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Abstract Thermal-driven flow is generated due to topographic or vegetation-shading effects.
Asymptotic solutions by assuming a small bottom slope are derived to discuss effects of rooted
emergent vegetation and interactions between emergent vegetation and sloping topography on
thermal-driven flow during diurnal heating and cooling cycles. The results show that the zero-
order horizontal velocity is significantly reduced by vegetative drag, and the time lag between
the change of horizontal velocity and the reversal of pressure gradient is also shortened. The
solutions reveal that the viscous effect is dominant in very shallow water, and the drag force
becomes important as the water depth increases. The inertial term is only important at the very
beginning stage of flow initiation. Different vegetation distributions can significantly change
the temperature fields that then affect patterns of thermal-driven circulation and exchange
flowrates. For the case of tall vegetation growth in shallow water, and when the deep water
side is open, the effects of vegetation shading may interfere with the topographic effects and
dramatically alter the flow patterns. The blockage of solar radiation due to vegetation shading
can determine the patterns and magnitude of thermal-driven flow. By means of the derived
asymptotic horizontal velocity, exchange flow rates can be estimated, which are in good
agreement with previous studies. The limitation and valid ranges of asymptotic solutions are
finally discussed.
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1 Introduction

Thermal-driven flow, also called the natural convection flow, in the absence of wind forc-
ing, arises from heterogeneous temperature distribution and subsequent variations of density
gradients in fluids [1,2]. For example, horizontal transport of thermal-driven flows due to dif-
ferential surface heating or cooling is commonly observed in the effects of vegetation shading
[3] or sloping bathymetry [4] of lakes or geophysical fluid bodies. Existence of emergent
vegetation can block some solar radiation into the water body, yielding temperature in the
vegetation-shading area to be cooler than that in open water or less vegetated areas during
daytime [5–7]. During nighttime, emergent vegetation reduces radiation losses from water
surface, producing higher temperature in the vegetation region [8]. The differential heating
due to vegetation shading thereby results in the variation of water densities, driving thermal-
driven circulation from the open water to the vegetated area along the surface, returning to
the open water along the bottom during daytime, and reversing the circulation patterns during
nighttime. Similarly, on a sloping topographic bottom during daytime, the same amount of
solar radiation that enters into the water body leads to warmer water in the shallow region
in comparison with the deeper region. As a result, the induced circulation, which flows from
the shallow water to the deep water along the water surface and underflow uphill over the
sloping bottom toward the nearshore, is generated. During night-time the induced circulation
is then reverse. The diurnal heating and cooling can generate the thermal-driven circulation to
move back and forth, enhancing the exchange of nutrient and chemical substances and reduc-
ing the flushing time between the nearshore and the main water bodies [2]. The magnitude
for such thermal-driven circulation can reach up to 10–15 cm/s, much faster than turbu-
lence diffusion alone [1,9]. The horizontal thermal-driven flow, “thermal siphon,” pumping
water in and out in littoral zones, is an important mechanism for the renewal of the littoral
water [1].

Previously, several studies have examined the horizontal thermal-driven flow over a slop-
ing bottom. Observations conducted by Adam and Wells [10] and Monismith et al. [1] showed
a significant time lag (or spin-up time), up to 12 h, of the circulation in response to the changes
of diurnal heating and cooling forcing in littoral regions of natural lakes. To investigate the
relationship between the time lag and dominant physical processes, Farrow and Patterson [4]
(from here on referred to as FP93) derived a zero-order asymptotic solution by neglecting
nonlinear convective effects for a small slope triangular cavity model under the assumption
of uniformly distributed heat over the water column. It was found that in shallow water, the
time taken for viscosity response over the whole water depth is relatively short. The horizon-
tal velocity immediately responds to the changes in the horizontal pressure gradient due to
diurnal forcing. In deep water, the inertia of fluid balances with the horizontal pressure, and
the horizontal velocity exhibits a phase lag of a quarter period of the forcing. Moreover, the
vertical velocity profile is characterized by this balance until viscosity diffuses into the whole
water column. Recognizing that the zero-order asymptotic solution is not valid near the tip of
the wedge where nonlinearity becomes important, Farrow [11] (hereafter referred to as F04)
extended the work of FP93 to the second-order temperature solution to include the effects of
heat conduction and nonlinear advection. Asymptotic solutions and numerical simulations
both showed that the horizontal advective heat transfer generated from the second-order
temperature profile shows a viscous-dominated mechanism in shallow water and an inertia-
dominated flow in deep water [11]. To simulate more realistic heating processes, Farrow and
Patterson [12], Lai and Patterson [13], and Mao et al. [14] employed an exponential decay
function for solar radiation over the water depth, different from the previous assumption of
a uniform heating distribution. Their results showed that heat-transfer processes are related
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to dimensionless Rayleigh number and can be classified as three (e.g., conduction, transient,
and convection) dominant regimes to trigger flow over a small bottom slope. Lei and Pat-
terson [15] revealed that thermal instability is crucial in deep water to break residual flow
and reverse the circulation during diurnal cycles. Recently Mao et al. [14,16] further showed
that flow properties and stability of the thermal boundary layer are related to the horizon-
tal location in the wedge domain both during the heating and cooling periods. Farrow [17]
discussed the wind effects on thermal-driven flow near the shore of a lake. Overall, previ-
ous studies have gained a very good understanding on thermal-driven flow during diurnal
cycles.

Shading effects from floating or emergent vegetation, commonly seen in aquatic system,
can also induce horizontal temperature differences which then generate the convective circu-
lation [5,7]. Previous studies [5,18] on the thermal-driven flow from the shading of floating
vegetation over a flat bottom have identified both inertial and energy-limited regions, depend-
ing on the corresponding magnitudes of the circulation. Oldham and Sturman [19], and Zhang
and Nepf [9,20] showed that rooted emergent vegetation, unlike floating vegetation, provides
inherent drag to slow down the generated circulation. Furthermore, both horizontal velocity
and volumetric flowrate of exchange flow can be strongly reduced with the increasing vege-
tation densities [20,21]. Oldham and Sturm [19] applied porous media flow theory to study
the impact of vegetative drag on exchange flow over a surface cooling cycle. Vegetative drag
significantly reduces exchange flowrate and increases flushing time over vegetated regions.
Zhang and Nepf [9] observed at the initial stage the exchange flow is inertia-dominated and
quickly converted to be drag-dominated. The thickness of an intrusion layer corresponds to
the length scale of light penetration. Recently Zhang and Nepf [22] showed that floating
root vegetation can block the flow as flow intrusion length increases, and the exchange flow
occurs only beneath the root layer. These works have provided new insight to reveal the
role of vegetation on the thermal-driven flow. Nevertheless the effects of vegetative drag on
the time-lag and dominant mechanisms including viscosity, inertia, and horizontal pressure
gradient of the thermal-driven flow have not been well-identified. Also littoral vegetation is
commonly observed over a slope, instead of ideal flat bottom. Furthermore, in shallow water,
emergent vegetation is usually found because of abundant light and nutrients and blocks some
solar radiation into the water body. Under this situation, shading from emergent vegetation
causes cooler water temperature during daytime, a contradictory trend as warmer in shallow
water found over an unvegetated sloping bottom. Consequently water temperature in shallow
water thereby may not be always warmer than that in deep water. While previous studies
have examined thermal-driven flow due to vegetation shading mainly over a flat bottom
[5,7,9], the competition or interplay between vegetation shading and topographic sloping
bottom on horizontal temperature gradient as well as thermal-driven flow has not yet been
unveiled.

In this paper, an analytic approach is employed to examine thermal-driven flow generated
by vegetation-shading and topographic effects during diurnal cycles. Asymptotic solutions
including zero-order horizontal velocity and second-order temperature for thermal-driven
flow within rooted emergent vegetation are derived. Based on the analytic velocity and
temperature profiles, the spatial and temporal dominant mechanisms to balance between
viscosity, vegetative drag, inertia and buoyancy are revealed and compared with experimental
findings from Zhang and Nepf [9]. The asymptotic solutions are then used to examine the
flow patterns in different vegetation distributions over a sloping bottom in terms of the
competition between vegetation-shading and topographic effects. In addition, the derived
zero-order horizontal velocity is used to estimate exchange flow rates at different water
depths. The validity and feasibility of the asymptotic solutions are finally discussed.
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2 Mathematical formulation

2.1 Governing equations, initial and boundary conditions

The thermal-driven flow with rooted emergent vegetation over a sloping boundary is schema-
tized in Fig. 1. The wedge shape domain

(
x ′, z′) is considered as a two-dimensional flow

with the origin at the tip; x ′and z′ (= −Sx ′) are the horizontal and vertical coordinates,
respectively, where S is the bottom slope. For simplicity, the effect of vegetation leaf is
neglected, i.e., the cross sectional area of the stem is constant vertically. The distribution of
rooted emergent vegetation can vary along the x ′ direction but is assumed to be vertically
uniform. The drag due to vegetation is assumed to be only applied in the horizontal direction

and described as a quadratic drag law, which is CDau′|u′|
2 , where u′ is the horizontal velocity,

CD is the drag coefficient, and a is the frontal area of vegetation per unit volume [21]. The
diurnal solar radiation is modeled as I0 cos

(
2π t ′/τ

)
W m−2, a periodic heat source, where

I0 is the bulk solar radiation intensity at the water surface, τ is the forcing period of 24 h, t ′ is
time, and t ′ = 0 corresponds to noon. Here, we assumed the solar radiation is uniformly dis-
tributed over the local water depth, which is a considerable simplification to provide analytic
processes (FP93, F04 [17]). The internal heat source uniformly distributed over the water
depth is then described as

Qheat
(
x ′, z′, t ′

) = I0 M
(
x ′) cos

(
2π t ′/τ

)

ρ0CpSx ′ , (1)

where Sx ′ denotes the local water depth where the solar radiation is distributed, ρ0 is the
reference density of fluid, and Cp is the specific heat of water. In Eq. (1), M

(
x ′) represents

how distribution of emergent vegetation reduces solar radiation penetrating into the water
column. We will discuss M

(
x ′) more in detail later.

With the above assumptions and the Boussinesq approximation due to relatively small
temperature differences in the aquatic system, the two-dimensional governing equations of
flow motions are

Fig. 1 Geometry of the domain showing the coordinate system and vegetation distribution. Distribution of
emergent vegetation is only function of the horizontal location x ′
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nv

(
∂u′

∂x ′ + ∂w′

∂z′

)
= 0, (2)

nv

(
∂u′

∂t ′
+ u′ ∂u′

∂x ′ + w′ ∂u′

∂z′

)
= −nv

ρ0

∂P ′

∂x ′ − CDau′ ∣∣u′∣∣
2

+ nvν

(
∂2u′

∂x ′2 + ∂2u′

∂z′2

)
, (3)

nv

(
∂w′

∂t ′
+ u′ ∂w′

∂x ′ + w′ ∂w′

∂z′

)
= −nv

ρ0

∂P ′

∂z′ + nvν

(
∂2w′

∂x ′2 + ∂2w′

∂z′2

)
+ nvgα

(
T ′ − T0

)
,

(4)

nv

(
∂T ′

∂t ′
+ u′ ∂T ′

∂x ′ + w′ ∂T ′

∂z′

)
= nv

[
κ

(
∂2T ′

∂x ′2 + ∂2T ′

∂z′2

)
+ Qheat

(
x ′, z′, t ′

)]
, (5)

where u′, w′ are the horizontal and vertical velocity, P ′ is the pressure, ν is the kinematic
viscosity of water, g is the gravity acceleration, α is the thermal expansion coefficient, T ′is
the temperature, T0 is the reference temperature, and nv is the porosity, which is the volume
fraction occupied by water within vegetation [21].

Under low stem Reynolds number Red (= u′d/ν, where d is the stem diameter of veg-
etation), CD is inversely proportional to

∣
∣u′∣∣, i.e., CD = 2nvC

|u′| , where C is a linear drag
coefficient [20]. Equation (3) can be thus simplified as:

∂u′

∂t ′
+ u′ ∂u′

∂x ′ + w′ ∂u′

∂z′ = − 1

ρ0

∂P ′

∂x ′ − Cau′ + ν

(
∂2u′

∂x ′2 + ∂2u′

∂z′2

)
. (6)

According to numerical results of Koch and Ladd [23], a regression relationship between
the linear drag coefficient C and the solid volume fraction φ (= 1 − nv) can be obtained:
C = −0.3788φ2 + 0.1134φ. The frontal area a for circular-stemmed vegetation is equal to
4φ
πd , where d is the diameter of vegetation stem.

Initially, fluids are at rest and isothermal. Since the entire heat input/output is included
in the internal heat source Qheat, there are no fluxes across any of the boundaries, that is,
the thermal boundary conditions are insulated over the surface and bottom (FP93). At the
surface, it is shear free due to the absence of wind or other momentum forcing, and no flow
occurs across the surface. For the bottom, the flow is impermeable to the bottom, and abides
by the no-slip condition. In summary, the initial and boundary conditions are:

T ′ = T0, u′ = w′ = 0 at t = 0,
∂T ′

∂z′ = 0,
∂u′

∂z′ = 0 (shear free) , w′ = 0 on z′ = 0, (7)

∂T ′

∂ n̂
= 0, u′ = w′ = 0 (no slip) on z′ = −Sx ′,

where n̂ is the direction normal to the sloping bottom.

2.2 Scaling analysis

The governing equations are nondimensionalized as follows. The dominant time scale is
characterized by the period of forcing τ , i.e., 24 h. The vertical length scale H is defined
as the growth of the boundary layer during one diurnal cycle, i.e., H = √

ντ (FP93). Due
to the geometry of the wedge, the horizontal length scale L is obtained by combining the
slope S and vertical scale H , i.e., x ′ ∼ L = H/S. Balancing the unsteady and heat source
terms in Eq. (4) gives the temperature scale T ′ − T0 = 
T ∼ I0τ

ρ0Cp
√
ντ

. The balancing of

the temperature difference with hydrostatic pressure yields a pressure scale P ′ ∼ gα I0τ
cp

. By
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substituting the pressure scale into Eq. (3) and assuming the pressure force is balanced by the
unsteady horizontal velocity, the scale of horizontal velocity is u′ ∼ SGr

√
ν/τ , where the

Grashof number is Gr = gα I0τ
2

ρ0Cpν
. By use of the continuity equation, the scale for the vertical

velocity is w′ ∼ S2Gr
√
ν/τ .

Using the scales described above, the non-dimensional energy equation becomes

∂T

∂t
+ S2Gr

(
u
∂T

∂x
+ w

∂T

∂z

)
= 1

σ

(
S2 ∂

2T

∂x2 + ∂2T

∂z2

)
+ M(x) cos (2π t)

x
, (8)

where σ is the Prandtl number, and all variables are dimensionless.
We use the stream function ψ(u′ = − 1

nv

∂ψ
∂z′ , w′ = 1

nv

∂ψ
∂x ′ [24]) that can eliminate the

pressure terms in Eqs. (3) and (4), and yield the non-dimensional stream function equation

ψt zz + S2ψt xx + S2Gr
[
(ψxψzzz − ψzψxzz)+ S2 (ψxψxxz − ψzψxxx )

]

= ψzzzz + 2S2ψxxzz + S4ψxxxx − Caτψzz + nvTx . (9)

The water surface and sloping bottom are along the same streamline, and their streamline
value is setup to zero. The non-dimensionalized boundary conditions are

ψ = ψx = ψzz = 0, Tz = 0 at z = 0,

and

ψ = ψx = ψz = 0,
(
Tz + S2Tx

)
/
√

1 + S2 = 0 at z = −x . (10)

Typical field values for Grashof number ranges from Gr ≈ 107 for an eddy viscosity of
ν = 10−4 m2 s−1 to Gr ≈ 109 for a molecular viscosity of ν = 10−6 m2 s−1 using input
solar radiation I0 of 1,000 W m−2 (F04). A typical value for the bottom slope S varies from
10−2 to 10−3. If typical field values for Gr and S are adopted, the coefficient S2Gr for the
convection terms in Eq. (9) may not be smaller than the viscous and temperature gradient
on the right-hand side of Eq. (9), i.e., the convective effects cannot be ignored in typical
field conditions. F04 pointed out this limitation and defined a valid range for the asymptotic
solution. In this study, by considering the vegetative drag, the horizontal velocity is reduced,
and the convective effects in Eq. (9) become less important. We will also provide a valid
range for the linear asymptotic solutions following the procedures as F04 suggested.

3 Asymptotic solutions

Since no analytic solution for T and ψ can be obtained for Eqs. (8) and (9), we assume the
bottom slope S is small, i.e., S � 1. The small slope appears as S2 in Eqs. (8) and (9), and
the streamfunction ψand temperature T can thus be expanded as a series of even power for
S [25,26]:

ψ = ψ(0) + S2ψ(2) + S4ψ(4) + · · · , T = T (0) + S2T (2) + S4T (4) + · · · . (11)

After substituting Eq. (11) into Eqs. (8) and (9) and equating the power of S, equations for
each order are formed and can be solved recursively.
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3.1 Zero-order temperature and horizontal velocity

The zero-order (S0) temperature equation and streamfunction equation are

T (0)t = 1

σ
T (0)zz + M(x) cos (2π t)

x
, (12)

ψ
(0)
t zz = ψ(0)zzzz − cdψ

(0)
zz + nvT (0)x , (13)

respectively, where cd = Caτ . The boundary conditions are

ψ(0) = ψ(0)zz = T (0)z = 0 on z = 0, (14)

ψ(0) = ψ(0)z = 0, T (0)z = 0 on z = −x . (15)

The initial condition is

ψ(0) = T (0) = 0 at t = 0. (16)

Because solar radiation is assumed to be uniformly distributed over the water column,
the temperature profiles should also be vertically uniform, i.e., not a function of vertical
direction z. By simply integrating Eq. (12) with respect to time t , we can obtain the zero-
order temperature solution as

T (0) = M(x) sin (2π t)

2πx
. (17)

In this paper, we employ F(x) = M(x)/x to represent the effects of vegetation distribution
and topography. As a result, Eq. (13) for the streamline function ψ(0)can be written as

ψ
(0)
t zz = ψ(0)zzzz − cdψ

(0)
zz + nv sin (2π t)

2π

dF(x)

dx
. (18)

Each term in Eq. (18) from the left to the right represents unsteady inertia, vertical shear, vege-
tative drag, and buoyancy effects (i.e., horizontal temperature gradient T (0)x = dF(x)

dx
sin(2π t)

2π ).
By means of Laplace transform, Eq. (18) is transferred to an ordinary differential equation
(ODE), which can be then solved easily. In order to transfer the ODE solution from Laplace
domain to time domain, the singular points in the ODE need to be identified and Cauchy’s
residue theorem is applied [27,28]. The streamfunction ψ(0)is solved as follows:

ψ(0) = nv
dF(x)

dx

{
sinh

(
z
√

cd
)− z

√
cd cosh

(
x
√

cd
)

sinh
(
x
√

cd
)− x

√
cd cosh

(
x
√

cd
)

{
x2

2cd
− 1

c2
d

[
cosh

(
x
√

cd
)− 1

]
}

− x sinh
(
z
√

cd
)− z sinh

(
x
√

cd
)

sinh
(
x
√

cd
)− x

√
cd cosh

(
x
√

cd
)

{
x

cd
− 1

c2
d

√
cd sinh

(
x
√

cd
)
}

+ 1

2

z2

cd
− 1

c2
d

[
cosh

(
z
√

cd
)− 1

]
}

× sin (2π t)

2π

−2nvx3 dF(x)

dx

∞∑

n=1

1

β2
n sin βn

[(
x sin

(
βn

x
z

)
− βn z cosβn

)(
cosβn + cosβn − 1

β2
n

− 1

2

)]

×
⎧
⎨

⎩

(
(βn/x)2 + cd

)
cos (2π t)+ 2π sin (2π t)− (

(βn/x)2 + cd
)

exp
(− ((βn/x)2 + cd

)
t
)

[(
(βn/x)2 + cd

)2 + (2π)2
] (
β2

n + cdx2
)

⎫
⎬

⎭
,

(19)
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where βn are the positive roots for the equation sin βn = βn cosβn . If the vegetation is
non-uniformed distributed along the horizontal direction, cd should be a function of x , i.e.,
cd(x).

The horizontal velocity is then given by u(0)
(= − 1

nv

∂ψ(0)

∂z

)
, i.e.,

u(0) = −dF(x)

dx

{√
cd cosh

(
z
√

cd
)− √

cd cosh
(
x
√

cd
)

sinh
(
x
√

cd
)− x

√
cd cosh

(
x
√

cd
)

{
x2

2cd
− 1

c2
d

[
cosh

(
x
√

cd
)− 1

]
}

−
√

cdx cosh
(
z
√

cd
)− sinh

(
x
√

cd
)

sinh
(
x
√

cd
)− x

√
cd cosh

(
x
√

cd
)

{
x

cd
− 1

c2
d

√
cd sinh

(
x
√

cd
)
}

+ z

cd
−

√
cd sinh

(
z
√

cd
)

c2
d

}

× sin (2π t)

2π

+2x3 dF(x)

dx

∞∑

n=1

1

βn sin βn

[(
cos

(
βn

x
z

)
− cosβn

)(
cosβn + cosβn − 1

β2
n

− 1

2

)]

×
⎧
⎨

⎩

(
(βn/x)2 + cd

)
cos (2π t)+ 2π sin (2π t)− (

(βn/x)2 + cd
)

exp
(− ((βn/x)2 + cd

)
t
)

[(
(βn/x)2 + cd

)2 + (2π)2
] (
β2

n + cdx2
)

⎫
⎬

⎭
.

(20)

Without vegetation (cd = 0 and F(x) = 1/x), the horizontal velocity u(0) becomes the one
obtained by FP93, i.e.,

u(0) = − 1

96πx2 sin (2π t) (z + x)
(
8z2 + zx − x2)

−2x
∞∑

n=1

1

β3
n sin βn

[(
cos

(
βn

x
z

)
− cosβn

)(
cosβn + cosβn − 1

β2
n

− 1

2

)]

×
{
(βn/x)2 cos (2π t)+ 2π sin (2π t)− (βn/x)2 exp

(− (βn/x)2 t
)

[
(βn/x)4 + (2π)2

]

}

. (21)

The asymptotic solutions T (0)and ψ(0) are dependent on vegetation distribution and topo-
graphic effects, i.e., F(x).

The exchange flow rate Q′
ex is critical to the evaluation of renewal of water and transport

of nutrients or chemical substances in the littoral zones. Following Horsch and Stefan [29],
we define the zero-order of dimensionless exchange flow rate Q(0)

ex per unit width as

Q(0)
ex = 1

2

0∫

−x

∣∣∣u(0)
∣∣∣ dz. (22)

3.2 Second-order temperature

The energy equation for the second order O
(
S2
)
, including conduction from the bottom and

advection of T (0)due to zero-order velocity u(0), is

T (2)t = 1

σ
T (2)zz + 1

σ
T (0)xx − Gru(0)T (0)x , (23)
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subject to the boundary conditions

T (2)z = 0 on z = 0, (24)

T (2)z = −T (0)x on z = −x . (25)

Equation (25) accounts for the effects of sloping bottom. The asymptotic solution for T (2)

can be expressed as T (2) = T (2)cond + T (2)adv , where

T (2)cond = 1 − cos (2π t)

4π2σ

(
d2 F(x)

dx2 + 1

x

dF(x)

dx

)
+ 1

πx

dF(x)

dx

∞∑

n=1

(−1)n cos
(nπ z

x

)

× (nπ/x)2 sin (2π t)+ 2πσ
[
exp

(− (nπ/x)2 t/σ
)− cos (2π t)

]

(nπ/x)4 + (2πσ)2
(26)

is the horizontal conduction due to the sloping bottom, and

T (2)adv = Grσ x
∞∑

m=1

{[

am (x, t)

+4 (−1)m x4

π

(
dF(x)

dx

)2 ∞∑

n=1

bmn (x, t) cmn (x, t)

]

cos
mπ z

x

}

(27)

is the correction because of the advection (F04). The parameters am, bmn , and cmn in Eq.
(27) are given in Appendix. F(x) that denotes effects of vegetation distribution and sloping
bathymetry appears in both T (2)cond and T (2)adv . For the case without vegetation, i.e., cd = 0,
and F(x) = 1/x , the solution for second-order temperature becomes the same as Eqs.
(A1)–(A4) in F04. The dimensionless horizontal advective heat transfer per unit is given by
q = S2

∫ 0
−x u(0)T (2)dz. The zero-order temperature, constant along the water column, will

not contribute to q (F04).

4 Results and discussion

4.1 Zero-order asymptotic solutions

The results derived in the previous section offer the horizontal velocity under different vege-
tation distributions. The discussion here first focuses on uniform distributions of rooted emer-
gent vegetation regimes, which have a constant value of M(x) in Eq. (17), i.e., M(x) = c,
where c is a constant associated with the vegetation height and the numbers of vegetation
leaves. Since F(x) = M(x)/x, dF(x)

dx that is proportional to temperature gradient (forcing)

is equal to dF(x)
dx = − c

x2 . Here, the vegetation is assumed to be rooted, emergent, and very
close to the water surface. In addition, the vegetation has no leaf, i.e., the cross-sectional area
of the stem is constant vertically. The emergent vegetation blocks part of solar radiation pen-
etrating into the water, but meanwhile, the volume occupied by water is also decreased. For
example, 0.25 % of vegetation (99.75 % occupied by water) blocks 0.25 % of solar radiation,
i.e., allowing 99.75 % solar radiation into 99.75 % volume occupied by water. Therefore, the
volumetric absorptions of solar radiation in the water body with 0.25 % vegetation and no
vegetation are identical. The constant c is then equal to 1, and the temperature magnitudes and
profiles for 0.25 % vegetation are the same as for the case without vegetation, but additional
vegetative drag affects the flow field. In the field, the leaves of the vegetation typically have

123



1312 Environ Fluid Mech (2014) 14:1303–1334

larger area than the stem cross-sectional area, in which case, the constant c may not be 1. In
this study, we choose the diameter of vegetation stem d of 0.6 cm commonly found in typical
field conditions [20] as an example to discuss the vegetative effect on thermally driven flow.

The horizontal velocity with vegetative drags denoted by cd is embedded almost in every
term of Eq. (20). On the contrary, without vegetation, the horizontal velocity (Eq. (21))
can be separated as viscous (the first term on the right-hand side), and inertia and transient
responses (the second term on the right-hand side) as FP93 indicated. Equation (21) shows
that in shallow water (x � 1), the first term on the right-hand side of Eq. (21) is more
important, i.e., viscosity is mainly balanced with buoyancy. In deep water (x � 1), however,
the second term on the right-hand side of Eq. (21) is greater, i.e., inertia and transient effects are
significant. Therefore, the vegetative drag has impacts both on viscous and inertia responses
(Eq. (20)).

The e-folding time te (decreasing a quantity by a factor of e, i.e., Napier’s constant) for
the transient term in Eqs. (20) and (21) is

te = 1

(β1/x)2 + cd
≈ 1

20.19/x2 + cd
, (28)

which is a function of x and cd. Because cd is always positive, te within vegetation is smaller
than that without vegetation, i.e., the transitional stage within vegetation is shorter than that
without vegetation. The ratios of e-folding time with 0.25 % vegetation to no vegetation in
shallow water (x = 0.25), intermediate depth (x = 1), and deep water (x = 5) are 0.961,
0.03, and 0.06, respectively. This means that the e-folding time is significantly reduced by
the presence of vegetation and decreased still further more in deep water than in shallow
water. At the same location x , denser vegetation, i.e., larger cd, has a smaller e-folding time.
Horizontal velocity thus experiences a shorter transient stage from the onset of the flow and
assumes purely periodic patterns rapidly due to the presence of the emergent vegetation. Also
the vegetative drag cd is included in the denominator of the second term on the right-hand
side of Eq. (20). As the vegetation becomes denser, i.e., the larger the cd, the smaller the
second term on the right-hand side of Eq. (20) becomes, and thus the inertial and transient
effects are less important within the rooted emergent vegetation.

In order to discuss dominant physical mechanisms at different water depths, Fig. 2 depicts
the time evolution (t = 0–3) of the viscous (u(0)zz ), the inertia (u(0)t ), the horizontal pressure
gradient (−p(0)x ) from buoyancy, the vegetative drag (−cdu(0)), and the horizontal velocity
(u(0)) at the water surface in the zero-order dimensionless horizontal momentum equation
shown below:

u(0)t = −p(0)x − cdu(0) + u(0)zz . (29)

Each term in Eq. (29) is obtained by integrating Eq. (13) with respect to the z direction.
The horizontal velocity can be correlated to the inertia term (acceleration a) by the formula
of u = ∫

adt , and therefore, the horizontal velocity u and inertia term a are always out of
phase. Within vegetation, the viscous term in shallows (x = 0.25, Fig. 2a) is dominant and
balanced with the buoyancy (i.e., pressure gradient). Effects of the vegetative drag are small
within 0.25 % vegetation. For the case of without vegetation, viscosity is also dominant in
shallows (Fig. 2d) as FP93 mentioned. Although the pressure gradient is larger in shallows,
the larger viscous effect counteracts the pressure gradient. Consequently, the resulting inertia
is too small to generate greater horizontal velocity. The pressure gradient and zero-order
horizontal velocity u(0) are at the same phase, which means that flow will respond immedi-
ately to the change of the pressure gradient. For the limiting case of x → 0, u(0) reverses
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instantaneously to the reversal of the pressure gradient (FP93). Because e-folding time is
small for smaller x values (Eq. (28)), the transient behavior is too short to be observed in
shallows, and the flow shows a very regular pattern, i.e., large-time behavior is achieved
rapidly.

At the intermediate depth (x = 1, Fig. 2b, e), vegetative drag becomes more important
but still less than the viscous effect. Since inertia is reduced by both viscosity and vegeta-
tive drag, the induced horizontal velocity is smaller than that without vegetation. As water
becomes deeper, both viscous effects and pressure gradient decrease; however, the viscous
effect decreases faster than the pressure gradient. The induced inertia turns to become more
important as the water depth increases. Also, the phases of pressure gradient and horizontal
velocity are not the same, both in the cases with and without vegetation. The time lag with
vegetation is shorter than that without vegetation. If the vegetation becomes denser, then the
vegetative drag will exceed the viscosity at this depth, and the time lag between horizontal
velocity and pressure gradient becomes less pronounced as well.

In deep water (x = 5, Fig. 2c, f), vegetative drag becomes more important than the
viscosity and significantly reduces the magnitudes of inertia as well as horizontal velocity.
Within vegetation, the time lag between the reversal of the horizontal velocity and pressure
gradient is small. Without vegetation, larger inertias arising from smaller viscous effects
leads to an apparent time-lag phenomenon between the reversal of the horizontal velocity
and the pressure gradient. The inertia term is positive from t = 0 to t ≈ 0.5, and in turn, the
maximum horizontal velocity occurs at t ≈ 0.5, corresponding to the largest positive area
under the curve of the inertia term with respect to time. The time lag between the reversal
of the flow and the pressure gradient is up to 0.25, i.e., a quarter of the forcing period as
FP93 described. In deeper water and without vegetation, the inertia is approximately in the
same phase as the pressure gradient but is out of phase with the horizontal velocity. The
positive horizontal velocity is larger than the negative horizontal velocity at the onset of
forcing initiated and then gradually becomes equal to the latter as time increases [17].

4.2 Transient velocity behavior within vegetation

Figure 3 shows streamlines at various times within 0.25 % vegetation. At t = 1, because of the
residual inertia from the cooling period, counterclockwise circulation is found over the entire
flow field. At t = 1.01, shortly after the pressure gradient reverses, a zero streamline that
intersects the water surface in the flow domain divides the flow into two opposite circulation
regions. In the areas close to the tip, the circulation is first reversed by the pressure gradient,
and a propagating front emerges from the tip to the deep water. In the remaining regions, an
opposite propagating front that flows from the deep water to the shallow water still remains.
The position of zero surface velocity keeps moving to deep water as time progresses until
the entire flow field is completely reversed at t = 1.07. The flow field continues to accelerate
from the shallow water to the entire flow field. The flow patterns are very similar to the large-
time behavior without the presence of vegetation (see Fig. 4 in FP93). For the streamlines
without vegetation, the larger inertia maintains the counterclockwise circulation at t = 1.12
at the intermediate water depth, and two clockwise propagating fronts, one in shallow water,
and one in deep water are evident (see Fig. 6 in FP93). The vegetative drag reduces the
inertia of the circulation and causes the counterclockwise circulation to survive shorter than
the circulation without vegetation in the flow field.

To further elucidate the physical mechanisms at various water depths, we balanced one
among the terms of viscous, inertia, and vegetative drag with temperature gradient (buoyancy)
in Eq. (13) to obtain the solutions for the limiting cases. The zero-order velocity for the case of
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Fig. 4 Horizontal velocity
profiles within and without
vegetation for various times in
shallow and deep water. Solid
line full solution of horizontal
velocity, dashed line
viscous-limiting of horizontal
velocity, dotted line
inertia-limiting of horizontal
velocity, and dash dotted line
drag-limiting of horizontal
velocity). In (a), the horizontal
velocity profiles at t = 0.002 are
100 times larger than the actual
values. In (b), the horizontal
velocity profiles at t = 0.05 are
two times larger than the actual
values
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only including viscosity u(0)v , inertia u(0)i , or vegetative drag u(0)d to balance with temperature
gradient is given by

u(0)v = dF(x)

dx

sin (2π t)

96π
(z + x)

(
8z2 + zx − x2) (30)

u(0)i = 1

8π2

dF(x)

dx
(2z + x) [cos (2π t)− 1] (31)

u(0)d = − sin (2π t)

4πcd

dF(x)

dx
(2z + x) . (32)

For the inertia- and drag-limiting cases, the bottom velocity is not equal to zero in the absence
of viscosity. Only the velocity profiles derived from limiting cases close to the full solution
are shown, and the velocity profiles from the limiting cases that deviate considerably from
the full solution are excluded in Fig. 4.

The horizontal velocity profiles are initially balanced by the inertia and horizontal pressure
gradient and then gradually affected by viscosity and vegetative drag. At short periods of
time, the horizontal velocity profiles can be characterized as a straight line, corresponding
to the inertia-limiting velocity profiles given by F04 except the regions near the boundary,
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where viscosity prevails (Fig. 4). The inertia-dominant region is based on the time scale when
viscosity diffuses into the entire water column, i.e., tv ∼ x2, and the time for vegetative drag to
become dominant is td ∼ (Caτ)−1 as suggested by Zhang and Nepf [9]. For 0.25 % vegetation
with diameter of 0.6 cm, td ∼ 0.078 compares with tv ∼ 0.0625 at x = 0.25, tv ∼ 1 at x = 1,
and tv ∼ 25 at x = 5. This means that the effect of vegetative drag surpasses the viscous effect
as the water depth increases. According to experiments conducted in a constant-depth and
steady light source conditions, Zhang and Nepf [9] suggested that the flow becomes vegetative
drag dominant as the time increases. With 0.25 % vegetation, the inertias at x = 0.25, and
5 are dominant and balanced by buoyancy until t = 0.002 and 0.05 (Fig. 4), respectively;
whereas, without vegetation, the time for inertia-dominance at x = 0.25, and 5 is longer,
and can be up to t = 0.25 for x = 5 (F04). Figure 4a also shows that as the time increases,
the viscous effect in shallow water (x = 0.25) is more important than the vegetative drag,
and the horizontal velocity profiles can be simplified as a viscous/buoyancy balance (Eq.
(30)) given by F04. Within 0.25 % vegetation, the slight differences between the horizontal
velocity profiles and viscous-dominated profiles shown in Fig. 4a are due to the impact of
vegetative drag. As vegetation becomes denser, the effect of vegetative drag becomes obvious
in shallow water.

The straight-line velocity profiles (Eq. (32)) are the feature of the drag-dominated regime
as Tanino et al. [21] indicated in the lock-exchange experiment. When the vegetation is
denser, i.e., with a larger cd, the slope of the velocity profiles becomes steeper. In deep water
and without vegetation, the flow field is dominated by the inertia at the beginning as F04
described, as also shown in Fig. 4b (t = 0.25, φ = 0 %). As the time increases, the entire
flow field will be eventually affected by viscosity. Within vegetation, the inertia is prevalent
for a very short time (Fig. 4b, t = 0.05, φ = 0.25 %), and the vegetative drag then becomes
dominant. As a result, the horizontal velocity profiles can be represented by drag-limiting
velocity profiles (Fig. 4b, t = 0.25, φ = 0.25 %). Near the boundary, the deviations between
the full asymptotic, inertia and drag-dominant solutions are considerable because of lack
of the viscous boundary layers. In Fig. 4b, the distance from the bottom to the point where
velocity profiles turn to the opposite direction can be regarded as the region affected by
viscosity. It is noted that with the presence of vegetation, the viscosity-dominated regions
shrink, and the vegetative drag suppresses the growth of the boundary layer (Fig. 4b, with
t = 0.25, φ = 0 %, and 0.25 %). Based on the scaling analysis (see Sect. 2.2), the ratio
of vegetative drag to inertial terms is Caτ . When Caτ � 1, the vegetative effect can be
neglected. Assuming a vegetation diameter of 0.6 cm, the corresponding critical vegetative
density φcritical to satisfy Caτ = 1 is ∼0.069 %. The vegetation density larger than φcritical

implies that the flow field will be affected by the presence of vegetation.

4.3 Large-time velocity behavior within vegetation

Large-time behavior means disappearance of the transient effect, i.e., exponent term becomes
zero in Eqs. (19), (20), and (21). Due to vegetation, transient time becomes much shorter than
that without vegetation. Streamlines shown in Fig. 3 are very similar to the streamlines for the
large-time behavior. Figure 5 illustrates a series of velocity profiles at the water depth of 1 near
the time when the pressure gradient is reversed. At this water depth, with 0.25 % vegetation,
horizontal velocity is reversed at t ≈ 0.53, i.e., time lag of ∼0.03; while horizontal velocity
without vegetation reverses at t ≈ 0.55, i.e., time lag of ∼0.05. In both cases, three-layer
structures of the flow velocities are observed. In shallow water (depth of 0.25), the time lags
with and without 0.25 % vegetation are similar and very small, being less than 0.005, i.e., the
circulation is approximately in phase (lock phase) with the pressure gradient. As water depth
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Fig. 5 Velocity profiles near the
time when the pressure gradient
is reversed (spin-time effect) at
the depth of 1: a φ = 0.25 % and
b φ = 0 %

increases, the viscous effect becomes less important, leading to larger inertia, and the time
lags between the reversal of circulation and the pressure gradient become pronounced. In
deep water (water depth of 5), for 0.25 % vegetation, the flow is reversed between t = 0.56
and 0.57. The time lag tlag is reduced by four times in comparison with the flow without
vegetation (tlag = 0.2–0.23 without vegetation and tlag = 0.06–0.07 with vegetation). As
vegetation population becomes denser, the time lag becomes smaller. For instance, for 0.5
and 1 % vegetations, the time lags at x = 1 are ∼0.025 and ∼0.005, respectively.

4.4 Surface velocity and exchange flow rates

Figure 6 provides contours of surface velocity u|z=0 over (x − t) domain after the forcing
is initiated. Because of vegetative drag, the transient period of surface velocity becomes
smaller, and the patterns of surface velocity are similar in the first four cycles, i.e., the flow
reaches the large-time behavior. In addition, the time lag between the reversal of velocity
and the pressure gradient in shallow water is close to zero. In deep water (x = 10), however,
the circulation is reversed at t ∼ 0.55, i.e., time-lag of ∼0.05 (Fig. 6a). Without vegetation,
the time lag in shallow water is also close to zero, but in deep water (x = 10), the flow
would experience an adjustment time until the flow becomes purely periodic [17]. In deep
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Fig. 6 Contours of surface horizontal velocity u|z=0 in the (x − t) domain for a φ = 0.25 %; and b φ = 0 %.
The small numbers labeled on the right y-axis represent the time for the reversal of the circulations

water, the time lag dramatically changes during the adjustment time. In the first half cycle,
the circulation at x = 10 is revered at t = 0.875, i.e., tlag = 0.375, and the reversed flow
due to the cooling period only lasts for a short period, i.e., the flow is reversed again at
t = 1.10, i.e., tlag = 0.10. At the transient stage (or adjustment time), the positive surface
velocity (surface flow from the tip to offshore) lasts longer at the beginning, and the negative
surface velocity (surface flow from deep water to shallow water) gradually becomes larger
and finally becomes equal to the positive surface velocity when the large-time behavior is
achieved. After four cycles, however, the positive velocity is still larger than the negative
velocity, as shown in Fig. 6b, i.e., the large-time behavior has not been reached yet. As the
time increases, the time-lag tlag due to the heating and cooling periods gradually becomes
similar, and finally, it becomes identical, which is tlag = 0.25 as FP93 indicated.

It is also noted that as a result of vegetation, locations of maximum or minimum surface
velocity move closer to the tip in comparison with the no-vegetation case. With 0.25 %
vegetation, the locations of maximum and minimum velocity occur at x ∼ 1.2. On the
other hand, the locations for the maximum and minimum velocity without vegetation are not
equal at the transient stages. At the beginning, the locations of the maximum and minimum
horizontal velocity during heating and cooling periods are at x ∼ 2.5 and 2, respectively. As
the time increases, the locations for extreme velocity gradually approach to x ≈ 2 as FP93
indicated.

According to the horizontal velocity profiles, the exchange flow rate Q can be estimated
by means of Eq. (22). In Fig. 7, the exchange flow rate is proportional to the water depth
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Fig. 7 Contours of exchange flow rates in the (x − t) domain for a φ = 0.25 % and b φ = 0 %

both the regimes of within and without vegetation, corresponding to the findings from several
previous studies [19,30,31]. In shallow water, the exchange flow rate in vegetation is smaller
and approximately varies with sin (2π t), i.e., the maximum exchange flow rate occurring at
t = 0.25 and t = 0.75 (Fig. 7a).

As expected, when water depth increases, the inertia effects lag the occurring of the
maximum exchange flow rate to t = 0.30 and 0.80. Without vegetation, at the transient
stage, the positive surface velocity from daytime heating is larger than the negative surface
velocity from cooling processes. As a result, the maximum exchange flow rates during the
heating period are greater than that during the cooling period at the initial stage (or adjustment
time). As the time progresses, the occurring times of the maximum exchange flow rates in
heating and cooling periods gradually are the same, i.e., at t = 0.5 and 1 when the transient
effects vanish. On comparison with Fig. 7a, b, it is observed that the presence of vegetation
reduces the exchange flow rate, regulates the phase of exchange flow rate with the pressure
gradient, and also decreases the transient time for the exchange flow rate to reach the large-
time behavior.

4.5 Vegetation distribution

In typical field conditions, spatial variations of nutrients, light climate, and hydrodynamic
conditions commonly lead to nonuniform distribution of the horizontal vegetation, which
changes the horizontal distribution of solar radiation impinging on the water body. In this
study, M(x) represents the distribution of solar radiation along the horizontal direction. If
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vegetation density linearly increases or decreases along the horizontal direction, then M(x)
for simplicity can be expressed as a linear function, which is M(x) = a + bx where a,
b are the variables related to vegetation features such as vegetation height, the number of
vegetation leaves, and the increasing or decreasing rates of vegetation density along the

horizontal direction. The forcing, i.e., temperature gradient, is proportional to d
dx [ M(x)

x ],
which is equal to − a

x2 . In comparison with temperature gradient T (0)x from no-vegetation
(
T (0)x ∝ − 1

x2

)
and uniform-distributed vegetation (T (0)x ∝ − c

x2 , condirions see Sect. 4.1),
patterns of temperature profiles are similar, but its magnitude is reduced depending on the
parameter a. The circulation patterns are also affected by cd in Eqs. (19) and (20), which
is a function of x . However, the linearly increasing or decreasing cd values may not lead
to distinguished variations of circulation patterns over the flow domain. Here, we focus on
dramatic vegetation distribution, i.e., vegetation grows in one side of the flow domain and
sharply disappears in the other side of the flow domain. The extreme conditions such as
vegetation occupying half of the entire domain, and open water in the other half domain
commonly found in field [7,9] can result in additional heat drivers in Eq. (13). In this study, a
Heaviside function is adopted to describe the distribution of solar radiation M(x) for one-side
vegetation (φ0) and one-side open water (φ = 0 %), which is

M(x) = (1 − B)+ B

1 + exp
[
−2k

(
x

Lx
− 0.5

)] , (33)

where B is the blockage percentage of solar radiation by vegetation and B ranges between 0
(all solar radiation pass through vegetation) and 1 (all solar radiation is blocked by vegetation),
and Lx is the dimensionless length of the flow domain, k means the sharpness of the transition
of solar radiation from vegetation to open water, and the sign of k values determines the
vegetation growth in shallow or deep water.

The solid volume fraction of vegetation φ (= 1 − nv) is:

φ(x) = φ0 · G(x), (34)

where φ0, the solid volume fraction of vegetation in the vegetation side, and

G(x) =
⎡

⎣ 1

1 + exp
(

2k
(

x
Lx

− 0.5
))

⎤

⎦ .

If the vegetation is emergent only at several centimeters from the water surface, then
this kind of emergent vegetation causes identical temperature variations relative to the case
without vegetation. Once the emergent vegetation like reed is tall with height of 2–3 m above
the water surface, small amounts of high reeds can even block averagely 85 % the incident
solar radiation [7]. The vegetation-shading effect causes little solar radiation penetrating
into water body and leads to lower temperature in dense vegetation areas than no or sparse
vegetation areas during daytime. If the dense vegetation grows in shallow water, commonly
found in the field, the shading effect can produce lower water temperature which contradicts
the temperature fields due to the topographic effect, and may change the direction of the
temperature gradient as well as the circulation patterns. By means of Eq. (33), the term
d

dx

[M(x)
x

]
associated with horizontal temperature gradient can be obtained as
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Depth=10

Fig. 8 Schematics of vegetation in shallow water and open in deep water. The domain dimensionless length
Lx is set to 10, and the tall vegetation grows until x = 5

d

dx

[
M(x)

x

]
= − (1 − B)

x2 − 1

x2

B

1 + exp
(
−2k

(
x

Lx
− 0.5

))

+
2Bk exp

(
−2k

(
x

Lx
− 0.5

))

x Lx

[
1 + exp

(
−2k

(
x

Lx
− 0.5

))]2 . (35)

In Eq. (35), physical meanings for the three terms on the right-hand side are described as fol-
lows. The first term on the right-hand side represents the topographic effect. The second term
indicates the adjustment of the topographic pressure gradient, because the sharp vegetation
distribution alters temperature distribution. The third terms on the right-hand side means the
temperature gradient produced by the sharp vegetation distribution. The magnitudes of these
terms can be used to evaluate the dominance of topographic or vegetation shading effects at
different locations.

Figure 8 illustrates a schematic for one extreme condition, which is for k > 0, vegetation in
shallow water, and open in deep water. Assume the domain length Lx as 10, and the vegetation
density to be 0.25 %; then, the interface between vegetation and open water is at the center line
of x = 5. In order to examine the interplay between the vegetation-shading and topographic
effects, exchange flow rates at the centerlines of the flow domains (vegetation/water interface)
are compared, including the two extreme cases: (i) vegetation in shallow water, and open
in deep water; and (ii) open in shallow water, and vegetation in deep water with different
blockages B and sharpness k. For the case of vegetation in shallow water, and open in deep
water (Fig. 9a), i.e., k > 0, as the blockage B becomes larger, the first and second terms on
the right-hand side of Eq. (35) reduce, but the third term becomes larger. Thereby, a critical
blockage Bcritical that results in zero exchange flow rate at the centerline of the domain can be
found. Furthermore as the sharpness k increases, Bcritical will decrease. For example, k = 5
leads to Bcritical = 4

7 , and k = 10 yields Bcritical = 1
3 . Interestingly, k = 1 cannot result in zero

exchange flow rate at the centerline but decreases the exchange flow rates as the vegetation
blockage B increases. The critical blockage Bcritical identifies the regions dominated by
topographic or shading effects. For the ranges of B < Bcritical, circulation patterns are mainly
determined by the forcing generated from the sloping bottom but reduced by vegetation
shading. Consequently, circulation patterns are the same as those in no vegetation or uniform-
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Fig. 9 Dimensionless exchange
flow rates with different blockage
B and sharpness k. a Vegetation
in shallow water, and open in
deep water; and b open in
shallow water, and vegetation in
deep water. Solid line k = ±1;
dash dotted line k = ±2; dotted
line k = ±5; and dashed line
k = ±10

distributed vegetation cases, i.e., during daytime, circulation flowing from shallow water to
deep water along the water surface, and uphill over the sloping bottom. On the contrary,
when B > Bcritical, the vegetation-shading effect exceeds the topographic effect, and the
flow patterns become opposite to that in the case of B < Bcritical. When the blockage B is
much larger than Bcritical, the induced temperature gradient becomes greater, causing larger
circulation and exchange flow rates (Fig. 9a).

For the other extreme case, i.e., open in shallow water, and vegetation in deep water
(k < 0), the topographic and vegetation shading effects generate horizontal temperature
gradient along the same direction. For k = −5 and −10, exchange flow rates increase linearly
as the blockage B becomes larger. However, for k = −2 and −1, the increases of vegetation
blockage keep the exchange flow rate as a constant or even decrease the exchange flow rate.
This is because smaller absolute k values in Eq. (35) not only cause a milder transition but
also affects to a wider extent on the distribution of solar radiation. The mild decreasing
input solar radiation along the horizontal direction alters the temperature distribution over
the entire domain, which means that the water temperature in shallow water is lower than
that in deep water during daytime. The temperature gradient from the sloping bathymetry
is reversed, and the temperature gradient gained from the vegetation shading is not large
enough to compensate the reduction due to the topographic effect.
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Fig. 10 Exchange flow rates at
the center line of four cases with
different blockages B. Solid line
denotes case (i): no vegetation;
dashed line represents case (ii):
0.25 % vegetation; dotted line
means case (iii): vegetation in
shallow water and open in deep
water; and dash dotted line
denotes case (iv): open in shallow
water, and vegetation in deep
water

Figure 10 provides the comparisons of exchange flow rate for four scenarios: (i) no vegeta-
tion, (ii) 0.25 % vegetation, (iii) vegetation in shallow water and open in deep water, and (iv)
open in shallow water, and vegetation in deep water at centerline and with absolute sharpness
|k| of 10. The extreme vegetation distributions for both the cases of (iii) and (iv) can result in
larger exchange flow rates than the case without any vegetation. Specifically, for case (iii), it
also can lead to a smaller exchange flow rate than the case of uniform-distributed vegetation.
In the above mentioned four cases, we assume a sharp change of the uneven vegetation and
heat distribution, which can generate temperature gradient much larger than the one from the
topographic effect. Therefore, even the vegetation can reduce the circulation, the additional
thermal driving force produced by the sharp vegetation distribution causes larger exchange
flow rates than those in a fully open water domain.

The circulation patterns are mainly determined by the sharpness coefficient k and blockage
B. Figure 11 provide an example for large-time streamlines at t = 0.2 under different
conditions. Without vegetation, only the circulation in shallows is reversed, but it remains
counterclockwise in deep water (Fig. 11a). With 0.25 % uniform-distributed vegetation, the
circulation has been completely reversed at t = 0.2 (Fig. 11b). For the case of open in
shallow water, and vegetation in deep water (Fig. 11c), the vegetation shading intensifies the
topographic effect to generate strong circulation at the water–vegetation interface (x = 5).
In shallow water, a residual counterclockwise circulation from the cooling period is revealed
at x ≈ 4. Meanwhile, the circulation is already reversed in shallow water and in very deep
water. In Fig. 11d (vegetation in shallow water, and open in deep water), the small reduction
of solar radiation does not significantly change the circulation patterns. In shallow water
with vegetation, the circulation has been reversed; however, the residual circulation still
remains in open and deep water. As the blockage value B increases, the regions affected by
the vegetation–water interface emerge. In Fig. 11e, two vertical zero streamlines are found
at x ≈ 4.9 and 5.1. Also, within this region (x = 4.9–5.1), circulations affected by the
vegetation shading always perform opposite patterns to those in shallow and deep water.
The regions with two vertical streamlines become even wider when the blockage B is equal
to 0.85 (Fig. 11f). However, for very shallow and deep water, the circulations are still the
same as those within vegetation or in open water, respectively. Only the central portion is
affected by the vegetation distribution, and the size of the affected regions is determined by
the blockage B.
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4.6 Verifications of horizontal velocity and exchange flow rate

By means of asymptotic solutions, horizontal velocity as well as exchange flow rates with a
given bottom slope and heat flux can be estimated. As F04 indicated, ignorance of convective
terms in Eq. (9) may not be suitable for typical field conditions. Instead of molecular viscos-
ity, FP93 obtained reasonable estimates of horizontal velocity by means of eddy viscosity,
which we adopt herein. Oldham and Sturman [19] measured the horizontal velocity through
nighttime cooling in a wetland mesocosm (vegetation density of 17 % and diameter of 0.16
m), and obtained the maximum horizontal velocity at water surface as 2 mm/s, being in very
good agreement with that of 2.2 mm/s obtained from the asymptotic solution by means of
eddy viscosity (ν = 10−4 m2 s−1). In addition, the stem Reynolds number Red is assumed
to be small (<10 [9]), and then the linear drag law can be applied. Without any assumption,
the drag coefficient can be represented as [21]:

CD ≈ 2

Red
(12 + 1.07Red) . (36)

In the horizontal momentum equation, the drag term can be represented as Cau +1.07au |u|.
By means of the maximum velocity of 2.2 mm/s, vegetation density of 17 % and diameter of
0.15 m were reported by Oldham and Sturman [19], with the ratio of Cau/ (1.07au |u|) ≈
3.65 > 1. Therefore, it is reasonable to neglect the second term in the right-hand side of Eq.
(36).

The exchange flow rate is an indicator to evaluate the importance of thermal-driven flow
on renewal of nearshore water and transport of nutrients and chemical substances between
the nearshore and offshore regions. Sturman et al. [30] considered nighttime cooling as a
steady-state process and linked the exchange flow rate to a bottom slope, buoyancy flux, and
local water depth. Oldham and Sturman [19] extended the scaling analysis of Sturman et al.
[30] and combined the principles of porous media flow to include vegetation drag. They found
that the exchange flow rates are the functions of buoyancy flux, permeability of vegetated
regions, and local depth, and verified with several experimental and field measurements. By
means of the same parameters such as slope, water depth, incident solar radiation, and eddy
viscosity (ν = 10−4 m2 s−1), the derived asymptotic horizontal velocity (Eq. (20) or (21))
is adopted to estimate the exchange flow rates with and without vegetation, and verify with
several previous measurements (Table 1; Fig. 12). Because some of these measurements were
carried out under steady states, in order to compare with the asymptotic solutions obtained
in diurnal cycles, the solar radiation from steady-state measurements was converted to the
equivalent solar radiation under diurnal cycles. According to the scaling analysis in Sect. 2.2,
exchange flow rates are proportional to input solar radiation, bottom slope, water depth, and
inversely related with vegetation density and stem diameter. The smallest exchange flow rate
was thus found at the smallest product of input solar radiation and bottom slope. The second
and third datasets in Table 1 have similar input solar radiations and bottom slopes, but the
presence of vegetation in the second dataset causes a smaller exchange flow rate than the
third one. Overall, the asymptotic solutions show good agreements with those measurements
in which water is shallower (less than 1.8 m), i.e., stratified effects can be ignored, and the
assumption of uniform heat distribution over the water column is reasonable. For the field
measurements conducted by Adam and Wells [10], and Monismith et al. [1], exchange flow
rates were obtained at the depths of 12 and 8 m, respectively, where stratified effects are
important, and the simplified assumption on heat distribution over water column may not be
appropriate. In addition, the exchange flow rate with symbol of ∇ obtained from Oldham
and Sturman [19] was measured with vegetation in shallow water and open in deep water
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Table 1 Field and laboratory measurements

Symbol Category I0 (W m2)� S Depth (m) φ (%) d (m) Data source

� Lab 3 0.1 0.2 – – [32]

a Lab 70 0.404 0.1 17 0.0124 [19]

� Lab 72 0.404 0.1 – – [30]

Field 100 0.0874 0.8 16 0.15 [19]

b Lab 300 0.404 0.1 17 0.0124 [19]

c Lab 363 0.404 0.1 17 0.0124 [19]

◦ Field 200 0.0175 1.8 – – [30]

+ Field 250 0.02 8 – – [1]

× Field 400 0.007 12 – – [10]

Green symbols indicate the measurements within vegetation
� I0 is the equivalent diurnal solar radiation
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Fig. 12 Comparisons of exchange flow rates between the estimated ones from asymptotic solution and
measurements. The upwarding-triangle and downwarding-triangle denote the laboratory and filed results
within vegetation from [19]. The others represent the results without vegetation, which are circle and diamond
from the field and the laboratory measurements by [30], star from the laboratory measurements by [32]. times
and plus symbols from the field measurements carried out by [10] and [1]

(see Fig. 3 in Oldham and Sturman [18]). Their velocity profiles demonstrated that during
nighttime, flow was from deep to shallow water along the water surface and downhill from
shallow to deep water along the sloping bottom (see Fig. 4 in Oldham and Sturman [19]). As
a result, blockage due to vegetation shading did not alter the flow patterns but might decrease
the temperature gradient generated from topographic effects as well as exchange flow rates.
Based on the results from Fig. 9a, the exchange flow rate might reduce to zero given the
counterbalance of vegetation shading and topographic effects. Due to the lack of information
of vegetation blockage and temperature gradient between vegetation and open water, a range
of predicted exchange flow rate is provided for the case of Oldham and Sturman [19] in
Fig. 12.

123



1328 Environ Fluid Mech (2014) 14:1303–1334

4.7 Limitations and valid ranges of zero-order horizontal velocity

The horizontal velocity approaches infinity in two situations:(1) at the tip of the wedge
(x → 0) as FP93 mentioned, and (2) when cd is very large. At the tip, the horizontal
convective terms cannot be ignored but are important only for x < S, which is a very small
part of domain of interest (FP93). For large cd, the dominant regions of viscous effects become
smaller, and the horizontal velocity profiles experience a sharper bend near the bottom in
comparison with no-vegetation case. Once cd becomes larger, the sharp bed regime can lead
to instability, which needs to be balanced by convective terms.

The asymptotic solution is valid when S2 and S2Gr are small, and stem Reynolds number
Red is less than 1 to be within the linear drag law regime [21]. In order to examine the
above mentioned assumptions, dimensional velocity is determined based on reasonable field
parameters. The eddy viscosity used in Eq. (20) yields reasonable values for horizontal
velocity, possibly because vortex sheddings generated from vegetation stems and leaves
make the flow field turn turbulent. For the condition of no vegetation, horizontal velocity
estimated using eddy viscosity shows good agreement with the field observation (FP93).
By means of I = 500 W m−2, ν = 10−4 m2 s−1, stem size d = 0.6 cm, slope S = 10−2,
vegetation density φ is 0.25 %, cd ≈ 13, the maximum-dimensional horizontal velocity is
u′ ∼ 1.2 × 10−2 m s−1, and the corresponding Re = 0.72 < 1, which is consistent with
the assumption of linear Drag Law. In the scaling analysis, the O

(
S2Gr

)
terms are omitted,

which may not be suitable for typical field situation (S = 10−2 ∼ 10−3,Gr ≈ 1.8×107) for
(ν = 10−4 m2 s−1). The valid range of the linear results can be determined by the included
terms larger than the omitted terms in Eq. (9) as F04 proposed. The maximum velocity U
for φ = 0.25 % is ∼10−2. For x → 0, the buoyancy is mainly balanced by the vertical shear,
which yields x < 1

S2GrU
= 100

S2Gr
. For x � 0, the main balance is mainly between buoyancy

and vegetative drag, suggesting x > S2GrU
cd

= 7.7×10−4S2Gr. Combining these two results

gives S2Gr < 360 for the flow to be in the linear range. The valid ranges for the linear
results within vegetation are wider than those without vegetation (S2Gr < 200 obtained in
F04) as a result of reduced horizontal velocity. As the vegetation becomes denser, the smaller
horizontal velocity leads to wider ranges of S2Gr, i.e., the convective terms in Eqs. (8) and
(9) are less important. For the extreme cases, i.e., emergent vegetation in the one side, and
open water in the other side, the temperature gradient generated from the vegetation shading
would change the valid range of the asymptotic solutions. By considering the case of open in
shallow water, and vegetation in deep water, the vegetation shading improves the topographic
effect, and the range of S2Gr can be obtained by comparing the unsteady and convective terms
in Eq. (8), which yield S2Gr <

(
∂T
∂t

)
/
(
u ∂T
∂x

)
. Using B = 0.85, k = −10, x = 5, Lx = 10,

and the vegetation density in deep water of 0.25 %, we get the maximum horizontal velocity
u of 3 × 10−2, ∂T

∂t of 0.115, and ∂T
∂x of 1.7 × 10−2from Eqs. (19), (33), and (35). The valid

range for the linear solution is S2Gr which is S2Gr < 225, narrower than that in the case
with the uniform-distributed vegetation.

4.8 Second-order asymptotic solutions for temperature profiles

When the second-order temperature profile is taken into account, the tilted isotherm due to
sloping bottom and advection effects can be observed (Fig. 13). The second-order temperature
is related to Gr values, and larger Gr values exhibit higher nonlinearity. The Gr of 104 and S of
0.1 are chosen to confirm the suitability of the asymptotic solution, i.e., S2Gr < 200. Without
vegetation, the weak stratification can be observed due to the heat advection by u(0) (Fig. 13a,
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Fig. 13 Temperature isotherms (first plus second orders) for vegetation percentage of 0 % from (a) to (e) and
0.25 % from (f) to (j) at various times. The parameters of S = 0.1 and Gr = 104 are used. (a) and (f) t = 0.25;
(b) and (g) t = 0.50; (c) and (h) t = 0.75; (d) and (i) t = 1; and (e) and (j) t = 1.25

c, e), whereas the vegetation retards the flow and consequently keeps the temperature profiles
less stratified (Fig. 13f, h, j). For t = 0.5, the residual heat due to velocity inertia results
in higher temperature in the upper layer, and lower temperature near the bottom. The same
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Fig. 14 Time series of
horizontal heat-transfer rates q at
a x = 0.25, b x = 1, and c
x = 5. Heat-transfer rate q for
φ = 0 % (solid line), and
φ = 0.25 % (dashed line)
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situations can be observed at t = 1. However, at t = 1, the zero-isotherm without vegetation
is closer to the bottom, while the zero-isotherm within vegetation is approximately at the
center.
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The horizontal heat transfer q is proportional to the product of zero-order horizontal
velocity and the second-order temperature profiles (see Sect. 3.2). Hence, q values with
vegetation are smaller than q values without vegetation (Fig. 14). In shallow water (x = 0.25),
viscosity is dominant and can diffuse into the whole water column. The effect of vegetative
drag is not apparent so that q value within vegetation is slightly smaller than q values without
vegetation with extremes at t = n ± 1

4 . For the intermediate water depth (x = 1), viscosity
can diffuse into the entire water depth after the first period, and consequently, the q values
become purely periodic after the second cycle. For the deep water (x = 5), the heat-transfer
rate q keeps increasing as time marches until the boundary layer grows over the entire water
column (F04). Within vegetation, it takes longer time for viscosity to diffuse into the entire
water column. Without vegetation, the larger inertia in deep water lags the extremity of q .
The smaller inertia within vegetation leads to a smaller time lag than that without vegetation.
In deep water, the extreme values of q without vegetation are observed at t = n ± 1

4 , and
the quarter period of forcing lag is comparable with the shallow water case. However, within
0.25 % vegetation, the time lag of q values in deep water can be reduced to the one-eighth of
the forcing period.

5 Conclusions

The paper includes vegetative drag into horizontal momentum equation and discusses the
thermal-driven flow field under the presence of emergent vegetation and different vegetation
distributions. The horizontal velocity, exchange flow rate, and advective heat-transfer rate
are significantly reduced due to the presence of vegetation. In very shallow water, the viscous
effects are still dominated, but in deep water, vegetative drag counterbalances the pressure
gradient and result in smaller inertia forces, i.e., smaller horizontal velocity. As a result, the
phenomena of time-lag due to the inertia effects become indistinct. The flow patterns can be
altered by vegetation distribution and height of emergent vegetation. Once the vegetation is
tall and grows in shallow water, and if the deep water side is open, the effects of vegetation
shading may interfere with the topographic effects, and the subsequent induced circulation is
complicated. Variations of the vegetation blockage on the solar radiation possibly make the
exchange flow rates at the centerline become zero. On the other hand, for the case of open in
shallow water, and vegetation in deep water, vegetation shading can enhance the topographic
effect to generate larger circulation as well as flow exchanges between the nearshore and the
offshore. The two extreme cases involved with vegetation distribution can cause significant
changes on exchange flowrates. Although the model ignores the light attenuation effect and
vegetation distribution over vertical direction, the horizontal velocity and exchange flow
rate estimated from the asymptotic solutions agree well with several field and laboratory
measurements.

In order to obtain the asymptotic solution, the linear drag coefficient is applied, and the
bottom slope is assumed to be small. The results of horizontal velocity indicate that the
assumption of linear drag coefficient is reasonable for the thermal-driven flow. Based on the
horizontal velocity estimated from the asymptotic solutions, the valid range of linear results
can be up to S2Gr < 360 for sparse vegetation (φ = 0.25 %). For denser vegetation, the
horizontal velocity is smaller, and the range of S2Gr that fits to the linear assumption can be
broader. The horizontal velocity approaches infinity (1) at the tip (x → 0), and (2) in dense
vegetation (large drag coefficient) due to ignorance of convective terms in the governing
equations.
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Although the asymptotic solution can predict the magnitude of thermal-driven flow in
rooted emergent vegetation for weakly stratified environment, some limitations still need to
be overcome in the future. First, to make feasible analytic progresses, the model used in this
study is highly idealized that the exponential decays of solar radiation during daytime and
thermal instability to break residual flow and reverse the circulation during diurnal cycles
are ignored. Several studies discussed the patterns of thermally driven flow in more realistic
physical models [12,13,15], but researches related to vegetation effects on thermally driven
flow in stratified environments are still rare [9]. The asymptotic solution is also unable to
consider the penetration depth of solar radiation limited by the presence of the vegetation,
which induces vertical variations of heat and should alter circulation patterns. The drag
coefficient is a critical input for the analytic solution. However, the drag coefficient is usually
obtained from circular cylinder tests, and the morphology (stem flexibility and leafs) of the
vegetation are not included. In the asymptotic solution, the drag coefficient is assumed to be
uniform along the vertical direction, and the variations of vegetative drag along the vertical
direction are also neglected. In addition, the absorption or release of heat from vegetation and
bottom sediments could change the flow patterns during diurnal cycles. Finally, emergent
vegetation with dangling roots and submerged vegetation also grow extensively in the littoral
zones, and understanding their effects on thermally driven flow is still limited to a flat bottom
[18,22].

This study uses a linear model and simplified forcing mechanism to report the effect of
rooted emergent vegetation on diurnal thermal-driven flow. Although the model is linear, some
interesting findings are still useful for further follow-up studies. More numerical simulations
and experimental investigation, however, are necessary to reveal the phenomena occurring
in typical field conditions.

Appendix: Coefficients of the solution of the second-order temperature profiles

am (t) = A

(mπ)2
(
m4π2 + 16σ2x4

)
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[
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where

A = 1

4π2

(
dF(x)

dx
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. (38)
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