (1), (2), and (3) in this work, computing σ is needed:

σ 2 =
n∑

i=0

σi
2 +

n−1∑
i=0

(ρReRi + ρFeFi)σiσi+1, (4)

(eRi, eFi) =
{

(0, 1), if falling input
(1, 0), if rising input

, (5)
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Fig. 5. Length-based buffer insertion. (a) Flow of length-based buffer insertion; (b) a symmetric topology is
adopted; (c) inserting buffers on all branches; (d) inserting buffers by a distance d; (e) enlarging the buffer
size.

where σi is the standard deviation of a buffer-stage delay, ρR/ρF the correlation co-
efficient for a rising/falling transition before a falling/rising transition, and eR/eF de-
notes that the buffer-stage input transition is rising/falling. σi is looked up by an
NLDM-like cell delay variation model. In this work, the NLDM-like cell delay vari-
ation model is extracted by SPICE simulations and Response Surface Model (RSM)
fitting [NIST 2012]. Parameters used to look up σi are about the input signal transition
and output RC network. The details of the parameters to look up σi will be given in
Section 3.4.3.

3.3. Length-Based Buffer Insertion

Our first buffer insertion method is a length-based one [Alpert and Devgan 1997]. The
length-based method inserts buffers by a constant distance d. To minimize supply-
voltage-variation-induced skew, d is decided by experiments of different distances on
a long wire. According to Monte Carlo simulations, the distance of minimum delay
variation is defined as d.

Figure 5 illustrates the overall flow of the length-based buffer insertion in this work.
We first insert buffers on branches and then insert buffers by d from sinks to root.
This ensures that the loading of one buffer stage is not particularly larger than any
of the other buffer stages. If skew estimation reports a skew violation, we enlarge the
buffer. If all types of buffer cannot satisfy the skew constraint, the buffer of smallest
variation-induced skew would be used.

3.4. Mathematical Programming Buffer Insertion and Wire Sizing

The other buffer insertion and wire sizing is based on mathematical programming, in
which the objective is to minimize power dissipation and the two constraints are skew
and slew. Sections 3.4.1 to 3.4.3 introduce the programming variables, the objective
formulation, and the constraint formulations. Section 3.4.4 enhances performance by
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Table I. Notations Used in Mathematical-Programming-Based Buffer
Insertion Wire Sizing

Notation Description
vi number of buffer stages in ith level

bijk binary variable, buffer size of jth buffer stage in ith
level is k

wi jk binary variable, wire size of jth buffer stage in ith level
is k

ηi lower bound of buffer stages in ith level
ξi upper bound of buffer stages in ith level

dmax maximum distance between two buffer stages
dmin minimum distance between two buffer stages
Li wire length of ith level
li j wire length of jth buffer stage in ith level
Pi power cost of ith level
Bij power cost of buffer of jth buffer stage in ith level
Wij power cost of wire of jth buffer stage in ith level
βi power cost of buffer size i
ωi power cost of wire size i
σ standard deviation of clock latency
σi j standard deviation of jth buffer stage delay in ith level

slew′
i j terminal slew of jth buffer stage in ith level

slewi j input slew of jth buffer stage in ith level
eij binary variable, input signal is rising/falling for jth

buffer stage in ith level
hij binary variable, jth buffer stage in ith level is on branch
bij buffer size of jth buffer stage in ith level
b′

i j next stage buffer size of jth buffer stage in ith level
wi j wire size of jth buffer stage in ith level
yij binary variable, jth buffer stage in ith level is realized
zij binary variable, jth buffer stage in ith level is the last

buffer stage

reducing the complexity of slew propagation. All notations used in the mathematical
formulations are listed in Table I.

3.4.1. Programming Variables. Figure 6 illustrates the way that programming variables
indicate a solution. In the beginning, we insert buffers at every branch, which levels the
mathematical programming model and simplifies the RC topology for each buffer stage.
For level i, three programming variables describe a solution: vi denotes the number of
buffer stages, bijk that the buffer size of the jth stage is equal to type k, and wi jk that
the wire size of the jth stage is equal to type k.

vi ∈ N (6)
bijk ∈ {0, 1} (7)
wi jk ∈ {0, 1} (8)

Constraints on bijk and wi jk ensure the solution’s uniqueness, and vi is bounded to
reduce the solution space.

ηi ≤ vi ≤ ξi (9)
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Fig. 6. In mathematical-programming-based buffer insertion and wire sizing, buffers are inserted on
branches to level the problem. Three programming variables include: vi , denoting the number of buffer
stages in the ith level; bijk, denoting that the size of the jth buffer is equal to k, and wi jk, denoting that the
size of the jth wire is equal to k. li j is the wire length of the jth stage in the ith level and is defined by level
wire length Li and vi . In this example, vi is bounded by [1,3]. And in the example of vi = 3, 3 buffer stages in
the ith level, bi31 = 1 represents the 3rd-stage buffer size is equal to type-1 (a smaller buffer), and wi12 = 1
represents the 1st-stage wire size is equal to type-2 (a wider wire width).

|b|∑
k=1

bijk = 1 (10)

|w|∑
k=1

wi jk = 1 (11)

To balance loading for buffer stages, buffers in a level are inserted uniformly. lij
denotes the wire length of the jth buffer stage. It is defined by level wire length Li and
vi:

lij =
{ Li

(2vi−1) , if j = 1
Li

(2vi−1) × 2, otherwise.
(12)

Since the stage of j = 1 is on a branch, compared to other stages, it has double
capacitance loading per unit stage wire length. We make its wire length half of other
stages to balance loading.

3.4.2. Power Formulation. Total power is the summation of all levels’ buffer loading and
wire loading:

power =
n∑

i=1

2i−1 Pi, (13)

Pi = Bi,1 + 2
vi∑

j=2

Bij + 2
vi∑

j=1

Wij, (14)
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Fig. 7. Boolean variables yij and zij . In the example of four levels, each level has maximum of 3 buffer
stages and minimum of 1 buffer stage. A true yij denotes that the corresponding buffer stage is realized,
and a true zij denotes that the corresponding buffer stage is the last buffer stage in the corresponding level.
They are utilized to formulate skew and slew constraints.

Bij =
|b|∑

k=1

βk × bijk, (15)

Wij =
|w|∑
k=1

lij × ωk × wi jk, (16)

where Bij denotes the buffer capacitance on the jth stage in the ith level, βk is the buffer
capacitance of buffer size k, and where Wij denotes the wire capacitance, and ωk is the
wire capacitance of wire size k.

3.4.3. Skew and Slew Constraint. We rewrite (4) as

σ 2 =
∑

i j

yijσi j
2 +

∑
i j

(ρReRij + ρFeFij)σi jσ
′
i j . (17)

Substituting σ in (1), (2), and (3) formulates the skew constraint. In (17), a boolean
variable yij is introduced:

yij =
{

1, if vi ≥ j

0, otherwise
, (18)

yij denotes that the jth buffer stage in the ith level is realized. For example, in Figure 7,
the upper bound of the number of buffer stages in the second level of the tree is three,
but v2 is set to 2. Therefore, the third-stage buffer is not realized (y23 = 0).

To look up σi j by the NLDM-like cell delay variation model requires

σi j = g(eij, slewi j, hij, wi j, lij, b′
i j, bij), (19)

slew′
i j = f (eij, slewi j, hij, wi j, lij, b′

i j, bij). (20)

The parameters are:

—rise/fall transition eij ;
—input slew slewi j ;
—output branch/unbranch hij ;
—output wire size wi j ;
—output wire length lij ;
—next stage buffer input capacitance b′

i j ; and
—current stage buffer bij .
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Fig. 8. Slew of a node is dominated by its near predecessors. After propagating through three buffer stages,
the difference in slew decreases from 40ps to 1.2ps.

slew′
i j is the terminal slew value of the jth stage in the ith level and is looked up in the

same manner.

3.4.4. Enhancement on Efficiency. It could be seen in (19) and (20) that to look up σi j ,
input slew slewi j is required, and a propagation from source to sinks for slew must be
performed first. To propagate slew across levels, a boolean variable zij is utilized which
denotes that the jth buffer stage is the last buffer stage in the ith level:

zij =
{

1, if vi = j

0, otherwise.
(21)

Then the input slew of the first buffer stage for all levels can be derived by

slewi+1,1 =
ξi∑

k=ηi

zikslew′
ik. (22)

However, the slew propagation across levels results in a problem, that is, slewi+1,1
grows exponentially by (ξi − ηi + 1) times per level.

By a property of slew that it is dominated by near predecessors, neglecting far
predecessors only affects accuracy little. An example in Figure 8 shows that, after
three-stage slew propagation, the difference decreases from 40ps to 1.2ps only. This
slew deviation corresponds to 3% deviation of a stage delay variation. This work adopts
three-stage slew propagation as shown in Figure 9, and the formulation is

slew′
i j = slew′(3)

i j , (23)

slew′(k)
i j = f

(
slewi j

(k−1), . . .
)
, (24)

slew′(0)
i j = slew′(0), (25)

where slew′(k)
i j means that the leaf terminal slew of the jth buffer stage in the ith level is

calculated by k-stage slew propagation, slew′(0) is a user-defined parameter, and f (.) in
(24) is equivalent to (20).

4. ASYMMETRIC CLOCK TREE

After global optimization, the second stage relaxes the constraint of symmetric struc-
ture. To reduce wire loading, a symmetric tree from the first stage is projected onto
an asymmetric tree. In the projection, the skew performance needs to be preserved.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 3, Pub. date: November 2014.



Clock Tree Synthesis Considering Slew Effect on Supply Voltage Variation 3:13

Fig. 9. For mathematical programming, slew propagation from the clock source results in exponential
growth with the number of tree levels as shown in (a). Since slew is dominated by near predecessors, its
efficiency can be enhanced by only local propagation as shown in (b).

Fig. 10. Parameters affect variation of a buffer-stage delay.

The idea to preserve skew performance is to control the delay variation of each buffer
stage. As each buffer stage in an asymmetric tree is well controlled, the total clock la-
tency variation and the variation-induced skew would be equal to the symmetric tree.
Such a buffer-stage delay variation control is due to three parameters, namely slew,
buffer type, and wire size, which are introduced in Section 4.1. A solution refinement
between the symmetric and the asymmetric tree synthesis is introduced in Section 4.2,
which addresses the weakness of the symmetric tree solution to reduce the number of
inserted buffers in the asymmetric tree. Based on DME, the asymmetric tree synthesis
controlling the variation for each buffer stage is introduced in Section 4.3.

4.1. Performance Preservation of Skew

By observing the NLDM-like cell delay variation model, we know the manner in which
a factor affects delay variation. Figure 10 is the part of the raw data of the NLDM-like
cell delay variation model that delivers our observation on the ISPD 2010 benchmark.
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Fig. 11. When transferring a symmetric to an asymmetric tree, the extreme condition for a buffer stage
changing is from symmetric fanout to no fanout; however, the wire length deviation is bounded because of
the correlation between slew and wire length.

Input slew, buffer size, wire size, and wire length strongly influence the delay variation
of a buffer stage; however, the asymmetric tree synthesis of this work neglects wire
length. The reason is that wire length and slew are highly correlated, for example, in
Figure 11(a), when the slews of two buffer stages in series are constrained, the wire
length deviation is limited. The effect of wire length neglect will be discussed in the
next paragraph. Consequently, in the asymmetric tree synthesis of this work, delay
variation of a buffer stage is controlled by slew, buffer size, and wire size. An example
projecting a buffer stage from a symmetric tree to an asymmetric tree is illustrated
in Figure 11(b), in which the input slew slewi and slewi+1 in the asymmetric tree are
the same as they are in the symmetric tree, and so are the buffer size and the wire
size. (In Section 4.3, the buffer size and the wire size of a buffer stage are possible to
change, however, their new values are restricted so that delay variation of the buffer
stage will not be increased. Note that the asymmetric tree synthesis does not consider
the location of the buffer and wire in the symmetric tree, and its detailed process will
be introduced in Section 4.3.)

The neglect of wire length results in the deviation of performance preservation, but
the amount of this deviation is tolerable. In the extreme condition, the deviation in-
creases 10% delay variation for a buffer stage. The performance preservation considers
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Fig. 12. Solution refinement is a process between the symmetric and the asymmetric clock tree synthesis.
The refinement shifts stages of small input slew toward the root. It reduces capacitance loading near leaf
level. (a) An asymmetric tree without solution refinement; (b) an asymmetric tree with solution refinement.

slew, buffer size, and wire size for a buffer stage; in other words, it neglects the buffer
stage’s RC tree topology. The RC tree topology change from a symmetric to an asym-
metric tree is such that the tapping point of an asymmetric tree is skewed because of a
delay difference between the two merged substrees. The long side will dominate delay
variation, and the extreme condition is that the short side degenerates to zero length
(no fanout) as shown in Figure 11(b); however, the wire length deviation is bounded
because of the correlation between slew and wire length. According to our experiments,
for a buffer stage, the extreme condition that a symmetric fanout stage is transferred
to a no-fanout stage results in 10% larger delay variation; for a whole tree, the skew
performance results in average 9.6% larger skew in an asymmetric tree than in the
original symmetric tree.

4.2. Solution Refinement between a Symmetric and an Asymmetric Clock Tree

A solution refinement, which moves the buffer stage of sharp input slew toward the tree
root, is adopted to reduce the number of buffers inserted in asymmetric tree synthesis. A
tight stage slew constraint limits a stage’s wire length; as a result, before being merged
with other subtrees, a subtree may need a preceding driving buffer stage to maintain
sharp slew. When such a condition occurs near leaf level, a large number of preceding
buffers would be inserted, which costs buffer loading. It is sometimes inevitable that
a short-level wire length is generated near the leaf level of a symmetric tree as shown
in Figure 12(a); however, when synthesizing an asymmetric tree, we can move these
sharp slew buffer stages shown as (s3, w3, b3) in Figure 12(b) toward the root so that
leaf-level subtrees could be merged as deeply as possible, thus reducing buffer loading
from 14 to 9. Therefore, after receiving the buffer insertion and wire sizing solution of
a symmetric tree, we shifted the sharp slew buffer stage toward the tree root in order
to apply this buffer insertion plan in the asymmetric tree synthesis. Note that the
refinement only modifies the plan of buffer insertion for the asymmetric tree synthesis;
in other words, no modification was actually done on the original symmetric tree.
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4.3. DME-Based Projection

The asymmetric CTS is based on DME and, during the DME bottom-up phase, the
parameters, namely input slew of a stage s, leaf slew of a stage s′, buffer size b, and
wire size w, are maintained for each stage.

Asymmetric CTS steps are listed in Algorithm 2. For each stage, (s, s′, b, w) from
a refined solution of a symmetric tree are read. According to these parameters,
genStageSubtree generates a set of stage subtrees N and a table T , which records
pairs of a stage subtree and the corresponding stage buffer. Then stage buffers are
inserted as roots of stage subtrees and become merging candidates for the next stage.
The while-loop (lines 2–6) continues until only one tree is in the merging candidate
pool, that is, our final asymmetric clock tree.

We can elaborate more on genStageSubtree. In Section 4.2, the solution refinement
shifts the small slew stage toward the tree root to reduce the number of buffers.
genStageSubtree further saves the number of buffers by using stronger driving-
strength buffers. A stage buffer may be swapped by a stronger driving-strength one if
the stronger buffer drives more subtrees, which in turn saves power. Note that variabil-
ity of the stronger buffer must be less than that of the original stage buffer. Therefore
genStageSubtree records the original stage buffer for all subtrees (lines 11–13) and
invokes genStageSubtreeBySingleBuf several times (lines 14–16) to test whether a
stronger buffer saves power.

genStageSubtreeBySingleBuf generates a set of stage subtrees L and records stage
buffers in T . In genStageSubtreeBySingleBuf , a subtree of smallest delay n1 has high-
est priority to be merged. n2 is the merging partner of n1 and they must satisfy the stage
slew constraint by a driving buffer b′. After n1 and n2 are selected (lines 23–37), they
are merged into a new subtree nnew. Merging candidates are updated and b′ is recorded
in T as the stage buffer of nnew (lines 38–42). If n1 finds no merging partner, n1 is
removed from merging candidate container N and saved in stage subtree container L
(lines 43–46). The merging process continues until no more merging is possible and all
stage subtrees are stored in L.

4.3.1. Bottleneck and Complexity. The runtime bottleneck of Algorithm 2 happens at
line 5, that is, to insert the buffer and adjust the wire length to match the slew target.
It costs the most runtime, because it embeds NGSPICE simulation to derive an accurate
slew rate and delay.

The complexity of Algorithm 2 is analyzed as follows.

(1) The complexity of genStageSubtreeBySingleBuf is equal to DME.
—If the driving buffer is very strong so that one buffer can drive the whole

tree, the first genStageSubtreeBySingleBuf in line 15 will return |N| = 1, and
the later iterations of genStageSubtreeBySingleBuf will cost nothing because
no subtrees are merged. As a result, an asymmetric tree is completed by one
genStageSubtree, and the complexity is equal to DME. The slew check in line 28
of genStageSubtreeBySingleBuf is an additional constant cost for each merging
of DME, which does not increase complexity.

—When a driving buffer cannot drive a whole tree, genStageSubtree returns a set of
subtrees in N, which is L in genStageSubtreeBySingleBuf . The cost of generating
a subtree in L is equal to a successful merging, because generating a subtree in
L and a successful merging both decrease one subtree in merging candidate N
in genStageSubtreeBySingleBuf . The only difference is that n1 find no merging
partner with a valid slew in lines 26–37.

—The complexity of DME is O(n2), where n is the number of sinks.
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ALGORITHM 2: AsymmetryT ree(allsinks, B)
Input: all sinks, buffer library B, wire library W , a refined solution of a symmetric clock

tree
Output: an asymmetric tree

1 N ← all sinks;
2 while |N| > 1 do
3 (s, s′, w, b) ← read solution of symmetric tree for current stage, or there is no feasible

solution and exit;
4 (N, T ) ← genStageSubtree(s, s′, w, b, N);
5 for all sub-trees ∈ N, insert buffers as their roots by a table of stage buffer T and

adjust wire length to match s′ //concurrent;
6 end
7 There is only one sub-tree in N, connect its root to clock source and top down node

embedding;
10 genStageSubtree(s, s′, w, b, N)
11 for all sub-trees n ∈ N do
12 T (n) ← b;
13 end
14 for all b′ ∈ B && driving strength satisfies that strength(b) ≤ strength(b′) ≤

α × strength(b), by order of strength do
15 (N, T ) ← genStageSubtreeBySingleBuf (b′, s, s′, w, N) ;
16 end
17 return (N, T );
20 genStageSubtreeBySingleBuf (b′, s, s′, w, N)
21 L ← φ;
22 while |N| > 1 do
23 n1 ← smallest delay sub-tree ∈ N;
24 isMergeble ← f alse;
25 minCost ← inf ;
26 for ntest ← all other sub-trees ∈ N do
27 nnew ← merge(n1, ntest) by wire size w;
28 stest ← calcSlew(b′, nnew) //buffer b′ drives sub-tree nnew;
29 if stest ≤ s′ then
30 cost ← calcMergeCost(nnew);
31 if cost < minCost then
32 minCost ← cost;
33 n2 ← ntest ;
34 end
35 isMergeble ← true;
36 end
37 end
38 if isMergeble then
39 nnew ← merge(n1, n2);
40 N ← N\ {n1, n2};
41 N ← N ∪ {nnew};
42 T (nnew) ← b′;
43 end
44 else
45 N ← N\n1;
46 L ← L ∪ n1;
47 end
48 end
49 L ← L ∪ n0, n0 is the last sub-tree ∈ N;
50 return (L, T )
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Table II. ISPD 2010 Benchmark Information

#Sinks LCS (ps) LCS Dist.(μm) W(μm) H(μm) #Blocks
cns01 1107 7.5 600 8000 8000 4
cns02 2249 7.5 600 13000 7000 1
cns03 1200 4.9 370 3072 493 2
cns04 1845 7.5 600 2130 2690 2
cns05 1016 7.5 600 2319 2545 1
cns06 981 7.5 600 1950 891 0
cns07 1915 7.5 600 2537 1448 0
cns08 1134 7.5 600 1837 1628 0

Table III. Physical Properties of Buffers

Inverted Input Cap (fF) Output Cap (fF) Output Res (�)
inv-0 True 35 80 61.2
inv-1 True 4.2 6.1 440

Table IV. Physical Properties of Wires

Unit Res (�/nm) Unit Cap (fF/nm)
wire-0 0.0001 0.0002
wire-1 0.0003 0.00016

(2) The complexity of Algorithm 2 is as follows. Assuming each
genStageSubtreeBySingleBuf scales down the number of subtrees by α, we
have two cases.
—Worst case (α = 1).

Assuming a genStageSubtree sweeps β buffer sizes and that AsymmetryT ree
calls genStageSubtree at most γ times, there are totally β × γ times of
genStageSubtreeBySingleBuf . The complexity is O(β × γ × n2).

—General case (0 < α < 1).
m is an integer satisfying two rules: n × αm ≤ 1 and 1 < n × αm−1. This means
that a tree is completed after m number of genStageSubtreeBySingleBuf are
performed. The complexity is O(

∑m−1
i=0 (n × αi)2) = O(

∑m−1
i=0 α2in2).

5. EXPERIMENTAL RESULTS AND LIMITATIONS OF ISPD 2010 BENCHMARK

This section demonstrates experimental results and compares our methods in Sec-
tion 5.1. Section 5.2 discusses limitations of the ISPD 2010 benchmark and strategies
of CTS for different variation scenarios.

5.1. Experimental Results

The proposed approach is implemented in C++, and the mathematical programming
solver is IBM ILOG CPLEX v12.2 [CPLEX 2010]. Experimental results are evaluated
by the ISPD 2010 benchmark (Table II), which is based on IBM and Intel real-case
microprocessor design. The buffer library (Table III) and wire library (Table IV) are
based on PTM [2011] 45nm technology. The variation setting is the same one as that
of the contest, that is ±7.5% vdd variation and ±5% wire width variation. Monte Carlo
simulations by NGSPICE are performed to evaluate performance.

The experiments are carried out on a 2.4 GHz Intel Xeon CPU Linux workstation
with 16GB memory. The runtime limit of mathematical programming is set to 600
seconds and 14 threads are utilized for concurrent SPICE simulations of asymmetric
CTS. The correlation coefficients of stage delay variation are ρR of 0.4, and ρF of 0.
These values are extracted by a least-square error fitting on an inverter chain, as
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Fig. 13. Extraction of ρR and ρF by an inverter chain. Variance of two-stage delay is collected by Monte
Carlo simulations, and a least-square-fitting (26)–(29)-derive ρR and ρF .

shown in Figure 13.

min
∑

i

(σRFi − ˆσRFi )
2 + (σF Ri − ˆσF Ri )

2 (26)

such that σtotal
2 =

∑
i

(
σRi

2 + σFi
2) + 2

∑
i

(σRi σFi ρR + σFi σRi ρF) + O(n3) (27)

ˆσF Ri
2 = σFi

2 + σRi
2 + 2σFi σRi ρF (28)

ˆσRFi
2 = σRi

2 + σFi+1
2 + 2σRi σFi+1ρR (29)

All σFi and σRi are looked up by the NLDM-like cell delay variation model and σtotal,
σRFi , and σF Ri are derived by Monte Carlo simulations. The higher-order terms O(n3)
are neglected.

Table V shows a comparison of the statistics on LCS, capacitance loading, CPU time,
and wall-clock time. Acronyms are used to denote the following methods.

—SMeshMB is a symmetric tree driving a bottom mesh, which is done in Shih et al.
[2010].

—Contango 2.0 is an asymmetric tree with clock latency minimization, which is done
in Lee et al. [2010].

—AMB is an asymmetric tree with buffer-stage minimization, which is done in
Bujimalla and Koh [2011].

—AMB CL inserts a cross link based on AMB, which is done in Mittal and Koh [2011].

And our four methods are as follows.

—length-symm is a symmetric clock tree of length-based buffer insertion.
—mp-symm is a symmetric clock tree of mathematical-programming-based buffer

insertion.
—length-asym is an asymmetric clock tree transformed from length-symm.
—mp-asym is an asymmetric clock tree transformed from mp-symm.

The clock network produced by mp-asym has the smallest capacitance loading. It
is smaller than SMeshMB [Shih et al. 2010], Contango 2.0 [Lee et al. 2010], AMB
[Bujimalla and Koh 2011], and AMB CL [Mittal and Koh 2011] up to 1.2×. For our four
methods’ comparison, mathematical-programming-based buffer insertion wire sizing
improved 4% capacitance, and transformation from symmetric to asymmetric versions
improved up to 5% of capacitance. The runtime overhead results from: (1) the mathe-
matical programming solver and (2) SPICE simulations of asymmetric CTS, especially
in large cases, are cns01 and cns02. The present study shows that concurrent SPICE
simulations of asymmetric CTS can effectively reduce CPU time to wall clock. It can
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Table V. Experimental Results of ISPD 2010 Benchmark

Skew, Capacitance, and RunTime

Contango length- mp- length- mp-
BM SMeshMB 2.0 AMB AMB CL symm1 symm asym asym

95%LCS(ps) 7.16 7.01 5.79 7.32 7.32 7.35 7.77 6.41
cns01 cap(pF) 445.3 198.3 177.5 142.6 146.0 124.4 124.5 143.3

cpu time (sec) 0.4 12015 2790 1092 114 795 1477 2426
wall clock (sec) 97 688 335 860
95%LCS(ps) 7.33 7.34 6.69 7.42 7.38 7.49 8.93 6.73

cns02 cap(pF) 933.6 375.9 329.9 265.2 268.3 255.3 250.4 275.2
cpu time (sec) 2.42 25006 7787 4314 295 935 3319 6223
wall clock (sec) 120 763 800 1659
95%LCS(ps) 4.88 4.18 3.46 4.49 4.76 4.64 6.41 4.83

cns03 cap(pF) 183.7 55.86 50.81 36.61 34.17 34.33 34.24 33.21
cpu time (sec) 1.57 3840 2094 383 71 274 313 441
wall clock (sec) 37 241 120 228
95%LCS(ps) 4.01 4.46 3.79 6.70 7.14 6.70 7.64 6.96

cns04 cap(pF) 196.3 71.84 57.44 51.07 42.77 41.78 40.00 38.03
cpu time (sec) 0.27 6075 2763 934 73 244 335 970
wall clock (sec) 27 199 127 720
95%LCS(ps) 3.81 4.41 3.68 4.78 5.88 6.22 5.72 5.80

cns05 cap(pF) 89.09 37.69 28.93 25.13 22.13 20.98 19.50 18.33
cpu time (sec) 0.10 2406 1110 278 36 207 150 716
wall clock (sec) 13 185 65 609
95%LCS(ps) 7.40 6.05 4.01 6.41 5.61 5.82 5.75 7.04

cns06 cap(pF) 160.4 47.81 36.12 32.68 28.55 28.01 26.03 23.78
cpu time (sec) 0.28 2660 1142 285 70 75 184 232
wall clock (sec) 17 23 57 70
95%LCS(ps) 6.24 4.58 5.65 5.86 6.62 6.80 7.08 6.75

cns07 cap(pF) 228.2 72.66 57.93 48.32 43.91 43.39 39.79 39.30
cpu time (sec) 0.30 2351 2968 818 75 122 283 511
wall clock (sec) 29 76 112 220
95%LCS(ps) 7.64 5.15 4.24 5.07 6.50 6.89 6.58 6.95

cns08 cap(pF) 228.2 52.49 40.43 32.70 28.41 28.08 27.25 25.69
cpu time (sec) 0.28 1987 1497 327 76 82 206 241
wall clock (sec) 29 36 73 90

geo mean of cap 5.17 1.76 1.45 1.20 1.09 1.05 1.04 1.00

further reduce runtime by replacing SPICE simulation with a static timing analysis
tool, for example, of a composite current source model.

Figure 14 describes experiments on benchmark cns01 with different skew con-
straints. The Figure shows that mp-based ones are more flexible than length-based
ones for different skew specifications. Table VI shows the comparison between Monte
Carlo results and the asymptotic skew approximation.

5.2. Limitations of ISPD 2010 Benchmark

To evaluate a clock network by means of the ISPD 2010 benchmark, one should beware
of the variation setting. We list the notables of variation setting as follows.

1length-symm is slightly different from Chang et al. [2012]. Because the symmetric tree in Chang et al.
[2012] is not obstacle avoiding, and we speed up runtime by parallelizing the fine-tuning SPICE simulations.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 3, Pub. date: November 2014.



Clock Tree Synthesis Considering Slew Effect on Supply Voltage Variation 3:21

Fig. 14. Trade-off between skew and capacitance on cns01. mp-asym has the smallest capacitance.
Mathematical-programming-based buffer insertion wire sizing is more flexible for different skew constraints.

Table VI. Skew Estimation vs. Monte
Carlo Result

Monte Carlo Estimated
BM 95%LCS 95%LCS

cns01 6.41 8.58
cns02 6.73 10.21
cns03 4.83 5.00
cns04 6.96 7.49
cns05 5.80 7.29
cns06 7.04 7.18
cns07 6.75 7.42
cns08 6.95 7.10

—The problem addressed by Bujimalla and Koh [2011] and Lee and Markov [2011]
is that the setting of the ISPD 2010 benchmark allows to reduce a buffer-stage
variation by stacking buffers such that each buffer has its own voltage source.
Increasing the number of stacking buffers can smooth the effects of voltage vari-
ation. The works done in Bujimalla and Koh [2011] and Lee and Markov [2011]
adopt a setting of single-location single-voltage to eliminate smoothing effects by
the stacking buffer, as shown in Figure 15. It is worth mention that the compar-
ison in Table V is fair because the number of stacking buffers used in our pro-
posed method is not greater than others. The max number of stacking buffers
used in length-asym, mp-asym, Contango 2.0 [Lee et al. 2010], AMB [Bujimalla
and Koh 2011], and AMB CL [Mittal and Koh 2011] are all 30x inv-1, while those
used in length-symm, mp-symm, and SMeshMB [Shih et al. 2010] are all 20x
inv-1.

—The slew effect addressed in this work affects performance evaluation of a multiple-
driving-paths network. Networks such as mesh and cross link reduce the variation-
induced skew by improving the delay correlation between paths. However, when the
slew effect is not controlled well, the baseline of path delay variation is different,
possibly misleading the real performance of a network.

—The ISPD 2010 benchmark considers variation of supply voltage and wire width
only. When more variation sources are considered such as threshold voltage and gate
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Fig. 15. By the setup of the ISPD 2010 benchmark, buffers stacked at a same location have differing
voltage source. This smooths voltage variation for a buffer stage. By the setup of Single-Location Single-
Voltage (SLSV), all buffers have only one voltage source.

length, the primitive delay variation of a buffer stage increases. In this scenario, the
proposed CTS method is concerned, and a strategy of CTS to minimize skew uncer-
tainty should seek to minimize the number of buffer stages. To minimize delay vari-
ation of a buffered long wire, the slew effect considered in this work delivers an idea
that there is an optimal number of buffer stages. When the number of buffer stages is
less than the optimal value, inserting an additional buffer stage sharpens slew and
reduces delay variation. When the number is more than the optimal value, the slew
effect remains but is weaker than the primitive delay variation of an additional buffer
stage. Once the primitive delay variation of a buffer stage become severe, the optimal
number of buffer stages will be less. In the worst case, to minimize delay variation is
just to minimize the number of buffer stages. We call this scenario primitive variation
dominance.

6. CONCLUSIONS

This work proposed a method to tackle supply voltage variation and to synthesize
a lower-power and robust clock tree. The proposed method includes two stages. The
first stage facilitates global optimization by adopting a symmetric structure. Buffer
insertion and wire sizing are formulated in mathematical programming, and the slew
effect is considered by an NLDM-like cell delay variation model. The second stage per-
forms local optimization in which a transformation from a symmetric to an asymmetric
tree further saves wire and buffer loading. Experimental results demonstrate that the
proposed method saves capacitance loading up to 20%.

Beyond the proposed method, limitations of the ISPD 2010 benchmark are addressed.
To evaluate the performance of a clock network synthesizer by the ISPD 2010 bench-
mark, one should be aware of the variation setting. For example, single-location single-
voltage can prevent the voltage variation smoothing by stacking buffers; when evalu-
ating performance of a multiple-driving-paths clock network, ignoring the slew effect
may result in a different baseline of path delay variation and mislead the performance;
when variation becomes more severe, primitive variation dominance may occur, and
the strategy of CTS in this scenario should seek to minimize the number of buffer
stages.
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