
1520-9202/14/$31.00 © 2014 IEEE P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y computer.org/ITPro 47

cLOuD cOMPutiNGFeature: Security

Michael Cheng Yi Cho, Chia-Wei Hsu, Shiuhpyng Shieh, and Chi-Wei Wang,
National Chaio Tung University, Taiwan

Can malware be exterminated? Pessimists believe that complete malware
detection is an unsolvable and nonboundable problem; optimists argue
for eventual solvability. Here, the authors reveal pitfalls in malware
research that, if addressed, could help move us in the right direction.

A
malware-free world is currently out
of reach: whatever your defense
strategy, there’s a counterattack ex-
ample.1 Researchers studying mal-

ware detection are actively developing new
defensive approaches, yet reported security
incidents continue (such as Heartbleed; http://
heartbleed.com). Our own investigation into
malware revealed various pitfalls in current re-
search. If we could avoid such pitfalls, we might
discover the path to some form of malware free-
dom, even if malware recognition is an unde-
cidable problem.2

Here, we enumerate the pitfalls, and although
we don’t directly define how to obtain a mala-
ware-free utopia, we propose a path forward to
better address the malware problem.

Malware in Cyberspace
Malware is malicious software that breaks se-
curity policies. Acts of security policy infringe-
ment include scanning, jamming, eavesdropping,
spam ming, and trespassing. Evidence of security
policy infringement is crucial for researchers who
wish to engage in malware-detection research.

Computer security policies can be mandatory
or discretionary. A mandatory policy is set by
organizations and enforced using automation,
whereas a discretionary policy is determined by
individual users. Security policy infringements
can be evidenced by malware-detection engines
in real time or by digital forensics using logged
data.

In searching for the root of malware, the
key is finding this evidence of security policy

Can Malware Be
Exterminated by
Better Understanding
Its Roots?

48	 IT Pro November/December 2014

Feature: Security

infringement. Malware is a subcategory of soft-
ware; a piece of software becomes malware when
a certain security policy—whether mandatory
or discretionary—has been breached. Security
policies vary spatially (based on application us-
ers) or temporally (based on technology break-
throughs)—in other words, different users need
different security policies at different times.

In general, the foundation of security policy
violation results in confidentiality, integrity, and
availability (CIA) infringement. Some argue that
more attributes should be included in informa-
tion security,3 but to simplify the problem, we
assume CIA covers most information security
aspects. Because malware violates a specific set of
security policies, discovering policy infringement
is crucial for malware detection; it differentiates
the benign software from the malware.

Here, we focus on the soundness and completeness
of malware detection. For brevity, we don’t dis-
cuss the technical details of our implementation,
and we make two assumptions to keep the prob-
lem bound. First, the security policies are robust
and can cover most aspects of information secu-
rity concerns. Second, malware execution leaves
a trace in the host computer system that can be
reproduced in the aftermath of an attack. These
traces should provide sufficient evidence to verify
security policy infringement.

Pitfalls in Malware Detection
Despite progress in information, software, and
computer security research, there are pitfalls
stemming from inflated assumptions about mal-
ware detection and analysis. These factors can
hinder successful detection results or induce
negative results. The pitfalls include

•	unfairness in detection accuracy,
•	unverifiable research claims,
•	malware population explosion, and
•	 detection result disputes.

The first three deal with the need to improve
malware detection research, and the fourth pit-
fall deals with the fact that such improvements
rely on concrete evidence.

Unfairness in Detection Accuracy
The accuracy and measurement of malware re-
search is often evaluated by false positives and

false negatives, with the measurement normally
covered by two factors—soundness (eliminat-
ing false positives) and completeness (eliminat-
ing false negatives). The scale of the accuracy
measurement relies on experiments conducted
using large numbers of malware samples. How-
ever, most available malware samples are out-
dated, and collecting more recent ones for use
as samples is extremely time-consuming and
difficult.

Test case collection itself is a major task.
Without a common, up-to-date set of test
cases, accuracy measurements can be unfair
due to inconsistencies in the samples. Such
inconsistency is caused by the rapid evolution
of malware and the unavailability of a cen-
tral malware repository. Therefore, a common
benchmark or dataset should be available for
researchers to compare the accuracy of their
research work against former efforts. However,
due to the fast growing number of evolved and
mutated malware programs, it’s extremely dif-
ficult, if not impossible, to keep a malware test
suite up to date. Furthermore, any dataset must
not be a catalyst that inspires new versions of
malware.

Unverifiable Research Claims
Proving or validating the claims of published re-
search results is difficult: an exact, reproduced
experiment environment is hard to mimic, and
samples are hard to obtain.4 Examining a re-
search solution with new samples is another
problem. If research experiments are repeatable,
they serve as evidence for correct detection.

Malware Population Explosion
Malware research seeks methodologies that pro-
vide accurate detection. However, the growth rate
of general-purpose software has increased dra-
matically.5 To keep up, the efficiency of detecting
malicious behavior quickly becomes important.
If the detection speed can’t at least match the
malware growth rate, the number of undetected
malware programs will multiply, leaving much
undetected malware in operation.

Detection Result Disputes
Different detection engines might disagree con-
cerning whether an executable is malicious. To
address this, concrete evidence for a security

	 computer.org/ITPro 	 4 9

policy infringement should be sup-
plied, along with all detection results.
If there’s a dispute, the independently
gathered evidence can be used in fur-
ther investigations.

The key is leveraging security
policy infringement evidence that’s
presented in an easy-to-understand
format. Although this isn’t easy, we
approach the issue using currently
available technology.

Malware Research
Idealization
Figure 1 exemplifies the relation-
ship among malware security poli-
cies, evidence, and malware detection
research.

The rectangle object in Figure 1
represents all the collected execut-
able samples, including benign and
malicious software. The three circle
objects represent the three security
policies—namely, CIA policies that
cover all malware within the collected
samples. The oval object represents
malware detection research targeting
a specific security property. For example, “Re-
search A” and “Research B” target the registry
modification property, while “Research C” aims
for the information leakage property. Regardless
of the malware detection methodology, false posi-
tives and false negatives exist.

From the perspective of Research A, false
positives exist that don’t overlap with the integ-
rity violation circles—that is, the green meshed
area. An executable sample is regarded as a false
positive if a targeted property is found, but the
evidence of information security violation is
missing. On the other hand, false negatives ex-
ist in Research A if another malware detection
research—namely, Research B—targeting the
same property disagrees with the result. The
green shadowed area represents a dispute be-
tween Research A and Research B; hence, it rep-
resents false negatives from the perspective of
Research A. Another example of a false negative
exists in Research C, when the true malware set
for information leakage is greater than the de-
tected population (the gray shadowed area in the
“confidentiality violation” circle).

Figure 1 illustrates the long-term goal for mal-
ware detection research—improved accuracy. To
achieve this, we exploit information security pol-
icy infringement evidence. False negatives can be
eliminated using pieces of supporting evidence,
which lets us list and verify the information se-
curity policies a malware sample violates. Thus,
we can resolve disputes between independent
malware detection results to enhance malware
detection coverage and accuracy. Furthermore,
the evidence can eliminate false positives: a de-
tected suspicious behavior didn’t necessarily
violate a policy.

For example, it’s normal for certified software
in compliance with security policies to modify a
Windows registry. So, evidence of an information
security policy violation is a key factor in distin-
guishing between benign and malicious software.
With security policy violation evidence, we can
consolidate malware detection results and po-
tentially eliminate false positives and negatives to
predict the actual malware set. With this, we pro-
pose a preliminary approach and database design
for malware set prediction.

Figure 1. Malware research abstraction. The illustration shows a true
malware set as well as the malware sets detected by research that
attempts to approximate the true malware set by either reducing the
false positives or increasing the true positives.

Executables

Research C

Research B

Research A

Integrity violation
Availability violation

Confidentiality violation

True set for information leakage malwareTrue set fofo

Benign program
Malware
Research on registry modification malware
Research on information leakage malware
False positives
False negatives

50	 IT Pro November/December 2014

Feature: Security

Predicting the Malware Set
Recent research contributes to three types of
improvements: new attacks,6–10 new detection
methods,11–14 and improved efficiency.15,16 These
improvements address issues of quantity, accu-
racy, and efficiency.

Quantity: Increasing Sample Collections
Collecting both malicious and benign execut-
ables can improve the quantity of test samples.
The malicious executables can be classified into
two types: newly created and newly discovered.
Hackers can launch attacks using newly cre-
ated malware when new attack techniques are
developed. For example, the anti-virtualization
malware invented in recent years can be used to
hamper cloud services.

The remaining new malware programs are mu-
tants and can be discovered using their known
behaviors. Mutations include metamorphism
and polymorphism that apply code obfuscation
to evade detection. In contrast to malware, be-
nign executables are evidence of information se-
curity infringement that hasn’t been discovered.
With a public sample collection, researchers have
a common benchmark to evaluate the accuracy
of their work.

Accuracy: Analyzing Fine-Grained
Behavior
Malware behaviors can be analyzed at various
granularities. Fine-grained malware analysis im-
proves malware detection accuracy by increasing
the chance of discovering attack evidence. Mal-
ware research results can claim higher precision
rates than previous work using heuristics that
usually examine samples and determine whether
they perform the expected behaviors. Analysts
can easily associate the expected behaviors with
security policy violations. For example, smart-
phone adware might steal personal information
and violate personal privacy protections if the
International Mobile Subscriber Identity and

International Mobile Equipment Identity are sent
via the Internet. These collected packets can be
regarded as evidence.

The verifiable evidence can be used to convince
security analysts that the adware is malicious.
With fine-grained behavior analysis, a more pre-
cise behavior description can be introduced, such
as contact stealing and stealth dialing. A detailed
behavior examination can reduce false negatives
and false positives.

Efficiency: Accelerating Malware Analysis
The study of malware analysis efficiency can
speed up malware detection, thereby reducing
the incubation period of new exploits. The im-
portance of efficiency is often underestimated
because most research focuses on either auto-
mation or accuracy. However, ignoring efficiency
will lead to the aforementioned malware explo-
sion problem. Efficiency can, if done properly,
narrow the time needed to find new malware.

The Malware Database
The Cybercrime Scene Database (CSD) is a da-
tabase we designed to demonstrate the feasibility
of malware set approximation. The CSD aims to
store benign and malicious code samples. Sam-
ples can be tagged with specific behaviors that
violate defined security policies. Each group of
samples can share a common behavior, which is
regarded as one malware category, and these cat-
egories can overlap. The names of the malware
categories—such as Trojan, Adware, or Root-
kit—are those used by antivirus companies.

In addition to these conventional names, each
category in the CSD will include a behavior de-
scription of the violation, which should be veri-
fiable. For example, a description could be, “a
program opens a backdoor without permission
and sends the address book to the Internet.” To
standardize the user interface, the description
can be formalized. Such a description could be
verified by checking the created port number and
captured outgoing packets. We regard this infor-
mation as evidence of broken security policies
because the program’s behaviors are repeatable.

Ideally, all executables would be collected and
verified in the CSD. The collection and verifica-
tion of executables would implicitly satisfy the
quantity and accuracy requirements for predict-
ing the true malware set. This could raise the

The Cybercrime Scene Database
(CSD) is a database we designed to
demonstrate the feasibility of malware
set approximation.

	 computer.org/ITPro 	 51

overall malware detection rate: researchers could
apply the proposed method to any system to
quickly and precisely determine malware by que-
rying its unique identifier in the CSD.

Furthermore, cloud computing offers a plat-
form for storing test samples, searching for mal-
ware patterns, and repeating attacks. The CSD
could leverage the huge storage capabilities of
clouds to search for known malware patterns.
Well-known scalable database systems, such as
HBase, Cassandra, and Bigtable, provide oppor-
tunities here, suggesting that users might be able
to insert, update, and modify data quickly. These
database systems typically provide MapReduce
for parallel processing to achieve large-scale
search.

Finally, the virtualized environment could be
used for behavior verification. The behavior of a
sample could be repeated in a cloud containing
detailed evidence. The behavior verification of
each sample is important for dealing with mal-
ware detection. Using a reconstructable virtual
environment to verify security violations would
let the malware research community examine
the correctness of the described security viola-
tion behavior. It’s thus important for the CSD
to be made publicly available to the malware re-
search community, providing a common place to
debate security violation descriptions.

This concept is similar to the current legal sys-
tem, in which a prosecutor provides evidence of a
law violation, and the court determines whether
to convict the offender based on that evidence.
Once the malware research community can
agree on the security violation description of a
malicious executable, we’ll have a better under-
standing of the cause of the security violation.
This would also help researchers acquire mal-
ware samples that better match the desired study
description, and possibly in greater quantities,
to help them pursue more accurate and efficient
malware detection.

The Design
The CSD can be constructed as a 2D database
in which each row represents a sample (execut-
able) and each column represents a behavior de-
scription for security policy violations. The data
indexed by a row key and a column key is one
piece of evidence. The CSD is suitable for imple-
mentation as a distributed key-value database

system—specifically, NoSQL. This database is
scalable for storing infinite data. Each row key
is a unique identifier for a sample indexing. The
unique identifier can be composed of file-related
information, such as the hash value of file con-
tent, file size, and file type. Each column can be
a serial number that stands for a behavior cat-
egory, bounded by a behavior description. The
description indicates temporary or permanent
activities monitored in a machine. The change
of a machine state as a result of these activities
can be regarded as a piece of behavior evidence,
indexed by the row and column keys.

A piece of evidence can be a snapshot image of
a virtual machine (VM) or another kind of execu-
tion information that can be re-generated deter-
ministically (however, some researchers are still
studying “replay systems” that produce faithful
execution in VMs; faithful execution should en-
sure that an execution is the same as the original
execution recorded in replay systems). We store
evidence as an element of the database, indexed
by the row and column keys.

Based on the database’s functionalities, here
we introduce the properties of the CSD.

Row Insertion
To set up a common benchmark for analysts, the
CSD provides row insertion for universal execut-
able collection. Any user can upload executables;
the system will then generate a unique identi-
fier as its row key in the database. The number
of rows stands for the total number of samples
in the CSD, and a new executable found or cre-
ated is inserted as a new row. We expect that all
executables, benign or malicious, will be stored
in the CSD to construct a common benchmark
for analysts.

Column Insertion
The CSD will provide test sample sets, each of
which will deal with a subproblem of malware
detection. Although a generic solution to mal-
ware detection doesn’t currently exist, solu-
tions to subproblems with rigorous constraints
might exist owing to common behaviors. These
test sample sets of subproblems within the CSD
will represent different malware categories. The
behaviors of all malware are infinite, so letting
CSD researchers insert new categories is ben-
eficial. Each category (column) will represent a

52	 IT Pro November/December 2014

Feature: Security

verifiable behavior description that’s observable
and meaningful for security concerns. With more
categories, the system could help reduce the false
positives and false negatives.

Value Update
To provide provable information about security
violations, the CSD offers an operation to collect
the evidence of a sample. Testing all executables
is difficult but possible; many automatic malware
analysis methods have been proposed. We can
use behavior analysis tools to perform evidence
extraction for each executable.

Initially, the status of a non-tested sample is
“not tested.” After an extraction, the value can
either be “found” or “not found.” If the value is
“found,” analysts should upload their evidence to
prove the correctness of their behavior examina-
tions. We suggest using a VM image to achieve
the property of “verifiable.” With VM images, us-
ers can monitor system state changes to evaluate
the accuracy of malware detection.

Query
For malware detection and research, the CSD
will let users query an executable regardless of
whether it contains malicious behavior. To query
the CSD, a user generates the unique identifier
of a file on the client side and sends the iden-
tifier as a row key to the CSD via the Internet.
The CSD then reports violated security policies
and malicious behaviors to users. Researchers
could then perform advanced searches to collect
specific sets or categories of executables. In this
way, researchers could evaluate their detection
method using a specific category as a common
benchmark.

Behavior Verification
For credible classifications, the CSD provides
repeatable evidence that can prove the presence
of behaviors described in its columns, a “cor-
rectness proof” that’s important for future re-
search. With behavior verification, analysts can
argue for their predictions. Evidence of an attack
incurred by test samples can be as simple as a
VM image. For example, an analyst’s claims that
a Trojan opens a port sending a string “foo bar”
might be true. During execution, the monitored
VM immediately produces a network packet
that includes the string “foo bar.” Although

sending out a “foo bar” network packet might
not be harmful to most users, at least concrete
evidence of “foo bar” packet sending and a de-
scription of security infringement would be pro-
vided by the analyst.

Verification should be adjusted to reproduce
behaviors in a limited amount of time. For ex-
ample, evidence providers should establish the
exact VM environment for time-bomb, logical-
bomb, and trigger-based malware to reveal their
behaviors. By launching a VM on a cloud, ana-
lysts can repeat the experiments conducted by
the providers of the VM who claimed that the
investigating software is a piece of malware. In
this way, the validity of each malware result can
be established.

T he CSD provides a platform for providing
feedback to support comparable, verifiable,
publicly available, and malware-enumera-

ble evidence, thereby enhancing detection accu-
racy, resolving detection disputes, and introduc-
ing a common detection benchmark with a true
malware population.

Researchers are developing new heuristic
techniques and conducting experiments to
tackle the challenges of malware detection, and
our goal is to leverage the accumulated knowl-
edge gradually to eventually build comprehen-
sive malware libraries that mitigate malware
uncertainties and lead toward a malware-free
utopia.�

Acknowledgments
This work is supported in part by the National Science Council
of Taiwan, Taiwan Information Security Center, Industrial Tech-
nology Research Institute of Taiwan, Institute for Information In-
dustry of Taiwan, the International Collaboration for Advancing
Security Technology, HTC Corporation, D-Link, Trend Micro,
Promise Inc., Chungshan Institute of Science and Technology,
Bureau of Investigation, and Chunghwa Telecomm. The authors
thank Jeffrey Voas for his recommendations and reviews of earlier
versions.

References
	 1.	 N. Perlroth, “Outmaneuvered at their Own Game,

Antivirus Makers Struggle to Adapt,” The New York
Times, 31 Dec. 2012; www.nytimes.com/2013/01/01/

	 computer.org/ITPro 	 5 3

technology/antivirus-makers-work-on-software-to-
catch-malware-more-effectively.html?_r=1&.

	 2.	 L.M. Adleman, “An Abstract Theory of Computer
Viruses,” Advances in Cryptology—Crypto ’88, LNCS
403, 1988, pp. 354–374.

	 3.	 G. Stoneburner, C. Hayden, and A. Feringa, “NIST
Special Publication 800-27 Rev. A: Engineering Prin-
ciples for Information Technology Security (A Base-
line for Achieving Security),” Nat’l Inst. Standards and
Technology, 2004; http://csrc.nist.gov/publications/
nistpubs/800-27A/SP800-27-RevA.pdf.

	 4.	 C. Rossow et al., “Prudent Practices for Designing
Malware Experiments: Status Quo and Outlook,”
IEEE Symp. Security and Privacy, 2012, pp. 65–79.

	 5.	 R. King, “McAfee Sees ‘Malware Explosion’
Across Desktop, Mobile Platforms,” ZDNet, 22
May 2012; www.zdnet.com/blog /btl /mcafee-
sees-malware-explosion-across-desktop-mobile-
platforms/77531.

	 6.	 P. Baecher et al., “The Nepenthes Platform: An Ef-
ficient Approach to Collect Malware,” Recent Advances
in Intrusion Detection, 2006, pp. 165–184.

	 7.	 E. Buchanan et al., “When Good Instructions Go
Bad: Generalizing Return-Oriented Programming to
RISC,” Proc. 15th ACM Conf. Computer and Communica-
tions Security, 2008, pp. 27–38.

	 8.	 L. Davi et al., “Privilege Escalation Attacks on Android,”
Information Security, Springer. 2011, pp. 346–360.

	 9.	 A.P. Felt et al., “A Survey of Mobile Malware in
the Wild,” Proc. 1st ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices, 2011,
pp. 3–14.

	10.	 C. Parampalli, R. Sekar, and R. Johnson, “A Practical
Mimicry Attack against Powerful System-Call Moni-
tors,” Proc. 2008 ACM Symp. Information, Computer and
Communications Security, 2008, pp. 156–167.

	11.	 D. Balzarotti et al., “Efficient Detection of Split Per-
sonalities in Malware,” Proc. 17th Ann. Network and
Distributed System Security Symp., 2010.

	12.	 M. Christodorescu et al., “Semantics-Aware Malware
Detection,” IEEE Symp. Security and Privacy, 2005,
pp. 32–46.

	13.	 X. Jiang, X. Wang, and D. Xu, “Stealthy Malware
Detection through VMM-based Out-of-the-Box
Semantic View Reconstruction,” Proc. 14th ACM
Conf. Computer and Communications Security, 2007,
pp. 128–138.

	14.	 H. Yin et al., “Panorama: Capturing System-Wide
Information Flow for Malware Detection and Analy-
sis,” Proc. 14th ACM Conf. Computer and Communications
Security, 2007, pp. 116–127.

	15.	 C. Kolbitsch, “Effective and Efficient Malware Detec-
tion at the End Host,” Proc. USENIX Security Symp.,
2009, pp. 351–366.

	16.	 J. Newsome and D. Song, “Dynamic Taint Analysis
for Automatic Detection, Analysis, and Signature
Generation of Exploits on Commodity Software,”
The Annual Network and Distributed System Security
Symp., 2005.

Michael Cheng Yi Cho is a PhD student in the Depart-
ment of Computer Science at National Chiao Tung Univer-
sity, Taiwan. His research interests include system security,
honeypot technology, and intrusion detection. Contact him
at michcho@dsns.cs.nctu.edu.tw.

Chia-Wei Hsu is a PhD student in the Department of
Computer Science at National Chiao Tung University,
Taiwan. His research interests include mobile security, sys-
tem security, and virtual machine technology. Contact him
at hsucw@cs.nctu.edu.tw.

Chi-Wei Wang is a PhD student in the Department of
Computer Science at National Chiao Tung University,
Taiwan. His research interests include network security,
system security, and operating systems. Contact him at
cwwangabc@gmail.com.

Shiuhpyng Winston Shieh is a distinguished profes-
sor and the past Chair of the Department of Computer
Science, National Chiao Tung University (NCTU), and
the Director of Taiwan Information Security Center at
NCTU. His research interests include reliability and se-
curity hybrid mechanisms, network and system security,
and malware behavior analysis. He is actively involved
in IEEE and has served as the Reliability Society (RS)
VP Tech, and Chair of RS Taipei/Tainan Chapter. Shieh
received his PhD in electrical and computer engineer-
ing from the University of Maryland, College Park. He
(along with Virgil Gligor of CMU) invented the first US
patent in the intrusion detection field. He is an IEEE Fel-
low and ACM Distinguished Scientist. Contact him at
ssp@cs.nctu.edu.tw.

	 Selected CS articles and columns are available
	 for free at http://ComputingNow.computer.org.

