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1. Introduction

Sea-borne container shipping plays a major and important role in the world transportation system and the global supply
chain. A container terminal, as a nodal point in the transportation network, acts as an interchange of the different modes
involved in the overall transportation process. Therefore, efficiency and productivity improvements in the terminal opera-
tions are crucial in reducing the overall trip duration and reducing costs and thus have been gaining more attention lately.

The primary aim of a terminal is a quick turnaround or a secured departure deadline of calling ships. Also, the terminal
attempts to utilize its costly infrastructure efficiently. Major container ports feature the so-called “multi-user container ter-
minals (MUTs)”, which serve a lot of calling ships of different shipping lines with a long quay and vast yard space to provide a
huge ship handling capacity. In an era of cost-cutting and competition, shipping lines are less inclined to operate private ter-
minals they used to be (Mongelluzzo, 2013). Due to this growing demand, the need to operate MUTs more efficiently as well
as the issues pertaining to the efficient berth scheduling at an MUT have been receiving much attention these days.

Most decision makings can be classified as three broad categories: strategic, tactical and operational. As far as the berth
scheduling is concerned, the existing literature may fall into two categories in a relative sense: long-term (tactical) and
short-term (operational). Contents of those categories may be summarized as below whilst there exists some diversity in
decision making for each category at MUTs.

(1) Tactical berth scheduling (or berth template problem, BTP): finds a set of berth-windows (i.e., berthing locations with
the start and end times for service) within the fixed length of planning horizon so as to maximize the service objective.
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(2) Operational berth scheduling (or berth allocation problem, BAP): finds a set of berth-windows within an open-ended
planning horizon so as to maximize the service objective.

As will be discussed in the subsequent section, most of the existing papers about berthing decision fall into the opera-
tional scheduling, while some are in the tactical scheduling. Also note that it is common in the literature berth scheduling
is considered together with other facilities so as to take into account the actual situations of the related resources jointly
operated as well as the updated information of the ships to be served.

For a terminal operator, the service contracts with shipping lines are reviewed and renewed as with a regular interval or
whenever needed. Alternatively, the terminal operator may receive the berthing request from a new customer. The typical
contract negotiation process between a shipping line and a terminal operator can be illustrated by JICT (2014), a webpage of
a South Asian terminal operator. Throughout the negotiation process, the operator arranges a template for berthing. As
briefly depicted above, the berth template problem (BTP) in the literature determines the template for berthing, i.e., a set
of berth-windows of serving ships during a fixed planning horizon, given a long-term calling request profile from shipping
lines. In particular, as the most notable distinction between BTP and BAP, the fixed planning horizon is repeated in a cyclic
fashion in the BTP and hereafter referred to as the cylinder, as used in a pioneering work on the BTP by Moorthy and Teo
(2006).

In general, most container shipping services are provided weekly on a fixed day of the week, thus the BTP normally
arranges berth-windows to meet all the calling requests within a week. It is noteworthy that, though not very common,
it is possible that a terminal has a different calling ship request profile from one week to another. Then, the cylinder for
the BTP should be set as the least common multiple. A terminal operator normally applies the same template every week,
though some adjustment may be made to accommodate the irregularity associated with the ship arrivals.

For most of the cases for such a new contract or contract renewal, there might be no significant change in the number of
overall calling ships when updating the berth template design. This scenario leads to the situation that all calling ship
requests can be accommodated in any berth template design. In fact, as will be reviewed in the next section, all of the
existing BTP studies assume such a full coverage of calling ships. Their focuses are mainly on reducing the operational cost
and/or meeting the requirements/performances of the calling ships.

In contrast, under the inauguration of a new MUT or the completion of major capacity expansion at an existing MUT, the
terminal operator may need to design a brand new berth template to incorporate all prospective demands of calling ships. In
addition to the decision factors similar to those in the existing BTP literature, the terminal operator may face the issue of
excessive demand and require a decision making methodology for determining which part of the demand to be satisfied. This
scenario is not addressed in the existing BTP studies. We hereby propose a strategic level of berth scheduling: the strategic
berth template problem (BTPS), which chooses ships to be served and those not to be and finds a set of berth-windows for
the served ships within a pre-determined fixed length of planning horizon so as to maximize the service objective. For
convenience, the BTP at the tactical level addressed in the existing papers is hereafter referred to as BTPT.

This paper introduces an integer programing model for the BTPS and develops a Lagrangian relaxation-based heuristic for
it. The contribution of this paper is twofold. One is the introduction of the BTPS concept that deals with the selection of the
ships to be served, including the consideration over the mother ship (or shipping line) and the associated feeder under the
condition of tight berthing capacity. The other is an approximate solution method for berth scheduling. The BTPS formulation
is structured based on the formulation of the dynamic BAP (DBAP) in Imai et al. (2001) to take advantages of the established
solution methodology: the subgradient procedure with Lagrangian relaxation. However, we develop new heuristics, on the
foundation of the DBAP solving technique, to achieve a better BTPS solution. As will be shown in the numerical experiments,
the superiority of these new heuristics for both BTPS and DBAP is demonstrated.

The paper is organized as follows. The next section provides a literature review on the berth scheduling. An integer pro-
gramming formulation of the BTPS is discussed in Section 3. This is followed by Section 4 which introduces a solution
method for the BTPS. In Section 5, a number of computational analyses are carried out, while the final section concludes
the paper.

2. Literature review

As the issues related to efficient terminal operations have been constantly gaining importance, there have been a growing
number of studies that deal with the BAP models. On the other hand, the BTP is a relatively new research topic with few
research works. These two types of problems are reviewed in this section. In particular, to the authors’ knowledge, there
is no existing BTP research work that focuses on the strategic decision of selecting the shipping lines such as the BTPS in this
study.

One of the earliest works of the BAP is Imai et al. (1997) who addressed a BAP in discrete location indices (hereafter
referred to as BAPD in this section) for commercial ports. Most service queues are in general processed on an FCFS (First-
Come-First-Served) basis. They concluded that in order to achieve high port productivity, an optimal set of ship-to-berth
assignments had to be determined, instead of considering the FCFS rule. Their study assumed a static situation where ships
to be served for a planning horizon had all arrived at a port before one planed the berth allocation. Thus, their study can be
applied only to tremendously busy ports. As far as container shipping is concerned, such busy ports are neither competitive
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nor realistic because of the long delay in the interchange process at ports. In this context, Imai et al. (2001, 2005a) extended
the static version of the BAPD to a dynamic treatment that is similar to the static treatment, but with the difference that
some ships arrive while work is in progress. Due to the difficulty in finding an exact solution, they developed a heuristic
by using a subgradient method with the Lagrangian relaxation. Their study assumed the same water depth for all the berths,
while in practice there are berths with different water depths in certain ports. Nishimura et al. (2001) further extended the
dynamic version of the BAPD for the multi-water depth configuration. They employed genetic algorithm (GA) to solve that
problem. In some real situations, the terminal operator assigns different priorities to calling vessels. For instance, at a termi-
nal in China, small feeder ships have priority, as handling work associated with them is completed in a short period of time
and larger vessels do not have to wait for a long time. On the other hand, a terminal in Singapore treats large vessels with
higher priority because they are good customers to the terminal. Imai et al. (2003) extended the dynamic BAPD in Imai et al.
(2001, 2005a) to treat the ships with different priorities and see how the extended BAPD differentiates the handling of ship in
terms of the service time associated with ships. Imai et al. (2007) proposed the BAPD with simultaneous berthing of multiple
ships at the indented berth, which was potentially useful for fast turnaround of mega-containerships. Cordeau et al. (2005)
developed a tabu search heuristic for the dynamic BAP in two versions with both discrete and continuous location indexes.
They analyzed the solution quality of the proposed heuristic for the discrete location with the exact solution by CPLEX; how-
ever, the applied problem cases were relatively small sized ones. Monaco and Sammarra (2007), inspired by the dynamic
BAPD of Imai et al. (2001), proposed an improvement in its formulation and also developed the Lagrangian relaxation-based
subgradient optimization, which was the same approach for Imai et al. (2001, 2005a) but with some modifications. Imai et al.
(2001, 2005a) proposed three heuristics embedded in the subgradient procedure. Monaco and Sammarra reported that their
algorithm outperformed that of Imai et al. (2001, 2005a). However, they did not mention which one of the three heuristics
embedded in the subgradient procedure in Imai et al. (2001, 2005a) was used for performance comparison. Hansen et al.
(2008) developed a variable neighborhood search method for the BAPD. Mauri et al. (2008) applied the Population Training
Algorithm with Linear Programming to the dynamic BAPD, which was formulated in Cordeau et al. (2005). Imai et al. (2008)
extended the BAPD developed in Imai et al. (2001, 2005a) for a terminal who assigned some calling ships to another terminal
when the terminal was congested. Golias et al. (2009) proposed the dynamic BAPD with customer service differentiation
based on respective agreements. They formulated their BAPD as a multi-objective problem and developed a GA-based heu-
ristic. They also proposed, in Golias et al. (2010), another heuristic based on a lamda optimal. Buhrkal et al. (2011) treated the
dynamic BAPD and formulated the problem as the improved heterogeneous VRP with time windows based on the discrete
version of BAP of Cordeau et al. (2005). Saharidis et al. (2010) proposed a hierarchical optimization for the BAPD with two
conflicting objectives terminal operators face. Xu et al. (2012) proposed the BAPD with different water depths at berths and
tidal condition. Imai et al. (2013) discussed a terminal efficiency in terms of berthing ships in different types of innovative
terminal designs by comparing the total service time of calling ships when their berth-windows are optimally scheduled
with ad-hoc BAPDs for those different terminals. Recently some studies such as de Oliveira et al. (2012), Lalla-Ruiz et al.
(2012), and Ting et al. (2014) proposed new heuristics for the dynamic BAPD that had been discussed in Imai et al.
(2001), Cordeau et al. (2005), and Monaco and Sammarra (2007). All the three papers tested their heuristics with problem
instances that were provided in Cordeau et al. (2005). Ting et al. (2014) indicated that their algorithm outperformed the
others.

There is another type of the BAP, which is the one with a continuous location index (referred to as BAPC). In the afore-
mentioned studies the entire terminal space is partitioned into several parts (or berths) and the allocation is planned based
on the divided berth space. This may result in having some berthing space unused. Under the continuous location approach,
ships are allowed to be served wherever the empty spaces are available to physically accommodate the ships via a contin-
uous location system. This type of problem resembles more or less the cutting-stock problem where a set of commodities is
packed into some boxes in an efficient manner. A ship in service at a berth can be shown by a rectangle in a time-space rep-
resentation, therefore efficient berth usage is a sort of packing “ship rectangles” into a berth-time availability as a box with
some limited packing scheme such as that no rotation of ship rectangles is allowed. For this type of the BAP, Lim (1998) first
addressed a problem with the objective of minimizing the maximum amount of quay space used at any time with the
assumption that once a ship is berthed, it will not be moved to any place else along the quay before it departs. He also
assumed that every ship was berthed as soon as it arrived at the port. On the other hand, Li et al. (1998) solved the BAPC
both with and without the ship’s movement restriction. Their objective is to minimize the makespan of the schedule.
Park and Kim (2002) developed a subgradient procedure with Lagrangian relaxation for the BAPC. Imai et al. (2005b)
addressed a BAPC, but with a major difference from the other BAPCs in that the handling time depended on the berthing
location of ship. They developed a heuristic for that problem in cooperation with a heuristic for the dynamic BAPD in
Imai et al. (2001, 2005a). The conclusion of their study was that the best approximate solution was identified with the best
solution in discrete location where the berth length was the maximum length of ships involved in the problem. This implies
that the solution in discrete location is applicable for practice in berth allocation planning and the improved solution can be
obtained from the solution in discrete location. As mentioned before, Cordeau et al. (2005) developed a tabu search heuristic
for the dynamic BAP in both discrete and continuous location indexes. For the continuous location version, the solution qual-
ity was assessed by comparisons with solutions by the straightforward heuristic. Lee et al. (2010) developed two greedy ran-
domized adaptive search procedures for the BAPC. Cheong et al. (2010) dealt with BAPC with multi-objectives of makespan,
waiting time and degree of deviation from a predetermined priority schedule. They developed a multi-objective evolutionary
algorithm for that problem.
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There are quite few papers dealing with the tactical berth scheduling. Moorthy and Teo (2006) was the first one to present
the BTP, by which this study is greatly inspired. Their BTP defines berth-windows of serving calling ships in a continuous
space within the predetermined length of the planning horizon. The berth template design takes into account the scheduling
of periodicity, that is, the wrap-around effect of the cylinder. Their problem had two objectives: one is to maximize the ser-
vice level, which is simply defined as the percentage of vessels served within two hours of their arrival, and the other is to
minimize the connectivity cost, which is related to the distances between berths within vessel transshipment groups.
Another tactical berth scheduling problem is studied by Giallombardo et al. (2010). They proposed the BTPT in discrete loca-
tion indexes with the integration of quay crane (QC) allocation decision. In addition to the cost associated with QCs, they
introduced the other cost component in the objective function, the yard cost that depends on the berthing location. Their
study arranges all berth-windows within the time duration, similar to the concept of the cylinder length. Zhen et al.
(2011) proposed an integrated template planning model for both berthing location in continuous indexes and yard container
stack arrangement. In addition, the cyclic scheduling consideration and the QC allocation were considered. They developed a
heuristic with a recursive process based on two stages: berth template and yard template. Hendriks et al. (2012) addressed a
BTPS under a unique berthing service circumstance where ships can berth at any terminal in a port with inter-terminal ser-
vice agreements, which allow containers to be unloaded from a ship at a remote partner terminal and transferred by trucks
to the terminal the ship was originally scheduled to berth. Their BTP implicitly imposed the cylinder on the model since it
assumed to serve cyclically calling ships. It takes into account the QC assignment to ships, resulting in the inclusion of the
associated QC utilization cost in the objective function, which also considers the inter-terminal container transfer cost.
Whereas their model is referred to as strategic, it may be categorized into a tactical model according to our hierarchical
scheme of berth scheduling since all the ship calls are assumed to be served. Thus, it still can be thought as a tactical model
if categorized by our hierarchical scheme of berth scheduling. Hendriks et al. (2013) addressed a BTPT that deals with berth
allocation and yard planning within the cylinder. Lee and Jin (2013) studied a BTPT for feeder vessels to determine berth
allocation for feeders in discrete locations and yard storage assignment for their transshipment cargoes. Whereas it consid-
ered cyclically calling feeders, it did not impose the cylinder on the model. Following the framework of Giallombardo et al.
(2010), Vacca et al. (2013) developed an exact-solution algorithm based on the technique of branch and price for the inte-
grated problem of berth and QC planning. Their study does not apply the cylinder, within which all berth-windows are
planned to be placed. Instead, every ship calling request has a preferred start and end times of the handling service. This
preferred time duration is wide enough to place an actual berth-window of the ship appropriately so as to minimize the
objective function. Finally, note that all the above BTP studies implicitly assume that the berthing capacity is large enough
to cover all the calling requests.

Lastly, we look at the relation between the BTPS and the Machine Scheduling Problem (MSP), both of which may some-
times assume a similar problem framework. As pointed out in Imai et al. (1997) and Imai et al. (2001), there is a similarity
between the BAP and the Parallel MSP. Since the BTPS is an extension of the BAP, it corresponds to the MSP with identical
machines in parallel (Pinedo, 2012). This scheduling problem for instance was tackled by Norman and Bean (1999). The Peri-
odic (or Cyclic) Machine Scheduling, a specific type of the MSP, may arise from the flow-shop problem with multiple
machines in series that serve jobs according to the First-In-First-Out discipline (Pinedo, 2012). In normal job-shop, flow-shop
and open-shop environments, the cyclic scheduling is tackled by existing studies such as Matsuo et al. (1991), Roundy
(1992), Hanen (1994), McCormick and Rao (1994), Crama and Van de Klundert(1997), Hall et al. (1997), Lee and Posner
(1997), Crama et al. (2000), and Brucker and Kampmeyer (2008). However, these research works are significantly different
from the BTPS of this study. First of all, their objectives are minimizing the cycle time (or maximizing the throughput as an
equivalent) and/or minimizing the flow time (or minimizing the work-in-process). In addition, they do not consider the
release time of jobs as the schedule is repeated over and over again based on the concept of the Minimum Part Set. In the
BTPS, the berth-window is regarded as a job, but with only single process performed by any single berth. In addition, while
the berthing service is repeated weekly, each calling ship has a preferred service starting time (the release time in the sched-
uling terminology), since a ship calls at the terminal within an entire voyage consisting of multiple calling ports.

3. Problem formulations
3.1. Problem overview

The BTPS of this study focuses only on berthing decision. As reviewed in the previous section, a few existing BTPT models
not only schedule berth-windows but also make decisions for other facility and/or equipment usage such as yard container
slot allocation and QC assignment. These modelling approaches implicitly assume the availability of precise calling ship pro-
files, such as the amount of cargo to be loaded and unloaded. Otherwise, the ship handling time, an input for the BTPTs, can-
not be estimated by linking the number of QCs used for ship handling. For the cases with precise ship information, we think
that the BTPT models in these existing papers are very suitable.

The main feature of this study is the strategic selection of the calling ships (or shipping lines) to be served within a spatial
(berth) and temporal (cylinder length) berthing capacity of the terminal and the determination of the associated berth-win-
dows for handling the ships. Under the assumption that ship profiles are not necessarily accurate or precise for long-term
planning, the BTPS, unlike the BTPT, can exclude other decision making factors such as QC and storage yard arrangement
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in the decision process. Nonetheless, in the following tactical phase, additional and more detailed scheduling issues may be
taken into account. For example, if the berth template determined in the strategic level is found to be non-executable in the
subsequent tactical phase due to QC availability, the terminal operator may invest in some more QCs as a long-term decision
or re-arrange the berth-windows subject to the QC restriction based on the approach in those BTPT studies with the integra-
tion of the QC decision.

In addition to the issue of data availability assumption, the other issue is about model complexity and computational bur-
den. Indeed, these integrated models are very sophisticated and able to incorporate a wider range of decisions at container
terminals. However, the complexity of those models may restrain the capacity for handling large-scale problems. In addition,
most of the integrated BTPT models employ a structure of iteratively solving the sub-problems in a sequential fashion. For
instance, a model dealing with two kinds of facilities (such as berths and QCs) consists of two sub-models, one for each facil-
ity. Before the termination of the two-stage iterative procedure, the solution of the first sub-model is used as the input of the
second sub-model, and vice versa. Therefore, if it is needed to integrate the decisions of multiple facilities of a container ter-
minal, there is a good chance that quality solutions can be derived by applying the BTPS of this study and some other well-
established solution algorithms for other facilities (such as QC arrangement) in an iterative way.

It may be noteworthy that an example for making a berth template without the consideration of other equipment such as
QCis observed at a terminal of the port of Osaka, Japan. The operator makes an initial berth template as information used for
the negotiation process to sign the service contracts with shipping lines. However, the template is built based on the ship han-
dling time without taking into account the QCs. Instead, the operator includes some margin (30-40% of the average value) to
the ship handling time so as to cope with the variation of the handling time affected by the number of deployed QCs.

The BTPS is basically the same as the BAP but with a cylinder constraint that ensures the berth-windows of all ships are
packed within the predetermined cylinder length. As mentioned before, most containerships call at a terminal on weekly
basis; the cylinder length is one week in general. Because of its relatively long-term planning aspect, the BTPS assumes
the same handling time of a ship regardless of its assigned berth. Thus, for this reason the BTPS aims to minimize the total
ship start time delay (TDT), which is the sum of the deviation between ship arrival time and actual ship service start time (or
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Fig. 1. Berth template. Source: Korea Express Busan Container Terminal Co. Ltd.
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berthing time), while the BAP minimizes the total ship service time (TST), in which the service time of a ship consists of its
handling time and delay (or waiting) time for berthing.

There are two types of berthing location indexes in berth scheduling problems: discrete and continuous. There may be
pros and cons of these two schemes. In general, the discrete one has an advantage in computational complexity and a dis-
advantage in terminal productivity. We adopt the discrete scheme given the following considerations.

(1) The continuous scheme is promising in terms of berth utilization by fully occupying the entire quay space with dif-
ferent ships in length. However, the sophisticated solution with better utilization of quay space from the continuous
scheme may result in an unnecessary level of details, given the rough ship profiles assumed in the BTPS.

(2) The discrete scheme may lead to theoretical implications for the solving methods of the BTPS.

In particular, the former restriction can be mitigated by the following observation and countermeasure: As most deep-sea
ships are huge not only in capacity but also in length, they normally occupy the whole length of a berth section, typically
with length of 400 m. For serving small feeders, it appears less likely to use the slack spaces between big ships. The discrete
scheme can become more effective if feeders with close arrival times are grouped and treated as a large ship as long as the
combined total length does not exceed the berth length. The above discussion can be supported by an example of the berth
template for a five berth-container terminal in the Busan port from March 26th to April 1st of year 2014, as shown in Fig. 1.
In this template, each berth accommodates a maximum of two ships at the same time during the congested periods of time.
In addition, very few large ships are berthing across berth boundaries.

The BTPS in discrete berthing locations that is discussed in this study is based on the BAP models proposed in Imai et al.
(1997) and in Imai et al. (2001). The BTPS assumes (i) all ships can be served at any berth, (ii) each berth serves up to one ship
at any time, (iii) handling time for a specific ship is constant regardless of its berthing location, (iv) ships are served within
the cylinder, (v) mother and feeder ships with transhipment relations are both served or neither of them is served in order to
address the practical issue under the hub-and-spoke operation, and (vi) a ship can be excluded from the berth-window plan-
ning at a price of incurring the associated discard cost/penalty.

Assumption (iii) is made since the container storage yard decision is not part of the consideration for optimization in this
study. It is assumed that the corresponding yard location can be close to the assigned berth and does not have a serious
impact on the handling time, which is consequently assumed to be a constant, regardless of its assigned berth.

Assumption (vi) is made in order for the BTPS to, in addition to berth-window placement, identify ships to be served and
those not to be served when the calling request exceeds the berthing capacity at a terminal. By manipulating the penalty
level, the priority of the ships of the strategic consideration over the shipping lines can be incorporated into the model.
For example, an extremely high value can be imposed on the ships of the customer that the terminal operator cannot afford
to lose. In summary, the BTPS can be defined as: select ships to be served or un-served and determine the berth-windows for
the served ships in order to minimize the sum of the total penalty for un-served ship and the total cost associated with the
deviation between the actual service start times and their preferred start (or arrival) times.

3.2. BTPS formulation

As described before, the BTPS is based on the model structure of DBAP developed in Imai et al. (2001) to take technical
advantages for the model formulation and solving tips. For selection of ships to be served or un-served, we prepare a virtual
berth (berth zero) in addition to physical berths that actually serve ships. By allocating unserved ships to berth zero, the BTPS
can facilitate the ship selection with computational advantages that were found through the DBAP.

For the treatment of mother and feeder ships we define a 0-1 parameter, R, which indicates a connection of a pair of
ships (one is a mother and the other is a feeder). Ry = 1 if ships j and j* are connected and R; = 0 otherwise. To avoid
the redundancy due to the symmetry of j and j' (i.e., Ry = Ry;), R;; is defined for j, j'(>j) € V. This scheme does not explicitly
distinguish which of j and j’ is the mother ship. This allows multiple feeders to belong to a mother ship and/or a feeder ship to
belong to multiple mother ships.

[BTPS]

Minimize "> > {(k—1)G = Alxie+ > > > kv + Y > GiXoj (1)
ieB jeV keU ieB jeV keU jeV keU

subjectto > > xu=1 VjeV, ()
ieBU{0} keU
> xp <1 VieBU{0},keU, 3)
jev
>N (CXim + Yim) + Vi — A =0 VieBjeV, keU, (4)
leV mePy
DN (Cixige+yi) — Yi <CT VieB, (5)

jeVv keU
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Y; < (1 - nyk) CT+> > (CiXim +Yim) + > Ve VieB kel, (6)

jev leV mePy, jev
Rjj’zzxijk = Rjj'zzxij’k Vi, j(>jev, (7)
ieB keU ieB keU
Yi<CT VieB, (8)
X €{0,1} VieBU{0},jeV, kel, 9)
O<yw<A VieBjeV,kel, (10)
where

i(=0,...,I)eB :setof berths
1,...,T)eV :setof ships
k(=1,...,T)eU : set of service orders that are numbered in descending order from the last ship to be served
Py : subset of U such that P, = {p|p > k € U}
A; : preferred arrival time of ship j
G : handling time spent by ship j
CcT : cylinder length (or the cycle time of the planning horizon)
G; : penalty cost (or priority) of ship j when it is not served.
Y; : start of the cylinder for berth i
Xijk : =1 if ship j is served as the k th ship at berth i, and =0 otherwise
Yijk : idle time of berth i between the departure of the (k + 1) th ship and the arrival of the k th ship when
ship j is served as the k th ship

Note that i=0 is a dummy berth for ships not to be served. The decision variables are x; s, y; s and Y; s.

The objective (1) minimizes two evaluation criteria in different dimensions: time and cost. This study assumes G; is a time
equivalent for convenience, while it is worth to discuss that how the penalty cost is converted to time factor. Constraint set
(2) ensures that every ship that is selected to be served must be moored at one of the berths in one of the service orders.
Constraints (3) enforce that every berth serves up to one ship at any time. Constraints (4) assure that ships are served after
their preferred arrival time. Constraints (5), (6) and (8) guarantee that berth-windows of served ships are located within the
cylinder. Equalities (7) ensure that a couple of a mother ship and a feeder in a transshipment contract are both served or
neither of them is served.

A formulation that is comprised of the ship service delay part of the objective Y, ;> > o {(k—1)C; — A }xy+
> iejev 2 _keukVyi associated with constraints (2-4), was originally developed for the DBAP in Imai et al. (2001) which
the reader is asked to see for its derivation, while its formulation is overviewed in Appendix C. Note that the DBAP model
in Imai et al. assumes: (i) the objective is to minimize the TST (the sum of delay time for service and ship handling time),
(ii) a ship’s handling time depends on the allocated berth, (iii) the start time of berth availability, denoted by S;, can be
set as any arbitrary constant while this paper does not need it or can set it as zero due to the cyclic scheduling nature,
and (iv) the ship service order is numbered in ascending order from the first ship to be served while this paper utilizes
the reverse order scheme for a simpler objective function structure.

It seems that xo . for the ship selection part of the objective is redundant since the service order k is irrelevant for un-
served ships. As described in Section 1, the solution procedure for [BTPS] is based on the subgradient method with Lagrang-
ian relaxation. The lower bound can be easily obtained by the Lagrangian relaxation problem, which is equivalent to the clas-
sical assignment problem (AP), if we use Xgj for the dummy berth just as using x;;, for real berths.

Note that the berth idle time y; can take any value. However, it is bounded to the arrival time of ship j as constraints (10),
because it is at most A; due to S; = 0 being assumed in [BTPS].

It is also noteworthy that a mother ship and its associated feeders do not have to berth at the same time for transship-
ment. Ship loading and unloading is a very complicated job. So, for instance transshipment cargoes unloaded from a feeder
are marshaled together with other cargoes (originating from that port) to be loaded onto a mother ship and then stacked at
the yard for a while before being loaded on the mother ship arriving at a later time. Of course, another direction of trans-
shipment is also possible. Therefore, both mother and feeder ships do not necessarily need to berth at the same time. Even
if they are scheduled to berth simultaneously, a direct transshipment between them is usually not performed.

The same cylinder can be applied to all the berths for a terminal where the start of the cylinder may be set as zero. How-
ever, for more flexible and efficient scheduling we allow each berth to have a cylinder starting from a different time slot (i.e., a
berth-dependent Y;). The derivation of the cylinder-related constraints (5) and (6) will be discussed in the following section.

3.3. Derivation of the cylinder constraints

This section derives constraint sets (5) and (6). The constraints of (4), >;cy > mep, (CiXitm + Yim) + Vi — AjXye > 0, assure a

ship is served after its arrival. By moving the third term of the left-hand side to the right, it turns to be
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>tev 2 mep, (CiXitm + Yim) + Vi = AjXgr. The double summation of the first term in the left-hand side of the transformed

constraint represents the total time associated with all of the ships served before the ship in concern. By using the concept
similar to the associated total ship staying time in (4), the cylinder restriction can firstly be formulated as below:

DO (G +yp) <CT - VieB,

JjeV keU

The length CT in the above cylinder constraints implies that the planning horizon starts right from the time slot = zero.
However, there is a time capacity loss if the handling of the first served ship starts some time later, as illustrated in
Fig. 2(a). As shown in Fig. 2(b), as long as the BTPS can arrange the berth-windows within the constant length of the cylinder
after taking into account the wrap-around effect, each berth may have different cylinder placement in the service planning
horizon. In other words, the start of cylinder may be shifted afterward in time to place as many ships’ berth-windows as
possible within the cylinder.

Given the above observation, the shift regarding the start of ship berthing (or the start of the cylinder) for berth i is
denoted by the variable Y;, which serves a counterbalance for the time gap between the actual start of the cylinder and
the presumed start of the planning horizon. With the introduction of this new notation, the realistic cylinder constraints
can be formulated as follows:

ZZ(CJ‘XW +Yiu) = Yi <CT VieB, 5)

Jjev keu

Based on the above definition, Y; is in fact the start time of the first served ship at berth i (i.e., for the ship with the largest
k such that x;; = 1). Notice that though the BTPS arranges the berth-windows with respect to a fixed time span of CT (nor-
mally one week for container terminal service), berthing service continues with a rolling horizon. This means that during the
time duration from zero to Y; for the current horizon, berth i may not be idle and could be occupied by berthing ships for the
previous cycle.

As mentioned above, the start time of each ship (for any service order) at the berth is related to the first and second terms
of the left-hand side of constraints (4) as follows:

3> (CiXam + Yim) + Vi VieBjeV, ke,

leV mePy,

< Cylinder (CT) =——
Time=0
[
<—>
Berth 7
(a) Fundamental cylinder placement Sifted cylinder

<

(b) Practical cylinder placement

Grey segment: berth idle time

White segment: berth-window

Fig. 2. Cylinder arrangement.
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Thus, Y; is linked to the minimum among all the ship and service order combinations at each berth as below:

Yi <Y (CXim + Yim) + Vi VieB,jeV ke,

leV mePy

For a service sequence at a berth, ships are supposed to occupy the service slots/orders with as small indices (denoted by
k) as possible; otherwise, the objective function value (1) becomes larger, suggesting the solution is not optimal. Given this
solution property, for the higher service slots k not occupied by any ship (e.g., the extreme case k =T) in the above con-
straints, Y; would be incorrectly forced to be zero because of the null values of x;,, and y;,, in the double summation; since
given m > k where k is not occupied, the slots m are not occupied either. Thus, it is required to identify the largest service
order (i.e., the largest k) with a ship assigned to the berth. For this, the formulation is changed as follows:

Yi < (1 - injk)M + ZZ (CiXitm + Yiim) + Zyif'k VieB, keU,

jev leV mePy jev

where M is a large constant. The introduction of the large M in the above constraints makes Y; become free for the service
orders without any ship assigned.

It is worthy to note that Y; is bounded by CT for any feasible solution as specified by constraints (8) because the first
served ship at a berth can be served as the latest at CT. Consequently, M can be set as CT. As a result, the above constraints
are re-written as follows:

Yi < <1 - injk) CT+> > (CiXim + Yim) + > Ve VieB kel, (6)

jev leV mePy, jev

4. Solution procedures

The authors developed an approximation algorithm for operational berth scheduling: DBAP, by using the subgradient
procedure with Lagrangian relaxation problem. The subgradient procedure with Lagrangian relaxation is widely used for
optimization problems. The BAP is an example for its application, as seen in Imai et al. (2001), Park and Kim (2002) and
Monaco and Sammarra (2007). This study also employs the subgradient procedure for the BTPS.

4.1. Lagrangian relaxation

We introduce a Lagrangian relaxation problem to [BTPS]. Letting o, f;, ik and d;; be Lagrangian multipliers for four con-
straint sets, (4-7), the Lagrangian relaxation is formulated as follows:

[RBTPS]
Minimize » > > {(k—1)G—Abxi+ > > > Kyj— ZZZ“W{ZZ (CXitm + Yim) + ik ij,-jk}
ieB jeV keU ieB jeV keU ieB jeV keU leV mePy,
- Zm{m Yi=> > (Cixii +yl-,-k)} - sz{ <1 - foﬂ() CT+Y > (CiXim +Yitm) + D Vi~ Y,-}
ieB jev keU ieB keU jev leV mePy, jev
3 T i S T an
JeVj(>jev ieB keU ieB keU
subject to (2),(3),(8 —10)
Objective (11) can be re-written as follows:
DN Ak =DG = AR =D D3> o Cikim + D> Y LiAiXi
ieB jeV keU ieB jeV keU leV mePy ieB jeV keU
D DD BiCxip+CTY > > vk — D> > > Valikim
ieB jeV keU ieB keU jeV ieB jeV keUmePy
+ Z Z ZZ i Ry Xije — Z Z ZZ& RipXiji
JEV j (>j)eV i€B keU JjeVj'(>j)eV ieB keU
22D k=D 3 D > > i = XD > e+ YD > i
ieB jeV keU ieB jeV keU leV mePy ieB jeV keU ieB jeV keU

’ZZZZ%UM ZZZ/;JJW Zﬁ;y +ZZ/,,<Y ZﬁlCT ZZVWCT

ieB jeV keUmePy ieB keU jeV ieB ieB keU ieB ieB keU
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In the above objective, D ieB 2 jev 2 ket 2tev dmep, ik CiXitms D icp D ievd keu Diey 2amep, YiikYitmy Dich 2 jev 2 ke 2mep, Vik Ci¥im
and 35D v keuomep, YiYim  CAN be 3T 3Ty tey 2omep, Lk CiXitmy D icn D jev ket (1) 2otev 2mep, YikYitms

D ieB 2 jev ket (T} 2omep, PikCiim AN 3Zicpd ey D kevn 1y 2omep, VirYiim» T€SPectively, because of m > k.
Due to the property shown in Appendix A, they are further transformed to

D> DD G > D0 3D ke d D > D ymCixge and DD D0 D i

ieB jeV keU\{1} leV m<k ieB jeV keU\{1} leV m<k ieB jeV keU\{1}m<k ieB jeV keU\{1}m<k

As a result, the objective function turns to be

DD AR=DG=Adxie =D > > > > oumCixipe+ D> > dinAiXi

ieB jeV keU ieB jeV keU\{1} leV m<k ieB jeV keU
+ ZZZﬂ!C Xijk + CTZZZ/!klek ZZ Z Z))lmcxl]k
ieB jeV keU ieB keU jeV ieB jeV keU\{1}m<k
DD DD R =Y D0 > > Ry
JeVj (>j)eV ieB keU JeV j (>j)eV ieB keU
D HDITEDHIPBDWITTED B ITTED D BT
ieB jeV keU ieB jeV keU\{1} leV m<k ieB jeV keU ieB jeV keU
- ZZ Z Zyimyijk - Zzzyikyijk - Zﬁ,—Yi + ZZ")’ikyi - ZﬁiCT - ZZVikCT
ieB jeV keU\{1}m<k ieB keU jeV ieB ieB keU ieB ieB keU
Further,
= Z Z Z{(k — l)C] —Aj}ijk — Z Z Z Z Z O(,'lijX,‘jk + Z Z Z aijkijijk
ieB jeV keU ieB jeV keU\{1} leV m<k ieB jeV keU
+ZZZ/3CXU’<+CTZZZ/1I<XU/< ZZ Z Zylmcxllk
ieB jeV keU ieB keU jeV ieB  jeV keU\{1} m<k
+ Z Z Z Z (SJIR}[ — Z leRIJ Xijk
ieB keU jeV \I(>jeV I(<j)eV
+Z Z Zkyijk - Z Z Z Z foilmyljk - Z Z Zaijkyijk +Z Z Zﬁi}’ijk
icB jeV keU icB jeV keU\{1} leV m<k ieB jeV keU ieB jeV keU
*Z Z Z ZViinjk - Z Z Zyikyﬁk - ZﬁiyiJFZ Z%'kyi *Zﬂia*Z ZVikCT-
ieB jeV keU\{1} m<k ieB keU jeV ieB ieB keU ieB ieB keU

Given a set of Lagrangian multipliers oy, f;, yi and d;, [RBTPS] is completely separable. That is, it can be restructured
(without loss of solution accuracy) into the following three subproblems:

[SUB-1]
Minimize) "> > {k— DG —Akxic— > > > 3N tumCixie + D> D tiieAiXiie
ieB jeV keU ieB jeV keU\{1} leV m<k ieB jeV keU
HY Y Y BCXi+CTY > > Vi —> > > > VimCikie
ieB jeV keU ieB jeV keU ieB jeV keU\{1}m<k
DD D> R =D D D> oy Ry (12)
JeVj'(>j)eV ieB keU JeVj(>j)eV ieB keU
subject to(2), (3), (9)
[SUB-2]
Minimize 22(1 + B; — %1 — Vi1 Vit
ieB jeV
IS (k + B — O = Ve — D Oitm — Zyim>y"ﬂ< (13)
ieB jeV keU\{1} leV m<k m<k
subject to (10)
[SUB-3]
Minimize » </3,» - Zy,-k> Y; (14)
ieB keU

subject to (8)
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[SUB-1] is optimally solved with the AP. In [SUB-2], y;;1 =0 if 1+ f; — o1 — i1 = 0, and otherwise y;; = A;. Further,
yijk(Vk e UN{1}) =0if k+ B — ik — Vi — Dotev Domekitm — 2omekVim = 0, and otherwise yjj, = A;. Note that y;(Vk € U) =0 if
corresponding x; = 0. Similarly, for [SUB-3], Y;=0if §; — >,y = 0, while Y;=CT if g — >, ., 7i <O.

Subgradients to be used are ¢, = 3 iy mep, (CiXim + Yim) + Yije — AiXiies b = CT + Yi — 3750y 3 keu (Ciiie + Vi) by =
(1 =275 ) CT + 32 1cy D Zmep, (CiXim + Yitm) + 2 jevVi — Yi and ¢, = Ry {2 icp> reuXiik — 2oiep2reuXik ) Lagrangian multi-
pliers o, Bi, 7 and 5y are updated by o™! = o" — tu [, BT = B — tadyy, Y = 9" — taply and 6" = 5" — £, where

o, ijk? i v,ik

the step size t, is defined by t, = d,(Z — Z(ac™, ™, y® ™) /|| p™||.
4.2. Subgradient procedure

The outline of the subgradient optimization with the above relaxed problem is shown in Appendix B. This procedure is
basically the same as the one used for the DBAP in Imai et al. (2001), which proposed three Lagrangian heuristics, SIMPLE,
INDIVIDUAL and INTERACT, in order to derive a feasible solution to the DBAP by modifying the solution of its relaxed prob-
lem. The relaxed problem defined in their study is equivalent to [SUB-1] in this study. SIMPLE simply determines the start
time of a ship service based on ship service orders for each berth, which are obtained by the relaxed problem (called SBAP),
but with a constraint that ship services start after arrival. INDIVIDUAL is basically the same as SIMPLE, but it changes service
orders of ships if there is a berth idle time between a specific pair of ships in a feasible solution by SIMPLE. INTERACT swaps
ships across berths so as to fulfill the berth idle time for decreasing the total service time. See Imai et al. (2001) for the details
of those heuristics.

This paper also develops another subgradient procedure for a better approximate solution by using the DBAP formulation
structure. The outline of SBAP and DBAP is presented in Appendix C. In the SBAP all calling ships have arrived at port before
S;, which is the start time of berth availability (or planning horizon), and are ready to move to the terminal quay for mooring
whenever their berth-windows are scheduled after S;. Consequently, the SBAP is equivalent to the Single Machine Scheduling
Problem (SMSP) where all the ships in the SBAP are already released jobs (or ready jobs to be processed by a machine in the
SMSP). Thus, the ships are served in increasing order of their handling times because of the SMSP property (Pinedo, 2012).
However, the DBAP forces them to be served after their arrival times that are not necessarily before S;. Therefore, the SBAP
solution may not lead to a better DBAP solution, since berth-windows in the SBAP solution may deviate far before or after the
ship arrival times. In this context, we may expect a better DBAP solution if the SBAP solution generates berth-windows close
to the ship arrival. The BTPS solution in terms of ship service delay obviously has the same feature of the DBAP despite the
independent ship handling time from assigned berth in the BTPS unlike the DBAP.

In the following, a more exact discussion is made. In general, if a berth schedule for the SBAP has earlier arriving ships
served earlier than late arriving ships, that schedule is likely to be a better solution for the DBAP due to the issue of waiting
time. However, for two ships with Cy = Cj and A; < Aj, the SBAP solution (X = 1,X; x1 = 1), which is less desirable for
the DBAP, has the same objective function value as another solution (xj = 1, ,,; = 1), which is more promising for the
DBAP. Thus, in order to foster the possibility of generating the latter solution (X x = 1,x; ;1 = 1), we introduce the modified
SBAP.

Suppose there is only one berth existing; then, Cj is replaced by C;. Let F(=A; + ;) be the earliest departure time of ship j,
which is the departure time when the ship is served starting from A; without any waiting. We then consider two ship
arrangements for a pair of ships j’ and j* where A; < Aj. For an easier discussion, we let j and j* be replaced by 1 and 2.
Arrangements of ship arrival for a pair of ships 1 and 2 where A; < A,, are shown in Fig. 3. Both arrangements assume
the two ships wish to begin their handling as soon as they arrive. In arrangement-A two ships overlap each other, while
in arrangement-B they do not.

Then, in [DBAP] there is the following property:

Property 1. The total service time for two ships can be minimized by serving the ships in ascending order of C; when A, < F, and
in ascending order of A; when A > F;.

Proof. We have the following two cases.
Case 1: When A; < A; < F; for arrangement-A, let TST-o be the total service time when ship 1 is served first and ship 2
next, and TST-d be the one when they are served oppositely. Then,

TST-0 = (4 +(F1 —A2)+C2 =G +(A1 +Cyq —A2)+C2

TST-d=Co+ (F2 —A1)+Ci =G+ (A +C — A+ G
and

TST-d — TST-0 = Z(Az 7A]) +C—-C =G —-(.

If C; > Cy, ship 1 first and ship 2 next is a better solution; otherwise the opposite is better.Case 2: When A, > F; for arrange-
ment-B,
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4, C F(=4,+C)
|

4, G, F,(=4,+C,)
|

(a) Arrangement-A
4 C F(=4+C)
I

A, C, F,(=4,+C,)
I

(b) Arrangement-B

Fig. 3. Ship arrangement.

TST-0=C; + G,
TST-d=Co+ (A2 +Co — A1)+ C =2C, + G + (A2 — Ay)

and
TST-d — TST-0 = C; + Ay — A;.

Because of A, > A; + Cy,
TST-d —TST-0=C, +A; —A; 2 A1+ C1 + G —A =G + G, > 0.

Therefore, ship 1 first and ship 2 next is better regardless of C; > C; or C; < Cy.
From the above two cases, the proof is completed. O

Property 1 also indicates that serving the ships in ascending order of handling time is not always better than serving them
in other ways. So, without loss of generality, Property 1 leads to that a better solution to [DBAP] does not necessarily exists
where ships are served in ascending order of handling time.

Referring to [SBAP] formulated in Appendix C, we modify [SBAP] as follows with the assumption that the ship number, j,
is given with decreasing order of arrival time A;. That is, Aj1 <A4; .

[SBAPM]

Minimize >y "> (;ﬁ Ci+S: —Aj>x,-jk (15)

ieB jeV keU

subject to (A.2),(A.3),(A.4)

We prove that a feasible solution from the solution to [SBAPM] is not worse than the one from [SBAP], where we assume
Ay <Ay (orj >j*) and k' > k*.

Lemma 1 [SBAPM]. with a single berth defines a single machine scheduling problem with the objective of minimizing the total
weighted completion time, i.e., 1||>°;w;G;, if ship’s number j corresponds to wj, where w; and G; are weight and completion time of
job j.

Proof. Focusing on two ships j' and j* where j' > j*, we consider two schedules, S-o and S-d. Under S-o, they are served adja-
cently j' first and j* next (i.e., j/ and j* are served as k' and k* th ships, respectively), whereas under S-d j* first and j’ next. All
the other ships remain in their positions both under S-o and S-d. Let SBAP-o and SBAPM-o be the objective function values of
SBAP and SBAPM related to the two ships by x;; » = 1 and X;; - = 1, and SBAP-d and SBAPM-d be the ones by x;;, = 1 and
X;; ¢ = 1. Assuming the start of planning S; =0, then,

SBAP-0 = k'C; — Ay + k'Cy- — Ay
SBAP-d = K'C; — Ay +k'Cy — Ay
and
SBAP-d — SBAP-0 = (k' — k")C; — (K — k")C; = (K — k')(C;- — ).

Since k' — k* > 0, SBAP-o is smaller if C; < Cj, while SBAP-d is smaller if C; > C;.
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Similarly,

SBAPM-0 — ;i,c, ~ A+ zi C; —A; and SBAPM-d — J’i C — A + ’Ji - Ay

These objectives are the same as SBAP-o and SBAP-d but with £C; as a substitution for kC;. Therefore, SBAPM-o is smaller if

% > S—' (or g— < g—) and consequently in [SBAPM] ships’ services are ordered in decreasing order of j/C;. This feature defines
J 7

the single machine scheduling problem. O

Lemma 2. In [SBAPM], if the handling time Cj; is independent from berth, i,e, Cj = ; for all j, [SBAPM] with multiple berths defines
parallel machine scheduling problem with the minimization of the total weighted completion time, Pm||3_;w;G;.

Proof. As the so-called weighted shortest processing time first (WSPT) rule for the single machine scheduling also minimizes
the total weighted completion time for the parallel machine scheduling problem, the proof is completed. O

Lemma 3. An [SBAPM] solution with an independent ship handling time from berth serves those ships earlier that arrive earlier
when the ship handling time increases with increasing arrival time. Also there is the case that the solution serves ships earlier, when
the ship handling time does not increase with increasing arrival time.

Proof. From Lemma 1, SBAPM-o is smaller than SBAPM-d if % > % In case of C; = Cj, this implies SBAPM-o is smaller

. . ep s . Cj Cr . Cjr ji*
because j' > j". In case of C; < Cj, it is also smaller. Next, we consider the case of C; > Cj. &~ > - is transformed to &~ > .
7

Since Jj— could take any value between O and 1, either SBAPM-o or SBAPM-d is better depending on situations when
C; > Cj. As a result, the solution serves those ships earlier that arrive earlier when their handling times increase with their
arrival time because of the examination with C; = C; and C; < Cy-. Also, the solution may serve earlier those ships that arrive

earlier when their handling times do not necessarily increase with their arrival time because of the discussion for C; > C;:. O
Lemma 4. SBAP-o is less than SBAP-d only if the ship handling time increases with ship arrival time.

Proof.

SBAP-d — SBAP-0 = (k' — k")C; — (K — k")C; = (K — k*)(C; — C;). Thus, only if C; < Cj,
SBAP-d — SBAP-0 > 0 due to k' > k™.

O
Lemma 5. An [SBAP] solution with an independent ship handling time from berth serves ships in ascending order of handling time.

Proof. Suppose two ships served adjacently in decreasing order of handling time. If we have j’ served first and j* next where
Ay <Ay and C; > Cj, the objective function value can be reduced by serving them oppositely because of Lemma 4. Next, we
consider the case that j' is served first and j* next where A; > A; and C; > C;. By switching the ship numbers, we have j*
served first and j' next where A; <A and C; < C;-. The objective function value for this service order corresponds to
SBAP-d. By Lemma 4, the objective function value by serving the ships oppositely results in SBAP-o, which is less than
SBAP-d. Therefore, ships should be served in ascending order of handling time in SBAP. O

Theorem 1. [SBAPM] does not lead to a worse feasible solution than [SBAP].

Proof. From Property 1, a better solution of [DBAP] does not necessarily serve ships in ascending order of handling time.
From Lemma 3 an [SBAPM] solution may serve earlier those ships with earlier arrival regardless of handling time. On the
other hand, from Lemma 5 an [SBAP] solution as a relaxed problem to [DBAP] serves ships in increasing order of handling
time. Consequently, [SBAPM] does not provide a worse feasible solution for [DBAP] than [SBAP] does. [

The minimization of the total delay time for the BTPS is equivalent to the minimization of the total service time for the
DBAP because of the independent ship handling time from berthing location in the BTPS. Therefore, taking into account the
above property, the relaxed problem is modified by substituting % for C;. [SUB-1] part of the resulting relaxed problem is as
follows, whilst [SUB-2] and [SUB-3] remains the same.
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Fig. 4. Compacting ship services in the cylinder.

[SUB-1]

Minimize ZZZ{ -1) %— }X,jk S>3 ZZO{um J i
ieB jeV keU ieB jeV keU\{1} leV m<k
+ZZZ%“W§§§¥fm+UZZme

ieB jeV keU ieB jeV keU ieB keU jeV

DD IPIP

ieB jeV keU\{1}m<k

DD DD Rixi— Y D D oyRyxy (16)

JjeVj(>j)eV ieB keU JeVj(>j)eV ieB keU
subject to (2),(3),(9)

Notice that this relaxed problem does not provide a lower bound for [BTPS] because [SUB-1'] is constructed with % but not
with G; whilst it provides a basis, with which a feasible solution to [BTPS] is constructed.
The modified subgradient method with this relaxed problem is outlined in Appendix D.

4.3. Lagrangian heuristic for finding a feasible solution

In Step 3 of the subgradient procedure shown in Appendix B and in Step 3-2 of the modified one shown in Appendix D, a
feasible solution is found from an optimal solution to the Lagrangian relaxation problem of [BTPS] by a Lagrangian heuristic.
This section describes the outline of the Lagrangian heuristic.

In the subgradient procedure for [DBAP] in Imai et al. (2001), a feasible solution is found by one of three different pro-
cesses: SIMPLE, INDIVIDUAL and INTERACT. The Lagrangian heuristic first performs one of those processes for [DBAP]. If
the resulting solution satisfies the relaxed constraints (5), i.e., the cylinder constraint, the Lagrangian heuristic terminates.
If it does not, the Lagrangian heuristic continues the process that shifts some ships from their berth without cylinder satisfac-
tion to other berths, so that all the berths satisfy the cylinder constraint. If some berths are still not satisfactory despite of this
shifting, some ships are dropped from service, so that berth-windows for all ships to be served are placed within the cylinder.

The Lagrangian heuristic employs the similar procedure to the one for the Bin-Packing Problem, which packs items of var-
ious sizes into a set of bins while minimizing the number of bins used. Many heuristics have been exploited for this problem
since the early 1970s. See some details in Bramel and Simchi-Levi (1997). We employ one of the popular Bin-Packing heu-
ristics, First-Fit Decreasing, which first sorts the items in non-increasing order of their size and place them in the lowest
indexed bin at the moment of packing whose current content does not exceed the bin capacity. Iltems and bins correspond
to ships and berths in our problem background.

A more formal description of the heuristic follows:

[LH]

Step 1. In the solution to [SUB-1] (or [SUB-1']), if a ship selected not to be served is connected with other ships with
Ry = 1, those ships are discarded too. Perform a DBAP’s Lagrangian heuristic (SIMPLE, INDIVIDUAL or INTERACT)
with those ships to be served. If all berths satisfy the cylinder constraint, then STOP.

Step 2. Setting the end time of the cylinder as the k(=1) th ship’s completion time of service, set services of all the pre-
ceding ships in time without berth idle between any adjacent two ships, as shown in Fig. 4. If all berths serve all
ships assigned to them within the cylinder, go to Step 8.

Step 3. Mark those berths without cylinder satisfaction and refer to them as violating berths.

Step 4. For all violating berths, remove ships in ascending order of its handling time C; until the total ship handling time is
no more than CT. Register them on a ship list.
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Step 5. Arrange ships in non-increasing order of their handling times on the ship list.

Step 6. Examine a ship from the ship list. Find a berth, from berth 1, with idle berth time within CT that lets the ship stay.
If such a berth is found, place the ship at the time closest to its arrival time in the berth and delete it from the ship
list. Otherwise, the ship is registered as an un-served ship. If the un-served ship is associated with other ships with
Ry =1 either in the ship list or being as placed in the berths, those connected ships are also registered as un-
served ones and deleted from the list and the berths. Update the idle berth time for berths if a ship is inserted
in a berths and/or ships are deleted from berths in the above process.

Step 7. Repeat Step 6 until all the ships in the ship list are examined.

Step 8. Arrange ships’ services in respective berths so that they start their services as soon as arrival time within CT.

For an arrangement of ship services for each berth in Step 8 of [LH], the following procedure is used:

Step 8-1. The end time of the cylinder, CTend, is set as the k(=1) th ship’s completion time of service. The start time of the
cylinder, CTstart, is set as CTstart = CTend — CT .

Step 8-2. From the last ship to the first ship in service order k for the berth, compute the start time (ST) and completion
time (FN) of ship’s service as follows:
If ship j is the last ship, ST = Max (CTstart, A;), FN = ST + Gj; otherwise,

ST=Max (FN of the previous ship, A;), FN=ST+C,.

The heuristic initially deals with all the served ships that are selected by solving [SUB-1] or [SUB-1']. However, some of
those ships may be discarded in the heuristic since the solution to [SUB-1] or [SUB-1’] does not satisfy the cylinder con-
straints (5).

5. Numerical experiments
5.1. Outline of the experiments

The solving algorithm for the BTPS is constructed with theoretical implications of the DBAP algorithm in Imai et al. (2001).
From this viewpoint, we first perform preliminary experiments to examine how the modified subgradient procedure works
by using the DBAP instances. Subsequently, we perform a wide variety of experiments for the BTPS. All the solution proce-
dures for the DBAP and BTPS are coded in “C” language on a Panasonic Let’s note CF-B11 computer.

5.2. Preliminary experiments for the modified subgradient procedure

All computational instances assume four berths with 100 calling ships. We prepared three patterns of interval of the ship
arrival time, Aj, being generated by exponential random variable with an average of 1, 5 and 8 h. The cargo handling time of a
ship, Gy, varies on its potential berthing locations, but it was generated based on uniform random variables with different
average times of 4 and 12 h. Also, we prepared three different fluctuations between the maximum and minimum amounts
of the cargo handling time of a ship: 0%, 100% and 200% of the average time. Totally 18 different calling ship scenarios were
prepared with those data factors. For each computation instance of the 18 ones, we set three different start times of the plan-
ning horizon, S;, where all berths have the same value of S;. The earliest time is S; equivalent to the first quarter of the 100
ships (S1), the next is the half (S2) and the third is the three quarters (S3). The combination of three different times and 18
scenarios leads to 54 problem instances in total.

We used three different weighted handling times for the modified subgradient procedure: G; (=original), G/j and Cy/log(j).
As we utilize three Lagrangian heuristics of SIMPLE, INDIVIDUAL and INTERACT, we totally have nine algorithms to be com-
pared. For every single instance, the procedure was terminated with 200 iterations.

Table 1 shows the average values (over the 18 instances) of UB (upper bound), LB (lower bound), GAP (=(UB-LB)/LB * 100)
and CPU time, and the total values (of the 18 instances) of count of the best solutions among other methods for different S; s.
The bottom line in Table 1 shows the grand average UB and count of optimal solutions over cases S1 to S3. A value for each
line in bold italic is the best among the nine solution methods, while figures in bold non-italic are the second best ones. Note
that the GAP is not computed with average UB and LB, but it is the average over GAPs for all individual problem instances.

First of all, the solution quality in terms of GAP is improving with larger S;. Typically, in case of S1, LB is negative (LBs of
some individual problem instances are positive); this implies that the DBAP with an early start time of planning horizon is
hard to solve. The GAP is not shown for S1 instances because a correct indication of solution quality is not provided by the
negative LB. For S2, one problem instance out of the 18 has a negative LB, so its GAP is an average of other 17 instances. This
trend of worse solution quality with smaller S; is also reported in Imai et al. (2001). The reason why the GAP improves with
larger S; is that the DBAP with larger S; reduces to the SBAP, which easily finds an optimal solution.

Generally speaking, SIMPLE is the worst among the three Lagrangian heuristics. Both INDIVIDUAL and INTERACT result in
almost same performance. For comparisons among the modified subgradient procedure with different weighted handling
time, Cy/j and Cy/log(j) are very effective for SIMPLE in terms of UB and GAP. They are also promising for INDIVIDUAL, but
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Table 1
Average values by S; for DBAP.
SIMPLE INDIVIDUAL INTERACT
Gy Gylj Cyflog(j) Gy Gyl Gyflog(j) Gy Gyl Cyflog(j)

s1 UB (h) 16915.8 5666.1 8997.8 4007.9 3369.9 33415 3218.9 3291.7 32133
LB (h) —5853.0 —5845.7 —5851.3 —5845.3 —5845.4 —5845.2 —5844.9 —5845.1 —5845.3
GAP (%) - - - - - - - - -
# of b. sol. 0 5 5 0 5 5 0 10 10
CPU (s) 30.7 95.3 86.6 30.1 94.3 98.8 315 94.7 85.9

S2 UB (h) 18661.8 9682.4 12605.8 8908.8 8639.3 8618.9 8606.9 8623.3 86124
LB (h) 5004.5 5006.1 5005.5 5005.8 5006.3 5005.9 5006.2 5006.1 5007.4
GAP (%) 1289.1 5174 815.5 405.4 396.1 397.2 396.8 395.5 396.0
# of b. sol. 0 6 6 0 7 7 0 9 11
CPU(s) 28.5 84.2 76.6 28.2 83.5 87.9 25.9 83.6 76.0

S3 UB (h) 21817.6 17180.5 18151.9 16752.3 16763.1 16642.2 16726.6 16803.4 16665.2
LB (h) 15664.0 15665.2 15665.2 15666.0 15665.4 15665.8 15665.8 15665.3 15665.7
GAP (%) 39.1 10.3 16.6 7.5 7.7 6.5 7.4 8.2 6.8
# of b. sol. 1 6 6 1 7 11 1 6 12
CPU (s) 25.1 75.3 66.5 22.0 74.9 79.7 22.0 74.9 65.9

Ave UB (h) 19131.7 10843.0 13251.9 9889.7 9590.8 9534.2 9517.5 9572.8 9497.0
# of best sol. 1 17 17 1 19 23 1 25 33

UB (h): upper bound.

LB (h): lower bound.

GAP (%) = (UB — LB)/LB * 100.

Figure in bold italic: the best among the nine algorithms for a specific problem case with 18 instances.

Figure in bold non-italic: the second best among the nine algorithms for a specific problem case with 18 instances.
* One out of 18 instances for S2 has a negative LB. So, GAP is average of 17 instances.

their superiority is quite minor compared to SIMPLE cases. For S3, they do not outperform. For S1, INTERACT with Cy/log(j)
generates the best in an average UB value among others, but the ones with C;/j and Cj/log(j) provide the most count of the
best solutions. For S2, INTERACT with Cj; is the best in UB while INTERACT with Cy/log(j) is the best in the most count of the
best solutions. For S3, INDIVIDUAL with Gj/log(j) is best in UB whilst INTERACT with Cjj/log(j) provides the most count. Com-
paring Cy/j and Cj/log(j), the former is better in UB for SIMPLE, while the latter slightly outperforms the former for INDIVID-
UAL and INTERACT. However, in terms of the number of best solutions, Cj/log(j) is the best for all three start times. As for
computation time, procedures with G is the best.

As mentioned above, both INDIVIDUAL and INTERACT result in almost same performance. However, regarding UB, INTER-
ACT with Cy/log(j) is the best for S1 and the second best for S2 and S3. Furthermore, it outperforms in the most count. If we
take into account CPU time, the procedures with G; would be the most preferable. Looking at the bottom line in Table 1 that
shows the average UB and count of optimal solutions over S1 to S3, INTERACT with Cj/log(j) provides the best average UB as
well as optimal count.

Since the subgradient procedures with C; that were developed in Imai et al. (2001) are less complicated than the modified
ones implemented in this paper, the CPU times for the former, with less solution quality, are much shorter than the latter. So,
we run the former with more iterations that could result in the almost same CPU times in order to examine the solution
quality of the former in almost same CPU time as the one the modified subgradient procedures spend. To do so, we run
the three subgradient procedures of C; with 800 iterations. Table 2 shows comparisons of solution quality by those

Table 2
Cjj results with more iterations.
SIMPLE INDIVIDUAL INTERACT
# Of iterations 200 800 200 800 200 800
s1 UB (h) 16915.8 15440.3 4007.9 3948.2 32189 3183.7
LB (h) —5809.1 —5809.1 —5845.3 —5809.6 —5844.9 —5808.9
GAP (%) - - - - - -
CPU (s) 30.7 119.6 30.1 116.6 305 118.0
S2 UB (h) 18661.8 17527.1 8908.8 8886.2 8606.9 8584.8
LB (h) 5004.5 5022.3 5005.8 5021.9 5006.2 5021.9
GAP (%) 1289.1 1073.9 405.4 378.7 396.8 3714
CPU s) 285 109.8 28.2 107.2 259 98.5
S3 UB (h) 21817.6 21456.1 16752.3 16719.4 16726.6 16705.5
LB (h) 15664.0 15667.9 15666.0 15667.7 15665.8 15667.7
GAP (%) 39.1 36.6 7.5 7.3 7.4 72

CPU (s) 25.1 96.7 22.0 82.4 22.0 82.5
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Table 3
BTPS results.
T Interval (h) G Glj Gi/log(j)
SIMPLE
50 2.8 0B] 29460.6 27779.7 28517.4
TDT (h) 2793.9 1113.0 1850.7
# of best sol. 0 0 0
# of opt sol. 0 0 0
CPU (s) 54 53 8.6
55 2.7 0B] 111134.6 123321.8 123115.3
TDT (h) 3356.9 1470.0 2374.5
# of best sol. 0 0 0
# of opt sol. 0 0 0
CPU time (s) 7.7 75 124
60 25 [0)3]] 319374.4 329555.4 331353.7
TDT (h) 3448.5 1777.6 2835.2
# of best sol. 0 3 0
# of opt sol. 0 0 0
CPU (s) 10.5 115 17.9
65 2.3 0B] 475158.8 486282.4 488601.6
TDT (h) 4019.3 1838.0 3046.1
# of best sol. 2 3 0
# of opt sol. 0 0 0
CPU (s) 13.6 14.7 23.5
100 14 0OB] 59075.2 55928.9 65733.3
TDT (h) 4462.7 2580.9 3511.1
# of best sol. 0 1 1
# of opt sol. 0 0 0
CPU (s) 153.9 132.0 297.8
Average 0B] 198679.0 204573.6 207464.3
TDT (h) 3616.3 1755.9 27235
# of best sol. 0.4 14 0.2
# of opt sol. 0.0 0.0 0.0
CPU (s) 38.2 34.2 721
INDIVIDUAL
50 2.8 0B] 28480.6 27165.9 27723.7
TDT (h) 1813.9 499.3 1057.1
# of best sol. 0 12 9
# of opt sol. 0 3 3
CPU (s) 53 14.4 15.8
55 2.7 0B] 109997.8 122281.7 123003.9
TDT (h) 2220.0 800.3 1522.4
# of best sol. 0 6 6
# of opt sol. 0 3 3
CPU (s) 7.6 213 23.7
60 2.5 0B] 316879.8 344567.3 345566.1
TDT (h) 2065.0 863.6 1492.1
# of best sol. 3 7 6
# of opt sol. 0 2 2
CPU (s) 10.2 32.0 34.5
65 2.3 0B] 473390.1 488588.3 504081.3
TDT (h) 2279.0 810.6 11183
# of best sol. 1 4 5
# of opt sol. 0 0 0
CPU (s) 13.5 42.7 46.3
100 14 (023 55869.6 67338.1 76454.6
TDT (h) 2536.3 6714 899.0
# of best sol. 0 8 6
# of opt sol. 0 3 3
CPU (s) 150.6 535.6 644.7
Average 0B] 196923.6 209988.3 215365.9
TDT (h) 2182.8 729.0 1217.8
# of best sol. 14 7.4 6.4
# of opt sol. 0.0 22 22
CPU (s) 374 129.2 153.0
INTERACT
50 2.8 0B] 28473.0 27015.7 27159.2
TDT (h) 1806.3 349.0 4925
# of best sol. 0 23 16
# of opt sol. 0 9 9
CPU (s) 54 26.6 28.7

(continued on next page)
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Table 3 (continued)

T Interval (h) G Glj Gii/log(j)
55 2.7 0B] 109970.2 121994.4 122292.7
TDT (h) 2192.4 512.9 811.3
# of best sol. 1 22 13
# of opt sol. 0 9 9
CPU (s) 7.7 36.3 39.2
60 25 0B] 316953.1 344401.1 345019.4
TDT (h) 21383 697.4 945.3
# of best sol. 3 19 12
# of opt sol. 0 8 8
CPU (s) 10.5 50.0 53.8
65 2.3 0B] 473574.6 488135.6 495005.6
TDT (h) 2463.5 728.2 931.6
# of best sol. 4 18 12
# of opt sol. 0 2 2
CPU (s) 13.6 65.5 69.5
100 14 0B]J 55915.3 62776.3 62942.9
TDT (h) 2581.9 554.1 720.7
# of best sol. 0 23 15
# of opt sol. 0 9 9
CPU (s) 151.7 596.2 703.6
Average 0B] 196977.2 208864.6 210484.0
TDT (h) 2236.5 568.3 780.3
# of best sol. 0.0 21.0 13.6
# of opt sol. 0.0 74 74
CPU (s) 37.8 154.9 178.9

Figure in bold italic: the best among the nine algorithms for a specific problem case with 18 instances.
Figure in bold non-italic: the second best among the nine algorithms for a specific problem case with 18 instances.

procedures with 200 and 800 iterations. While the objective function values slightly improve (roughly decreases by 1-10%)
with more iterations, they are not as good as the ones by the modified subgradient procedures. The CPU times for 800 iter-
ations are almost same as the ones for the modified subgradient procedures with 200 iterations.

As a result from the above discussion, the modified subgradient methods with weighted handling times are effective for
the three Lagrangian heuristics from the viewpoint of the UB and the number of best solutions. In particular, INTERACT with
Gij/log(j) is the most promising and can be expected to perform well for the BTPS.

5.3. BTPS experiments

Next, we perform numerical experiments for the BTPS. Providing four berths, we have four scenarios that serve the num-
ber of calling ships (T) ranging from 50 to 65. Also, to examine the BTPS procedures with large problem instances, we prepare
instances of 100 ships with eight berths. Thus, we have five scenarios in total. Each of all the problem instances has ten
mother-feeder connections, where two of the ships in each connection are served or neither of them is.

The tactical BTP (BTPT) is a hard problem to be solved because of the cylinder length. It is likely that we do not find a
feasible solution of the BTPT with an enormous number of calling ships. The BTPS overcomes this drawback by eliminating
less important ships from service. However, the BTPS should be examined in two cases: one when all ships are served and
the other when all of them are not due to the cylinder. Therefore, we carefully design problem instances. To do so, for each
scenario the given ships are spread during the cylinder length (CT = 150 h, which is equivalent to almost one week) in terms
of arrival time whose interval follows an exponential distribution. For the arrival time we created three sets with different
seeds for random numbers. The ship handling time, C;, was generated based on uniform random variables with different
average times of 4, 8 and 12 h. Also, we prepared three different fluctuations between the maximum and minimum amounts
of the cargo handling time of a ship: 0%, 100% and 200% of the average time. In total, we have 27 problem instances for a
scenario with a specific number of calling ships.

For BTPS experiments, penalty costs are carefully designed; otherwise, experimental results may be meaningless. The
BTPS minimizes the total of delay time and penalty (in terms of time). If the value of ship penalty is not so large compared
to the ship handling time, a great number of ships may not be selected to be served. More concretely speaking, if much delay
is expected by serving lots of ships while the berthing capacity is not large enough to cover all of them, the BTPS model
refuses many of them to reduce the delay time. To avoid such an unrealistic solution, the penalty is set much larger value
than the ship handling time. In our experiments, the penalty value is 10000 times as much as the handling time.

Like DBAP experiments, we have nine solution procedures with a combination of the three heuristics SIMPLE, INDIVIDUAL
and INTERACT, and the three weighted handling times C; (original), Gj/j and G/ log(j). All the procedures run with 200 iterations.
Also, the procedures with C; run with 800 iterations like the preliminary experiments with the DBAP instances; however, the
results of these runs are almost same as the runs with 200 iterations. So, these results are not reported in the following analyses.
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Table 4
BTPS results for BTPT-feasible cases.

T Interval (h) G Glj Gi/log(j)

SIMPLE

50 2.8 0OB] 2820.0 1159.7 1977.5
TDT (h) 2820.0 1159.7 1977.5
# of best sol. 0 0 0
# of opt sol. 0 0 0

55 2.7 (03] 3147.3 1397.0 23124
TDT (h) 3147.3 1397.0 23124
# of best sol. 0 0 0
# of opt sol. 0 0 0

60 2.5 (023 3421.8 1202.2 2381.2
TDT (h) 34218 1202.2 2381.2
# of best sol. 0 0 0
# of opt sol. 0 0 0

65 2.3 (023 4019.3 13211 2516.3
TDT (h) 4019.3 1321.1 2516.3
# of best sol. 0 0 0
# of opt sol. 0 0 0

100 14 (03] 4998.9 2601.4 3690.8
TDT (h) 4998.9 2601.4 3690.8
# of best sol. 0 0 0
# of opt sol. 0 0 0

Average OB]J 3681.5 1536.3 2575.7
TDT (h) 3681.5 1536.3 2575.7
# of best sol. 0.0 0.0 0.0
# of opt sol. 0.0 0.0 0.0

INDIVIDUAL

50 2.8 (023 1758.8 495.3 11229
TDT (h) 1758.8 495.3 11229
# of best sol. 0 9 6
# of opt sol. 0 3 3

55 2.7 (03] 2078.0 751.7 1411.7
TDT (h) 2078.0 751.7 1411.7
# of best sol. 0 6 5
# of opt sol. 0 3 3

60 2.5 0B] 1742.0 298.9 879.4
TDT (h) 1742.0 298.9 879.4
# of best sol. 0 6 6
# of opt sol. 0 2 2

65 2.3 (023 1548.5 229.3 511.5
TDT (h) 1548.5 229.3 511.5
# of best sol. 0 4 5
# of opt sol. 0 0 0

100 14 0B] 2344.1 653.0 909.8
TDT (h) 2344.1 653.0 909.8
# of best sol. 0 8 6
# of opt sol. 0 3 3

Average OB]J 1894.3 485.7 967.1
TDT (h) 1894.3 485.7 967.1
# of best sol. 0.0 6.6 5.6
# of opt sol. 0.0 2.2 2.2

INTERACT

50 2.8 (023 1785.1 326.3 487.8
TDT (h) 1785.1 326.3 487.8
# of best sol. 0 20 13
# of opt sol. 0 9 9

55 2.7 (023]] 2097.7 408.8 533.3
TDT (h) 2097.7 408.8 533.3
# of best sol. 0 22 12
# of opt sol. 0 9 9

60 2.5 (013]] 1772.4 49.6 69.7
TDT (h) 1772.4 49.6 69.7
# of best sol. 0 18 12
# of opt sol. 0 8 8

65 2.3 (02:]] 1645.1 106.3 2224
TDT (h) 1645.1 106.3 222.4
# of best sol. 0 18 12
# of opt sol. 0 2 2

(continued on next page)
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Table 4 (continued)

T Interval (h) G Glj Gi/log(j)
100 14 (023]] 2395.7 514.1 705.3
TDT (h) 2395.7 514.1 705.3
# of best sol. 0 23 14
# of opt sol. 0 9 9
Average (023]] 1939.2 281.0 403.7
TDT (h) 1939.2 281.0 403.7
# of best sol. 0.0 20.2 12.6
# of opt sol. 0.0 74 7.4

Figure in bold italic: the best among the nine algorithms for a specific problem case with 18 instances.
Figure in bold non-italic: the second best among the nine algorithms for a specific problem case with 18 instances.

Table 5
BTPS results for BTPT-infeasible cases.
T Interval (h) G Gli Gillog(j)
SIMPLE
50 2.8 0B] 242585.0 240739.7 240836.3
TDT (h) 2585.0 739.7 836.3
# of best sol. 0 0 0
# of opt sol. 0 0 0
55 2.7 (03] 586279.0 659791.2 654648.0
TDT (h) 4279.0 1791.2 2648.0
# of best sol. 0 0 0
# of opt sol. 0 0 0
60 2.5 0OB]J 951279.8 986261.9 989298.8
TDT (h) 3502.0 2928.6 3743.2
# of best sol. 0 3 0
# of opt sol. 0 0 0
65 2.3 0B] 1417437.9 1456205.0 1460772.2
TDT (h) 4104.6 2871.7 4105.6
# of best sol. 2 3 0
# of opt sol. 0 0 0
100 14 (023]] 484408.0 482548.7 562073.3
TDT (h) 4408.0 2548.7 2073.3
# of best sol. 0 1 1
# of opt sol. 0 0 0
Average 0B] 736397.9 765109.3 781525.7
TDT (h) 3775.7 2176.0 2681.3
# of best sol. 04 14 0.2
# of opt sol. 0.0 0.0 0.0
INDIVIDUAL
50 2.8 0B] 242255.0 240530.7 240530.7
TDT (h) 2255.0 530.7 530.7
# of best sol. 0 3 3
# of opt sol. 0 0 0
55 2.7 0OB] 584845.2 657014.0 658009.6
TDT (h) 2845.2 1014.0 2009.6
# of best sol. 3 0 1
# of opt sol. 0 0 0
60 2.5 0B]J 947155.4 1033104.0 1034939.6
TDT (h) 2711.0 1992.9 2717.3
# of best sol. 3 1 0
# of opt sol. 0 0 0
65 23 0B]J 1417073.2 1465306.3 1511220.9
TDT (h) 3739.9 1973.0 2332.0
# of best sol. 1 0 0
# of opt sol. 0 0 0
100 14 (023]] 484073.7 600818.3 680813.0
TDT(h) 4073.7 818.3 813.0
# of best sol. 0 0 0
# of opt sol. 0 0 0
Average (023 735080.5 799354.7 825102.7
TDT (h) 3125.0 1265.8 1680.5
# of best sol. 14 0.8 0.8

# of opt sol. 0.0 0.0 0.0
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Table 5 (continued)
T Interval (h) G Glj Gi/log(j)
INTERACT
50 2.8 [013]] 241976.0 240530.7 240530.7
TDT (h) 1976.0 530.7 530.7
# of best sol. 0 3 3
# of opt sol. 0 0 0
55 2.7 [013]] 584609.2 656971.0 658034.4
TDT (h) 2609.2 971.0 2034.4
# of best sol. 1 0 1
# of opt sol. 0 0 0
60 2.5 OB] 947314.4 1033104.0 1034918.7
TDT (h) 2870.0 1992.9 2696.4
# of best sol. 3 0 0
# of opt sol. 0 0 0
65 2.3 0B] 1417433.7 1464194.3 1484572.0
TDT (h) 4100.3 1972.1 2349.8
# of best sol. 0 18 12
# of opt sol. 0 0 0
100 14 (03] 484071.7 560874.0 560844.3
TDT (h) 4071.7 874.0 844.3
# of best sol. 0 2 0
# of opt sol. 0 0 0
Average [013]] 735081.0 791134.8 795780.0
TDT (h) 31254 12368.1 1691.1
# of best sol. 1.6 0.8 1.0
# of opt sol. 0.0 0.0 0.0

Figure in bold italic: the best among the nine algorithms for a specific problem case with 18 instances.
Figure in bold non-italic: the second best among the nine algorithms for a specific problem case with 18 instances.

Table 3 illustrates computation results for the nine subgradient procedures. The results are summarized as the average
values (over the 27 problem instances) of OBJ (the objective function value, i.e., the total of penalty cost and TDT (the total
delay time)), TDT (h) and CPU time (s), and the total values (of the 27 instances) of the count of best solutions among the nine
procedures and the count of optimal solutions. Like the DBAP analysis, for each line, figures in bold italic are the best while
ones in bold non-italic are the second best.

Like the DBAP, the BTPS procedures produced negative LB since the BTPS procedures (the DBAP with the cylinder con-
straint) assume S; = 0; for this reason, LB and GAP are not shown in Table 3. Therefore, it is impossible to judge if an obtained
solution is optimal or not by using LB. However, the judgment is possible by the TDT. If the BTPS solution is BTPT-feasible
(i.e., the BTPS solution equivalent to a feasible one for the BTPT where all the ships are to be served), the solution with
TDT =0 is optimal because of the unique ship handling time over berths. Of course, the optimal solutions could have a
non-zero TDT, but by no means we can judge if those solutions are optimal or not. In case of BTPT-infeasible (i.e., the BTPS
solution does not serve all the ships), the solution with TDT = 0 cannot be judged to be optimal to the BTPS problem.

The five scenarios with different calling ships correspond to the range of different arrival intervals from 1.4 to 2.8 h, as
indicated in the table. At the bottom are the average values of those evaluation terms over the five scenarios.

First, we examine the average values over the five scenarios. Comparing SIMPLE, INDIVIDUAL and INTERACT, we have an
observation that INDIVIDUAL with ; is the best among the three procedures according to the average OBJ over the five sce-
narios. The second best is INTERACT with ;. This tendency is against our expectation that algorithms with weighted han-
dling time are superior to the ones with original handling time. In fact, this trend is completely different from the one for
the DBAP, since INTERACT is better than INDIVIDUAL for the DBAP. However, as a common feature between the DBAP
and BTPS, SIMPLE is the worst. With other weighted handling times, INDIVIDUAL is better than INTERACT.

Looking at the results for each scenario, except for the 50-ship case, all three procedures of SIMPLE, INDIVIDUAL or INTER-
ACT with C; perform well. INTERACT outperforms with fewer ships, while INDIVIDUAL does with more ships. Nevertheless,
the results of both procedures are almost the same.

Regarding the count of best and optimal solutions, INTERACT with Cj/j and Cj/log(j) are the best and the second best,
respectively. It is envisaged that the low average value of OB]J is attributed to large OBJ values due to the large value of pen-
alty costs for BTPT-infeasible cases where too many ships request calling compared to the berthing capacity within the cyl-
inder. In fact, 10-30% of the 27 instances are BTPT-infeasible.

Table 4 shows results for BTPT-feasible cases, while Table 5 illustrates ones for BTPT-infeasible. According to Table 4,
INTERACTSs with Gj/j and with Cj/log(j) are the best and the second best in OB]J, respectively. So, as an overall trend, INTERACTs
with weighted handling time are superior like the DBAP trend.

Meanwhile, as Table 5 indicates, INDIVIDUAL and INTERACT with C; outperform like overall results of the BTPS as shown
in Table 3. Note that the TDT is small with INDIVIDUAL and INTERACT with Gj/j. This tendency is quite similar to the ones for
the overall BTPS results and for the BTPT-feasible cases. Thus, INDIVIDUAL and INTERACT with Cj/j work well to minimize the
TDT, since the BTPS for the BTPT-feasible cases is equivalent to the minimization of (TST - 37,C;) as the DBAP. In the
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Table 6
BTPS results for BTPT-infeasible cases (T = 100).
T Interval (h) G Glj Gi/log(j)
SIMPLE
100 1.4 OBJ 3036087.7 3033864.3 3167882.9
TDT (h) 6921.0 3864.3 4549.6
# of best sol. 3 5 1
# of opt sol. 0 0 0
INDIVIDUAL
100 14 [0):]] 3034748.2 3185148.1 3233968.0
TDT (h) 3914.8 2648.1 3134.7
# of best sol. 2 0 0
# of opt sol. 0 0 0
INTERACT
100 1.4 OBJ 3029935.0 31777271 3203976.2
TDT (h) 4101.7 2643.1 3142.8
# of best sol. 0 0 1
# of opt sol. 0 0 0

Figure in bold italic: the best among the nine algorithms for a specific problem case with 18 instances.
Figure in bold non-italic: the second best among the nine algorithms for a specific problem case with 18 instances.

BTPT-feasible cases, the minimization of TDT is substantially the objective for the BTPS; consequently INDIVIDUAL and
INTERACT with G/j perform well for the BTPS problem. On the other hand, for the BTPS-infeasible cases, the penalty cost
overwhelms the TDT in the objective function. Thus, the algorithms attempt to serve as many ships as possible. This result
is unlikely obtained by minimizing the TDT, for which INDIVIDUAL and INTERACT with Cj/j outperform. As a conclusion,
INDIVIDUAL and INTERACT with G are the best for the BTPT-infeasible cases. Overall results for the BTPS are attributed to
the BTPT-infeasible cases due to the large value of the penalty cost. In terms of the count of best solution, INTERACT with
Gj/j is the best as the overall performance. This is because there are only few BTPT-infeasible cases out of the 27 instances
where INTERACT with G outperforms. For all the other instances (i.e., BTPT-feasible), INTERACT with Cj/j is the best.

Lastly, having created nine more BTPT-infeasible instances, we found a BTPS solution for totally 12 BTPT-infeasible
instances with 100 ships and 8 berths. Table 6 shows the average values of OBJ and TDT and total counts of best and optimal
solutions over the 12 instances. This also indicates the superiority of INTERACT with G like Table 5.

6. Conclusions

This paper addressed a relatively long-term decision making of berth schedule, the berth template problem in discrete ber-
thing locations. Two problems, namely the strategic and tactical berth template problems, deal with the situations with dif-
ferent planning intervals and strategic importance. The strategic one (BTPS) chooses ships to be served and those not to be
served for the case with excessive calling requests when compared to the berthing capacity. For such as a case, the tactical
one (BTPT) usually cannot find a feasible solution. Therefore, the former is in general more applicable to congested berthing
situations since it always finds a solution. In particular, we incorporate in the model the practical consideration about the
simultaneous treatment of mother and feeder ships under the hub-and-spoke operation. Although some BTPT studies have
been done for the last few years, we have not found a BTP study addressing these strategic issues as the BTPS in this paper does.

Regarding the solution algorithm, we developed a subgradient procedure with Lagrangian relaxation to find an approximate
solution to the BTPS. In a previous work by the authors, the solution algorithms of the berth allocation problem (DBAP) for oper-
ational scheduling were developed based on the subgradient procedure with the Lagrangian relaxation. Since the BTPS shares
the key structure of problem formulation with the DBAP, the subgradient approach has been applied to the BTPS. However, the
developed solution algorithms for the BTPS are not a straightforward extension of the subgradient procedure for the DBAP and
we have exploited a modification of the procedure. Based on the numerical experiments, the modified algorithm works very
well for the DBAP. In particular, INTERACT with Cj/log(j) is superior. As for the BTPS, according to the experiments, INDIVIDUAL
with G is the best among others regarding the UB performance while INTERACT with Gj is superior in terms of the best and
optimal solution counts. In summary, the modified algorithms work well for both the DBAP and BTPS as an overall evaluation.

Finally, the modeling framework and the solution algorithms that are developed in this paper should be useful for the
terminal operators to better manage their valuable resources. In particular, since the BTPS model incorporates the decision
of selecting the calling ships/shipping lines strategically, it is very suitable for the situations with excessive demand or the
cases of capacity expansion. Thus, we believe this study can serve as a useful decision support to terminal operators from a
practical point of view.
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Appendix A. Transformation of the objective function

We derive 375> icw, 2 keun iy ik 2tev2omep, Xitm = Dicp 2 jev dkeU\ (1) tew; 2om<kLimXijk -

The formulation can simply be transformed as 3=, 53w, > ke ry Lk iy Domep Xitm = Dic D jew, dket 1) ik 2otey 2mkXilm-
We substitute k' for m and m’ for k, then we have ;5> e, > e (1) Lijm' 2otev 2k =mXiw - Since element k' is more than m', k'
belongs to a subset U\ {1}. Reversely, m’ is less than k'. Consequently, we have D ieB 2 jew; 2omreu\ (T} jm' Dotev 2K smXild =

. . , v Xge. Once again substituting k and m for k' and m’, respectively, we have
icB 2jew; 2K cU\{1} 21V 2m <k Fijm' Xil & g p y

D ieB2jev D ke {1} 2olew; 2om<kilmXijk-
Appendix B. Subgradient procedure for BTPS

Step 1. Maxiter=200,d=2,Z=1x 10% Iter=1,n=1,BestLB=0, (¢ =" =0, =" =0, y=7y" =0, 6 =" =0).

Step 2. Solve problem [RBTPT], and calculate its objective function. Let Zggypp be the solution value of [RBTPT]. If Zggrpp > -
BestLB, let BestLB = Zggrpp, Iter =1, (o* = a, g = B, y* =7, " = 4), otherwise Iter = Iter + 1.

Step 3. Perform a heuristic by using an optimal solution to [SUB-1] to find a feasible solution to [BTPT]. If the feasible solu-
tion is not found, STOP; otherwise, let FEAS be the objective function value of the feasible solution. If FEAS<Z, let
Z=FEAS, If Z— BestLB <1, STOP.

Step 4. Let n=n + 1. If n > Maxiter, STOP; otherwise continue.

Step 5. If Iter>20 let Iter=1, (" = o, B* =B, y* =7, 6" =), d, = d,/2, otherwise calculate step size t, and update mul-
tipliers o, fi Vir and dyp.

Step 6. If oy, Bi, Yik or 9 < 0, then set it = zero. Go to Step 2.

Appendix C. SBAP and DBAP formulations

[SBAP]

Minimize » " "(kCj + Si — AXi + > > kv (A1)
ieB jeV keU ieB jeW;keU

subject to > Y Xy =1 VjeV, (A.2)
ieB keU
> X <1 VieBkeU, (A3)
jev
X €{0,1} VieB,jeV, kel, (A4)

[DBAP]

Minimize Y % "> "(kCji + Si — Apxipc + > > > ki (A1)

ieB jeV keU ieB jeW; keU

subject to (A.2 — A4)

>N (CiXim + Yim) + Y — (Aj = S)xie = 0 Vie B jeW;, keU, (A5)
leV mePy,
Vie =0VieB,jeV, kel, (A.6)

where S; is the start time of the availability of berth i and Cj; is the handling time being spent by ship j at berth i. Other param-
eters and variables are the same as the ones for [BTPS]. Constraints (A.2-A.6) are basically the same as (2-4), (9), (10). All the
calling ships are already in port in the SBAP, while they are not all so in the DBAP.

Note here that formulations above are slightly different from the one in Imai et al. (2001). The difference arises from the
structure of parameters in the objective function due to the service order scheme. That is, Imai et al. (2001) has
{(T — k' + 1)Cyj + Si — Aj}xi in the objective function where the service order k' is numbered in ascending order from the first
one to be served. However, the x;j variable-associated coefficient in Imai et al. and the one in this paper are completely
equivalent, since (T - k' + 1) for k’ increasing from 1 to T turns to be k that decreases from T to 1. The objective (A.1) is used
in this paper because of the formulation simplicity.

Appendix D. Modified subgradient procedure for BTPS

Step 1. Maxiter=200,d=2, Z=1x10% Iter=1,n=1,BestlB=0, (0 =" =0, =" =0, y=7" =0, 5 =6 =0).

Step 2. Solve problem [RBTPT], and calculate its objective function. Let Zzgrpp be the solution value of [RBTPT]. If Zggrpp >
BestLB, let BestLB = Zggrpp, Iter=1, (" =, f* =B, y* =7, 6" = J), otherwise Iter = Iter + 1.

Step 3-1. Solve problem [MBTPT], which is the same as [RBTPT] but with Cj/j instead of G
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Step 3-2. Perform a heuristic by using an optimal solution to [SUB-3] to find a feasible solution to [BTPT]. If the feasible
solution is not found, STOP; otherwise, let FEAS be the objective function value of the feasible solution. If
FEAS< Z, let Z=FEAS, If Z— BestLB < 1, STOP.
Step 4. Let n=n + 1. If n > Maxiter, STOP; otherwise continue.
Step 5. If Iter >20 let Iter=1, (* = o, B* =B, y* =7, 6" = 9), d, = dy/2, otherwise calculate step size t, and update mul-
tipliers o, fi Vi and d;y.
Step 6. If ok, fi Yik or 9 <0, then set it = zero. Go to Step 2.
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