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Riccati Matrix Differential E 
Formulation for the Analysis of Nonuniform 

ultiple Coupled Microstrip Lines 
Jen-Tsai Kuo, Member, IEEE 

Abstruct- A Riccati matrix differential equation (RMDE) is 
formulated for analyzing nonuniform coupled microstrip lines 
(NCML’s) in the frequency domain. The formulation is based on 
a reciprocity-related definition in the theory of multiconductor 
transmission lines under quasi-TEM assumption. The hybrid- 
mode nature of modal phase velocities and strip characteristic 
impedances for multiconductor microstrip structure is included. 
The nonlinear RMDE is first transformed into a first-order linear 
differential matrix equation which can be efficiently solved using 
method of moments. A convergence study is performed to investi- 
gate the sufficient number of basis functions used in the method. 
The voltage-scattering parameters of a tapered microstrip and 
two three-line structures are presented. The frequency responses 
of a pair of nonuniform coupled lines are measured and compared 
with calculated results. 

I. INTRODUCTION 

ONUNIFORM coupled microstrip lines (NCML’s) play 
an important role in both analog and digital microwave 

integrated circuits. Using NCML’s, for example, a folded all- 
pass two-port network [ l ]  and a directional coupler [l] ,  [2] 
can be realized with high coupling values operating over 
an ultra-wide frequency band. To date, NCML’s serve as 
the interconnections in most chip packages for digital inte- 
grated circuits of switching speed covering the microwave or 
millimeter-wave regime [3]-[9]. With the advances of today’s 
semiconductor fabrication technology, the major portion of 
delay time in a microwave integrated circuit (MIC) can be 
due to these interconnection lines [3]. One possible way for 
reducing the delay time is to increase the density of the 
interconnecting NCML’s. As the NCML’s become shorter 
or are placed closer, the nonuniformity of the lines must be 
properly designed in order to obtain transmitted signals with 
sufficiently high quality. 

When high-speed signal travels along NCML’s, the received 
signal at the load end can be degraded due to 1) dispersion, 2) 
cross talk, 3) losses, and 4) reflections. The cross talk and dis- 
persion are due to the differences of relative effective dielectric 
constants for different modes and at different frequencies, 
respectively. The losses which include conductor, dielectric, 
and radiation attenuation factors will lower the power level of 

Manuscript received August 22, 1995; revised February 15, 1996. This 
work was supported in part by the National Science Council, Taiwan, Grant 
NSC 85-221 3-E-009-002. 

The author is with the Department of Communication Engineering, National 
Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, Taiwan, R.O.C. 

Publisher Item Identifier S 001 8-9480(96)03783-0. 

the received signal. If the lines are electrically short and made 
on a low-loss substrate, the radiation can dominate the loss 
mechanism. Reflections are caused by the position-dependent 
impedance values along the lines. Note that all the aforesaid 
factors depend on the nonuniformity of the lines and on the 
operation frequency which make the characterization of the 
NCML’s network become a complicated task. 

Several methods have been developed to analyze multiple 
NCML’s. Mehalic and Mittra [4] investigated the tapered 
multiple microstrip lines using a spatial iteration-perturbation 
approach technique. Oh and Schutt-Aine [5] analyzed the 
nonuniform lines based on a time-domain scattering parameter 
formulation incorporated with the closed-form expressions of 
voltage variables for divided short uniform lossless lines. Mao 
and Li proposed a method of convolution-characteristic [6] and 
a method of equivalent cascaded network chain [7] to handle 
the transient response of NCML’s. Palusinski and Lee [3] 
used Chebyshev polynomials to expand the current and voltage 
along the nonuniform lines in the time-domain to predict the 
reflections and cross talk of general multiple coupled line 
systems. 

In frequency domain, Arabi et al. [8] presented an electri- 
cal field integral equation formulation based on a combined 
approach of using closed-form near and far field approxima- 
tions for the Sommerfeld microstrip Green’s functions. The 
accuracy of this technique can be set to any desired value. 
In [9], Pan and his colleagues extended the method in [3] to 
the frequency domain. The advantages of analyzing NCML’s 
in the frequency domain over the time domain were also 
discussed. 

To calculate the input reflection coefficient matrix of ter- 
minated NCML’s, we derive a differential matrix equation, 
which is known as the Riccati matrix differential equation 
(RMDE), based on a reciprocity-related definition of the line 
voltages and currents for hybrid-mode multiple coupled mi- 
crostrips. The RMDE is expressed in terms of the normal mode 
parameters of coupled microstrips and solved by method of 
moments. The method of solution is also extended to calculate 
the scattering parameters of 2N-port NCML’s networks. 

The presentation is organized as follows. Section I1 de- 
scribes the background of the mathematical modeling of 
NCML’ s and lists the mathematical formulas to describe the 
reflection along the lines. Section I11 presents the method of 
solution to the nonlinear RMDE. In Section IV, the conver- 
gence behavior of the analysis method is investigated and 
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Fig. 1. A system of N-conductor nonuniform coupled microstrip lines. 

several numerical aspects are discussed. Numerical results for 
certain nonuniform single microstrip and. three-line structures 
are presented and discussed. Section V compares the mea- 
sured frequency responses of a nonuniform two-line structure 
with the calculated results. Finally, Section VI draws the 
conclusion. 

11. THE RICCATI MATRIX DIFFERENTIAL EQUATION (RMDE) 

It is known that a system of uniform N-conductor coupled 
microstrip lines and a ground line support N dominant or 
quasi-TEM modes. For the NCML’s in Fig. I ,  we neglect 
the fringing fields, which produces radiation loss, caused by 
the gradual change of waveguide cross section. For lines with 
abrupt discontinuities, field-theoretical oriented formulations, 
such as that in [SI, can be referred to enhance accuracy of 
results. At any z along the NCML’s, through the full-wave 
solution, an N x N matrix [MI], called the eigencurrent 
matrix, can be obtained [lo]. Of [MI] each column vector 
consists of total currents on the lines for a given mode. Based 
on the orthogonality of modal voltage and current vectors, 
an eigenvoltage matrix [Mv] iis uniquely defined [ I l l .  For 
each mode, inner product of the eigenvoltage and eigencun-ent 
vectors is set to be the total electromagnetic power transfer. 
This is an important fact that lleads our field problem to be 
able to be formulated by circuit quantities. 

The characteristic admittance matrix along the lines is given 
by [111 

It can be shown that [Yc] is symmetric and the important 
aspect of reciprocity is guaranteed. If the load network has an 
admittance matrix identical to the [Yc] of the NCML’s at the 
load end, then there is no reflection. 

The equivalent distributed capacitance matrix [C] and in- 
ductance matrix [L] along the lines can be derived [lo] 

[CI = [MI] diag ( P k  I W )  [Mv] 
[LI = [Mvl diag ( P k I W )  [&‘I] -l 

(2) 
(3) 

where w is the angular frequency and p k  iis the phase constant 
of the kth mode. Note that all the entries in [MI], [Mv],  
[Yc], [L], and [C] are dispersive and position-varying along 
the NCML’s. Let [I] and [VI be the line current and line 
voltage column vectors of which the kth entries are the total 
current and voltage on the kth line, respectively. Then, from 
the multiconductor transmission-line theory [3] 

[I] = [Y,nI[Vl (4) 
[VI’ = -PI [I1 ( 5 )  
[I]’ = -[YI[VI (6) 

where [Kn] is the input admittance matrix :seen at z toward the 
load, [Z] and [Y] are, respectively, the series impedance and 
shunt admittance matrices per unit length of the NCML’s, and 
the prime (’) represents the derivative with respect to z .  If the 
tapered lines are lossless, [Z] = j w [ L ]  and [Y] = jw[C]. 
Let the reflection coefficient matrix along the longitudinal 
direction be [ p v ] ,  then [Y,,] and [pv] are related by [lo] 

[Knl = [YCl([Ul - [Pvl)([Ul + [pvl)r1 (7) 

where [U] is the identity matrix of size N x N .  Substitution 
of (4) and (5) into (6) leads to 

[LI’ - [Knl[~l[Y,,l + [Y] = 0. 

[PVI’ = j([YI[Pvl + [PVI[‘Yl) 

(8) 

Inserting (7) into (S), one obtains 

+ ([UI + [Pvl)[c:I([ul - b v l )  (9) 
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where [r] = [Yc]-'[Y] = [Z][Yc] = [M~]d iag ( ,&) [ -M\ - ] -~  
and [GI = [ Y ~ ] - ~ [ Y c l ' / 2 .  Note that (8) and (9) are known as 
the RMDE [12] which is nonlinear. It is believed that [13] is 
the first literature that formulated the RMDE (8) for studying 
general nonuniform transmission lines. 

In the case of single nonuniform line, (9) becomes the 
Riccati scalar differential equation (RSDE) [ 121. To simplify 
this nonlinear differential equation, many authors [ 14-16] 
neglected the p i  term. The solution of pv at z = 0 can 
then be obtained through a simple Fourier transform of a 
function of the line characteristic impedance. Based on the 
transform, synthesis of matching transformers and couplers 
using nonuniform transmission lines have been developed [ 151, 
[16]. Note that the legitimacy of the negligence is relied on 
the fact that p: << 1 along the line. Thus, an error in pv 
will be generated at low frequencies for lines used to match 
impedances with large ratio. The following section formulates 
the method of solution to (9) in which no such error will occur. 

111. METHOD OF SOLUTION 

It is found that the RMDE can always be transformed into 
a linear equation [12]. This can be done by defining 

where [A121 = [A211 = [GI and [A221 = [All]* = j[r] - 
[G] for lossless NCML's. The asterisk denotes the complex 
conjugate operation. It has been shown in [12] that if [D]  and 
[R] satisfy (10) then 

[PVI = [Rl[Dl-l (11) 

is the solution to (9) provided that [D]  is nonsingular for all 
z .  The matrix equation (10) can be rewritten as 

[XI! = [AI[Xl (12) 

where [XI = [DTRTIT and the superscript T stands for the 
transpose operation. It is interesting to note that if [VI and [I] 
in (4) through (6) are replaced by 

Ma 

1x1 = C[XmIc,,,(z) (16) 
m = O  

where C, (2) is the shifted Chebyshev polynomial of order m 
of the first kind defined over 0 5 z 5 L, L being the length 
of the NCML's, and [X,] and [A,] are constant matrices. 
The matrix [A] is first expanded into a linear combination 
of Cm(z )  of which each coefficient matrix can be obtained 
by Gaussian Chebyshev quadratures [19]. Then [Am]s can be 
obtained since each Cm(z)  is known as a polynomial of z of 
degree m. Following the method in [20], more precisely the 
Galerkin procedure in method of moments, one can obtain 

[XI = [Ql[W)I (17) 

and 
Mi 

[&I-' = [UI + [Am] 8 ([pI[Hl") (18) 

where [U] is the identity matrix of size 2N(M2+1) x2N(M2+ 
1). [PI and [HI are the operation matrices of integration and 
of z-multiplication, respectively, of the shifted Chebyshev 
polynomials. They are given by 

A0 A 1  A2 A3 

-a0 0 - 7 2  0 
0 -a1 0 - q 3  . . .  

m=O 

0 
0 

[PI = I 0 0 -a2 0 

and 

[HI = (L/2)[HOI (20) 

where a,  = L/2, CYk = L/4(k + 1) for IC 2 1, qO = q1 = 0, 
q k  = L/4(1- I C )  for k 2 2, and Ak = a k  + q k  for k 2 0. [H,] 
is a tridiagonal matrix with all diagonal entries and the (2, 1)th 
one being 1 and all the other nonzero entries being 0.5. 

In (18), 8 denotes the Kronecker product, defined as 

where [V+] and [V-] are the forward and backward traveling 
voltage wave vectors along the NCML's, then one can find 
that [V*] = [V+TV-T]T also satisfies (12). In other words, 
the nonsingular matrix [D] consists of N linearly indepen- 
dent [V+]s as its column vectors and [R] consists of the 
corresponding N[V-]  vectors. 

Analytical solution to (12) is difficult or impossible to obtain 
since the eigenvalues and eigenvectors of the complex matrix 
function [A] are position-dependent [ 171. To solve (12), we use 
the method of moments which is closely related to the case of 
a single nonuniform line in [18]. [A] and [XI are expanded as 

Note that only the entries in the first 2N columns in 
[Q] are useful in calculating the network parameters since 
[X(L)]  = [D(L)TR(L)TO 0 .  . . 0IT. If [Q] is partitioned into 
2(M2 + 1) x 2(M2 + 1) submatrices [4Iz3, of each the size is 
N x N ,  then it can be readily shown that 

(22) 
(23) 

[V+(O)] = [A,,][V+(L)] + [Al2][V-(L)] 
[v- (0)l = [a,I][V+(L)l + [a,,][V-(L)l 

with 

m=O m = O  
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Fig. 2. Planar view of the nonuniform coupled microstrips for investigating 
convergence behavior of the method. The load is assumed perfectly matched. 
W ( z )  = 0.36 + 0.84(z/L) mm, S ( z )  = 1.8 - W ( z )  mm, L = 10 mm. 
The dielectric substrate has eT = 12.9 and height h = 1 mm. 
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Fig. 3. Comparison of the input reflection coefficients of an exponential 
microstrip taper on a substrate with eT = 8 designed for transforming 
2s = 63.58 R to ZL = 117.99 R, L = 9h = 9 mm. Response (a) is 
the complete solution to the RSDE and (b) is that to the RSDE with the p: 
term being omitted. The width profile of the tapered microstrip see [16, Fig. 
71. The line characteristic impedances use dc values. 

TABLE I 
CONVERGENCE ANALYSIS OF THE PROPOSED METHOD 

M I 4  5 6 7 8 9 1 0 1  

1.0058 1.0058 1.0076 1.0074 1.0074 1.0074 1.0075 
1.0936 1.1008 1.1004 1.1004 1.10105 1.1006 1.1003 
1.0890 1.0968 1.0969 1.0965 1.0966 1.0966 1.0966 

matrix can be found as 

IV. RESULTS 

A, The Database of NCML's Normal Moore Parameters 

To calculate the 2N-port parameters of NCML's, we use 
spectral domain approach (SDA) [lo] to evaluate the normal 
mode parameters. For all NCML's addressed in this paper, 
the evaluations are sampled at z ,  = m.L/20, m = 0(1)20, 
with L being the length of lines, for frequencies at 0.5n GHz, 
n = integer. At each frequency point, each entry of [r] and 
[GI in (9) is approximated by a cubic spline interpolation for 
use in the numerical quadrature for finding [A,]s in (15). 

Following the voltage scattering parameter matrices used in B. Convergence Study and Some Numerical Aspects 

Table I shows convergence behavior of' the input reflection 
coefficients [ p v ( 0 ) ]  for a tapered two-line structure of which 
the planar geometry is drawn in Fig. 2. 'The even- and odd- 
modes are found to have relative effective: dielectric constants 
close to 9, thus the length of lines is about one guided 

[21] and defining 

(25) 

one can obtain 

wavelength for both modes at 10 GHz. Note that, due to 
the structural symmetry, I[pv(0)](2, 2)1 = I[pv(O)](l, 1)1 and 

In Table I, the listed results are accordiing to values of MI 

[Sll] = [&l][&l]-' 

[SlZI = [A221 - [~2 ,1 [Al l l -1 [~121  (26b) I[PV(0)1(2> 111 = I[Pv(O)l(l, 2)l. 
[ S Z l ]  = (26C) 
[ S Z Z I  = - [ ~ l l l - ' [ ~ l ~ l .  (26d) (See (15)) and M2 (See (16)) ranging from 4 to 10 and from 4 

to 12, respectively. The execution CPU time is dominated by 
M2 for setting up the matrix [Q] in (18). For both the (1, 1)th 
and (1, 2)th values, it shows that using 111, = 4 produces 
results with errors with several percents. For MZ 2 8, when 
MI is increased from 6 to 10, both sets of the reflection values 
converge to at least four significant digits. According to our 
experience, to have the same converged results at 20 GHz, it 
requires MI = Mz = 12. 

The voltage scattering pararneter matrices can be used to 
characterize the 2N-port NCML's network for any linear 
time-invariant termination conditions at both the source and 
the load ends. However, (22) and (23)  are still useful in 
calculating some important network parameters. For example, 
when [pv(L)] exists at the load end, then the input reflection 
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Fig. 4. 
L = 20 mm. S ( Z )  = 0.5W0(l + z / L )  for structure A and S ( z )  = 2 . 5 W 0 ( 1  + z / L )  for structure B. (a) ISii1. (b) /szil. ( c )  (siz1. (d) Iszzl .  

The voltage-scattering parameters for two tapered three-line microstrips. h = 0.508 mm, tr = 4.2, W ( z )  = Wo(l + 2 z / L ) ,  W,  = 0.24 mm, and 

C. The Input ReJection Coeficient for  a Tapered Microstrip 

To calculate the reflection coefficient of a nonuniform 
microstrip, the Riccati scalar differential equation (RSDE) 
reduced from (9) can be invoked. When the p$ term is omitted 
in the equation, it is equivalent in our method of solution 
to enforce that [A121 = 0 and [A221 = [All]* = j [7 ]  (See 
(10)). Therefore it is easy to investigate the effectiveness of 
the negligence of the p t  term on the results using our readily 
developed program. We use an exponential microstrip taper, 
of which the x-dependent width profile is in [16, Fig. 71, as 
the test structure. The line characteristic impedances use the 
dc values. The length of the line is 9 mm which corresponds 
to L/X, = 0.6 at 20 GHz. 

The taper is designed for transforming ZL = 117.99 R 
to ZS = 63.58 CL. So the reflection coefficient at dc is 
(ZL - Zs)/(Z, + 2s) E 0.3. In Fig. 3, the solid and dotted 
responses compare the solutions to the RSDE with and without 
the p t  term. Both curves agree very well for frequencies 
higher than 3 GHz, at which the line is about one fifth of 
guided wavelength. The values of lp,(O)I for both cases have 

a deviation of 3% for frequencies less than 1 GHz where the 
value of p v ( z )  remains nearly constant (0.3) all over the line. 
It is believed that the influence of neglecting the p: term on 
the solution to the RSDE for analyzing tapered microstrip is 
reported for the first time. 

D. The 2N-Port Network Parameters for 
Tapered Three-Line Structures 

Fig. 4 compares responses for two tapered three-line struc- 
tures with the same line width geometry but different line 
spacing. The solid lines represent the parameters for structure 
A which has smaller line spacing. More interline coupling or 
cross talk voltage level is expected for structure A than B. 
Again, due to the structural symmetry, only five entries of 
each S-parameter matrix need specifying. 

Before we look into details on the 2N-port parameters of 
the NCML's, let us review certain important formulas that 
can help understanding of the results. The S-parameters we 
use here are based on the voltage wave instead of power 
wave definition. Thus, at zero frequency, the [Sll] and [Szl] 
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are, respectively, the reflection ([pv]) and transmission ( [Tv]) 
coefficient matrices of a step impedance junction with source 
admittance matrix [Yc(O)] and load [Yc(L)], i.e., [lo] 

(27) [PVI = ([Yc(O)l+ [Yc(L)l)-l([Yc(o)l - [Yc(L)I) 

and 

[Tv] = 2([Yc(O)] + [ Y ~ ( L ) ] ) - ~ [ y c ( o ) ] .  (28) 

The results of [S~P]  and [S~Z] matrices at dc can be known in 
a similar fashion. For closely packed symmetrical three-line 
microstrip [lo], [Yc](2, 2) < [Yc](l, 1) = [Yc](3, 3) and 
the diagonal elements of [Ye] decrease as the line spacing is 
decreased. Thus, the [Yc](k, IC), IC = 1, 2, and 3, for structure 
A are smaller than those for W. 

Fig. 4(a) compares the lSlll responses. For each structure, 
entry (1, 1) is larger than entry (2, 2). It means that, when 
the lines are perfectly terminated at the load end, the relative 
reflection at line 1 due to an excitation at line 1 is larger 
than that at line 2 due to an excitation at line 2. Entries 
(1, 1) and (2, 2) for structure B, which has smaller interline 
coupling, have closer and larger values than those for structure 
A. However, entries (1, 2), (2, 3), and (1, 3) for B are smaller 
than those for A. 

The forward transmission coefficient or IS21 I responses are 
plotted in Fig. 4(b). Structure A has larger entry values than 
B. The (1, 1) and (2, 2) values are firstly increased at lower 
frequencies and reach their maxima at about 4 GHz, where the 
ISlll entries have their minima, then decrease as frequency is 
further increased due to the increase of magnitudes of entries 
(1, a), (2, 3), and (1, 3). These three entries can be interpreted 
as the “cross talk” for this NCML’s structure. 

The IS121 responses are shown in Fig. 4(c). The relative 
cross talk voltage levels are larger than those for 15’21 I entries. 
Note that these cross talk voltage levels are not zero at dc. 
This can be explained from (28). Entries (1, 1) and (2, 2) for 
structure B are larger than those for structure A. 

The I S22 I responses are plotted in Fig. 4(d). According to 
(27), the 15’22 I entries should have nearly the same magnitudes 
as the corresponding ones of 15711 I at lower frequencies. 

D. Experimental Measurements 

We measure the responses of a pair of symmetrical nonuni- 
form coupled microstrips of which the planar view is shown 
in Fig. 5(a). At both ends of the circuit, the line width is 
chosen to have 50 R characteristic impedance and the spacing 
is 3.5 times the width so that the interline coupling can be 
neglected [IO]. The test circuit is fabricated on a low-loss 
alumina substrate (er = 9.9, loss tangent tan 6 5 0.001). A 
TaN (Tantalum Nitride) thin film resistive layer, sandwiched 
between the substrate and metal, can be used for termination 
design. The termination resistance value should be carefully 
trimmed during the fabrication process since improper termi- 
nation condition will cause unwanted reflections. 

The measurement is performed using the HP85 1 OB network 
analyzer and the results are shown in Fig. 5(b). The agreement 
between the calculated and measured I responses is fairly 
good. The predicted IS21 I response, however, begins to deviate 

1.34 4 3 4 1.34 
+ + 4 & + 4 - - -  

50 n 50 n 

h 

d, 0.7 Calculaited 
Measured 

D 
Frequency (GHi!) 

(b) 

Fig. 5. The results for the experimental nonuniform coupled microstrips. 
F, = 9.9, h = 0.254 mm, W1 = 0.254 mm, WZ = 0.635 mm, 
SI = 0.889 mm, 5’2 = 0.508 mm, W ( z )  = + (WZ - W1)%/4, 
and S ( z )  = SI + (SZ - s1 )Z /4 .  The structure is symmetric about z = 5.5 
mm. (a) Circuit geometry. (b) Measured and calculated responses. 

from the experimental results at 5 GHz where the length of line 
is about one half guided wavelength. The deviation could be 
caused by dielectric (ad),  conductor (ac) ,  ;and radiation losses. 
Similar deviation is also reported for a tapered three-line 
structure [4], where the fitness of prediction and measurement 
can be made up at lower frequencies by including the a d  

and a, factors, but the radiation loss is still significant at the 
higher frequency end. Note that the electrical length of the test 
circuit in Fig. 5 is only about one sixteenth of that used in [4]. 
According to our experience of designing multiple coupled 
microstrip lines on alumina substrate [lo], the attenuation 
factor including a d  and a, is approximately 0.01 dB/mm. Thus 
a d  and a, could have only limited contribution to the deviation 
in our experiment and the deviation should be mainly due to 
the radiation caused by the line width nonuniformity. 

V. CONCLUSION 
A RMDE has been formulated for calculating the 2N- 

port network parameters of nonuniform multiple coupled mi- 
crostrips. The influence of neglecting $, term in the Riccati 
scalar differential equation on the input reflection coefficient 
response of a microstrip taper is investigated. From the in- 
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