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Abstract—The n-dimensional hypercube is one of the most popular topological structure for interconnection networks in parallel

computing and communication systems. The exchanged hypercube EHðs; tÞ, a variant of the hypercube, retains several valuable and

desirable properties of the hypercube such as a small diameter, bipancyclicity, and super connectivity. In this paper, we construct sþ 1

(or tþ 1) internally vertex-disjoint paths between any two vertices for parallel routes in the exchanged hypercube EHðs; tÞ for 3 � s � t.

We also show that both the ðsþ 1Þ-wide diameter and s-fault diameter of the exchanged hypercube EHðs; tÞ are sþ tþ 3 for 3 � s � t.

Index Terms—Hypercube, exchanged hypercube, interconnection network, internally vertex-disjoint paths, wide diameter, fault diameter

Ç

1 INTRODUCTION

A multiprocessor/multicomputer interconnection network is
usually modeled as a graph, in which vertices corre-

spond to processors/computers, and edges correspond to
connections/communication links. Throughout this paper, the
terms networks and graphs are interchangeable. A graph G
is a two-tuple ðV;EÞ, where V is a nonempty vertex set, and
E is a subset of fðu; vÞ j ðu; vÞ is an unordered pair of V g.
V ðGÞ and EðGÞ denote the vertex set and the edge set of G,
respectively. Two vertices, u and v, of a graph G are adjacent
if ðu; vÞ 2 EðGÞ. The neighborhoods of a vertex v in graph G,
denoted by NGðvÞ, is fx j ðv; xÞ 2 EðGÞg. A path P of length k
from vertex u to vertex v in a graph G is a sequence of dis-
tinct vertices written as x0 ! x1 ! x2 ! � � � ! xk where
x0 ¼ u, xk ¼ v, and ðxi; xiþ1Þ 2 EðGÞ for every 0 � i � k� 1
if k � 1. The path P can be written as u ! P ! v to empha-
size its first and last vertices. For convenience, P can also be
written as x0 ! � � � ! xi ! Q ! xj ! � � � ! xk, where Q ¼
xi ! � � � ! xj. Given a path P from u to v, all vertices in P
except u and v are called internal vertices of P . Two paths are
called internally vertex-disjoint (abbreviated as internally dis-
joint) if they share no internal vertex. A cycle is a path with
at least three vertices such that the last vertex is adjacent to
the first one. For clarity, a cycle of length k is represented by
x1 ! x2 ! � � � ! xk ! x1. The distance between two vertices
u and v in graph G, denoted by dGðu; vÞ, is the length of the
shortest path between u and v.

To design an interconnection network with desired
topologies is an important issue [5]. The hypercube is one of
the most popular interconnection network structures in par-
allel computing and communication systems [7], [11], [19],

[23]. This is partly because of many attractive properties of
the hypercube such as regularity, recursive structure, vertex
and edge symmetry, and maximum connectivity, as well as the
effective routing and broadcasting. An n-dimensional hypercube,
denoted by Qn, is a graph with 2n vertices and n� 2n�1

edges. Each vertex is labeled by an n-bit binary string
u ¼ un�1un�2 � � �u0. Two vertices are adjacent if and only if
their strings differ exactly in one bit position. Let
u ¼ un�1un�2 � � �u0 and v ¼ vn�1vn�2 � � � v0 be two n-bit
binary strings. The Hamming distance between two vertices u
and v, denoted by Hðu; vÞ, is the number of different bits in
the corresponding strings of both vertices. Thus, Hðu; vÞ ¼
dQnðu; vÞ. Note that Qn has diameter n [23].

As a variant of the n-dimensional hypercube, the
exchanged hypercube EHðs; tÞ, which was proposed by Loh
et al. [13], is defined by removing some edges from the
hypercube. To make EHðs; tÞ useful in reliable and critical
applications, studies have been conducted, which have pro-
duced some significant results. EHðs; tÞ retains several
desirable properties of the hypercube such as a small
diameter [13], bipancyclicity [16], and super connectivity [17]
and this makes it even better than a hypercube. This is evi-
dent in the fact that even though the number of edges of an
exchanged hypercube is nearly half of that of a hypercube,
their diameters are similar. Thus, exchanged hypercubes
have lower link costs than hypercubes. To transfer informa-
tion safely and quickly between any two vertices in
exchanged hypercubes, we need to find as many as possible
internally disjoint paths between the two vertices. This idea
was proposed in Menger’s theorem [18], which states that
there are k internally disjoint paths between any two verti-
ces in an interconnection network if k is less than or equal to
the connectivity of this network. Moreover, this intercon-
nection network has many benefits such as parallel routing
and fault tolerance. In recent years, many literature referen-
ces discuss the topic of internally disjoint paths in some spe-
cific networks, such as hypercubes [20], crossed cubes [8],
ðn; kÞ-star graphs [12], folded hypercubes [15], hypercube-
like graphs [19], hierarchical hypercubes [21], and aug-
mented k-ary n-cubes [22]. Next, we discuss the fault and
wide diameters of exchanged hypercubes. The fault diameter,
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which was first proposed in [9], is used to estimate the
effects of faults on the diameter, while the wide diameter is
used to measure the diameter of the connections with pre-
scribed bandwidths, and it is a combination of both the
diameter and connectivity. The fault and wide diameters
have been discussed in [2], [3], [4], [6], [12], [15], [21], [22].
In this study, we construct sþ 1 (or tþ 1) internally disjoint
paths between any two vertices for parallel routes in the
exchanged hypercube EHðs; tÞ for 3 � s � t. We also prove
that both the ðsþ 1Þ-wide diameter and s-fault diameter are
sþ tþ 3 for 3 � s � t.

The rest of this paper is organized as follows. In the next
section, we provide the definition for exchanged hyper-
cubes and describe their properties. In Section 3, the main
results are presented; the internally disjoint paths between
any two vertices in EHðs; tÞ for 3 � s � t are discussed and
it is demonstrated that both ðsþ 1Þ-wide diameter and
s-fault diameter are sþ tþ 3 for 3 � s � t. In Section 4, con-
cluding remarks are presented.

2 PRELIMINARIES

The exchanged hypercube is defined as an undirected graph
EHðs; tÞ ¼ GðV;EÞ, where s � 1 and t � 1. The definition of
exchanged hypercubes is given as follows.

Definition 1. The vertex set V of exchanged hypercube EHðs; tÞ
ðs � 1; t � 1Þ is the set

futþs � � �utþ1ut � � �u1u0 jui 2 f0; 1g for 0 � i � sþ tg:

Let u ¼ utþsutþs�1 � � �u0 and v ¼ vtþsvtþs�1 � � � v0 be two ver-
tices in EHðs; tÞ. There is an edge ðu; vÞ in EHðs; tÞ if and
only if ðu; vÞ is in one of the following sets:

E1 ¼fðu; vÞ ju0 6¼ v0; ui ¼ vi for 1 � i � sþ tg;
E2 ¼fðu; vÞ ju0 ¼ v0 ¼ 0; Hðu; vÞ ¼ 1 with ui 6¼ vi

for some tþ 1 � i � sþ tg; and
E3 ¼fðu; vÞ ju0 ¼ v0 ¼ 1; Hðu; vÞ ¼ 1 with ui 6¼ vi

for some 1 � i � tg;

whereHðu; vÞ denotes the Hamming distance between two ver-
tices u and v.

According to the definition of EHðs; tÞ, the number of
vertices is 2sþtþ1 and the number of edges is
ðsþ tþ 2Þ2sþt�1. For a vertex x with x0 ¼ 0, the vertex
degree is sþ 1, whereas the vertex degree with x0 ¼ 1 is
tþ 1. EHðs; tÞ is a subgraph of the ðsþ tþ 1Þ-dimensional
hypercube Qsþtþ1, and thus it is also a bipartite graph. Fig. 1
illustrates the exchanged hypercubes EHð1; 1Þ, EHð1; 2Þ,
EHð2; 1Þ and EHð2; 2Þ. Dashed links correspond to the edge
set E1, solid links correspond to the edge set E2, and bold
links correspond to the edge set E3.

Loh et al. [13] stated the following properties.

Property 1. The diameter of EHðs; tÞ is sþ tþ 2.

Property 2. EHðs; tÞ is isomorphic to EHðt; sÞ.
Property 3. EHðs; tÞ can be decomposed into two copies of

EHðs� 1; tÞ or EHðs; t� 1Þ.

Property 4. The subgraphs induced by the vertices of the

form � � � � �zfflffl}|fflffl{s

utut�1 � � �u10 and utþsutþs�1 � � �utþ1 � � � � �
zfflffl}|fflffl{t

1 in

EHðs; tÞ are isomorphic to Qs and Qt, respectively, where

� 2 f0; 1g.
The subgraphs induced by the vertex sets V ðQsÞ and

V ðQtÞ are denoted by S and T , respectively. Then, S ffi Qs

and T ffi Qt. Therefore, by Property 4, there are 2t and 2s dis-
tinct induced subgraphs Qs and Qt, respectively. Denote by
Qi

s (respectively, Qj
t) for 0 � i � 2t � 1 (respectively,

0 � j � 2s � 1) where i (respectively, j) with radix 10 is the
value of utut�1 � � �u1 (respectively, utþsutþs�1 � � �utþ1). Let
hsðu; vÞ (respectively, htðu; vÞ) denote the number of differ-
ent bits between u and v in dimensions tþ 1 to sþ t (respec-
tively, 1 to t). When the context is clear, hsðu; vÞ and htðu; vÞ
are simply written as hs and hs, respectively. Moreover,
since EHðs; tÞ is isomorphic to EHðt; sÞ by Property 2, we
may, without loss of generality, assume that s � t in this
paper.

A vertex set S 
 V ðGÞ is a separating set or a vertex cut if
G� S is disconnected. The connectivity of G, written as
kðGÞ, is the minimum size of a vertex cut. Let dðGÞ be the
minimum degree of G, then it is clear that kðGÞ � dðGÞ. A
graph G is k-connected if the connectivity kðGÞ is at least k.
Moreover, a graph G has connectivity k if G is k-connected

Fig. 1. Four examples of the exchanged hypercubes EHð1; 1Þ, EHð1; 2Þ, EHð2; 1Þ and EHð2; 2Þ.
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but not ðkþ 1Þ-connected. This follows from Menger’s theo-
rem [18], which states that the connectivity of a graph is at
least k if and only if there exist k internally disjoint paths
between any two vertices.

Let a and b be two positive integers such that a � kðGÞ
and b � kðGÞ � 1. Given any two vertices u and v of G, let
Daðu; vÞ denote the set of all a internally disjoint paths
between u and v. Each element of Daðu; vÞ consists of a

internally disjoint paths. jDaðu; vÞj denotes the number of
elements in Daðu; vÞ. Let liðu; vÞ denote the longest length
among the a paths of the i-th element of Daðu; vÞ. Thus,
lDaðu; vÞ and dfbðu; vÞ are defined as follows:

lDaðu; vÞ ¼ min
1�i�jDaðu;vÞj

liðu; vÞ;

dfbðu; vÞ ¼ max
F
V;jF j¼b

fdG�F ðu; vÞju; v =2 Fg;

where G� F denotes the subgraph of G induced by V � F .
In other words, dfbðu; vÞ denotes the longest distance
between u and vwhen any b faulty vertices occur.

Definition 2. [1] The a-wide diameter of G, denoted byDaðGÞ,
is defined as

DaðGÞ ¼ max
u;v2V

flDaðu; vÞg:

In particular,DkðGÞðGÞ is the wide diameter ofG andD1ðGÞ is
simply the diameterDðGÞ of G.

Definition 3. [1] The b-fault diameter of G, denoted by Df
bðGÞ,

is defined as

Df
bðGÞ ¼ max

u;v2V
�
dfbðu; vÞ

�

In particular,Df
kðGÞ�1ðGÞ is the fault diameter of G.

Obviously,DðGÞ � Df
kðGÞ�1ðGÞ � DkðGÞðGÞ. For the hyper-

cubesQn, Latifi [10] proved thatDnðQnÞ ¼ Df
n�1ðQnÞ ¼ nþ 1

for n � 2. For the crossed cubes CQn, Chang et al. [1] proved

that DnðCQnÞ ¼ Df
n�1ðCQnÞ ¼ dn2e þ 2 for n � 2. In this

paper, we also discuss and prove the wide and the fault

diameters of exchanged hypercubes, and proved that

Dsþ1ðEHðs; tÞÞ ¼ Df
s ðEHðs; tÞÞ ¼ sþ tþ 3 for 3 � s � t. The

following three theorems are needed in the proofs of our

results.

Theorem 1. [14] The connectivity of the exchanged hypercubes
EHðs; tÞ is sþ 1 for 1 � s � t.

FromMenger’s theorem, there exist sþ 1 internal disjoint
paths between any two vertices in the exchanged hypercube
EHðs; tÞ.
Theorem 2. [20] Let u, v be any two vertices of the n-dimensional

hypercube Qn and assume that Hðu; vÞ ¼ d. Then there are n
internally disjoint paths between u and v such that d of them
are of length d, and the remaining n� d paths are of length
dþ 2.

Theorem 3. [16] In the exchanged hypercube EHðs; tÞ for
1 � s � t, the vertices in the set Vc ¼ futþs � � �u0 ju0 ¼
c; ui 2 f0; 1g for 1 � i � sþ tg are vertex-transitive, where
c 2 f0; 1g.

For convenience, consecutive i 0’s and 1’s are denoted by

0i and 1i, respectively. That is, 0i ¼ 00 � � � 0
zfflfflffl}|fflfflffl{i

and 1i ¼ 11 � � � 1
zfflfflffl}|fflfflffl{i

.

3 WIDE AND FAULT DIAMETERS OF EXCHANGED

HYPERCUBES

In this section, our goal is to prove that Dsþ1ðEHðs; tÞÞ ¼
Df

s ðEHðs; tÞÞ ¼ sþ tþ 3 for 3 � s � t.

Lemma 1.Df
s ðEHðs; tÞÞ � sþ tþ 3 for 1 � s � t.

Proof. Let u; u0; and v be three vertices of EHðs; tÞ. We con-
sider that u ¼ 0s0t0, u0 ¼ 0s0t1 and v ¼ 1s1t1. See Fig. 2
for illustration. Suppose that F is a faulty vertex set such
that F ¼ NEHðs;tÞðuÞ � u0. The shortest path between u
and v, denoted by P , in EHðs; tÞ � F must pass through
u0. Thus, P can be written as u ! u0 ! R ! v where R is
the shortest path from u0 to v in EHðs; tÞ � F . The subpath
R can be written as follows:

u0 ! H ! 0s1t1 ! 0s1t0 ! L ! 1s1t0 ! v:

Note that the length of subpath u0 ! H ! 0s1t1 is t and
all vertices of H are in Q0

t ; moreover, the length of sub-
path 0s1t0 ! L ! 1s1t0 is s and all vertices of L are in
Q2t�1

t . Thus, the length of the subpath u0 ! R ! v is
sþ tþ 2, and it follows that dEHðs;tÞ�F ðu; vÞ ¼ 1þ ðsþ
tþ 2Þ ¼ sþ tþ 3. Therefore, Df

s ðEHðs; tÞÞ � sþ tþ 3 for
1 � s � t. tu
Next, to show that Dsþ1ðEHðs; tÞÞ � sþ tþ 3 for

3 � s � t, internally disjoint paths between any two verti-
ces u and v of EHðs; tÞ are constructed in Lemmas 2-11.
Table 1 illustrates the conditions of vertices u and v in
Lemmas 2-11. For convenience, some symbols are used
in the following proofs. Let u ! P ! v be a path from u
to v in EHðs; tÞ. The predecessor vertex of v in P is
denoted by preðP; u; iÞ if their i-th bits are different. Sim-
ilarly, the successor vertex of u in P is denoted by
sucðP; u; jÞ if their j-th bits are different. We use lðP Þ to
denote the length of P .

Lemma 2. Let u and v be two vertices of EHðs; tÞ for 3 � s � t
with u ¼ utþsutþs�1 � � �u0 and v ¼ vtþsvtþs�1 � � � v0. If
u0 ¼ v0 ¼ 0, and htðu; vÞ ¼ 0, then there exist sþ 1

Fig. 2. An illustration for Lemma 1.
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internally disjoint paths Pi for 1 � i � sþ 1 between u and v
such that hs of them are of length hs, s� hs paths are of length
hs þ 2, and one path is of length hs þ 6.

Proof. By Theorem 3, we may assume without loss of gen-
erality that u ¼ 0s0t0 and v ¼ 0s�hs 1hs0t0 are in Q0

s . See
Fig. 3 for illustration. By Theorem 2, in Q0

s , there exist s
internally disjoint paths between u and v such that hs

of them are of length hs and the remaining s� hs paths
are of length hs þ 2. Let u ! Pi ! v for 1 � i � s be
those s internally disjoint paths. The following sets of
sþ 1 internally disjoint paths between u and v in
EHðs; tÞ can be set:

We construct the paths Pi for 1 � i � s from u to v as
follows:

u ! Pi ! v:

Note that all the paths u ! Pi ! v are in Q0
s . Thus,

lðPiÞ ¼ hs for 1 � i � hs and lðPiÞ ¼ hs þ 2 for hs þ 1 �
i � s.

The path Psþ1 can be constructed from u to v as fol-
lows:

u ! 0s0t1 ! 0s0t�111

! 0s0t�110 ! L ! 0s�hs1hs0t�110

! 0s�hs1hs 0t�111 ! 0s�hs1hs 0t1 ! v:

Note that edge 0s0t1 ! 0s0t�111 is in Q0
t , subpath

0s0t�110 ! L ! 0s�hs1hs0t�110 is in Q1
s and edge

0s�hs 1hs0t�111 ! 0s�hs 1hs0t1 is in Q2hs�1
t . It can be seen

that Psþ1 is also internally disjoint to Pi for 1 � i � s.
Moreover, we have lðLÞ ¼ hs. Therefore, lðPsþ1Þ ¼ hs þ 6.
This completes the proof. tu

Lemma 3. Let u and v be two vertices of EHðs; tÞ for 3 � s � t
with u ¼ utþsutþs�1 � � �u0 and v ¼ vtþsvtþs�1 � � � v0. If
u0 ¼ v0 ¼ 0 and htðu; vÞ 6¼ 0, then there exist sþ 1 internally
disjoint paths Pi for 1 � i � sþ 1 between u and v such that
hs þ 1 of them are of length hs þ ht þ 2 and s� hs paths are
of length hs þ ht þ 4.

Proof. By Theorem 3, we may assume without loss of gener-
ality that u ¼ 0s0t0 and v ¼ 0s�hs1hs 0t�ht1ht0 are in Q0

s

and Q2ht�1
s , respectively. Depending on hs, two cases are

distinguished.
Case 1: hs ¼ 0. Then, u ¼ 0s0t0 and v ¼ 0s0t�ht1ht0. See

Fig. 4 for illustration. Let ui ¼ u� 0s�i10i�10t0 ¼
0s�i10i�10t0 and vi ¼ v� 0s�i10i�10t0 ¼ 0s�i10i�10t�ht1ht 0
for 1 � i � s where � is the exclusive-or operation. To
construct a path from ui to vi, we need the following
intermediate vertices: xi ¼ ui � 0s0t1 and yi ¼ vi � 0s0t1.
Accordingly, xi ¼ 0s�i10i�10t1 and yi ¼ 0s�i10i�10t�ht

1ht1. Now we construct path Pi for 1 � i � s from u to v
as follows:

u ! ui ! xi ! Ri ! yi ! vi ! v:

TABLE 1
The Conditions of Lemmas 2-11 in EHðs; tÞ

Fig. 3. An illustration for Lemma 2. Fig. 4. An illustration for the Case 1 of Lemma 3.

3320 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 12, DECEMBER 2014



Note that edge u ! ui is inQ0
s , subpath xi ! Ri ! yi is in

Q2i�1

t and edge vi ! v is in Q2ht�1
s while ui ! xi and

yi ! vi are two edges in E1. This can be confirmed that
those Pi for 1 � i � s are internally disjoint.

It remains to construct the ðsþ 1Þ-th internally dis-
joint path from u to v. Path Psþ1 can be constructed as
follows:

u ! u0 ! R ! v0 ! v:

Note that u0 ¼ 0s0t1 and v0 ¼ 0s0t�ht1ht 1. We can find
that subpath u0 ! R ! v0 is in Q0

t while u ! u0 and
v0 ! v are two edges in E1.

By inspection, the vertices in Q0
t are not in Pi for

1 � i � s. Thus, path Psþ1 is also internally disjoint to Pi

for 1 � i � s. Since both xi and yi are in Q2i�1

t ,
lðRiÞ ¼ Hðxi; yiÞ ¼ ht. Moreover, both u0 and v0 are in
Q0

t , and lðRÞ ¼ ht. Therefore, lðPiÞ ¼ ht þ 4 for 1 � i � s
and lðPsþ1Þ ¼ ht þ 2.

Case 2: 1 � hs � s. Then, u ¼ 0s0t0 and v ¼
0s�hs1hs0t�ht1ht0. See Fig. 5 for illustration. Let
w ¼ 0s�hs1hs0t0 and z ¼ 0s0t�ht1ht 0 be in Q0

s and Q2ht�1
s ,

respectively. By Theorem 2, in Q0
s , there exist s internally

disjoint paths between u and w such that hs of them are
of length hs and the remaining s� hs paths are of length
hs þ 2. Let u ! Hi ! w for 1 � i � s be those internally
disjoint paths. Similarly, in Q2ht�1

s , there exist s internally
disjoint paths between z and v such that hs of them are of
length hs, and the remaining s� hs paths are of length
hs þ 2. We also denote z ! Li ! v for 1 � i � s are those
internally disjoint paths.

Now the path P1 can be constructed as follows:

u ! H1 ! w ! w0 ! R0 ! v0 ! v:

Note that w0 ¼ w� 0s0t1 ¼ 0s�hs1hs0t1 and v0 ¼ v�
0s0t1 ¼ 0s�hs1hs0t�ht1ht1 where � is the exclusive-or
operation. We can find that subpath u ! H1 ! w is in Q0

s

and subpath w0 ! R0 ! v0 is in Q2hs�1
t while w ! w0 and

v0 ! v are two edges in E1. Since both w0 and v0 are in
Q2hs�1

t , lðR0Þ ¼ Hðw0; v0Þ ¼ ht. In addition, we have
lðH1Þ ¼ hs. Hence lðP1Þ ¼ hs þ ht þ 2.

Based on Hi and Li for 2 � i � s, we construct s� 1
internally disjoint paths from u to v as follows. Let wi ¼

preðHi; w; tþ iÞ and vi ¼ preðLi; v; tþ iÞ where their
ðtþ iÞ-th bits are different. This is, wi ¼ 0s�hs1hs�i01i�10t0
and vi ¼ 0s�hs1hs�i01i�10t�ht1ht0 when 2 � i � hs, and
wi ¼ 0s�i10i�hs�11hs0t0 and vi ¼ 0s�i10i�hs�11hs0t�ht1ht 0
when hs þ 1 � i � s. Assume that H 0

i is the subpath of Hi

without containing w. Clearly, all u ! H 0
i ! wi for

2 � i � s are internally disjoint. To construct a path
from wi to vi, we need the following intermediate verti-
ces: xi ¼ wi � 0s0t1 and yi ¼ vi � 0s0t1 for 2 � i � s
where � is the exclusive-or operation. Accordingly,
xi ¼ 0s�hs1hs�i01i�10t1 and yi ¼ 0s�hs1hs�i01i�1 0t�ht1ht 1
when 2 � i � hs, and xi ¼ 0s�i10i�hs�11hs0t1 and yi ¼
0s�i10i�hs�11hs0t�ht1ht1 when hs þ 1 � i � s. We con-
struct a path from wi to v as follows:

wi ! xi ! Ri ! yi ! vi:

Combining the subpaths above, we can obtain paths Pi

for 2 � i � s from u to v as follows:

u ! H 0
i ! wi ! xi ! Ri ! yi ! vi ! v:

Note that, for 2 � i � hs (respectively, hs þ 1 � i � s),

subpath u ! H 0
i ! wi is in Q0

s , subpath xi ! Ri ! yi is

in Q2hs�2i�1�1
t (respectively, Q2hsþ2i�1�1

t ) and edge vi ! v

is in Q2ht�1
s while wi ! xi and yi ! vi are two edges in

E1. Moreover, the vertices in Q2hs�1
t are not in Pi for

2 � i � s. It is easy to verify that all those Pi for 2 � i � s

are internally disjoint.
Since both xi and yi are in Q2hs�2i�1�1

t (or Q2hsþ2i�1�1
t ),

lðRiÞ ¼ Hðxi; yiÞ ¼ ht. Note that subpath u ! H 0
i ! wi is

of length hs � 1 for 2 � i � hs and hs þ 1 for hsþ
1 � i � s. As a result, lðPiÞ ¼ hs þ ht þ 2 for 2 � i � hs

and lðPiÞ ¼ hs þ ht þ 4 for hs þ 1 � i � s.
Next, the path Psþ1 can be constructed as follows:

u ! u0 ! R ! z0 ! z ! L1 ! v:

Note that u0 ¼ 0s0t1 and z0 ¼ 0s0t�ht1ht1. We can find
that subpath u0 ! R ! z0 is in Q0

t and subpath
z ! L1 ! v is in Q2ht�1

s while u ! u0 and z0 ! z are two
edges in E1. By inspection, the vertices in Q0

t are not in Pi

for 1 � i � s. Thus, all paths Pi for 1 � i � sþ 1 are inter-
nally disjoint. Since both u0 and z0 are in Q0

t ,
lðRÞ ¼ Hðw0; v0Þ ¼ ht. In addition, both z and v are in
Q2ht�1

s , and lðL1Þ ¼ hs. Therefore, lðPsþ1Þ ¼ hs þ ht þ 2.
This completes the proof. tu

Lemma 4. Let u and v be two vertices of EHðs; tÞ for 3 � s � t
with u ¼ utþsutþs�1 � � �u0 and v ¼ vtþsvtþs�1 � � � v0. If
u0 ¼ v0 ¼ 1, and hsðu; vÞ ¼ 0, then there exist tþ 1 internally
disjoint paths Pi for 1 � i � tþ 1 between u and v such that
ht of them are of length ht, t� ht paths are of length ht þ 2,
and one path is of length ht þ 6.

Proof. By Theorem 3, we may assume without loss of
generality that u ¼ 0s0t1 and v ¼ 0s0t�ht1ht1 are in Q0

t .
By Theorem 2, in Q0

t , there exist t internally disjoint
paths between u and v such that ht of them are of
length ht, and the remaining t� ht paths are of length
ht þ 2. Let u ! Hi ! v for 1 � i � t be those t inter-
nally disjoint paths. The following sets of tþ 1

Fig. 5. An illustration for the Case 2 of Lemma 3.
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internally disjoint paths between u and v in EHðs; tÞ
can be set:

We construct the paths Pi for 1 � i � t from u to v as
follows:

u ! Pi ! v:

Note that all the paths u ! Pi ! v are in Q0
t . Thus,

lðPiÞ ¼ ht for 1 � i � ht and lðPiÞ ¼ ht þ 2 for
ht þ 1 � i � t.

The path Ptþ1 can be constructed from u to v as fol-
lows:

u ! 0s0t0 ! 0s�110t0

! 0s�110t1 ! L ! 0s�110t�ht1ht1

! 0s�110t�ht 1ht0 ! 0s0t�ht1ht0 ! v:

Note that edge 0s0t0 ! 0s�110t0 is in Q0
s , subpath 0s�1

10t1 ! L ! 0s�110t�ht1ht1 is in Q1
t and edge 0s�1

10t�ht 1ht0 ! 0s0t�ht1ht0 is in Q2ht�1
s . It is easy to verify

that Ptþ1 is also internally disjoint to Pi for 1 � i � t. Fur-
thermore, we have lðLÞ ¼ ht. Therefore, lðPtþ1Þ ¼ ht þ 6.
This completes the proof. tu

Lemma 5. Let u and v be two vertices of EHðs; tÞ for 3 � s � t
with u ¼ utþsutþs�1 � � �u0 and v ¼ vtþsvtþs�1 � � � v0. If
u0 ¼ v0 ¼ 1, and hsðu; vÞ 6¼ 0, then there exist tþ 1 internally
disjoint paths Pi for 1 � i � tþ 1 between u and v such that
ht þ 1 of them are of length hs þ ht þ 2 and t� ht paths are
of length hs þ ht þ 4.

Proof. By Theorem 3, we may assume without loss of gener-
ality that u ¼ 0s0t1 and v ¼ 0s�hs1hs0t�ht1ht1 are in Q0

t

and Q2hs�1
t , respectively. Depending on ht, two cases are

distinguished.
Case 1: ht ¼ 0. Then, u ¼ 0s0t1 and v ¼ 0s�hs 1hs0t1. Let

ui ¼ u� 0s0t�i10i�10 ¼ 0s0t�i10i�11 and vi ¼ v� 0s0t�i

10i�10 ¼ 0s�hs1hs0t�i10i�11 for 1 � i � t where � is
the exclusive-or operation. To construct a path from ui

to vi, we need the following intermediate vertices: xi ¼
ui � 0s0t1 ¼ 0s0t�i10i�10 and yi ¼ vi� 0s0t1 ¼ 0s�hs

1hs0t�i10i�10. Now we construct path Pi for 1 � i � t
from u to v as follows:

u ! ui ! xi ! Ri ! yi ! vi ! v:

Note that edge u ! ui is inQ0
t , subpath xi ! Ri ! yi is in

Q2i�1

s and edge vi ! v is in Q2hs�1
t while ui ! xi and

yi ! vi are two edges in E1.
It remains to construct the ðtþ 1Þ-th internally disjoint

path from u to v. Path Ptþ1 can be constructed as follows:

u ! u0 ! R ! v0 ! v:

Note that u0 ¼ 0s0t0 and v0 ¼ 0s�hs 1hs0t0. We can find
that subpath u0 ! R ! v0 is in Q0

s while u ! u0 and
v0 ! v are two edges in E1. This can be confirmed that
those Pi for 1 � i � tþ 1 are internally disjoint. More-
over, we have lðRiÞ ¼ lðRÞ ¼ hs. Therefore, lðPiÞ ¼ hs þ 4
for 1 � i � t and lðPtþ1Þ ¼ hs þ 2.

Case 2: 1 � ht � t. Then, u ¼ 0s0t1 and v ¼ 0s�hs

1hs0t�ht 1ht1. Let w ¼ 0s0t�ht1ht1 and z ¼ 0s�hs1hs0t1 be in
Q0

t and Q2hs�1
t , respectively. By Theorem 2, in Q0

t , there

exist t internally disjoint paths between u and w such
that ht of them are of length ht, and the remaining t� ht

paths are of length ht þ 2. Let u ! Hi ! w for 1 � i � t
be those internally disjoint paths. Similarly, there exist t
internally disjoint paths between z and v such that ht of
them are of length ht, and the remaining t� ht paths are
of length ht þ 2. We also denote z ! Li ! v for 1 � i � t
are those internally disjoint paths.

Now the path P1 can be constructed as follows:

u ! H1 ! w ! w0 ! R0 ! v0 ! v:

Note that w0 ¼ 0s0t�ht1ht0 and v0 ¼ 0s�hs1hs0t�ht1ht0. We
can find that subpath u ! H1 ! w is in Q0

t and subpath
w0 ! R0 ! v0 is in Q2ht�1

s while w ! w0 and v0 ! v are
two edges in E1. Additionally, we have lðR0Þ ¼ hs and
lðH1Þ ¼ ht. Hence lðP1Þ ¼ hs þ ht þ 2.

Based on Hi and Li for 2 � i � t, we construct t� 1
internally disjoint paths from u to v as follows. Let
wi ¼ preðHi; w; iÞ and vi ¼ preðLi; v; iÞ where their i-th
bits are different. This is, wi ¼ 0s0t�ht1ht�i01i�11 and
vi ¼ 0s�hs1hs0t�ht1ht�i01i�11 when 2 � i � ht, and wi ¼
0s0t�ht1ht�i01i�11 and vi ¼ 0s�hs1hs 0t�i10i�ht�11ht1 when
ht þ 1 � i � t. Assume that H 0

i is the subpath of Hi with-
out containing w. Clearly, all u ! H 0

i ! wi for 2 � i � t
are internally disjoint. To construct a path from wi to
vi, we need the following intermediate vertices:
xi ¼ 0s0t�ht1ht�i01i�10 and yi ¼ 0s�hs1hs0t�ht1ht�i01i�10
when 2 � i � hs, and xi ¼ 0s0t�i10i�ht�11ht 0 and
yi ¼ 0s�hs 1hs0t�i10i�ht�11ht0 when hs þ 1 � i � t. We con-
struct paths Pi for 2 � i � t from u to v as follows:

u ! H 0
i ! wi ! xi ! Ri ! yi ! vi ! v:

Note that, for 2 � i � ht (respectively, hs þ 1 � i � t),
subpath u ! H 0

i ! wi is in Q0
t , subpath xi ! Ri ! yi is

in Q2ht�2i�1�1
s (respectively, Q2htþ2i�1�1

s ) and edge vi ! v
is in Q2hs�1

t while wi ! xi and yi ! vi are two edges in
E1. Additionally, we have lðH 0

iÞ ¼ ht � 1 for 2 � i � ht

and lðH 0
iÞ ¼ ht þ 1 for ht þ 1 � i � t, and lðRiÞ ¼ hs for

2 � i � t, As a result, lðPiÞ ¼ hs þ ht þ 2 for 2 � i � ht

and lðPiÞ ¼ hs þ ht þ 4 for ht þ 1 � i � t.
Next, the path Ptþ1 can be constructed as follows:

u ! u0 ! R ! z0 ! z ! L1 ! v:

Note that u0 ¼ 0s0t0 and z0 ¼ 0s�hs1hs0t0. We can find
that subpath u0 ! R ! z0 is in Q0

s and subpath
z ! L1 ! v is in Q2hs�1

t while u ! u0 and z0 ! z are two
edges in E1. Moreover, we have lðRÞ ¼ hs and lðL1Þ ¼ ht.
Therefore, lðPtþ1Þ ¼ hs þ ht þ 2.

It is easy to verify that all those Pi for 1 � i � tþ 1 are
internally disjoint. This completes the proof. tu tu

Lemma 6. Let u and v be two vertices of EHðs; tÞ for 3 � s � t
with u ¼ utþsutþs�1 � � �u0 and v ¼ vtþsvtþs�1 � � � v0. If
u0 6¼ v0 and hsðu; vÞ ¼ htðu; vÞ ¼ 0, then there exist sþ 1
internally disjoint paths Pi for 1 � i � sþ 1 between u and v
such that s of them are of length 7 and one path is of length 1.

Proof. By Theorem 3, we may assume without loss of gener-
ality that u ¼ 0s0t0 and v ¼ 0s0t1 are in Q0

s and Q0
t ,

respectively. Let ui ¼ u� 0s�i10i�10t0 ¼ 0s�i10i�10t1 and
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vi ¼ v� 0s0t�i10i�10 ¼ 0s0t�i10i�11 for 1 � i � t where �
is exclusive-or operation. To construct a path from ui

to vi, we need the following intermediate vertices:
xi ¼ ui � 0s0t1 ¼ 0s�i10i�10t1, yi ¼ xi � 0s0t�i10i�10 ¼
0s�i10i�10t�i10i�11, zi ¼ wi � 0s�i 10i�10t0 ¼ 0s�i10i�10t�i

10i�10 and wi ¼ vi � 0s0t1 ¼ 0s 0t�i10i�10. Now we con-
struct path Pi for 1 � i � t from u to v as follows:

u ! ui ! xi ! yi ! zi ! wi ! vi ! v:

Note that, for 1 � i � s, edge u ! ui is in Q0
s , edge

xi ! yi is in Q2i�1

t , edge zi ! wi is in Q2i�1

s and edge
vi ! v is in Q0

t while ui ! xi, yi ! zi and wi ! vi are
three edges in E1. Thus, lðPiÞ ¼ 7 for 1 � i � s. This can
be confirmed that all those Pi for 1 � i � s are internally
disjoint.

Finally, the path Psþ1 is u ! v, and lðPsþ1Þ ¼ 1. This
completes the proof. tu

Lemma 7. Let u and v be two vertices of EHðs; tÞ for 3 � s � t
with u ¼ utþsutþs�1 � � �u0 and v ¼ vtþsvtþs�1 � � � v0. If
u0 6¼ v0, hsðu; vÞ 6¼ 0 and htðu; vÞ ¼ 0, then there exist sþ 1
internally disjoint paths Pi for 1 � i � sþ 1 between u and v
such that hs of them are of length hs þ 5, s� hs paths are of
length hs þ 7, and one path is of length hs þ 1.

Proof. By Theorem 3, we may assume without loss of gener-
ality that u ¼ 0s0t0 and v ¼ 0s�hs1hs0t1 are in Q0

s and
Q2hs�1

t , respectively. Let w ¼ 0s�hs1hs0t0 be in Q0
s . By The-

orem 2, in Q0
s , there exist s internally disjoint paths

between u and w such that hs of them are of length hs,
and the remaining s� hs paths are of length hs þ 2. Let
u ! Hi ! w for 1 � i � s be those internally disjoint
paths.

The path P1 can be constructed as follows:

u ! H1 ! w ! v:

Note that subpath u ! H1 ! w is inQ0
s while w ! v is an

edge in E1. Thus, lðP1Þ ¼ hs þ 1.
Based on Hi for 2 � i � s, we construct s� 1 inter-

nally disjoint paths from u to v as follows. Let
wi ¼ preðHi; w; iÞ where their ðtþ iÞ-th bits are different.
This is, wi ¼ 0s�hs1hs�i01i�10t0 when 2 � i � hs and
wi ¼ 0s�i10i�hs�11hs 0t0 when hs þ 1 � i � s. Assume that
H 0

i is the subpath of Hi without containing w. Clearly, all
u ! H 0

i ! wi for 2 ! i ! s are internally disjoint. Let
vi ¼ v� 0s�hs1hs0t0 ¼ 0s�hs1hs0t�i10i�11 where � is the
exclusion-or operation. To construct a path from wi to vi,
we need the following intermediate vertices: ai ¼ 0s�hs

1hs�i01i�10t1, bi ¼ 0s�hs1hs�i01i�10t�i10i�11 and ci ¼ 0s�hs

1hs�i01i�10t�i10i�10 when 2 � i � hs, and ai ¼ 0s�i

10i�hs�11hs0t1, bi ¼ 0s�i10i�hs�11hs 0t�i10i�11 and ci ¼
0s�i10i�hs�11hs0t�i10i�10 when hs þ 1 � i � s. di ¼ 0s�hs

1hs0t�i10i�11 when 2 � i � s. We construct paths Pi for
2 � i � s from u to v as follows:

u ! H 0
i ! wi ! ai ! bi ! ci ! di ! vi ! v:

Note that, for 2 � i � hs (respectively, hs þ 1 � i � s),

subpath u ! H 0
i ! wi is in Q0

s , edge ai ! bi is

in Q2hs�2i�1�1
t (respectively, Q2hsþ2i�1�1

t ), edge ci ! di is in

Q2i�1

s and edge vi ! v is in Q2hs�1
s while wi ! ai, bi ! ci

and di ! vi are three edges in E1. Moreover, we have

lðH 0
iÞ ¼ hs � 1 for 2 � i � hs and lðH 0

iÞ ¼ hs þ 1 for

hs þ 1 � i � s. As a result, lðPiÞ ¼ hs þ 5 for 2 � i � hs

and lðPiÞ ¼ hs þ 7 for hs þ 1 � i � s.

The path Psþ1 can be constructed from u to v as fol-
lows:

u ! u0 ! x ! y ! L ! z ! v1 ! v:

Note that u0 ¼ 0s0t1, x ¼ 0s0t�111, y ¼ 0s0t�110 and
z ¼ 0s�hs1hs0t�110. We can find that edge u0 ! x is in Q0

t ,
subpath y ! L ! z is in Q1

s and edge v1 ! v is in Q2hs�1
s

while u ! u0, x ! y and z ! v1 are three edges in E1.
Furthermore, we have lðLÞ ¼ hs. Therefore, lðPsþ1Þ ¼
hs þ 5.

It is easy to verify that all those Pi for 1 � i � sþ 1 are
internally disjoint. This completes the proof. tu

Lemma 8. Let u and v be two vertices of EHðs; tÞ for 3 � s � t
with u ¼ utþsutþs�1 � � �u0 and v ¼ vtþsvtþs�1 � � � v0. If
u0 6¼ v0, hsðu; vÞ ¼ 0 and htðu; vÞ 6¼ 0, then there exist sþ 1
internally disjoint paths Pi for 1 � i � sþ 1 between u and v
such that the following two cases are distinguished.

1) If htðu; vÞ � s, then s of them are of length ht þ 5 and
one path is of length ht þ 1.

2) If htðu; vÞ � s� 1, then ht of them are of length
ht þ 5, s� ht paths are of length ht þ 7, and one path
is of length ht þ 1.

Proof. By Theorem 3, we may assume without loss of gener-
ality that u ¼ 0s0t0 and v ¼ 0s0t�ht1ht 1 are in Q0

s and Q0
t ,

respectively. Let ui ¼ u� 0s�i10i�10t0 ¼ 0s�i10i�10t0 for
1 � i � swhere � is the exclusive-or operation.

Now the path P1 can be constructed as follows:

u ! u1 ! x ! L ! y ! z ! v0 ! v:

Note that x ¼ 0s�110t1, y ¼ 0s�110t�ht1ht1, z ¼ 0s�1

10t�ht1ht0 and v0 ¼ 0s0t�ht 1ht0. We can find that edge
u ! u1 is in Q0

s , subpath x ! L ! y is in Q1
t , edge z ! v0

is in Q2ht�1 while u1 ! x, y ! z and v0 ! v are three
edges in E1. Moreover, we have lðLÞ ¼ ht. Hence
lðP1Þ ¼ ht þ 5.

Let w ¼ 0s0t1 be inQ0
t . By Theorem 2, inQ0

t , there exist
t internally disjoint paths between w and v such that ht of
them are of length ht, and the remaining t� ht paths are
of length ht þ 2. Let w ! Hi ! v for 1 � i � t be those
internally disjoint paths. Based on Hi for 2 � i � s, we
construct s� 1 internally disjoint paths from u to v as fol-
lows. Let wi ¼ sucðHi; w; iÞ where their i-th bits are dif-
ferent. This is, wi ¼ 0s0t�i10i�11 when 2 � i � s. Assume
that H 0

i is the subpath of Hi without containing w.
Clearly, all wi ! H 0

i ! v for 2 � i � s are internally dis-
joint. To construct a path from ui to wi, we need the fol-
lowing intermediate vertices: ai ¼ 0s�i10i�10t1, bi ¼ 0s�i

10i�10t�i10i�11, ci ¼ 0s�i10i�10t�i10i�10 and di ¼ 0s0t�i

10i�10 when 2 � i � s. We construct paths Pi for
2 � i � s from u to v as follows:

u ! ui ! ai ! bi ! ci ! di ! wi ! H 0
i ! v:

Note that edge u ! ui is in Q0
s , edge ai ! bi is in Q2i�1

t ,
edge ci ! di is in Q2i�1

s and subpath wi ! H 0
i ! v is in Q0

t
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while ui ! ai, bi ! ci and di ! wi are three edges in E1.
In addition, if htðu; vÞ � s, then lðH 0

iÞ ¼ ht � 1 for
2 � i � s; otherwise, lðH 0

iÞ ¼ ht � 1 for 2 � i � ht and
lðH 0

iÞ ¼ ht þ 1 for ht þ 1 � i � s. Thus, if htðu; vÞ � s, we
have lðPiÞ ¼ ht þ 5 for 2 � i � s; otherwise, lðPiÞ ¼ ht þ 5
for 2 � i � ht and lðPiÞ ¼ ht þ 7 for ht þ 1 � i � s.

The path Psþ1 can be constructed as follows:

u ! w ! H1 ! v:

Note that subpath w ! H1 ! v is inQ0
t while u ! w is an

edge in E1. Moreover, we have lðH1Þ ¼ ht. Therefore,
lðP1Þ ¼ ht þ 1.

It is easy to verify that all those Pi for 1 � i � sþ 1 are
internally disjoint. This completes the proof. tu

Lemma 9. Let u and v be two vertices of EHðs; tÞ for 3 � s � t
with u ¼ utþsutþs�1 � � �u0 and v ¼ vtþsvtþs�1 � � � v0. If
u0 6¼ v0, hsðu; vÞ ¼ s and htðu; vÞ 6¼ 0, then there exist sþ 1
internally disjoint paths Pi for 1 � i � sþ 1 between u and v
such that the following two cases are distinguished.

1) If htðu; vÞ � s, then s of them are of length sþ ht þ 3
and one path is of length sþ ht þ 1.

2) If htðu; vÞ � s� 1, then ht þ 2 of them are of length
sþ ht þ 3 and s� ht � 1 paths are of length
sþ ht þ 5.

Proof. By Theorem 3, we may assume without loss of gener-
ality that u ¼ 0s0t0 and v ¼ 1s0t�ht 1ht1 are in Q0

s and
Q2s�1

t , respectively. Let w ¼ 1s0t0 and x ¼ 1s0t0 be in Q0
s

and Q2s�1
t , respectively. By Theorem 2, in Q0

s , there exist
s internally disjoint paths between u and w such that s of
them are of length s. In addition, there exist t internally
disjoint paths between x and v such that ht of them are of
length ht, and the remaining t� ht paths are of length
ht þ 2. Let u ! Hi ! w for 1 � i � s and x ! Li ! v for
1 � i � t be those internally disjoint paths. Based on Hi

for 1 � i � s� 1, we construct s� 1 internally disjoint
paths from u to v as follows. Let wi ¼ preðHi; w; iÞ where
their ðtþ iÞ-th bits are different. This is, wi ¼ 1s�i01i�10t0
when 1 � i � s� 1. Assume that H 0

i is the subpath of Hi

without containing w. Clearly, all u ! H 0
i ! wi for

1 � i � s� 1 are internally disjoint. Similarly, based on
Li for 1 � i � s� 1, we construct s� 1 internally disjoint
paths from u to v as follows. Let xi ¼ sucðLi; x; iÞ where
their i-th bits are different. This is, xi ¼ 1s0t�i10i�11
when 1 � i � s� 1. Assume that L0

i is the subpath of Li

without containing x. Clearly, all wi ! L0
i ! v for

1 � i � s� 1 are internally disjoint. To construct a path
from wi to xi, we need the following intermediate verti-
ces: ai ¼ 1s�i01i�10t1, bi ¼ 1s�i01i�10t�i10i�11, ci ¼ 1s�i

01i�10t�i10i�10 and di ¼ 1s0t�i10i�10 when 1 � i � s� 1.
We construct paths Pi for 1 � i � s� 1 from u to v as
follows:

u ! H 0
i ! wi ! ai ! bi ! ci ! di ! xi ! L0

i ! v:

Note that subpath u ! H 0
i ! wi is in Q0

s , edge ai ! bi is

in Q2s�2i�1�1
t , edge ci ! di is in Q2i�1

s , and subpath

xi ! L0
i ! v is in Q2s�1

t while wi ! ai, bi ! ci and

di ! xi are three edges in E1. Furthermore, we have
lðH 0

iÞ ¼ s� 1 for 1 � i � s� 1. In addition, if htðu; vÞ � s,

then lðL0
iÞ ¼ ht � 1 for 1 � i � s� 1; otherwise,

lðL0
iÞ ¼ ht � 1 for 1 � i � ht and lðL0

iÞ ¼ ht þ 1 for

ht þ 1 � i � s� 1. Thus, if htðu; vÞ � s, we have lðPiÞ ¼
sþ ht þ 3 for 1 � i � s� 1; otherwise, lðPiÞ ¼ sþ ht þ 3

for 1 � i � ht and lðPiÞ ¼ sþ ht þ 5 for ht þ 1 �
i � s� 1.

The path Ps can be constructed as follows:

u ! Hs ! w ! x ! Ls ! v:

Note that subpath u ! Hs ! w is in Q0
s , subpath

x ! Ls ! v is in Q2s�1
t while w ! x is an edge in E1.

Moreover, if htðu; vÞ � s, then lðLsÞ ¼ ht � 1; otherwise,
lðLsÞ ¼ ht þ 1. Hence, if htðu; vÞ � s, we have
lðPsÞ ¼ sþ ht þ 1; otherwise, lðPsÞ ¼ sþ ht þ 3.

It remains to construct the ðsþ 1Þ-th internally disjoint
path from u to v. Path Psþ1 can be constructed as follows:

u ! u0 ! R ! y ! z ! K ! v0 ! v:

Note that u0 ¼ 0s0t1, y ¼ 0s0t�ht1ht1, z ¼ 0s0t�ht 1ht0 and
v0 ¼ 1s0t�ht 1ht0. We can find that subpath u0 ! R ! y is
in Q0

t and z ! K ! v0 is in Q2ht�1
s while u ! u0, y ! z

and v0 ! v are three edges in E1. Furthermore, we have
lðRÞ ¼ ht and lðKÞ ¼ s. Therefore, lðPsþ1Þ ¼ sþ ht ¼ 3.

It is easy to verify that all those Pi for 1 � i � sþ 1 are
internally disjoint. This completes the proof. tu

Lemma 10. Let u and v be two vertices of EHðs; tÞ for 3 � s � t
with u ¼ utþsutþs�1 � � �u0 and v ¼ vtþsvtþs�1 � � � v0. If
u0 6¼ v0, 1 � hsðu; vÞ � s� 1 and s � htðu; vÞ � t, then there
exist sþ 1 internally disjoint paths Pi for 1 � i � sþ 1
between u and v such that hs þ 2 of them are of length
hs þ ht þ 3 and s� hs � 1 paths are of length hs þ ht þ 5.

Proof. By Theorem 3, we may assume without loss of gener-
ality that u ¼ 0s0t0 and v ¼ 0s�hs1hs 0t�ht1ht1 are in Q0

s

and Q2hs�1
t , respectively. Let w ¼ 0s�hs1hs0t0 and

x ¼ 0s�hs1hs0t1 be in Q0
s and Q2hs�1

t , respectively. By The-
orem 2, in Q0

s , there exist s internally disjoint paths
between u and w such that hs of them are of length hs,
and the remaining s� hs paths are of length hs þ 2. In
addition, there exist t internally disjoint paths between x
and v such that ht of them are of length ht, and the
remaining t� ht paths are of length ht þ 2. Let
u ! Hi ! w for 1 � i � s and x ! Li ! v for 1 � i � t
be those internally disjoint paths. Based on Hi for
1 � i � s� 1, we construct s� 1 internally disjoint paths
from u to w as follows. Let wi ¼ preðHi; w; iÞ where their
ðtþ iÞ-th bits are different. This is, wi ¼ 0s�hs1hs�i01i�10t0
when 1 � i � hs and wi ¼ 0s�i10i�hs�11hs0t0 when
hs þ 1 � i � s� 1. Assume that H 0

i is the subpath of Hi

without containing w. Clearly, all u ! H 0
i ! wi for

1 � i � s� 1 are internally disjoint. Similarly, based on
Li for 1 � i � s� 1, we construct s� 1 internally disjoint
paths from x to v as follows. Let xi ¼ sucðLi; x; iÞ where
their i-th bits are different. This is, xi ¼ 0s�hs1hs0t�i10i�11
when 1 � i � s� 1. Assume that L0

i is the subpath of Li

without containing x. Clearly, all xi ! L0
i ! v for

1 � i � s� 1 are internally disjoint. To construct a path
from wi to xi, we need the following intermediate verti-
ces: ai ¼ 0s�hs1hs�i01i�10t1, bi ¼ 0s�hs1hs�i01i�10t�i10i�11,
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ci ¼ 0s�hs1hs�i01i�10t�i10i�10 when 1 � i � hs, and
ai ¼ 0s�i10i�hs�11hs0t1, bi ¼ 0s�i10i�hs�11hs 0t�i10i�11, ci ¼
0s�i10i�hs�11hs0t�i10i�10 when hs þ 1 � i � s� 1. di ¼
0s�hs1hs0t�i10i�10when 1 � i � s� 1. We construct paths
Pi for 1 � i � s� 1 from u to v as follows:

u ! H 0
i ! wi ! ai ! bi ! ci ! di ! xi ! L0

i ! v:

Note that, for 1 � i � hs (respectively, hs þ 1 � i � s� 1),

subpath u ! H 0
i ! wi is in Q0

s , edge ai ! bi is in

Q2hs�2i�1�1
t (respectively, Q2hsþ2i�1�1

t ), edge ci ! di is in

Q2i�1

s , and subpath xi ! L0
i ! v is in Q2hs�1

t while

wi ! ai, bi ! ci and di ! xi are three edges in E1. More-

over, we have lðH 0
iÞ ¼ hs � 1 for 1 � i � hs and lðH 0

iÞ ¼
hs þ 1 for hs þ 1 � i � s� 1, and lðL0

iÞ ¼ hs � 1 for 1 �
i � s� 1. Thus, we have lðPiÞ ¼ hs þ ht þ 3 for 1 � i � hs

and lðPiÞ ¼ hs þ ht þ 5 for hs þ 1 � i � s� 1.
The path Ps can be constructed as follows:

u ! Hs ! w ! x ! Ls ! v:

Note that subpath u ! Hs ! w is in Q0
s and subpath

x ! Ls ! v is in Q2hs�1
t while w ! x is an edge in E1.

Moreover, we have lðHsÞ ¼ hs þ 2 and lðLsÞ ¼ ht. Hence
lðPsÞ ¼ hs þ ht þ 3.

It remains to construct the ðsþ 1Þ-th internally dis-
joint path from u to v. Path Psþ1 can be constructed as
follows:

u ! u0 ! R ! y ! z ! K ! v0 ! v:

Note that u0 ¼ 0s0t1, y ¼ 0s0t�ht1ht 1, z ¼ 0s0t�ht1ht0 and
v0 ¼ 0s�hs1hs0t�ht1ht0. We can find that subpath u0 !
R ! y is in Q0

t and z ! K ! v0 is in Q2ht�1
s while u ! u0,

y ! z and v0 ! v are three edges in E1. Furthermore, we
have lðRÞ ¼ ht and lðKÞ ¼ hs. Therefore, lðPsþ1Þ ¼
hs þ ht ¼ 3.

It is easy to verify that all those Pi for 1 � i � sþ 1 are
internally disjoint. This completes the proof. tu

Lemma 11. Let u and v be two vertices of EHðs; tÞ for 3 � s � t
with u ¼ utþsutþs�1 � � �u0 and v ¼ vtþsvtþs�1 � � � v0. If
u0 6¼ v0, 1 � hsðu; vÞ � s� 1 and 1 � htðu; vÞ � s� 1, then
there exist sþ 1 internally disjoint paths Pi for 1 � i � sþ 1
between u and v such that the following three cases are
distinguished.

1) If hs þ ht � tþ 1, then sþ t� hs � ht � 1 of them
are of length hs þ ht þ 5 and hs þ ht � tþ 2 paths are
of length hs þ ht þ 3.

2) If s � hs þ ht � t, then s� 1 of them are of length
hs þ ht þ 5 and two paths are of length hs þ ht þ 3.

3) If hs þ ht � s� 1, then hs þ ht þ 1 of them are of
length hs þ ht þ 5, s� hs � ht � 1 of them are of
length hs þ ht þ 7, and one path is of length
hs þ ht þ 3.

Proof. By Theorem 3, we may assume without loss of gener-
ality that u ¼ 0s0t0 and v ¼ 0s�hs1hs0t�ht1ht1 are in Q0

s

and Q2hs�1
t , respectively. Let w ¼ 0s�hs1hs 0t0 and

x ¼ 0s�hs1hs0t1 be in Q0
s and Q2hs�1

t , respectively. By The-
orem 2, in Q0

s , there exist s internally disjoint paths
between u and w such that hs of them are of length hs,

and the remaining s� hs paths are of length hs þ 2. In
addition, there exist t internally disjoint paths between x
and v such that ht of them are of length ht, and the
remaining t� ht paths are of length ht þ 2. Let
u ! Hi ! w for 1 � i � s and x ! Li ! v for 1 � i � t
be those internally disjoint paths. Based on Hi for
1 � i � s� 1, we construct s internally disjoint paths
from u to w as follows. Let wi = preðHi; w; iÞ where their
ðtþ iÞ-th bits are different. This is, wi ¼ 0s�hs1hs�i01i�10t0
when 1 � i � hs and wi ¼ 0s�i10i�hs�11hs0t0 when
hs þ 1 � i � s. Assume that H 0

i is the subpath of Hi with-
out containing w. Clearly, all u ! H 0

i ! wi for 1 � i � s
are internally disjoint. Similarly, based on Lk for
1 � k � t, we construct t internally disjoint paths from x
to v as follows. Let xk ¼ sucðLk; x; kÞ where their k-th bits
are different. This is, xk ¼ 0s�hs1hs0t�k10k�11 when
1 � k � t. Assume that L0

k is the subpath of Lk without
containing x. Clearly, all xk ! L0

k ! v for 1 � k � t are
internally disjoint. To construct a path from wi to xi, we
need the intermediate vertices: ai ¼ 0s�hs1hs�i01i�10t1,
bi ¼ 0s�hs1hs�i01i�10t�k10k�11 and ci ¼ 0s�hs1hs�i01i�1

0t�k10k�10 when 1 � i � hs, and ai ¼ 0s�i10i�hs�11hs0t1,
bi ¼ 0s�i10i�hs�11hs0t�k10k�11 and ci ¼ 0s�i10i�hs�11hs

0t�k10k�10 when hs þ 1 � i � s� 1. dk ¼ 0s�hs1hs0t�k

10k�10 when 1 � i � s� 1. Now we construct paths Pi

for 1 � i � s� 1 from u to v as follows:

u ! H 0
i ! wi ! ai ! bi ! ci ! dk ! xk ! L0

k ! v:

Note that, for 1 � i � hs (respectively, hs þ 1 � i � s� 1),

subpath u ! H 0
i ! wi is in Q0

s , edge ai ! bi is in

Q2hs�2i�1�1
t (respectively, Q2hsþ2i�1�1

t ), edge ci ! dk is in

Q2k�1

s , and subpath xi ! L0
k ! v is in Q2hs�1

t while

wi ! ai, bi ! ci and dk ! xk are three edges in E1. More-

over, we have lðH 0
iÞ ¼ hs � 1 for 1 � i � hs and lðH 0

iÞ ¼
hs þ 1 for hs þ 1 � i � s, and lðL0

iÞ ¼ ht � 1 for 1 � i � ht

and lðL0
iÞ ¼ ht þ 1 for ht þ 1 � i � t.

Then the path Ps can be constructed as follows:

u ! Hs ! w ! x ! Lk ! v:

Note that subpath u ! Hs ! w is in Q0
s , subpath

x ! Lk ! v is in Q2hs�1
t while w ! x is an edge in E1.

Moreover, we have lðHsÞ ¼ hs þ 2 and lðLkÞ is equal to ht

or ht þ 2 depending on k.
Next, we calculate the length of path Pi for 1 � i � s.
Case 1: hs þ ht � tþ 1.
For 1 � i � t� ht, let k ¼ ht þ i and then lðPiÞ ¼

hs þ ht þ 5. For t� ht þ 1 � i � hs, let k ¼ ht þ i� t and
then lðPiÞ ¼ hs þ ht þ 3. For hs þ 1 � i � s� 1, let k ¼
ht þ i� t and then lðPiÞ ¼ hs þ ht þ 5. For i ¼ s, let
k ¼ ht þ s� t and then lðPsÞ ¼ hs þ ht þ 3.

Case 2: s � hs þ ht � t.
For 1 � i � hs, let k ¼ ht þ i and then lðPiÞ ¼

hs þ ht þ 5. For hs þ 1 � i � s� 1, let k ¼ i� hs and then
lðPiÞ ¼ hs þ ht þ 5. For i ¼ s, let k ¼ s� hs and then
lðPsÞ ¼ hs þ ht þ 3.

Case 3: hs þ ht � s� 1:
For 1 � i � hs, let k ¼ ht þ i and then lðPiÞ ¼ hsþ

ht þ 5. For hs þ 1 � i � hs þ ht, let k ¼ i� hs and then
lðPiÞ ¼ hs þ ht þ 5. For hs þ ht þ 1 � i � s� 1, let k ¼ i
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and then lðPiÞ ¼ hs þ ht þ 7. For i ¼ s, let k ¼ s and then
lðPsÞ ¼ hs þ ht þ 5.

Finally, the path Psþ1 can be constructed as follows:

u ! u0 ! R ! y ! z ! K ! v0 ! v:

Note that u0 ¼ 0s0t1, y ¼ 0s0t�ht1ht 1, z ¼ 0s0t�ht1ht0
and v0 ¼ 0s�hs1hs 0t�ht 1ht0. We can find that subpath
u0 ! R ! y is in Q0

t and z ! K ! v0 is in Q2ht�1
s while

u ! u0, y ! z and v0 ! v are three edges in E1. Further-
more, we have lðRÞ ¼ ht and lðKÞ ¼ hs. Therefore,
lðPsþ1Þ ¼ hs þ ht ¼ 3.

It is easy to verify that all those Pi for 1 � i � sþ 1 are
internally disjoint. This completes the proof. tu
By Lemmas 2-11 above, sþ 1 or tþ 1 internally disjoint

paths between any two vertices of the exchanged hyper-
cubes EHðs; tÞ can be constructed, and it can be verified that
the length of each the internally disjoint paths is at most
sþ tþ 3. Take Lemma 2 for instance, one of the sþ 1 inter-
nally disjoint paths is of length hs þ 6. Then, hsþ 6 �
sþ tþ 3 since 3 � s � t. Additionally, take Lemma 3 for
instance, s� hs of the sþ 1 internally disjoint paths is of
length hs þ ht þ 4. Suppose that hs � s� 1, then hs þ htþ
4 � ðs� 1Þ þ tþ 4 ¼ sþ tþ 3. Suppose that hs ¼ s, then no
path is of length hs þ ht þ 4 since s� hs ¼ 0. Therefore, the
following corollary can be obtained.

Corollary 1.Dsþ1ðEHðs; tÞÞ � sþ tþ 3 for 3 � s � t.

The wide diameter and fault diameter of the
exchanged hypercubes EHðs; tÞ for 3 � s � t are stated in
Theorem 4.

Theorem 4. Dsþ1ðEHðs; tÞÞ ¼ Df
s ðEHðs; tÞÞ ¼ sþ tþ 3 for

3 � s � t.

Proof. Clearly, Df
s ðEHðs; tÞÞ � Dsþ1ðEHðs; tÞÞ. Additionally,

by Lemma 1 and Corollary 1, we have that
sþ tþ 3 � Df

s ðEHðs; tÞÞ � Dsþ1ðEHðs; tÞÞ � sþ tþ 3 for
3 � s � t. Therefore, Dsþ1ðEHðs; tÞÞ ¼ Df

s ðEHðs; tÞÞ ¼ sþ
tþ 3 for 3 � s � t, and this completes the proof. tu
For the cases of s ¼ 1; 2 on the wide diameter and

fault diameter of the exchanged hypercubes EHðs; tÞ, the
statement of Theorem 4 is not true. The following is a
counterexample. Consider that u ¼ 0s0t1, u0 ¼ 0s0t0, and
v ¼ 0s1t1. Assume that F is a faulty vertex set such that
F ¼ NEHðs;tÞðuÞ � u0. The shortest path P between u and v
in EHðs; tÞ � F can be written as the following:

P : u ¼ 0s0t1 ! u0 ! 0s�110t0 ! 0s�110t1 ! L

! 0s�111t1 ! 0s�111t0 ! 0s1t0

! v ¼ 0s1t1:

Note that the path L is of length t. It follows that
dEHðs;tÞ�F ðu; vÞ ¼ tþ 6. Therefore, we have Df

s ðEHðs; tÞÞ �
tþ 6 > sþ tþ 3 for s ¼ 1; 2.

4 CONCLUDING REMARKS

The topology of a network is an important consideration in
the design of interconnection networks since it affects
many key properties such as efficiency and fault tolerance.
The exchanged hypercube EHðs; tÞ, which is beneficial in
parallel computing and communication systems, consti-
tutes nearly half the number of edges in comparison with
the hypercube Qsþtþ1 and yet retains the advantages of
many topologies; furthermore, it provides good applica-
tion to support. In this paper, we focus on constructing
sþ 1 internally disjoint paths between any two vertices u
and v in the exchanged hypercube EHðs; tÞ. However, if
u0 ¼ v0 ¼ 1, tþ 1 (� sþ 1) internally disjoint paths
between u and v in EHðs; tÞ can be constructed. We also
discuss the wide and fault diameters of the exchanged
hypercube EHðs; tÞ. We proved that Dsþ1ðEHðs; tÞÞ ¼
Df

s ðEHðs; tÞÞ ¼ sþ tþ 3 for 3 � s � t. These properties
demonstrate that interconnection networks modeled by
the exchanged hypercube EHðs; tÞ are extremely robust.
They have high fault tolerance and reliability on a topolog-
ical structure for interconnection networks. Finally, Table 2
illustrates the comparison of some properties on the
n-dimension hypercube Qn, crossed hypercube CQn and
exchanged hypercube EHðs; tÞ.
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