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We show that each 26D open bosonic Regge string scattering amplitude (RSSA) can be expressed in terms
of one single Appell function F; in the Regge limit. This result enables us to derive infinite number of
recurrence relations among RSSA at arbitrary mass levels, which are conjectured to be related to the
known SL(5, C) dynamical symmetry of F;. In addition, we show that these recurrence relations in the
Regge limit can be systematically solved so that all RSSA can be expressed in terms of one amplitude. All

these results are dual to high energy symmetries of fixed angle string scattering amplitudes discovered

previously [4-8].
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1. Introduction

In contrast to the low energy string, the importance of high
energy behavior of string theory was pointed out by Gross [1-3]
more than two decades ago. Recently a saddle point method was
invented to explicitly calculate string scattering amplitudes for
string states at arbitrary mass levels in the fixed angle regime
[4-8]. It was found that the ratios of string scattering amplitudes
at each fixed mass level were independent of the scattering en-
ergy and the scattering angle, and the ratios can be extracted at
each mass level. Alternatively, this infinite number of ratios can
be recalculated algebraically by solving linear relations or stringy
Ward identities derived from decoupling of two types of zero-norm
states [9-11] in the string spectrum. These infinite linear relations
are so powerful that all fixed angle high energy string scattering
amplitudes can be expressed in terms of one amplitude, say, four
tachyon amplitude.

There is another high energy regime of string scattering am-
plitudes, namely, the fixed momentum transfer or Regge regime
[12-18]. It was shown that there existed intimate link between
high energy string scattering amplitudes in the fixed angle regime
and in the Regge regime. Indeed, the ratios among scattering am-
plitudes of different string states in the fixed angle regime can be
extracted from the Kummer functions which are closely related to
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the Regge string scattering amplitudes (RSSA) [17,18]. Note that
the number of RSSA is much more numerous than that of high en-
ergy fixed angle string scattering amplitudes. For example, there
are only 4 high energy fixed angle string scattering amplitudes
while there are 22 RSSA at mass level M? =4 [17]. More re-
cently [19], it was discovered that each RSSA can be expressed in
terms of a finite sum of Kummer functions. One can then solve
these Kummer functions at each mass level and express them in
terms of RSSA. Recurrence relations of Kummer functions can then
be used to derive some recurrence relations among RSSA [19]. Re-
currence relations of higher spin generalization of the BPST vertex
operators [15] can also be constructed [20].

Since in general each RSSA was expressed in terms of more
than one Kummer function, it was awkward to derive the com-
plete recurrence relations at arbitrary higher mass levels. In this
letter, we show that each 26D open bosonic RSSA can be ex-
pressed in terms of one single Appell function Fq. In contrast to
the case of a sum of Kummer functions, this result enables us to
derive the complete infinite number of recurrence relations among
RSSA at arbitrary mass levels, which are conjectured to be related
to the known SL(5,C) dynamical symmetry of F; [21]. In addi-
tion, we show that these recurrence relations in the Regge limit
can be systematically solved so that all RSSA can be expressed in
terms of one amplitude. All these results are dual to high energy
symmetries of fixed angle string scattering amplitudes discovered
previously [4-8]. In sum, the duality of the scattering amplitudes
between the two high energy regimes implies amplitudes of the
two regimes share many important properties, and there is an in-
timate link (ratios stated above) connecting the two regimes.
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2. Regge string scattering amplitudes

We first review recent results for high energy string scatterings
in the fixed angle regime,
s, —t—>oot/s~—sm ¢—ﬁxed (but ¢ # 0) (1)
where s = — (k1 +k2)2, t = —(kz +k3)? and u = — (k1 +k3)? are the
Mandelstam variables and ¢ is the center of mass scattering angle.
It was shown [6,7] that, at mass level M% =2(N — 1), states to the

leading order in energy are of the form (the second state of the
four point function is chosen to be the higher spin string state)

= (“L)Nizmizq (ail)zm (aiz)qw’ k) (2)

where the polarizations of the 2nd partlcle w1th momentum ky on
the scattermg plane were defined to be e’ = M (E2, k2,0) = M s
el = (kz,Ez 0) and eT = (0,0, 1). Ny = diag(=1,1,1). N,m
and q m Eq. (2) are non-negative integers and N > 2m + 2q. Since
eP approaches to el in the fixed angle regime [5], we did not put
e” components in Eq. (2). For simplicity, we choose the particles
associated with momenta kq, k3 and k4 to be tachyons. The s — ¢t
channel high energy fixed angle string scattering amplitudes can
be calculated [6] to be

IN,2m, q)

T(N.2mq) _ 27—, e 2N 9P 2m)!
Kfy m!Mg”m
Ha-o¥ e+ o(EN 2)] 3)
where K = —ky.ky — 2E2, f() =Inx—tIn(1 —x), T = —% -

sin? % and the saddle point for the integration of moduli is de-
fined by f’(xo) =0 with xg = 1 . The ratios among high energy
fixed angle string scattering amplltudes of different string states at
each fixed mass level can be extracted from Eq. (3) to be [G]
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TWN00) T <—M—2) (5) @m— 1. (4)

Alternatively, it was discovered that [6,7] the ratios above can be
recalculated by using the decoupling of two types of high energy
fixed angle zero norm states

Lqn—1,2m—-1,q)
~Min,2m, q) + 2m —1)|n,2m —2,q + 1), (5)

L_2|n—2,0,q):%In,O,q)+M|n,0,q+1). (6)
Egs. (5) and (6) give infinite number of linear relations among high
energy fixed angle string scattering amplitudes of different string
states at each fixed mass level. It turned out that these linear re-
lations can be systematically solved so that all high energy fixed
angle string scattering amplitudes can be expressed in terms of
four tachyon amplitude [4-8].

We now turn to another high energy regime of string scat-
terings, namely the Regge regime, which contains complementary
information [17] of the theory. That is in the kinematic regime
s — oo with —t is finite and fixed. It was found [17] that the
number of high energy scattering amplitudes for each fixed mass
level in the Regge regime is much more numerous than that
of fixed angle regime in Eq. (2). The leading order high energy
open string states in the Regge regime at each fixed mass level
N =3 1 mi>0MPn +mMqm +Iry are [19]
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We first set up and calculate the kinematics of the Regge scatter-
ing. The momenta of the four particles on the scattering plane are

ki = (+/p2 + M2, —p,0). (®)
ky (+m, +p. 0) 9)
ks = (—\/(12-1-—1\/12 —qcos¢,—qsin¢), (10)
ko= (/@ + M3, +qcos . +asing) (1)

where p = |pl, ¢ = |d| and k? = —M?. The relevant kinematics in
the Regge regime are

s t t — M2 — M?
L el k3y——=—— 2 3. (12)
2M; 2M; 2M;
s E/ t+M2—M2
el ki ———, el k3~ — =2 3. (13)
2M; 2M; 2M,
el k1 =0, el ks~—/—t (14)

where { =t — M2 — M3 and T’ =t + M2 — M3. We are now ready to
calculate the Regge scattering amplitudes. In the high energy limit,
we only need to consider higher spin vertex with polarizations on
the scattering plane. The s —t channel one higher spin and three
tachyons string scattering amplitudes in the Regge limit can then
be calculated as
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where in the Regge limit the beta function B can be further re-
duced to
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symbol. Thus
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(a+n —1) is the rising Pochhammer
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in which the double summation can be expressed in terms of the
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The Appell function Fq is one of the four extensions of the hyper-
geometric function , F; to two variables and is defined to be

Z Z (@ mgnB)m (D )n myn (19)

In!
o minl(©m+n

Fi(a;b,b’;c; %, y)

Note that when a or b(b’) is a nonpositive integer, the Appell func-
tion truncates to a polynomial. This is the case for the Appell
function in the RSSA calculated in Eq. (20) in the following

A(pn§Qm?rl)
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Note that the B function above is power-law behaved in energy
s in the Regime limit as in the usual case, and so is the Appell
polynomial function F;. Alternatively, it is interesting to note that
the result calculated in Eq. (20) can be directly obtained from an
integral representation of F; due to Emile Picard (1881) [22]

Fi(a;b1,b2; ¢, y)

I"(c)
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“T@lc—a YO
0
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which was later generalized by Appell and Kampe de Feriet (1926)
[23] to n variables

bn;c;x1, %2, ..., Xn)
1

FO(a; by, by, ...,
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0
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where Fg” is one of the Lauricella functions introduced in 1893
[24]. Note that F(Dz) = F1. Eq. (22) may have application for higher

point RSSA [25]. To apply the Picard formula in Eq. (21), we do the
transformation x — (1 — x), and RSSA can be calculated to be
1

q
=/dx(1—x)—%+N—2x—%—2.[1— z ]
1—x

s x " .
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which is consistent with the result calculated in Eq. (20). It is im-
portant to note that although F; in Eq. (20) is a polynomial in s,
the result in Eq. (20) is valid only for the leading order in s in the
Regge limit. Note that in contrast to the previous calculation [19]
in Eq. (31) where a finite sum of Kummer functions was obtained,
here we get only one single Appell function in Eq. (20). This simpli-
fication will greatly simplify the calculation of recurrence relations
among RSSA to be discussed in the next section.

APn3dm3rn)
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N| ©»n
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3. Recurrence relations

The Appell function F; entails four recurrence relations among
contiguous functions

(@—b1—ba)F1(a; by,b2:c; X, y) —aFi(a+1;bq,ba: c: X, )
+bi1Fi1(a; by +1,by;¢;x, ¥) + baFi(a; b1, by +1;¢;x%,y) =0

(24)
cFi(a; b1, ba; e %, y) — (c —a@)Fa(a; b1, ba; e+ 15 %, y)
—aFi(@+1;b1,by;c+1;x,y)=0, (25)
cFi(a; b1, ba; ¢ %, y) +c(x — D F1(a; b1 +1,b2; ¢; %, y)
—(c—a)xFi(a; b1 +1,by;c+1;x,y)=0, (26)
CF1(a; b1, ba;c;x, y) +c(y — DF1(a; b1, by +1;¢:%, y)
—(c—a)yFi(a;b1,by+1;c+1;x,y) =0. (27)

All other recurrence relations can be deduced from these four re-
lations. We can easily solve the Appell function in Eq. (20) and
express it in terms of the RSSA

F t . LS. S s
R e Lt S

A(Pni‘bnlrl) [ ]—IJ
_ n—1—=t|
t
B(—3—-1.-3-1D,3

'f —qm E/ =
xn!:[l[—(m—l)!%] E[(l—l)!ZMZ] . (28)

Note that among the set of integers (pn, qm, ;) on the right hand
side of Eq. (28), only (—q1,—r1) dependence shows up on the
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Appell function F; on the left hand side of Eq. (28). Indeed, for
those highest spin string states at the mass level M% =2(N-1),
ie. IN;q1, ) = (@l ON=0"1 (@@ )91 (@l )1|0,k), the string am-
plitudes reduce to

AWN:q1.11)

= (/=N <_L)q’ (f_>
2M> 2M>

F ! 1; r-s~ 5.3 B S 1 ! 1
1 2 y—q1, 1,2, A 2 75 s
(29)

which can be used to solve easily the Appell function F; in terms
of the RSSA A(N:41.),

We now proceed to show that the recurrence relations of the
Appell function Fq in the Regge limit in Eq. (20) can be systemat-
ically solved so that all RSSA can be expressed in terms of one
amplitude. As the first step, we note that in [19] the RSSA was ex-
pressed in terms of finite sum of Kummer functions. There are two
equivalent expressions [19]

A(pn1Qm§rl)
o= o=t ][ -t
_E)[(n HIV=L] HE[O[ (m 1)!21\/12}

i s t 1\"
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It is easy to see that, for g1 =0 or r; =0, the RSSA can be ex-
pressed in terms of only one single Kummer function U(—r1, % +
2—i—ry, %/) or U(—qq, 5 +2—j—qq, %), which are thus re-
lated to the Appell function Fl(—% - 1,0, —rq; 2,—%,—;—,) or
Fi(=5 = 1;-¢1,0; 5: —1.—%) respectively in the Regge limit in
Eq. (20 lndeed one can easﬂy calculate

t S S S
lim F]< - r];—;—:,—r)
s—00 2 2 t t

s
2
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On the other hand, it was shown in [19] that the ratio

Ul@,y,2)

a=0,-1,-2,-3,.. (34)
U@,z 2

=fla,v.2),
is determined and f(«, y, z) can be calculated by using recurrence
relations of U(«, ¥, z). Note that U(0, z,z) =1 by explicit calcula-
tion. We thus conclude that in the Regge limit s — oo, i.e. ¢, x, y —
oo and a, by, b, fixed, the Appell functions Fq(a; 0, by;c; x, y) and
F1(a; b1, 0;c; x, y) are determined up to an overall factor by recur-
rence relations. The next step is to derive the recurrence relation

yF1(a; by, b2 c; X, y) — xF1(a; by +1,b2 —
+ (x—y)Fi(a;b1 +1,b2;¢;%,y) =0, (35)

1;¢%,y)

which can be obtained from Eqs. (26) and (27). We are now ready
to show that the recurrence relations of the Appell function Fp in
the Regge limit in Eq. (20) can be systematically solved so that all
RSSA can be expressed in terms of one amplitude. We will use
the short notation Fq(a; b1, by;c;x,y) = F1(b1,bz) in the follow-
ing. For by = —1, by using Eq. (35) and the known F;(by,0) and
F1(0, by), one can easily show that Fi(by, —1) are determined for
all by = -1, -2, -3, .... Similarly, F{(b1, —2) are determined for all
by =—1, -2, -3, ... if one uses the result of F{(by, —1) in addition
to Eq. (35) and the known Fq(bq,0) and F1(0, by). This process
can be continued and one ends up with the result that Fy(bq, by)
are determined for all by, by = —1, -2, —3, .... This completes the
proof that the recurrence relations of the Appell function F; in the
Regge limit in Eq. (20) can be systematically solved so that all RSSA
can be expressed in terms of one amplitude.

With the result calculated in Eq. (20), one can easily derive
many recurrence relations among RSSA at arbitrary mass levels.
For example, the identity in Eq. (35) leads to

/_t[A(N§q1arl) + A(N;Q1—LT1+1)]

which is the generalization of Eq. (3.90) in [19] for mass level
M3 =4 to arbitrary mass levels M3 = 2(N — 1). Incidentally, one
should keep in mind that the recurrence relations among RSSA are
valid only in the Regge limit. We give one example to illustrate the
calculation. By using Eqgs. (24)-(27), and taking the leading term of
s in the Regge limit, we end up with the recurrence relation for b,

_MZA(N;ql—Lfl) =0, (36)

cx*F1(a; b1, b2; ¢ x, y)
+[(@—b1—by— Dxy? +cx? — 2cxy|Fi(a; b1, b+ 1;¢:%, y)

—[(@+ Dx*y — (a— bz — Dxy* — cx* + cxy]
x Fi(a;b1,b2 +2;¢;%, y)
— (b2 +2)x(x — y)yF1(a; b1,b2 +3;¢;x,y) =0, (37)

which leads to a recurrence relation for RSSA at arbitrary mass
levels

2 A(N:q1,11)
E!
72 % z 2M Niq1.r1+1)
+ (2 +E(t—2F —2q1 —2r1 + 4 (—Z)N TN
[£% +( 7=

E/

2
+ [t? t(t+t)+t(t—2r1+4)]< >A<NW1+2>

t

3
—2(r = 2)(F —t)(j/Mi> ANarnE3) — o, (38)

More higher recurrence relations which contain general number of
I > 3 Appell functions can be found in [26].
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4. Conclusion

In this paper, we show that open bosonic RSSA can be ex-
pressed in terms of one single Appell function F; in the Regge
limit. This result enables us to derive recurrence relations among
RSSA at arbitrary mass levels. In addition, we show that these re-
currence relations of RSSA are so powerful that one can solve them
and all RSSA can be expressed in terms of one single amplitude.
All these results are dual to high energy symmetries of fixed an-
gle string scattering amplitudes conjectured by Gross in 1988 [2]
which were explicitly proved in [4-8] previously.

Since it was shown that [21] the Appell function F; are basis
vectors for models of irreducible representations of si(5, C) alge-
bra, it seems reasonable to believe that the spacetime symmetry
of Regge string theory is closely related to SL(5, C) non-compact
group. In particular, the recurrence relations of RSSA studied in
this paper are related to the SL(5,C) group as well. Further in-
vestigation remains to be done and more evidences need to be
uncovered.
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