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1. Introduction

After the Fukushima Daiichi nuclear disaster on March 11, 2011,
energy conservation has become an urgent issue in Japan. All 54
nuclear reactors in Japan were shut down following the accident.
The resulting shortages in electricity supply made “Setstuden,”
which means “saving electricity” in English, into a mantra
throughout Japan. In July 2012, the Japanese government decided
to reactivate reactors #3 and #4 of the Oi nuclear power plant in
response to the electricity shortages experienced in the Kansai
Electric Power Company's jurisdiction in summer 2012. Both re-
actors, however, were shut down again in September 2012
following a periodic check.

Although a new feed-in tariff to promote renewable energy was
introduced in July 2012, it cannot fully compensate for the shortfall
in energy that has resulted from the cessation of nuclear power
generation. Despite the full-capacity operation of the country's
thermal power plants, including some plants that were inactive
before the Fukushima disaster because of outdated technology, and
efforts by firms and households to save energy, serious electricity
shortages remain. Vivoda [1] asserted that nuclear reactors should
be restarted as soon as possible because Japan is facing an energy
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security predicament. However, this option is politically difficult
because of the growing anti-nuclear public sentiment.

Severe energy constraints in Japan cause the following four
serious problems [2]. First, dependence on fossil fuels for electricity
generation amounted to 88% in 2012, which is greater than the
dependence during the first oil crisis, 76%. Second, Japan loses
approximately 3.6 trillion yen (3.5 million US dollars) per year in
international trade related to importing additional fossil fuels after
the Fukushima disaster; this amounts to approximately 30 thou-
sand yen (290 US dollars) per capita. Third, electricity prices are
higher now than before the Fukushima disaster, with a standard
family facing an average appreciation rate of 20%. Fourth, general
electric utilities have increased carbon dioxide emissions by 110
million tons, which corresponds to 9% of the nation's emissions in
2010. We believe that improving energy efficiency is one feasible
solution to the problems listed above. Morikawa [3] surveyed more
than 3000 firms and determined that 45% of Japanese firms have
been directly or indirectly affected by rolling blackouts and regu-
lation of electricity usage.

Japan has pursued an energy conservation policy since the first
oil crisis in 1973. The Energy Conservation Law was enacted in 1979
and has since been revised eight times. We should examine
whether such revisions have exerted a significant effect on Japan's
energy situation. Therefore, we require a more accurate measure-
ment of regional energy efficiency.

Energy is a fundamental factor from the viewpoints of both
national security and the economy, and many empirical studies
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have examined energy efficiency. In this section, we classify these
studies into three approaches.

The first approach is based on energy intensity, which is defined
as energy consumption per unit of output, such as GDP (gross do-
mestic product), or energy productivity (the reciprocal of energy
intensity). This approach is considered the traditional energy effi-
ciency index because it is easily calculated and has been widely
used to compare countries [4—8] and to investigate particular
countries or industries [e.g., [9,10]]. However, this approach com-
bines energy with other inputs, such as labor and capital stock.
Therefore, because it is a partial-factor framework, energy intensity
has limited utility for measuring energy efficiency [11,12].

The second approach DEA (data envelopment analysis), which is
a non-parametric linear programming methodology that is used to
measure the efficiency of multiple decision-making units. Hu and
Wang [12] and Hu and Kao [13] incorporated the TFEE (total-factor
energy efficiency) index into the DEA model, thereby resulting in
creating an approach method that was subsequently applied to
Japan by Honma and Hu [14,15], to China by Zhao et al. [16], to
Taiwan by Hu et al. [17], and to OECD (Organisation for Economic
Co-operation and Development) countries by Honma and Hu [18].
Moreover, Sozen and Alp [19] compared Turkey's energy efficiency
with that of the EU (European Union) countries by incorporating
energy consumption, greenhouse gas emissions, and local pollut-
ants into the DEA model. Lozano and Gutiérreza [20] proposed DEA
models with undesirable outputs to estimate the maximum GDP
(minimum greenhouse gas, or GHG, emissions) compatible with
given levels of population, energy intensity, and carbonization in-
tensity (levels of population, GDP, energy intensity, or carboniza-
tion index). Mukherjee [21] evaluated the energy efficiency of six
sectors and found that the highest energy consumption occurs in
the United States. Recently, Goto et al. [22] proposed a new DEA
approach with three efficiency concepts that separates inputs into
two categories and applied the approach to the manufacturing and
non-manufacturing industries of Japan's 47 regions. Although DEA
has been widely applied in energy efficiency studies, its drawback is
that its efficiency analysis suffers from statistical noise. The third
approach uses SFA (stochastic frontier analysis), which was devel-
oped by Aigner et al. [23] and Meeusen and van den Broeck [24]
(For a comparison of DEA and SFA, see Refs. [25,26]). To overcome
the statistical noise problem, several authors applied the SFA
approach to measure energy efficiency. Filippini and Hunt [27]
measured economy-wide energy efficiency in OECD countries.
Stern [28] computed energy efficiency by applying SFA to 85
countries and examining the determinants of inefficiency. Herrala
and Goel [29] investigated global carbon dioxide (CO;) efficiency
(which is defined as the ratio of the CO, frontier to actual emis-
sions) for more than 170 countries. Refs. [27] and [29] employed a
stochastic cost function in which energy or CO, was the cost, GDP
was a main explanatory output variable, and neither labor nor
capital stock data were used. In contrast [28], used labor and capital
stock data, but energy intensity was an explained variable.
Recently, Menegaki [30] employed SFA models to renewable energy
management and economic growth in European countries.

Unlike the aforementioned studies, we measure energy effi-
ciency on the basis of a standard Cobb—Douglas production func-
tion within the SFA approach. The study that is most closely related
to ours is Zhou et al. [31], who proposed a parametric frontier
approach by using the Shephard energy distance function. Their
approach essentially uses a single-output production frontier
model. One feature of their estimation technique is that it deems
the reciprocal of energy consumption to be an output that is pro-
duced using labor, capital stock, and GDP as inputs. This method-
ology enables us to parametrically estimate energy efficiency,
taking into account the statistical noise involved. Hu [32] expanded

the cross-sectional model presented by Ref. [31] to a panel data
model to measure the energy efficiency of regions in Taiwan.
Recently, Lin and Du [33], using the metafrontier procedure of
Battese et al. [34], also expanded the work of [31] to conduct a panel
data SFA estimation of the first stage of Chinese regional energy
efficiency. However, their model does not include environmental
variables.

The purpose of the present study is threefold. The first goal is to
expand the cross-sectional SFA model proposed by Zhou et al. [31]
to a panel data model and simultaneously estimate the de-
terminants of inefficiency. The second purpose is to estimate the
TFEE scores for 47 administrative regions in Japan during the years
1996—2008 and examine the effects of Japan's energy-saving pol-
icies over that period. The third goal is to compare the SFA results
with those from DEA with respect to not only efficiency but also its
determinants.

In our SFA model, efficiency measurements are based on the
Shephard energy distance function, which is assumed to take the
Cobb—Douglas functional form. Following Ref. [31], we also assume
that the reciprocal of energy consumption is produced by GDP, la-
bor, and capital stock. The ML (maximum likelihood) estimator is
used to estimate the parameters, including the inefficiency
component.

In a departure from the studies conducted by Refs. [31—-33], we
simultaneously estimate the determinants of inefficiency by
employing the technical inefficiency effects model proposed by
Battese and Coelli [35]. Before Ref. [35], a two-stage approach was
employed in which efficiency was estimated in the first stage; then,
this estimated efficiency was regressed against the determinants in
the second stage. This two-stage approach has been criticized
because both stages suffer from serious biases [[36],p. [39]].

In contrast, the potential determinants of inefficiency can be
estimated using the two-stage DEA model. However, this model
exhibits two problems [36]. One problem is the possible correlation
between the input—output variables and the efficiency-
determinant factors. The other problem arises from the fact that
the interdependency of the DEA efficiency scores violates the basic
assumption of independence within the sample. Instead of a non-
parametric DEA approach, our parametric approach provides an
alternative method to estimate efficiency and its underlying factors.

The remainder of this study is organized as follows. Section 2
describes our methodology and data. Section 3 presents the TFEE
results and the determinants of inefficiency for both the SFA and
DEA models. Section 4 discusses the results' implications. Section 5
concludes with a brief summary of the study.

2. Methodology and data
2.1. SFA model for input efficiency

Zhou et al. [31] applied the single-equation, output-oriented SFA
model to estimate the TFEE. Their cross-sectional SFA model was
used to analyze 21 OECD countries in 2001. Combining the studies
of Zhou et al. [31] and Battese and Coelli [35], this study expands
the panel data SFA model further by estimating the TFEE.

Following Ref. [31], we assume that the stochastic frontier dis-
tance function is included in the Cobb—Douglas function as

In Dg (Kit, Lit, Eit, Yit) = Bo + Bx In Kir + Br In Lie + Bg In Eje + By
In Yie + vie, (1)

where Dg(-) is the distance function, Kj; is the amount of capital
stock, Li; is labor employment, Ej; is the energy input, Yj; is the real
economic output, i indicates the region, t indicates the time, and v;;
is the statistical noise, which is assumed to be normally distributed.
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Because the distance function is homogeneous to one degree in the
energy input, the above equation can be rearranged as

In Dg (Kit, Lit, Eir, Yit) = In Eit + Bo + Bx In Kit + By In Lig + PeIn 1
+ ByIn Yie + vie, (2)

which can be rewritten as

—In Ejt = Bo + BxIn Ki¢ + BrIn Lir + P In 1 + Byln Yir + vie

— In Dg (Kit, Lit, Eit, Yie). (3)
Thus,
In(1/Ei¢) = Bo + Bx In Ki¢ + By In Lie + By In Y + vie — ujy, (4)

where u; is the inefficiency term, which follows a non-negative
distribution, and vj; — uj is the error component term of a sto-
chastic production frontier. Eq. (4) is consistent with the panel data
stochastic frontier model proposed by Battese and Coelli [35]. The
free software Frontier Version 4.1, which was kindly provided by
Professor Coelli [37], can be used to estimate Eq. (4). The TFEE of
region i at time t is then

TFEE;; = exp(—ujt). (5)

Therefore, we can apply the panel data stochastic production
frontier approach to estimate the TFEE, but we are limited to use of
the input-oriented DEA suggested by Refs. [12,13]. Moreover, if we
use disaggregated energy inputs, we can change the logged inverse
energy inputs on the left-hand side of Eq. (4) and keep the other
logged inputs on the right-hand side fixed, thereby obtaining the
TFEE scores for different energy inputs.

Battese and Coelli [35] added the following inefficiency equation
for performing simultaneous estimates with a stochastic frontier in
the form of Eq. (4):

Ujp = 0g + 61Z}t + ...+ 5HZ¥ + €it, (6)

where the z!, ..., Z'" are environmental variables and ej; is white
noise, which is normally distributed. Consequently, we can simul-
taneously estimate Eqs. (4) and (6) by applying the approaches of
[35,36].

2.2. DEA

DEA is a linear programming method that is used to assess the
comparative efficiency of DMUs (decision-making units), such as
countries, regions, firms, and other organizations. There are K in-
puts and M outputs for each of the N regions. Because the SFA
model finds a frontier with curvature, we assume VRS (variable
returns to scale) in the DEA model. The VRS envelopment of the i-th
region can be derived using the following linear programming
problem, which was proposed by Banker et al. [38]:

Ming,aﬁ

st.—y;+Y2>0

ox; — X1 > 0 7)
er=1

A>0,

where @ is a scalar that represents the efficiency score of the i-th
DMU, eisa1 x N vector of ones, Ais an N x 1 vector of constants, y;
is the M x 1 output vector of DMU i, Y is the M x N output matrix
that is composed of all of the output vectors of the N DMUEs, x; is the
K x 1 input vector of DMU i, and X is the K x N input matrix that is
composed of all of the input vectors of the N DMUs.

The efficiency score satisfies 0 < # < 1, which is a radial
contraction coefficient for the inputs. If § = 1, DMU i operates on the
efficiency frontier and is technically efficient. This is an input-
oriented model in which the radial adjustment coefficient, 4, mul-
tiplies the input vector of DMU i. Following literature studies that
have used DEA, such as [12—14], the TFEE score of DMU i at time t
can be found by dividing its target energy input (which is deter-
mined by the DEA model) by its actual energy input:

TFEE;; = Target Energy Inputj;/Actual Energy Input . (8)

To control the annual environment, all efficiency scores and
input targets for region i in year t are determined by comparing
them with the regional efficiency frontier in year t. Note that the
VRS-DEA model in this study uses regional observations from the
same year.

In the second-stage regression, the determinants of inefficiency
are estimated using the following equation:

—In (TFEEit> =10+ ’Y]Zl-lt + ...+ ’YHZ{? + €it, (9)

where ¢ is normally distributed white noise. Because
TFEE,—StFA = exp(—u;) in the SFA model, for consistency, we take the
corresponding inefficiency term in the DEA, u;; = —ln(TFEEgEA), as
the dependent variable in the second-stage regression. Because the
dependent variable —In(TFEEREA) is censored at zero when

TFEE;; = 1, we use Tobit regression left censored at zero.

2.3. Data and variables

In our SFA model, we assume that the reciprocal of energy
consumption is based on regional real GDP (million yen), labor
(person), and capital stock (million yen). These data are taken from
Refs. [39], in which all monetary values are given in million yen
based on the year 2000 and labor is represented by the number of
employees.

Data on energy regarding are taken from Ref. [40], where in
which aggregated energy consumption is the sum of oil, gas, coal,
electricity, and industrial heat presented in terms of thermal units
(tera joules [TJ]). In contrast with previous studies that take
considered regional/national energy consumption as a whole as
one input [12—14,17,31], our aggregated energy consumption data
do not include residential and transportation sectors or non-energy
use. Residential energy consumption, such as cooking, heating, and
hot water supply systems, generates no added value and are is
hence excluded from the aggregated energy consumption data. For
the same reason, energy consumption by private vehicles is also
excluded. Data regarding energy consumption in the business
transportation sector are unavailable because fuel consumed
outside regional borders cannot be accurately allocated by region.
Using the selected energy consumption data allows more precise
measurement of energy efficiency than was previously possible.

We employ industry shares as the environmental variables in
two technical inefficiency effects models. The first model (whose
efficiency score is hereafter referred to as TFEESPAM) includes as
environmental variables the regional GDP shares of the
manufacturing industry, service activities, and both wholesale and
retail trade. The second model (hereafter TFEESPAE) replaces the
manufacturing share with shares of the following five energy-
intensive industries: chemicals; iron and steel; non-ferrous
metals; non-metallic mineral products; and pulp, paper, and pa-
per products.

Data regarding industry shares are taken from Ref. [41]. The data
about each energy-intensive industry's shares exclude Okinawa
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Prefecture because such data are unavailable for this prefecture,
which comprises several small islands. All data are annual, and as
mentioned above, the sample period spans the years 1996—2008.
Table 1 summarizes the input, output, and environmental variable
statistics.

3. Results
3.1. TFEE scores

The ML estimates of the TFEE scores are given in Table 2 together
and with the DEA TFEE are presented in Table 2. The estimates of
the SFA TFEE scores are calculated using the Frontier 4.1 software
package provided by Coelli [37]. (For more details, see Coelli et al.
[42].). Space limitations allow us to show present only the mean
TFEE scores and rankings of the four TFEE scores for the years
1996—2008. The TFEE scores of each region are stable during the
sample period. Following Refs. [31] and [32], TEEESPAO represents
the estimated TFEE scores without the environmental variables,
whereas following [12—14], TFEEP®A represents the DEA TFEE
scores under VRS assumptions. TFEES"0 and TFEEPFA are mainly
presented here as comparisons with TFEES"™M and TFEESFAE,

It should be emphasized that the rankings are similar; never-
theless, the TFEE scores differ among the four methods. The
maximum value of the DEA TFEE scores reaches unity because they
do not take into account statistical noise. Tokyo, Nara, and Tottori
achieve unity scores for TFEEPEA throughout the sample period.

In comparing the four TFEEs, we observe that the rankings be-
tween TFEES™ M and TFEES™ F are similar, while those among
others are not. There may be several explanations for why some
regions experience different rankings between TFEES™ © and
TFEES™ M and between TFEES™A © and TFEES™ E. Because the ex-
pected mean inefficiency terms in TFEES™M and TFEES™F vary
across regions depending on their individual environmental vari-
ables, regions located in a more-advantageous environments are
relatively more efficient. Tottori, Shiga, and Tokyo vary widely
across the ranks of the TFEEs. Tottori is ranked first on in terms of
TFEEPEA but 10th, 21st, and 19th in terms of on TFEESA©, TFEESFAM,
and TFEESPAE respectively. Shiga is ranked 8th in terms of on
TFEEPEA but 33rd in terms of on TFEES™M and 32nd in terms of on
TFEESPAE, Tokyo is ranked 1st in terms of on TFEEPEA but 25th in
terms of on TFEES™O, This result likely reflects whether statistical
noise is considered. In addition, we assume that if a regional
economy is far from average size, the estimated TFEE score is less
accurate.

Next, we examine individual TFEE scores by region. The top
three—Yamagata, Tokyo, and Nagasaki—exhibit similar relation-
ships between TFEESPAM and TFEES™ E. These regions have very
high TFEE scores (exceeding 0.95), except for Tokyo's TFEESTAE, This

result indicates that these regions have little potential to further
reduce energy consumption (less than 5%). Observing Tokyo's re-
sults, a significant divergence exists between the TFEESPAC and each
of the TFEESFAM and TFEESPAE scores. This result may reflect Tokyo's
more-advantageous environment for the variables included in
TFEESFAM and TFEES™AE, Chiba, Okayama, and Oita are the bottom
three regions for all TFEE scores and also exhibit similar rankings
between them. Their TFEE scores for all four models are very low
(<0.2), which implies that the potential energy savings are great
(>80%) for all three regions. We discuss possible improvements that
can be implemented in regions that have very low TFEE scores in
Section 4.2.

Table 3 shows the correlation coefficients for the four TFEE
scores. Pearson correlation coefficients are presented below the
diagonal, and Spearman rank correlation coefficients are presented
above the diagonal. The four TFEE scores are highly correlated with
one another. Whereas the correlation coefficients between the
three SFA TFEE scores are greater than 0.9, those between the SFA
TFEE scores and DEA TFEE are approximately 0.8. All correlations
presented in Table 3 are significant at the one percent level.

Fig. 1a—d presents histograms of the four TFEEs during the years
1996—2008. In the histogram of TFEES™O, two peaks, which are
located in the ranges of 0.5—0.6 and 0.9—1.0, are observed, and the
frequency decreases in the 0.8—0.9 range (Fig. 1a). Only the histo-
grams of TFEESPAM and TFEES™AE are very similar. In these histo-
grams also, two peaks are observed but in the ranges of 0.6—0.7 and
0.8—0.9 (Fig. 1b and c). In the histogram of TFEEPFA, the peak is
located in the range of 0.9—1.0 (Fig. 1d).

3.2. Simultaneous estimates of determinants of inefficiency by SFA

Table 4 presents the estimated coefficients and determinants of
inefficiency in the SFA TFEE scores. Except for the coefficients of log
regional GDP in TFEES™A and TFEESPAE, the coefficients for the log
regional GDP, log labor, and log capital stock are significant. How-
ever, the coefficients of GDP are not directly interpretable. For
example, the coefficient of log GDP in TFEES™AM (0.306) means in-
dicates that a 1% increase in GDP reduces energy consumption by
0.306%. This finding is inconsistent with the standard production
theory. We note that these implausible results may stem from the
underlying assumption that attributing inefficiencies regarding in
outputs and inputs can be attributed to energy use.

In the ML estimates, the variances of v and u, ¢2 and ¢2, are re-
parameterized as ¢ = o2 + o and y = oZ/d?, respectively. The
parameter y must lie between 0 and 1, and it indicates the relative
contributions of u to the error components. The large values of y
(0.999, 0.999, and 0.994) for the three SFA TFEE scores imply that
the variance in the error components is almost explained by
technical inefficiency.

Table 1

Statistical summary of inputs, outputs, and environmental variables.
Variable Unit Mean SD Min Max Obs
Regional GDP million yen 11,267,620 14,899,507 2,070,534 100,982,870 611
Labor person 1,358,697 1,437,445 300,652 8,746,255 611
Capital stock million yen 36,051,479 34,440,744 7,662,999 230,327,688 611
Energy T 203,883 221,225 28,331 1,181,999 611
Manufacturing industry share proportion 0.21239 0.07702 0.04031 0.43107 611
Chemical industry share proportion 0.01798 0.01867 0.00021 0.10745 598
Iron and steel industry share proportion 0.01395 0.01466 0.00044 0.10167 598
Non-ferrous metals industry share proportion 0.01359 0.00945 0.00198 0.09322 598
Non-metallic mineral products industry share proportion 0.00854 0.00588 0.00124 0.03798 598
Pulp, paper, and paper products industry share proportion 0.00575 0.00591 0.00006 0.04200 598
Service activities share proportion 0.19281 0.02771 0.11619 0.29261 611
Wholesale and retail trade industry share proportion 0.11268 0.03134 0.05782 0.21673 611
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Table 2

Mean TFEE scores and rankings by region in Japan (1996—2008).
Region TFEESFA© TFEESFAM TFEESFAE TFEEPEA
Hokkaido 0.406 (33) 0.641 (25) 0.607 (25) 0.488 (33)
Aomori 0.528 (29) 0.574 (30) 0.567 (30) 0.526 (31)
Iwate 0.770 (14) 0.845 (14) 0.838 (13) 0.727 (22)
Miyagi 0.584 (23) 0.674 (22) 0.676 (21) 0.626 (28)
Akita 0.877 (9) 0.888 (9) 0.886 (10) 0.867 (12)
Yamagata 0.971 (3) 0.966 (1) 0.967 (1) 0.884 (11)
Fukushima 0.689 (17) 0.802 (16) 0.793 (15) 0.799 (16)
Ibaraki 0.181 (43) 0.225 (43) 0.223 (42) 0.243 (43)
Tochigi 0.564 (24) 0.614 (26) 0.623 (24) 0.664 (26)
Gunma 0.663 (18) 0.750 (17) 0.754 (16) 0.704 (23)
Saitama 0.53 0 (28) 0.727 (19) 0.731 (18) 0.577 (29)
Chiba 0.105 (47) 0.146 (45) 0.144 (44) 0.128 (47)
Tokyo 0.562 (25) 0.951 (3) 0.949 (3) 1.000 (1)
Kanagawa 0.233 (40) 0.345 (39) 0.344 (38) 0.311 (41)
Niigata 0.513 (30) 0.656 (24) 0.637 (23) 0.671 (25)
Toyama 0.530 (27) 0.533 (32) 0.532 (31) 0.809 (14)
Ishikawa 0.920 (8) 0.889 (8) 0.907 (8) 0.943 (9)
Fukui 0.785 (11) 0.747 (18) 0.745 (17) 0.959 (7)
Yamanashi 0.964 (6) 0.881 (12) 0.900 (9) 0.987 (5)
Nagano 0.777 (13) 0.914 (7) 0.914 (7) 0.780 (17)
Gifu 0.617 (22) 0.704 (20) 0.701 (20) 0.659 (27)
Shizuoka 0.434 (32) 0.585 (29) 0.58 (28) 0.501 (32)
Aichi 0.305 (38) 0.479 (34) 0.469 (33) 0.414 (36)
Mie 0.207 (42) 0.229 (42) 0.230 (41) 0.312 (40)
Shiga 0.543 (26) 0.514 (33) 0.527 (32) 0.953 (8)
Kyoto 0.734 (16) 0.814 (15) 0.835 (14) 0.778 (18)
Osaka 0.375 (34) 0.599 (28) 0.589 (27) 0.481 (34)
Hyogo 0.254 (39) 0.352 (38) 0.347 (37) 0.337 (39)
Nara 0.982 (2) 0.887 (10) 0.916 (6) 1.000 (1)
Wakayama 0.349 (35) 0.341 (40) 0.338 (39) 0.464 (35)
Tottori 0.800 (10) 0.690 (21) 0.704 (19) 1.000 (1)
Shimane 0.987 (1) 0.924 (5) 0.920 (4) 0.990 (4)
Okayama 0.111 (46) 0.125 (46) 0.125 (45) 0.162 (46)
Hiroshima 0.219 (41) 0.269 (41) 0.268 (40) 0.290 (42)
Yamaguchi 0.137 (44) 0.148 (44) 0.146 (43) 0.211 (44)
Tokushima 0.634 (20) 0.571 (31) 0.578 (29) 0.802 (15)
Kagawa 0.477 (31) 0.447 (36) 0.456 (34) 0.536 (30)
Ehime 0.337 (36) 0.363 (37) 0.361 (36) 0.389 (37)
Kochi 0.632 (21) 0.602 (27) 0.598 (26) 0.748 (19)
Fukuoka 0.328 (37) 0.452 (35) 0.448 (35) 0.345 (38)
Saga 0.967 (5) 0.919 (6) 0.917 (5) 0.964 (6)
Nagasaki 0.935 (7) 0.958 (2) 0.961 (2) 0.830 (13)
Kumamoto 0.785 (12) 0.882 (11) 0.881 (11) 0.736 (21)
Oita 0.117 (45) 0.115 (47) 0.116 (46) 0.168 (45)
Miyazaki 0.660 (19) 0.665 (23) 0.669 (22) 0.682 (24)
Kagoshima 0.758 (15) 0.853 (13) 0.844 (12) 0.739 (20)
Okinawa 0.970 (4) 0.938 (4) na 0.919 (10)
Mean 0.570 0.621 0.614 0.640
SD 0.270 0.257 0.258 0.265
Max 0.987 0.988 0.988 1.000
Min 0.104 0.104 0.105 0.107

Note: Figures indicate the mean TFEE scores, and parentheses indicate rankings in
each column.

The trend of the time-varying inefficiency parameter, 7, (Battese
and Coellj, [43]) is also estimated in TFEES™A© instead of the share
variables. A positive (negative) n implies that efficiency decreases
(increases) over time. For TFEES™0, 5 is slightly positive (0.001) but
insignificant.

The determinants of inefficiency are simultaneously estimated
for TFEESPAM and TFEESPAE using the technical inefficiency model

Table 3
Pearson (below diagonal) and Spearman rank (above diagonal) correlation co-
efficients between the TFEE scores by model.

TFEESFA© TFEESFAM TFEESFAE TFEEPEA
TFEESFAO 1 0.912 0.921 0.826
TFEESFAM 0.931 1 0.998 0.761
TFEESFAE 0.937 0.999 1 0.770
TFEEPEA 0.843 0.808 0.814 1

[35]. Note that a positive (negative) coefficient for an industry's
share implies an inefficiency-reducing (inefficiency-inducing) fac-
tor. For TFEES™M, the estimated coefficients for the shares of
manufacturing and the wholesale and retail trade, 15.531 and
11.332, respectively, are highly significant, but that for the service
industry is insignificant. We find that higher shares of
manufacturing and wholesale and retail trade correspond to lower
efficiency. The estimates of TFEES™F in Column 3 provide a more
comprehensive analysis of the determinants of inefficiency. With
the exception of the non-ferrous metals industry, which has a
negative coefficient, the other four energy-intensive industri-
es—chemicals; iron and steel; non-metallic mineral products; and
pulp, paper, and paper products—are highly significant in reducing
efficiency. The wholesale and retail trade industry share continues
to affect inefficiency levels, but its coefficient decreases to a lower
value in TFEES™ E than in TFEESTAM,

Generalized likelihood ratio tests of various null hypotheses for
the three SFA TFEE models are presented in Table 5. The generalized
likelihood-ratio test statistic, A = —2(log likelihood(Hp)—log likeli-
hood (H;)), has an approximately chi-square or mixed chi-square
distribution for which the parameter is the number of parameters
set to be zero in the null hypothesis, Ho. All null hypotheses are
rejected at the 1% level. The hypothesis Hp: v = 0, which specifies
that the regions are fully technically efficient, is rejected for each
case. In particular, for TFEESPA M and TFEES™ E, the null hypothesis
that all of the coefficients associated with various industry share
variables (and the constant term) are zero is rejected.

3.3. Second-stage estimates of the determinants of inefficiency by
DEA

To compare the simultaneous estimates of the determinants of
inefficiency of TFEES™M and TFEESFAE with those of TFEEPEA, we
regress the inefficiency of TFEEPEA on industry shares using the
Tobit model. As in the previous subsection, we exclusively use the
manufacturing industry share and the five energy-intensive in-
dustry shares.

Table 6 presents the results for the second-stage regression of
the inefficiency of TFEEPFA on the environmental variables. Note
that in the inefficiency equation of the SFA model, the inefficiency
term is related to the efficiency score as TFEE,SIFA:exp(fu,'t) for re-
gion i at time t. For consistency in the second-stage regression, the
inefficiency term under DEA is obtained by the transformation as
uj——In(TFEEDEA) for region i at time t. Column 1 in Table 6 presents
the estimation results that involve the manufacturing industry
share, which is significantly positive in Column 1. A higher
manufacturing industry share corresponds to less-efficient energy
use. Note that a coefficient of Tobit regression is generally not
comparable with that of another model on account of the distortion
to the distribution due to the censored data. However, in our model,
the marginal effects computed are similar to the coefficients pre-
sented in Table 6. Regarding the manufacturing share, the coeffi-
cient of TFEES™M 15531, in Table 4 are greater than the
corresponding coefficient for TFEEPFA, 3,083, in Table 6. We hy-
pothesize that this occurs mainly because the inefficiency terms in
TFEES™M depend upon the industry shares as the environmental
variables in Eq. (6), whereas the efficiency measurement of TFEEPEA
does not use industry shares. The signs for the shares of service
activities and the wholesale and retail trade industry are positive,
but the sign is significant only for the latter.

Column 2 of Table 6 presents the estimation results for
involving the shares of the five energy-intensive industries. All
coefficients of these industry shares are significant at the 1% level.
Among them, energy-intensive industries, except for the non-
ferrous metals industry, are highly significant in reducing TFEE.
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Fig. 1. Histograms of the TFEEs.
Table 4
ML estimates of the stochastic frontier function parameters for the Japanese regions.
Variable Inefficiency of TFEESFAC Inefficiency of TFEESFAM Inefficiency of TFEESFAE

Constant (o)

Log regional GDP

Log labor

Log capital stock

Constant (do)

Manufacturing industry share (d1)

Chemical industry share (d5)

Iron and steel industry share (d3)

Non-ferrous metals industry share (d4)
Non-metallic mineral products industry share (ds)
Pulp, paper, and paper products industry share (dg)
Service activities share (67)

Wholesale and retail trade industry share (dg)

0% =02 + g2

y = aulo®

u

n

Log likelihood

Number of observations
Number of regions

~0.530 (—0.458)
~0.069 (~1.271)
~0.576*** (—6.410)
—0.084*** (~2.827)

2.311 (0.986)
0.999*"* (1292.201)
~1.961 (—0.623)
0.001 (0.956)
901.151

611

47

3.491"* (6.940)
0.306* (1.861)
—0.971*** (~7.492)
—0.354*** (~3.735)
~5.369"** (~2.389)
15.531%** (4.187)

~4.120 (~0.610)
11.332* (2.504)
1.397** (3.982)
0.999"** (1646.483)

~287.998
611
47

2.912** (6.804)
0.181 (1.451)
~0.928*** (~9.109)
~0.239*** (—2.907)
~1.640"** (~3.866)

18.872* (11.527)
35.694*** (15.276)
~8.606** (~2.517)
41.388%* (7.098)
24.243*** (4.925)
~0.785 (~0.453)
7.359*** (6.392)
0.254*** (9.846)
0.994*** (353.468)

-122.431
598
46

Note: t-values are in parentheses. Statistical significance at the one-, five-, and ten-percent levels are indicated by ***,

Only the coefficient of the non-ferrous metals industry share is
positive. These results are consistent with those for TFE
Each (absolute) value of the coefficients for TFEEPEA is smaller

ESFA,E

less than that of the corresponding coefficients for TFEESTAE in
Table 4. This result can be attributed to the same reason as that

given above.

sk ok

4. Discussion

, and *, respectively.

4.1. Importance of incorporating the environmental variables

In this subsection, we discuss the advantage of energy efficiency
estimation using a stochastic model with environmental variables
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Table 5
Generalized likelihood-ratio tests of hypotheses of parameters of the stochastic
frontier and technical energy inefficiency.

Null hypothesis Log-likelihood = Test Critical Decision
value statistic (A1)  value

Given TFEESFAC

Ho:y=0 —505.410 2813.121 10.50 Reject Ho

Ho:n =0 261.466 1279.369 6.63 Reject Ho

Ho:n=0 654.311 493.679 6.63 Reject Ho

Given TFEESFAM

Ho: v = 0o = 01 —505.410 434.824 14.33 Reject Ho
=0;,=03=0

Hp: 0o =01 =07 =05=0 —363.874 151.754 13.28 Reject Hyp

Hp: 01 =07 =05=0 —338.729 101.462 11.34 Reject Ho

Given TFEESFAE

Ho:y=00=02=07,=0  —498.232 751.603 20.97 Reject Hyp

Ho: 0p=02=...=03=0 —362.442 480.022 20.09 Reject Ho

Hp: 0y =...=03=0 —341.182 437.502 18.48 Reject Ho

Note: All test statistics are statistically significant at the p < 0.01 level. The correct
critical values for the hypotheses that involve y = 0 are obtained from Table 1 of
Kodde and Palm [44].

Table 6
Second-stage estimates of the determinants of inefficiency.
Variable Inefficiency of TFEEPEA
Constant —0.872"* (-2.746)  —0.536™** (—2.808)

Manufacturing industry share

Chemical industry share

Iron and steel industry share

Non-ferrous metals industry
share

Non-metallic mineral products
industry share

Pulp, paper, and paper
products industry share

Service activities share

Wholesale and retail trade
industry share

3.083"* (7.478)
10.571%** (10.284)
22.117"* (8.398)
—10.245*** (~8.142)

13.114** (3.432)
7.453** (2.831)

1.251 (1.105)
4.514*** (6.402)

~0.014 (-0.017)
5.092*** (8.712)

Sigma 0.556*** (26.417) 0.4203*** (22.440)
Number of observations 611 598
Number of regions 47 46

Log likelihood —520.207 —359.426

Note: Robust t-values are in parentheses. Statistical significance at the one-, five-,
and ten-percent levels are indicated by ***, **, and *, respectively.

instead of one without environmental variables. The coefficients of
labor and capital of TFEESPA0 and TFEESFAE differ considerably from
one of TFEES*A0 in Table 4. Incorporating the environmental vari-
ables allows us to estimate a more-adequate stochastic frontier.
Thus, the estimated frontier may be an imprecise curvature without
the environmental variables, and the resulting efficiency values
would provide a misleading evaluation. As for our sample, TFEESFA-0
underestimates TFEEs for much of the inefficient regions (Fig. 2).!

4.2. Policy implications of the TFEE scores

How should policy makers consider the values of the various
TFEE scores? In what follows, we discuss the policy implications of
our TFEE results. It is ideal but implausible for all regions to achieve
scores that are near unity. As previously stated, inefficiency is
successfully explained by industry shares, which cannot be radi-
cally changed. In addition, regions that specialize in energy-
intensive industries supply energy-intensive goods to regions that
barely produce them. In fact, industry composition should be
considered as fixed to some extent.

! Because the scatter plot of TFEES™F against TFEES™A© is almost the same, we
omit it here.

'° . d
| U I
. [ ]
1 |
of
‘l

Fig. 2. Scatter plot of TFEES™M against TFEESC. Note: The vertical and horizontal
axes correspond to TFEESFAM and TFEESFAC, respectively.

Policy makers in an inefficient region may target a minimum
efficiency level that could be achieved given the region's industry
composition. This target can be set by comparing with regions that
have similar industry compositions.

4.3. Simultaneous estimation versus second-step estimation

In Eq. (3) of the stochastic approach, all regions have the same
intercept, Bo. This value can vary by region if unobserved hetero-
geneity exists. Greene [45,46] proposes the true fixed-effects and
true random-effects models to estimate unit-specific constants.
This line of research should be explored in energy efficiency
research. However, unobserved heterogeneity in the parameter
estimates is beyond the scope of this study, in which our plain panel
results serve as the benchmark.

5. Concluding remarks

This study parametrically and non-parametrically estimates the
TFEE scores for 47 regions in Japan and the determinants of in-
efficiency for the years 1996—2008. We extend the SFA approach
employed by Zhou et al. [31] and Hu [32] and incorporate the
technical inefficiency effects model proposed by Battese and Coelli
[35]. Our two technical inefficiency effects models exclusively
include the manufacturing industry share and the five energy-
intensive industry shares as environmental variables that influ-
ence inefficiency, the scores of which are referred to as TFEESTAM
and TFEESFAE respectively. For comparison, a stochastic TFEE
without environmental variables, TFEES™A0, is also computed. In
addition, we use the DEA technique to measure a non-parametric
TFEE score under VRS, TFEEPEA,

The four TFEE scores are highly correlated with one another,
especially TFEESTAC, TFEESFAM, and TFEES™AE, The trend of the mean
TFEE scores suggests that energy efficiency improved during the
sample period. However, there is considerable potential for further
savings on reductions in energy consumption in the Japanese re-
gions. For the bottom three regions—Chiba, Okayama, and
Oita—the TFEE scores in all four models are very low (<0.2). This
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result suggests the possibility of conserving reducing energy con-
sumption by more than 80% in all three regions.

We compare not only the TFEE scores but also the determinants
of inefficiency between SFA and DEA. In SFA, the determinants are
estimated simultaneously with inefficiency. This simultaneous
estimation suitably incorporates influences from environmental
variables into inefficiency. This is SFA's advantage over the two-step
estimation performed in DEA. However, in the SFA estimation, we
must introduce additional assumptions regarding the functional
form of the frontier and the distributions of the inefficiency and
error terms compared to with the DEA. In contrast, the inefficiency
of the DEA TFEE scores is regressed on environmental factors via a
Tobit approach. The signs of the Tobit model are consistent with
those of the SFA estimation. For both SFA and DEA, the results that
include the manufacturing industry share indicate that higher
manufacturing and wholesale and retail trade shares correspond to
lower energy efficiencies. The results that include shares from
energy-intensive industries — chemicals; iron and steel; non-
metallic mineral products; and pulp, paper, and paper products —
indicate that higher shares of energy-intensive industries corre-
spond to significantly lower levels of efficiency.

Our study has two limitations. First, in our SFA model, all in-
efficiencies are attributed to energy input. This may lead to over-
estimating energy inefficiency. On this point, DEA is superior to SFA
because the DEA TFEE takes into account both radial and non-radial
slack with respect to energy inputs. The second limitation is that
the estimates do not consider unobserved heterogeneity.

Our approach can be extended in various directions. First, the
environmental variables that affect energy efficiency should be
further explored. It is important not only to measure efficiency but
also to examine the determinants of inefficiency. Second, the
functional form can be easily changed from the Cobb—Douglas
function to more general functional forms, such as a translog
function. Third, replacing energy input with undesirable outputs or
natural resources would allow us to estimate environmental effi-
ciency using the total-factor framework. Fourth, our model can be
applied to other regions for a cross-country comparison. If so,
environmental variables should be explored.
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