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Can malware be exterminated? Pessimists believe that complete malware 
detection is an unsolvable and nonboundable problem; optimists argue 
for eventual solvability. Here, the authors reveal pitfalls in malware 
research that, if addressed, could help move us in the right direction.

A
malware-free world is currently out 
of reach: whatever your defense 
strategy, there’s a counterattack ex-
ample.1 Researchers studying mal-

ware detection are actively developing new 
defensive approaches, yet reported security 
incidents continue (such as Heartbleed; http://
heartbleed.com). Our own investigation into 
malware revealed various pitfalls in current re-
search. If we could avoid such pitfalls, we might 
discover the path to some form of malware free-
dom, even if malware recognition is an unde-
cidable problem.2

Here, we enumerate the pitfalls, and although 
we don’t directly define how to obtain a mala-
ware-free utopia, we propose a path forward to 
better address the malware problem.

Malware in Cyberspace
Malware is malicious software that breaks se-
curity policies. Acts of security policy infringe-
ment include scanning, jamming, eavesdropping, 
spam ming, and trespassing. Evidence of security 
policy infringement is crucial for researchers who 
wish to engage in malware-detection research.

Computer security policies can be mandatory 
or discretionary. A mandatory policy is set by 
organizations and enforced using automation, 
whereas a discretionary policy is determined by 
individual users. Security policy infringements 
can be evidenced by malware-detection engines 
in real time or by digital forensics using logged 
data.

In searching for the root of malware, the 
key is finding this evidence of security policy 
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infringement. Malware is a subcategory of soft-
ware; a piece of software becomes malware when 
a certain security policy—whether mandatory 
or discretionary—has been breached. Security 
policies vary spatially (based on application us-
ers) or temporally (based on technology break-
throughs)—in other words, different users need 
different security policies at different times.

In general, the foundation of security policy 
violation results in confidentiality, integrity, and 
availability (CIA) infringement. Some argue that 
more attributes should be included in informa-
tion security,3 but to simplify the problem, we 
assume CIA covers most information security 
aspects. Because malware violates a specific set of 
security policies, discovering policy infringement 
is crucial for malware detection; it differentiates 
the benign software from the malware.

Here, we focus on the soundness and completeness 
of malware detection. For brevity, we don’t dis-
cuss the technical details of our implementation, 
and we make two assumptions to keep the prob-
lem bound. First, the security policies are robust 
and can cover most aspects of information secu-
rity concerns. Second, malware execution leaves 
a trace in the host computer system that can be 
reproduced in the aftermath of an attack. These 
traces should provide sufficient evidence to verify 
security policy infringement.

Pitfalls in Malware Detection
Despite progress in information, software, and 
computer security research, there are pitfalls 
stemming from inflated assumptions about mal-
ware detection and analysis. These factors can 
hinder successful detection results or induce 
negative results. The pitfalls include

•	unfairness in detection accuracy,
•	unverifiable research claims,
•	malware population explosion, and
•	 detection result disputes.

The first three deal with the need to improve 
malware detection research, and the fourth pit-
fall deals with the fact that such improvements 
rely on concrete evidence.

Unfairness in Detection Accuracy
The accuracy and measurement of malware re-
search is often evaluated by false positives and 

false negatives, with the measurement normally 
covered by two factors—soundness (eliminat-
ing false positives) and completeness (eliminat-
ing false negatives). The scale of the accuracy 
measurement relies on experiments conducted 
using large numbers of malware samples. How-
ever, most available malware samples are out-
dated, and collecting more recent ones for use 
as samples is extremely time-consuming and 
difficult.

Test case collection itself is a major task. 
Without a common, up-to-date set of test 
cases, accuracy measurements can be unfair 
due to inconsistencies in the samples. Such 
inconsistency is caused by the rapid evolution 
of malware and the unavailability of a cen-
tral malware repository. Therefore, a common 
benchmark or dataset should be available for 
researchers to compare the accuracy of their 
research work against former efforts. However, 
due to the fast growing number of evolved and 
mutated malware programs, it’s extremely dif-
ficult, if not impossible, to keep a malware test 
suite up to date. Furthermore, any dataset must 
not be a catalyst that inspires new versions of 
malware.

Unverifiable Research Claims
Proving or validating the claims of published re-
search results is difficult: an exact, reproduced 
experiment environment is hard to mimic, and 
samples are hard to obtain.4 Examining a re-
search solution with new samples is another 
problem. If research experiments are repeatable, 
they serve as evidence for correct detection.

Malware Population Explosion
Malware research seeks methodologies that pro-
vide accurate detection. However, the growth rate 
of general-purpose software has increased dra-
matically.5 To keep up, the efficiency of detecting 
malicious behavior quickly becomes important. 
If the detection speed can’t at least match the 
malware growth rate, the number of undetected 
malware programs will multiply, leaving much 
undetected malware in operation.

Detection Result Disputes
Different detection engines might disagree con-
cerning whether an executable is malicious. To 
address this, concrete evidence for a security 
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policy infringement should be sup-
plied, along with all detection results. 
If there’s a dispute, the independently 
gathered evidence can be used in fur-
ther investigations.

The key is leveraging security 
policy infringement evidence that’s 
presented in an easy-to-understand 
format. Although this isn’t easy, we 
approach the issue using currently 
available technology.

Malware Research 
Idealization
Figure 1 exemplifies the relation-
ship among malware security poli-
cies, evidence, and malware detection 
research.

The rectangle object in Figure 1 
represents all the collected execut-
able samples, including benign and 
malicious software. The three circle 
objects represent the three security 
policies—namely, CIA policies that 
cover all malware within the collected 
samples. The oval object represents 
malware detection research targeting 
a specific security property. For example, “Re-
search A” and “Research B” target the registry 
modification property, while “Research C” aims 
for the information leakage property. Regardless 
of the malware detection methodology, false posi-
tives and false negatives exist.

From the perspective of Research A, false 
positives exist that don’t overlap with the integ-
rity violation circles—that is, the green meshed 
area. An executable sample is regarded as a false 
positive if a targeted property is found, but the 
evidence of information security violation is 
missing. On the other hand, false negatives ex-
ist in Research A if another malware detection 
research—namely, Research B—targeting the 
same property disagrees with the result. The 
green shadowed area represents a dispute be-
tween Research A and Research B; hence, it rep-
resents false negatives from the perspective of 
Research A. Another example of a false negative 
exists in Research C, when the true malware set 
for information leakage is greater than the de-
tected population (the gray shadowed area in the 
“confidentiality violation” circle).

Figure 1 illustrates the long-term goal for mal-
ware detection research—improved accuracy. To 
achieve this, we exploit information security pol-
icy infringement evidence. False negatives can be 
eliminated using pieces of supporting evidence, 
which lets us list and verify the information se-
curity policies a malware sample violates. Thus, 
we can resolve disputes between independent 
malware detection results to enhance malware 
detection coverage and accuracy. Furthermore, 
the evidence can eliminate false positives: a de-
tected suspicious behavior didn’t necessarily 
violate a policy.

For example, it’s normal for certified software 
in compliance with security policies to modify a 
Windows registry. So, evidence of an information 
security policy violation is a key factor in distin-
guishing between benign and malicious software. 
With security policy violation evidence, we can 
consolidate malware detection results and po-
tentially eliminate false positives and negatives to 
predict the actual malware set. With this, we pro-
pose a preliminary approach and database design 
for malware set prediction.

Figure 1. Malware research abstraction. The illustration shows a true 
malware set as well as the malware sets detected by research that 
attempts to approximate the true malware set by either reducing the 
false positives or increasing the true positives.
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Predicting the Malware Set
Recent research contributes to three types of 
improvements: new attacks,6–10 new detection 
methods,11–14 and improved efficiency.15,16 These 
improvements address issues of quantity, accu-
racy, and efficiency.

Quantity: Increasing Sample Collections
Collecting both malicious and benign execut-
ables can improve the quantity of test samples. 
The malicious executables can be classified into 
two types: newly created and newly discovered. 
Hackers can launch attacks using newly cre-
ated malware when new attack techniques are 
developed. For example, the anti-virtualization 
malware invented in recent years can be used to 
hamper cloud services.

The remaining new malware programs are mu-
tants and can be discovered using their known 
behaviors. Mutations include metamorphism 
and polymorphism that apply code obfuscation 
to evade detection. In contrast to malware, be-
nign executables are evidence of information se-
curity infringement that hasn’t been discovered. 
With a public sample collection, researchers have 
a common benchmark to evaluate the accuracy 
of their work.

Accuracy: Analyzing Fine-Grained 
Behavior
Malware behaviors can be analyzed at various 
granularities. Fine-grained malware analysis im-
proves malware detection accuracy by increasing 
the chance of discovering attack evidence. Mal-
ware research results can claim higher precision 
rates than previous work using heuristics that 
usually examine samples and determine whether 
they perform the expected behaviors. Analysts 
can easily associate the expected behaviors with 
security policy violations. For example, smart-
phone adware might steal personal information 
and violate personal privacy protections if the 
International Mobile Subscriber Identity and 

International Mobile Equipment Identity are sent 
via the Internet. These collected packets can be 
regarded as evidence.

The verifiable evidence can be used to convince 
security analysts that the adware is malicious. 
With fine-grained behavior analysis, a more pre-
cise behavior description can be introduced, such 
as contact stealing and stealth dialing. A detailed 
behavior examination can reduce false negatives 
and false positives. 

Efficiency: Accelerating Malware Analysis
The study of malware analysis efficiency can 
speed up malware detection, thereby reducing 
the incubation period of new exploits. The im-
portance of efficiency is often underestimated 
because most research focuses on either auto-
mation or accuracy. However, ignoring efficiency 
will lead to the aforementioned malware explo-
sion problem. Efficiency can, if done properly, 
narrow the time needed to find new malware.

The Malware Database
The Cybercrime Scene Database (CSD) is a da-
tabase we designed to demonstrate the feasibility 
of malware set approximation. The CSD aims to 
store benign and malicious code samples. Sam-
ples can be tagged with specific behaviors that 
violate defined security policies. Each group of 
samples can share a common behavior, which is 
regarded as one malware category, and these cat-
egories can overlap. The names of the malware 
categories—such as Trojan, Adware, or Root-
kit—are those used by antivirus companies.

In addition to these conventional names, each 
category in the CSD will include a behavior de-
scription of the violation, which should be veri-
fiable. For example, a description could be, “a 
program opens a backdoor without permission 
and sends the address book to the Internet.” To 
standardize the user interface, the description 
can be formalized. Such a description could be 
verified by checking the created port number and 
captured outgoing packets. We regard this infor-
mation as evidence of broken security policies 
because the program’s behaviors are repeatable.

Ideally, all executables would be collected and 
verified in the CSD. The collection and verifica-
tion of executables would implicitly satisfy the 
quantity and accuracy requirements for predict-
ing the true malware set. This could raise the 

The Cybercrime Scene Database 
(CSD) is a database we designed to 
demonstrate the feasibility of malware 
set approximation.
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overall malware detection rate: researchers could 
apply the proposed method to any system to 
quickly and precisely determine malware by que-
rying its unique identifier in the CSD.

Furthermore, cloud computing offers a plat-
form for storing test samples, searching for mal-
ware patterns, and repeating attacks. The CSD 
could leverage the huge storage capabilities of 
clouds to search for known malware patterns. 
Well-known scalable database systems, such as 
HBase, Cassandra, and Bigtable, provide oppor-
tunities here, suggesting that users might be able 
to insert, update, and modify data quickly. These 
database systems typically provide MapReduce 
for parallel processing to achieve large-scale 
search.

Finally, the virtualized environment could be 
used for behavior verification. The behavior of a 
sample could be repeated in a cloud containing 
detailed evidence. The behavior verification of 
each sample is important for dealing with mal-
ware detection. Using a reconstructable virtual 
environment to verify security violations would 
let the malware research community examine 
the correctness of the described security viola-
tion behavior. It’s thus important for the CSD 
to be made publicly available to the malware re-
search community, providing a common place to 
debate security violation descriptions.

This concept is similar to the current legal sys-
tem, in which a prosecutor provides evidence of a 
law violation, and the court determines whether 
to convict the offender based on that evidence. 
Once the malware research community can 
agree on the security violation description of a 
malicious executable, we’ll have a better under-
standing of the cause of the security violation. 
This would also help researchers acquire mal-
ware samples that better match the desired study 
description, and possibly in greater quantities, 
to help them pursue more accurate and efficient 
malware detection.

The Design
The CSD can be constructed as a 2D database 
in which each row represents a sample (execut-
able) and each column represents a behavior de-
scription for security policy violations. The data 
indexed by a row key and a column key is one 
piece of evidence. The CSD is suitable for imple-
mentation as a distributed key-value database 

system—specifically, NoSQL. This database is 
scalable for storing infinite data. Each row key 
is a unique identifier for a sample indexing. The 
unique identifier can be composed of file-related 
information, such as the hash value of file con-
tent, file size, and file type. Each column can be 
a serial number that stands for a behavior cat-
egory, bounded by a behavior description. The 
description indicates temporary or permanent 
activities monitored in a machine. The change 
of a machine state as a result of these activities 
can be regarded as a piece of behavior evidence, 
indexed by the row and column keys.

A piece of evidence can be a snapshot image of 
a virtual machine (VM) or another kind of execu-
tion information that can be re-generated deter-
ministically (however, some researchers are still 
studying “replay systems” that produce faithful 
execution in VMs; faithful execution should en-
sure that an execution is the same as the original 
execution recorded in replay systems). We store 
evidence as an element of the database, indexed 
by the row and column keys.

Based on the database’s functionalities, here 
we introduce the properties of the CSD.

Row Insertion
To set up a common benchmark for analysts, the 
CSD provides row insertion for universal execut-
able collection. Any user can upload executables; 
the system will then generate a unique identi-
fier as its row key in the database. The number 
of rows stands for the total number of samples 
in the CSD, and a new executable found or cre-
ated is inserted as a new row. We expect that all 
executables, benign or malicious, will be stored 
in the CSD to construct a common benchmark 
for analysts.

Column Insertion
The CSD will provide test sample sets, each of 
which will deal with a subproblem of malware 
detection. Although a generic solution to mal-
ware detection doesn’t currently exist, solu-
tions to subproblems with rigorous constraints 
might exist owing to common behaviors. These 
test sample sets of subproblems within the CSD 
will represent different malware categories. The 
behaviors of all malware are infinite, so letting 
CSD researchers insert new categories is ben-
eficial. Each category (column) will represent a 
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verifiable behavior description that’s observable 
and meaningful for security concerns. With more 
categories, the system could help reduce the false 
positives and false negatives.

Value Update
To provide provable information about security 
violations, the CSD offers an operation to collect 
the evidence of a sample. Testing all executables 
is difficult but possible; many automatic malware 
analysis methods have been proposed. We can 
use behavior analysis tools to perform evidence 
extraction for each executable.

Initially, the status of a non-tested sample is 
“not tested.” After an extraction, the value can 
either be “found” or “not found.” If the value is 
“found,” analysts should upload their evidence to 
prove the correctness of their behavior examina-
tions. We suggest using a VM image to achieve 
the property of “verifiable.” With VM images, us-
ers can monitor system state changes to evaluate 
the accuracy of malware detection.

Query
For malware detection and research, the CSD 
will let users query an executable regardless of 
whether it contains malicious behavior. To query 
the CSD, a user generates the unique identifier 
of a file on the client side and sends the iden-
tifier as a row key to the CSD via the Internet. 
The CSD then reports violated security policies 
and malicious behaviors to users. Researchers 
could then perform advanced searches to collect 
specific sets or categories of executables. In this 
way, researchers could evaluate their detection 
method using a specific category as a common 
benchmark.

Behavior Verification
For credible classifications, the CSD provides 
repeatable evidence that can prove the presence 
of behaviors described in its columns, a “cor-
rectness proof” that’s important for future re-
search. With behavior verification, analysts can 
argue for their predictions. Evidence of an attack 
incurred by test samples can be as simple as a 
VM image. For example, an analyst’s claims that 
a Trojan opens a port sending a string “foo bar” 
might be true. During execution, the monitored 
VM immediately produces a network packet 
that includes the string “foo bar.” Although 

sending out a “foo bar” network packet might 
not be harmful to most users, at least concrete 
evidence of “foo bar” packet sending and a de-
scription of security infringement would be pro-
vided by the analyst.

Verification should be adjusted to reproduce 
behaviors in a limited amount of time. For ex-
ample, evidence providers should establish the 
exact VM environment for time-bomb, logical-
bomb, and trigger-based malware to reveal their 
behaviors. By launching a VM on a cloud, ana-
lysts can repeat the experiments conducted by 
the providers of the VM who claimed that the 
investigating software is a piece of malware. In 
this way, the validity of each malware result can 
be established.

T he CSD provides a platform for providing 
feedback to support comparable, verifiable, 
publicly available, and malware-enumera-

ble evidence, thereby enhancing detection accu-
racy, resolving detection disputes, and introduc-
ing a common detection benchmark with a true 
malware population.

Researchers are developing new heuristic 
techniques and conducting experiments to 
tackle the challenges of malware detection, and 
our goal is to leverage the accumulated knowl-
edge gradually to eventually build comprehen-
sive malware libraries that mitigate malware 
uncertainties and lead toward a malware-free 
utopia.�
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