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We report a theoretical study of the transition temperature of a trapped interacting dilute Bose gas. The
system is treated like a two-fluid model consisting of a thermal component and a condensate component.
Through the calculation of the energy spectra, the origins of various effects on the transition temperature are
derived. We found that the interactive shift is affected by both the thermal component and the condensate
component. The latter effect, which is about 34% of the former, has never been reported so far. With these two
effects, our calculated interactive shift agrees very well with the recent measurement.

DOI: 10.1103/PhysRevA.73.043604 PACS number�s�: 03.75.Hh, 03.75.Kk

I. INTRODUCTION

The trap potential, finite number of atoms and the mutual
atomic interactions are the three major differences between
the current dilute gas BEC system and the ideal Bose gas.
Due to the trap potential, the atomic density becomes non-
uniform. The finite number of particles, or the so-called
finite-size effect, usually drags the system away from the
thermodynamic limit; and the Hamiltonian can no longer be
described by the single-particle form because of the mutual
interactions. Among the effects of the three new features on
statistical mechanical properties, the interactive effect is the
most hard one to treat. In a recent measurement �1�, it was
found that the interactive shift of the transition temperature is
�Tc /Tc

0=�N1/6, with �=−0.009, while the theoretical study
gives �=−0.007 �2�. The goal of this paper is to provide a
theoretical method to treat the interactive effect. We will
show that the previous theoretical result takes account only
the effect of the thermal component. We further take the
effect of condensate component into consideration and ob-
tain a very good agreement with the measurement. We will
show that the effect of condensate component of interactive
shift is about 34% of the thermal component and thus cannot
be neglected. With our method, the interactive shift is treated
properly.

We briefly summarize the effects on the statistical me-
chanical properties arise from the three modifications of cur-
rent BEC systems to the ideal Bose gas �3�. First, the ther-
modynamic limit transition temperature �Tc

0� of ideal Bose
gas is in the two-thirds power of the number density, and the
number of condensate atoms below Tc

0 is in the 1.5th power
of the temperature. With the trap potential, the corresponding
Tc

0 changed into the one-third power of the number of atoms,
and number of condensate atoms for temperature below Tc

0 is
to the third power of the temperature. The transition tempera-
ture is usually defined from n�0��T

3 =��3/2��2.612 as in the

ideal Bose gas. Because the number density n is nonuniform
now, it is approximated by the density at the trap center. This
gives

Tc
0 =

��

kB
� N

��3��
1/3

� 0.9405
��

kB
N1/3, �1�

where �= ��1�2�3�1/3 is the geometrical mean of the fre-
quencies from trap potential of the form Vext�r�=m��1

2x2

+�2
2y2+�3

2z2� /2, N is the number of particles, and � is the
Riemann’s zeta function. Another major difference is that the
curve for the number of condensate atoms versus tempera-
ture around the defined Tc

0 has smooth change instead of an
abrupt cutoff like the ideal Bose gas �4,5�. Hence, strictly
speaking, BEC of a trapped gas is not a phase transition.
Second, on the finite-size effect, the number of condensate
atoms in experiments goes from hundreds to millions. This
number is finite and the thermodynamic limit has never been
truly reached. For noninteracting atoms in a trap potential,
the fractional change of transition temperature Tc relative to
the Tc

0 due to the finite-size effect is �6,7�

�Tc
N

Tc
0 �

Tc − Tc
0

Tc
0 = −

��2�
2���3��2/3

�̄

�
N−1/3 � − 0.73

�̄

�
N−1/3,

�2�

where �̄= ��1+�2+�3� /3 is the arithmetic mean of the trap
frequencies. This shows that the transition temperature is
downward shifted with respect to the Tc

0 and vanishes in the
large N limit.

Third, the treatment of interaction effects is never
straightforward and has been of much interest. Namely, be-
fore the realization of BEC in dilute gas, Lee, Yang, and
Huang studied the ideal Bose gas with hard sphere interac-
tions �8�. Bagnato et al. studied the power-law trap potential
with interaction �9�. The dependence of transition tempera-
ture Tc on the atomic interactions was studied by mean-field
theory. The shift of transition temperature was calculated by
Giorgini, Pitaevskii, and Stringari �denoted as GPS hereafter
for convenience� �2,10�. Their results were subsequently
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verified by a number of different approaches �11�. We find
that GPS counts in only the effect of the thermal component
and the effect of the condensate component was neglected.
Physically, near Tc, there are condensate atoms with order
relative small to the number of thermal atoms. But, because
the condensate atoms are localized about the trap center, the
effect of mutual interactions among condensate atoms is not
totally negligible. Throughout this paper, what we discussed
are the ultracold atoms. We follow the convention of Ref. �5�
and call the atoms in the ground state as the condensate
atoms while the atoms in excited states as the thermal atoms.
We treat the condensate and thermal gaseous atoms as two-
fluid model �12�. The energy spectra of condensate and ther-
mal components are calculated through the Hartree-Fock
mean-field approximation. We derived that once we obtain
the relative shift of the energy gap between thermal and con-
densate components with respect to the noninteracting Bose
gas, the effects of interaction on the shift of transition tem-
perature can then be determined.

The paper is organized as follows: In Sec. II, we briefly
describe the mean-field approximation and calculate the en-
ergy spectra to the first order of interaction parameter g. We
show the different behaviors of the interacting Bose gas with
and without the trap potential. In Sec. III, we derive the shift
of transition temperature by the shift of energy gap. We
verify that the result of GPS is only the effect of thermal
component. So we derive the modification induced by the
condensate component. Finally, discussions are given in Sec.
VI.

II. THE ENERGY SPECTRA

We will show in Sec. III that under the two-fluid model,
the energy gap of the thermal and condensate components
determines the shift of the transition temperature. So we dis-
cuss here the energy spectra first. In the Hartree-Fock �HF�
mean-field approximation, the trapped Bose gas in an exter-
nal potential Vext�r� at finite temperature can be described by
the Gross-Pitaevskii equation �GPE� together with the HF
approximation �13�,

�−
�2

2m
+ Vext�r� − ���c�r� + g�nc�r� + 2nT�r���c�r� = 0

�3�

and

i
��T�r,t�

�t
= �−

�2

2m
+ Vext�r� − ���T�r,t� + 2gn�r��T�r,t� .

�4�

Equation �3� describes the macroscopic condensate wave
function �c�r�= 		�r�
, here 	¯
 means the ensemble aver-
age and 	�r� is the particle field operator. Equation �4� is the
fluctuation of the condensate, �T�r , t�=	�r , t�−�c�r�, which
gives the elementary excitations of the system. In the
coupled equations, � is the chemical potential related to the
number of particles and is not to appear in energy spectra
directly. g=4
�2a /m is the interaction coupling constant

given by the s-wave scattering length a. This is the two-fluid
model where the condensate gas is a superfluid phase and the
thermal gas is a normal fluid. nc�r�= ��c�r��2 is the number
density of the condensate. n�r�= 		�r�†	�r�
 is the total par-
ticle density, and nT�r�=n�r�−nc�r� is the thermally excited
particle density. The anomalous density mT�r�= 		�r�	�r�

−�c�r�2. For higher temperature, mT�nT; while in the low
temperature, nT and mT are both negligible. The present
mean-field approach is expected to provide correct thermo-
dynamic properties of the system.

A. Limit of no trap potential

We consider first the simplified system without external
potential Vext=0. In the limit of noninteracting bosons, g=0,
and the energy spectrum of the system is given by

�p
ide =

p2

2m
, �5�

where p= �p� � and p� =2
�n� /L is the momentum eigenvalue of
the single particle, in which n� is a vector whose components
are integers and L is the linear size of the system.

Now take the interaction into consideration, under the
two-fluid model, we denote the condensate state energy as �c
and the thermal component energy spectrum as �T. Expand to
the lowest order of g from Eq. �3� and Eq. �4�, one finds

limit of no trap potential ��T = �T
ide + 2gn ,

�c = �c
ide + 2gnT + gnc,



�6�

where n=nT+nc is the density function, which is indepen-
dent of r in the large volume limit. Without mutual atomic
interaction, the energy gap is 
g

ide=�T
ide−�c

ide. Equation �6�
shows that the shift of energy gap of the interacting gas
without trap potential is �
g

uni=gnc �14�. We see that the
repulsive interaction will increase the energy gap between
the condensate and the thermal components.

B. Harmonic trap

Current BEC experiments are mostly carried out in har-
monic trap potentials. With the external potential, both the
condensate and thermal atomic density profiles are nonuni-
form. We discuss the effects on the energy spectra as follows.

1. Effect on the thermal gas

The energy eigenvalues of the noninteracting particles in
a harmonic trap Vext�r�=m��1

2x2+�2
2y2+�3

2z2� /2 are

��ni�
= �

i=1

3 �ni +
1

2
���i �ni = 0,1,2, . . . � , �7�

Near transition temperature, the condensate component is
localized around the trap center �r=0� and its size is much
smaller than the thermal component. So in calculating the
energy shift of the thermal component, we can neglect the
condensate density nc. We define an effective thermal density
n̄T to be found and write the energy spectrum as
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effect on the thermal gas: �T = �T
ide + 2gn̄T. �8�

To determine n̄T, consider the phase space Bose-Einstein dis-
tribution

f�p,r� =
1

exp���p,r�/kBT� − 1
, �9�

where ��p ,r� is the semiclassical excitation spectrum. By Eq.
�4�,

��p,r� � �ide�p,r� + 2gn�r� − � . �10�

Expand Eq. �9� to the first order of g,

f�p,r� = �f�p,r��g=0 + g� �f�p,r�
�g

�
g=0

= f0�p,r� − 2gn
�f0�p,r�

��
,

�11�

where f0�p ,r� is distribution function of the noninteracting
Bose gas. Integrate over the momentum variables, we get the
modification of nT�r� due to the interaction,

nT
int�r� � nT − 2gnT

�nT

��
, �12�

where nT�r� is the thermal density distribution of noninter-
acting Bose gas. Further integrate over the coordinates of Eq.
�12�, we get the number of thermal particles,

NT
int =� nTd3r − 2g� nT

�nT

��
d3r . �13�

On the other hand, by the Taylor’s expansion to the first
order of g,

NT
int � NT + g

�NT

�g
. �14�

With our assumption

� = �T
ide + 2gn̄T − � , �15�

we obtain

�NT

�g
= − 2n̄T

�NT

��
= − 2n̄T� �nT

��
d3r . �16�

Set Eq. �16� into Eq. �14� and compare with Eq. �13�, the
effective density was derived as

n̄T =
� d3r

�nT

��
nT

� d3r
�nT

��

. �17�

Next, follow the local density approximation �LDA� �15�,
the spatial distribution of thermal state nT can be written as

nT�r� =
1

�T
3 g3/2�e−�Vext�r�−��/kBT� , �18�

where �T=��2
 /mkBT�1/2 is the thermal wavelength, and
g��x�=�n=1

� xn /n� is the Bose-Einstein function. With �=0, it
is easy to obtain

n̄T = SnT�0� , �19�

where nT�0�=��3/2� /�T
3 is the thermal density nT�r� at trap

center r=0, and S=�n,m=1
� �1/n1/2m3/2��1/ �n

+m�3/2� /��3/2���2��0.281. Thus, we find that the effective
density is 0.281 times of the center density in the trap. Fi-
nally we obtain the shift of the thermal spectrum relative to
the ideal Bose gas as 
�T=2gn̄T with n̄T derived above.

2. Effect on the condensate gas

Near Tc, nc is still very small, we can first estimate the
effect of interaction on the condensate by using the eigen-
function of the harmonic oscillator,

��r� = � 1


aho
2 �3/4

e−�x2/�2a1
2�+y2/�2a2

2�+z2/�2a3
2��, �20�

where the oscillator lengths ai�i=1,2 ,3� are given by ai

=�� /m�i, the condensate density can be written as nc�r�
=Nc���r��2. Considering the length scales in harmonic traps,
�i

T= �2
m�i
2 /kBT�−1/2 is the classical oscillation amplitude of

a particle in the trap with energy kBT. It is the size of nT�r� in
the ith direction. �i

c=ai is the size of the oscillator ground
state in the ith direction. We find that

�i
T

�i
c = � kBT

2
��i
�1/2

� O�N1/6� � 1. �21�

This justifies our previous assumption that the size of the
condensate component nc is negligible in calculating the
thermal spectrum shift. Now to the condensate component,
the thermal component density can be approximated as
nT�0�. Because the condensate component is only localized
around the trap center, we can effectively treat the conden-
sate component in a trap Vext as an additional constant
2gnT�0�.

Now we use a more sophisticated Gaussian variational
calculation �16� to obtain the shift of condensate energy. We
adopt a trial Gaussion form as Eq. �20�,

��r� =
e−�x2/�2b1

2�+y2/�2b2
2�+z2/�2b3

2��


3/4�b1b2b3�1/2 , �22�

but with bi as variational parameters. Substitution of Eq. �22�
into Eq. �3� yields the expression of the condensate energy,

E = Nc�
i

��i� ai
2

4bi
2 +

bi
2

4ai
2� + 2NcgnT�0� +

Nc
2g

2�2
�3/2b1b2b3
.

�23�

The nonlinear term Nc
2g can be neglected for small num-

ber of Nc. We set the bi equal to ai, and find that

E = Nc�c
ide + 2NcgnT�0� +

Nc
2

2
	00�v�00
 , �24�

where
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	00�v�00
 = g� dr���r��4 �25�

is the two-particle interaction energy of the condensate state.
The energy level is obtained through

�c =
�E

�Nc
= �c

ide + 2gnT�0� + gn̄c, �26�

where n̄c=Scnc�0� is effective condensate density, Sc=2−3/2

�0.354.
With the typical value of a /aho�10−3, we can see that the

linear approximation is justified for Nc�103 which corre-
sponds to N�106. This is applicable to many current experi-
ments. Under this condition, our modification to the conden-
sate energy is

effect on the condensate: �c = �c
ide + 2gnT�0� + gn̄c,

�27�

that is, the shift of condensate energy relative to the ideal
Bose gas is 
�c=2gnT�0�+gn̄c. Compared to the ideal Bose
gas limit, we find that the shift of energy shows different
direction in a trapped potential, and the amount is correlated
to the shape of the potential. Also the energy shift is depen-
dent on g.

Note that if the temperature is far below the transition
temperature, the number of condensate particles grow up to
O�N�. For sufficiently large number of condensate atoms,
�Nc�103�, and the interaction energy per particle becomes
larger compared to ��i; then the kinetic energy terms �pro-
portional to ai

2 /bi
2� can be neglected in Eq. �23�. The leading

contribution to the energy level is

�c = 2gnT�0� +
7

4
� 2



�1/5�Nca

aho
�2/5

��̄ . �28�

Or, if we use the Thomas-Fermi approximation �16�, the re-
sult is

�c = 2gnT�0� +
152/5

2
�Nca

aho
�2/5

��̄ . �29�

We can see that in this region, the shift of the energy level is
not linear to g then.

The shift of energy gap obtained is

�
g = 
�T − 
�c = 2gn̄T − 2gnT�0� − gn̄c

= − 2�gnT�0� − Scgnc�0� , �30�

where ��0.719 and Sc�0.354. The energy shift in the ther-
mal component is denoted as �
g

T=−2�gnT�0�, and the shift
in the condensate energy is �
g

c =−Scgnc�0�. For convenience
we define the effective condensate energy level

Ec
eff = �c

ide − �
g. �31�

We summarize our results of energy spectra shifts in Fig.
1. In the ideal Bose gas, the gap is schematically denoted as
the energy difference of thermal component and condensate
component, that is, �T−�c under the two-fluid model. Figure
1�b� shows the downward shift of gap for interacting Bose

gas with Vext=0. Figure 1�c� depicts the shift of gap from the
thermal gas with interacting Bose gas under harmonic trap
potential. In Fig. 1�d�, both the effects of thermal component
and condensate component to the shift of the gap are in-
cluded. The plots are for repulsive interactions, for the attrac-
tive interactions, the shift directions will be reversed.

III. THE SHIFT OF TRANSITION TEMPERATURE

After the investigation of the shift of energy gap under the
two-fluid model, we will discuss its effects on transition tem-
perature. For interacting bosons in a harmonic trap, the total
number of thermal particles is given by

NT = �
j=1

�

�ze−2gn̄T/kBT� j�
�ni�

e−j��ni�
/kBT = � kBT

��
�3

g3�ze−2gn̄T/kBT� ,

�32�

where z=exp�� /kBT�. With kBT���i, we can apply the
Euler-Maclaurin summation formula �6� to obtain the ap-
proximate form for the thermal part. The approximation
keeps up to O�kBT /����O�N1/3�. During the manipulation,
the density of state for the ground state will be zero. So the
number of ground state atoms must add in for the total num-
ber of particles �17�

N = � kBT

��
�3

g3�ze−2gn̄T/kBT� +
ze−�c/kBT

1 − ze−�c/kBT . �33�

Substitute the effective fugacity z�=z exp�−�c /kBT� in it, the
Bose-Einstein distribution becomes

N = � kBT

��
�3

g3�z�e��c−2gn̄T�/kBT� +
z�

1 − z�

� � kBT

��
�3

g3�z�� +
�c

ide − �
g

��
� kBT

��
�2

g2�z�� +
z�

1 − z�
.

�34�

Notice that the phase transition occurs as chemical potential

FIG. 1. The shift of the energy gap to the first order of positive
g near transition temperature. �a� The ideal Bose gas; �b� the inter-
acting Bose gas without harmonic trap potential; �c� the effect of
thermal component for interacting Bose gas under trap potential; �d�
the effects including both the thermal and condensate components.
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approaches the ground state energy. That is, z�→1 for T
→Tc. And in our system, we have the conditions �c, gn̄T
�kBT. Equation �34� is then obtained by Taylor expansion of
g3 about z� and use the relationship �c−2gn̄T=�c

ide−�
g.
By the definition Tc

0 of Eq. �1� and from Eq. �34�, we
obtain the number of condensate atoms in the interacting
Bose gas at the transition temperature Tc

0 as

Nc�T = Tc
0� =

��

Ec
eff� N

��3��
1/3

. �35�

The result implies that the positive scattering length g�0
will reduce the condensate particle number. In the large N
limit, we find Nc�T=Tc

0�→O�N−1/6�.
Near transition temperature, z�→1, using Taylor expan-

sion g3�z���g3�1�− �1−z��g2�1� to Eq. �34� gives

N = � kBT

��
�3

�g3�1� − �1 − z��g2�1��

+
Ec

eff

��
� kBT

��
�2

g2�1� +
z�

1 − z�
. �36�

In the above equation, the last term is the number of conden-
sate atoms Nc and Nc�N. Near the transition temperature,
�1−z���1. So the leading order terms are used to determine
the transition temperature �5,7�:

N = � kTc

��
�3

g3�1� +
Ec

eff

��
� kTc

��
�2

g2�1� . �37�

This transition temperature is different from Tc
0. Let Tc=Tc

0

+�Tc, we obtain the fractional correction to the transition
temperature. Here both the finite-size effect and the interac-
tion effects are included. This is the extension of Eq. �2�,

�Tc

Tc
0 = −

��2�
3���3��2/3

Ec
eff

�
N−1/3. �38�

From the meaning of Ec
eff defined in Eq. �31�, we separate

the relative temperature shift into two parts. The one from
�c

ide is the so called finite-size effect as described in Eq. �2�. It
vanishes at large N limit. The other is due to the shift of
energy gap �
g which is induced by mutual atomic interac-
tions. It enhanced as N increased. And the interactive shift of
transition temperature originates from both thermal compo-
nent and condensate component. We emphasize that the shift
of the transition temperature depends only on Ec

eff.
Also, we have the number of atoms at transition tempera-

ture Tc as

� kBT

��
�3

�1 − z��g2�1� =
z�

1 − z�
, �39�

as z�→1, we have � kBT

��
�3

g2�1���z� / �1−z���2, together with
Eq. �1� we obtain at Tc,

Nc�T = Tc� =���2�N
��3�

. �40�

It is different from that of Nc�T=Tc
0�. Accurancy of all terms

in Eq. �36� are more than O�N1/3�.

A. Thermal effect

In this paragraph we discuss the shift of the transition
temperature due to the energy shift of the thermal compo-
nent. By our designation of energy shift and Eq. �38� we
obtain

�Tc
T

Tc
0 =

��2�
3���3��2/3

�
g
T

��
N−1/3 = − 1.33

a

aho
N1/6. �41�

This result agrees with those of GPS �2�, we have shown that
it is only the effect of thermal component and the effect of
the condensate was neglected.

B. Condensate effect

The shift of transition temperature due to the condensate
component from Eq. �38� is

�Tc
c

Tc
0 = −

��2�
3���3��2/3

gScnc�0�
��

N−1/3 = − 0.45
a

aho
N1/6.

�42�

Thus, we finally derived that the total shift of the transition
temperature, including the effects of both the thermal com-
ponent and condensate component for the interacting Bose
gas is

�Tc
int

Tc
0 =

�Tc
T + �Tc

c

Tc
0 = − 1.78

a

aho
N1/6. �43�

This result fits the experimental measurement very well �1�.
With the form �Tc

int /Tc
0=�N1/6, the experimental measure-

ment �=−0.009, GPS prediction is �=−0.007. With the ex-
perimental parameters a=5.31 nm, and aho=1.00 �m, our
formula gives �=−0.009 45.

IV. DISCUSSIONS

We show the simple picture of the shift of energy spectra
for the thermal and condensate components and the shift of
the transition temperature near Tc

0 in first order of g. The
change of energy gap is due to the mutual atomic interaction
and the trap potential. Near Tc, the number of condensate
atoms changes fast; under Tc, the number grows up to O�N�;
on the other hand, the number of thermal atoms changes
slowly. The energy gap changes sharply and is monotonic in
this region.

Our results are for atomic number under N�106. For N
�106, the effect of condensate is no longer linear in g any-
more, the shift will be smaller than current result. In our
calculation, we find the energy spectra through HF approxi-
mation Eq. �3� and Eq. �4�, and calculate the chemical po-
tential � through the Bose-Einstein distribution Eq. �40�. We
find the difference in condensate energy �c and the chemical
potential � as
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�c − �

��
=

1
���2�

� ��3�
N

�1/6

, �44�

it is not negligible small for many current experimental en-
vironments. This difference has not been considered in most
theoretical works before.
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