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Shape-From-Focus Depth Reconstruction With a
Spatial Consistency Model

Chen-Yu Tseng and Sheng-Jyh Wang, Member, IEEE

Abstract— This paper presents a maximum a posteriori (MAP)
framework to incorporate a spatial consistency prior model
for depth reconstruction in the shape-from-focus (SFF) process.
Existing SFF techniques, which reconstruct a dense 3-D depth
from multifocus image frames, usually have poor performance
over low-contrast regions and usually need a large number
of frames to achieve satisfactory results. To overcome these
problems, a new depth reconstruction process is proposed to
estimate the depth values by solving an MAP estimation problem
with the inclusion of a spatial consistency model. This consistency
model assumes that within a local region, the depth value of each
pixel can be roughly predicted by an affine transformation of the
image features at that pixel. A local learning process is proposed
to construct the consistency model directly from the multifocus
image sequence. By adopting this model, the depth values can
be inferred in a more robust way, especially over low-contrast
regions. In addition, to improve the computational efficiency, a
cell-based version of the MAP framework is proposed. Experi-
mental results demonstrate the effective improvement in accuracy
and robustness as compared with existing approaches over real
and synthesized image data. In addition, experimental results
also demonstrate that the proposed method can achieve quite
impressive performance, even with only the use of a few image
frames.

Index Terms—3-D reconstruction, depth estimation, depth
map, shape-from-focus (SFF).

I. INTRODUCTION

HE shape-from-focus (SFF) technique is a method to

compute 3-D depth maps from image sequences acquired
with varying focus settings. Since different focus settings
correspond to different depths of field, we would expect
that an object in the 3-D scene would be best focused by
adopting one of the focus settings if there is a sufficient
number of focus settings to cover the whole depth range
of the 3-D scene. By searching for the best focus setting,
we can roughly estimate the 3-D depth value of each object
in the scene. Typically, the criterion to distinguish focused
image regions from defocused regions is realized by a focus
measure operator, whose output response is usually called
focus measure value. To generate a 3-D depth image, the depth
value of each pixel is inferred by searching for the maximal
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focus measure value over the acquired multifocus image data
at that pixel.

To obtain the focus measure value, a variety of focus
measure operators have been designed in the literature, such
as the Laplacian-based operator in [1], the gradient-based
operator in [2], the variation-based operator in [3], and the
transform-domain-based operator in [9]. A common assump-
tion of these operators is that a properly focused region
usually contains sharper edges or stronger high-frequency
components. Even though this assumption is basically true
in most cases, the accuracy of focus measure values may
get dramatically degraded by two factors. One factor is the
small focus measure values over low-contrast or week-texture
regions, while the other factor is the insufficient number of
focus settings. Under these two situations, the performance of
the SFF technique may get degraded and the inferred depth
map would be noisy and spatially inconsistent with the image
contents.

To deal with these two situations, two major approaches
have been developed. One approach tries to improve the focus
measures by including more information from neighboring
regions, while the other approach suggests the use of a
depth reconstruction process to reconstruct a more reasonable
depth image from the originally noisy depth image. In the
first approach, a common aspect is to expand the support
of the local measurement to include more information from
the neighborhood. However, expanding the local support may
cause edge bleeding artifacts as the operator is applied across
two surfaces of different depth values. To handle this edge
bleeding problem, researchers have suggested several solu-
tions. For example, Aydin and Akgul [4] present an adaptive
focus measure operator with weighted support windows. The
shape and weights of the support window are determined based
on the local image characteristics of an additional all-in-focus
image. Thelen et al. [5] suggest another adaptive method to
select the size of neighborhood for the local operator based on
a confidence criterion. In that method, the level of confidence
is based on the difference of the focus measure values between
the best focused image and the average image.

In the second approach, some researchers propose the use of
a depth reconstruction process [6], [14], [15]. Mahmood and
Choi [6] suggest the use of an iterative 3-D anisotropic non-
linear diffusion filter (ANDF) to enhance the estimated focus
volume. Here, the focus volume refers to a stack of image
planes consisting of the focus measure values of the mul-
tifocus image sequence. Gaganov and Ignateko [14] present
a framework that uses a Markov random field (MRF) model.
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Fig. 1. Tllustration of the proposed scheme.

Based on the MRF model, they propose an SFF method to
yield a globally optimal solution based on some enforced
smoothness priors. Ramnath and Rajagopalan [15] present
a discontinuity-adaptive MRF framework with a nonconvex
prior to capture sharp edges. For these methods, a major
drawback is the required intensive computations in finding the
optimal 3-D depth map.

Although the SFF technique has already been applied to
many industrial applications, such as medical imaging sys-
tems, industrial inspection, 3-D object modeling, surveillance
systems, and microelectronics [5], [7], [8], [10]-[13], it is
still a challenge to deal with natural images in some real-
time applications, like entertainment applications in consumer
electronics. In such circumstances, there could be a lot of low-
texture regions in the images and only a small number of
image frames can be used to fit the real-time requirement.
In this paper, we propose a global approach to deal with
these two problems. The overview of the proposed scheme
is illustrated in Fig. 1. Given a multifocus image sequence,
a local analysis is first performed to explore both the focus
measure values and the information about spatial consistency.
The focus measures provide a cue for the depth inference
along the optical axis of the camera. On the other hand,
the spatial consistency constraint provides a useful key for
depth inference by assuming that the depth values within the
neighborhood of a pixel should be consistent with the image
contents in the spatial domain. In the proposed framework, we
build a likelihood model based on the spatially varying focus
information and a prior model based on the spatial consistency
learned from the image data. A posteriori model is deduced
thereafter. By treating the depth reconstruction process as a
maximum a posteriori (MAP) estimation problem, we derive
a closed-form solution for the SFF problem.

The proposed framework is based on the spatial coherence
recovery approach proposed in [16]. In [16], we had presented
a MAP framework to recover the depth image using a matting
Laplacian prior. In that framework, the matting Laplacian
prior is constructed based on an additional all-in-focus image
besides the multifocus image sequence. However, the need
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of an all-in-focus image is a barrier in practical applications.
Hence, in this paper, we further propose a local learning
scheme to derive the prior model directly from the multifocus
image sequence, without the need of the all-in-focus image.
Moreover, since this prior model is learned directly from the
multifocus image sequence, the newly proposed scheme may
also properly avoid the blurring of sharp edges that usually
occurs in existing approaches.

The outline of this paper is organized as follows.
In Section II, we present the proposed framework for
depth reconstruction. In Section III, we introduce a cell-
based framework to further reduce the required computations.
In Sections IV and V, the experimental results and conclusion
are given.

II. PROPOSED DEPTH RECONSTRUCTION
A. Overview of Proposed Scheme

Given an multifocus image set It = {I', 12, ..., IX}, where
K is the number of frames and U is the jth image frame, we
aim to estimate the depth value at each image pixel. In this
paper, we denote the depth image as D and treat the depth
reconstruction as an MAP estimation problem, in which we
search for the optimal depth image D* that is

D* = argmlglx{p(Dllset)}. (1)

Based on Bayes’ formula, the posteriori probability function
can be expressed as the product of the likelihood function
p(I**D) and the prior probability function p(D) that is

p(DI*Y) o p(I*'|D) p(D). (2)

In the following paragraphs, we will introduce the construction
of the likelihood and the prior models in term of local analysis.
The likelihood model is designed based on local depth pre-
diction with spatial-varying precision, which can properly sup-
press inaccurate depth estimations over low-contrast regions.
On the other hand, the prior model is designed based on the
spatial consistency property among pixels. This spatial con-
sistency property enables the propagation of high-confidence
depth information to revise unreliable depth values. With the
combination of the likelihood and prior models, we formulate
an optimization problem to derive more reliable 3-D depth
maps.

B. Local Analysis

For the sake of model simplification, we assume the global
posteriori probability function p(D|I%¢) in (1) can be decom-
posed into a product of local posteriors. This decomposition
is based on the assumption that a typical depth map can be
approximated by a set of piece-wise smooth functions, with
each function being an affine transformation of the image
features within the corresponding local window. With this
assumption, we independently solve the optimal parameters of
the affine transformation for each window. On the other hand,
we use overlapped windows to maintain spatial consistency.

To define the local posterior, we first denote Il.k as the
image data of the pixel i on the kth image frame and denote



TSENG AND WANG: SFF DEPTH RECONSTRUCTION

d; as the value of the depth map at pixel i. On the other
hand, we define I}t = [1! 12 ... IK]T to represent the
observed intensity values at pixel i in the multifocus image
sequence. Moreover, we denote W, as an r x r local window
centered at pixel ¢ and denote N, = {1, 72, ..., 7,2} as the
set of pixels within W;. Based on the above notations, we
define d; = [d;),d,, .. .,d,rz]T as the vector made of the
depth values of the pixels within W,. On the other hand, the
observed multifocus Red, Blue, and Green (RGB) data within
the local window W, around pixel ¢ are represented as I, =
[(Iflet)T(I%et)T . (Ig;t)T]T, which is formed by cascading the
IiSet vectors within W,. With the above notations, the global
posterior probability function is decomposed into a product of
local posteriors as

1

p(DIFY) (H p(dq|1q))’ 3)

qeQ

where Q denotes the whole set of ¢g’s. In (3), the inclusion of
the power term 1/r2 is due to the fact that the multifocus
data IiSet at each pixel will be considered r? times as we
scan the r x r local window pixel by pixel through the whole
image domain. This power term can actually be ignored since
it does not affect the MAP solution at all. Hence, based on
the decomposition in (3) and the Bayes’ formula, we further
rewrite the original MAP formulation in (1) as

D" = argmax{p(D[I**))

argmgx{ H p(dq|Iq)]

qeQ

arg max { I1rala) p(dq)]. (4)

qeQ

In the following paragraphs, we will explain in detail how we
design the local likelihood model p(I,|d,) and the local prior
model p(d,).

1) Local Likelihood Model: Since it is an ill-posed problem
to directly model the relation between I, and d,;, we cannot
explicitly formulate the likelihood model p(I, |dq). Instead,
we introduce the estimated depth aq = {J,l s L]Tz e c?,rz} and
use it as a bridge to relate the observation I, and the hidden
model d,. To relate I, with &q, we employ a difference of
Gaussians (DoG) operator over each image frame of the image
sequences to estimate the depth value d; at pixel i. Here, for
the pixel i at (x,y) on the kth image frame, we define the
focus measure value as

F*(x,9) = [(Goy (x, 9) = Go, (x, y)) % IF(x, )| (5)

where Gy, (x, y) and Gy, (x, y) are two zero-mean Gaussian
kernels with the standard deviation o1 = 0.5 and o = 0.8,
respectively. In general, this DoG operator generates stronger
responses for sharper edges. Hence, at each image pixel, by
finding the image frame on which the DoG operator outputs
the strongest response, we can estimate the depth value of that
pixel accordingly. In other words, the depth value at a pixel,
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say (xo, Yo), is estimated to be
d(xo, yo) = arg m]?X(Fk (x05 ¥0))- (6)

With (5) and (6), we can estimate the local depth &,, at each
image pixel g. Here, we simply denote the image frame index
as the depth value. In practice, we need to roughly measure
the 3-D depth value for each focus setting and then convert
the image frame index to the 3-D depth value accordingly.
Moreover, note that only K discrete depth values are provided
at this stage, rather than continuous-valued depth values.
Later, with the introduction of the proposed MAP framework,
we will be able to generate a continuous-valued 3-D depth
map.

On the other hand, to relate &q with dy, we assume
d(x, y) is a random variable centered at the true depth d(x, y)
with a certain level of variations. With the bridging of the
depth feature &,,, we formulate the local likelihood model

p(, |dy) as
p(,|dy) = p(dy|dy). (7)

In our approach, we treat the predicted depth data &q as
being governed by the hidden depth data d; and adopt an
independent and identically distributed Gaussian model with
a spatially varying precision matrix A, to model p(aqldq)

pdqldy) = N(dgldg, ). ®

By taking the negative of the logarithm of p(aqldq), we have
—log p(dqldy) = (dg —dy)" Ag(dy —dy)

= > Ai(d; —di)*. ©

ieN,

Here, A, is an M x M diagonal matrix, in which the diagonal
terms are made of the A; values within W, and M = r2
is the number of pixels within W,. The definition of the
precision term A; will be mentioned later. Basically, 4; models
the certainty about the estimation of depth value at pixel i.
For a low-contrast case, we expect that the uncertainty would
increase and the precision value drops. That is, the depth
value d; could be more deviated from the hidden depth
value d;.

In our design, the definition of the precision term A; is
based on local entropy, a measure of the uncertainty in the
determination of the best focused frame for the pixel i. The
entropy would increase as the contrast decreases. To measure
the local entropy, we first denote pf.‘ = p(C; = kIIiset) as
the probability that the kth frame is the best focused frame
for pixel i. Here, C; denotes the frame index of the best
focused frame. By expecting that a larger focus measure value
at an image pixel usually means that the image pixel is better
focused, we assume the probability pf.‘ of the pixel i at (x, y)
is proportional to the focus measure value F¥ at that pixel.
That is, we define pf.‘ as

k
p= (10)

K .
> Fix,y)
j=1
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where K is the number of image frames in the multifocus
image sequence. Based on (10), the local entropy at pixel i is
defined as

K

=2.(

j=1

—pl log (p)). (1)

With the definition in (11), a higher entropy value corresponds
to a higher uncertainty in determining the best focused frame.
This corresponds to a lower precision value in local depth
inference. Hence, in our approach, we define the precision
term at pixel i to be

[ 1=h; forh; <1y
i = [O otherwise (12)
where h; = h; /hmax 1s the normalized entropy and /mgax

denotes the maximal entropy over all pixels. Here, 7y is
a preselected clipping threshold and we empirically set
to = 0.95 in our experiments. Once the entropy value
exceeds fp, we expect that the contrast is too low and the
observed data are highly unreliable. In that case, the precision
value is simply set to zero.

2) Local Prior Model: In our approach, the local prior
model p(d,) is based on the spatial consistency assumption
that the depth values of adjacent pixels would be roughly
the same if the image features, like intensity or colors, at
these pixels are similar. Moreover, the depth values at adjacent
pixels may change rapidly only when the image features at
these pixels have apparent changes. As will be demonstrated
later, this spatial consistency assumption provides a useful
key for depth inference over low-contrast regions. In one
aspect, most low-contrast regions contain smoothly changing
image features and we expect that the depth values within
these regions would be highly correlated. With the use of the
spatial consistency assumption, we will be able to maintain the
high correlation of depth values over these smoothly chang-
ing image regions. In another aspect, the employed spatial
consistency assumption may also help in identifying regions
of dramatic depth changes. This can help us to effectively
suppress the previously mentioned edge bleeding artifacts.

n [16], we have presented a spatial coherence recovery
framework with the use of matting Laplacian matrix. The
matting Laplacian matrix is originally proposed in [17] to
solve the supervised matting problem. The supervised matting
is a process to extract foreground objects, along with the
opacity of the foreground object, from an image with user’s
guidance. The foreground opacity is typically called alpha
matte. In [17], by deriving the optimal matting values based
on the matting Laplacian matrix, the authors obtain image
matting results with very impressive quality. Inspired by their
work, we adopt the matting Laplacian matrix as a prior
model to provide the spatial coherence constraint for the SFF
process and we have obtained greatly improved performance
in 3-D depth estimation [16]. However, in that previous work,
an additional all-in-focus image is required to generate the
matting Laplacian matrix. The requirement of the all-in-focus
image causes a big barrier in practical applications. Hence,
in this paper, we will propose a new framework to learn
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the prior model directly from the multifocus image sequence,
without the involvement of any all-in-focus image.

To construct the prior model, we present a local learning
scheme by assuming that over a local neighborhood, the depth
value of each pixel can be predicted by an affine transforma-
tion of its image features. The local prediction model is based
the assumption that the distribution of depth values within
a local region can be approximated by a regression model
based on image features. Several existing learning-based depth
estimation methods are based on similar assumptions. For
example, Saxena et al. [20] present a supervised learning
approach to estimate depth from local features based on a
linear model. Saxena et al. [21] propose to decompose an
image into a number of planar surfaces and then infer the
orientation of each surface to reconstruct the 3-D models. The
coefficients of the affine transformation are locally constant,
but can be globally varying. With this assumption, if the
image features within a local region are similar under constant
illumination, the depth values will also be similar. On the other
hand, if the image features within a local region are changing,
the depth values may also (but not necessarily) be changing.

In our algorithm, we choose the image feature at a pixel
as the R, G and B values at that pixel. Here, we use the
notation V [rl , gl , bk]T to represent the feature vector at
pixel i in the kth image frame, with rl gl , and bf‘ being
the R, G, and B values at that pixel. Based on the affine
transformation assumption, the depth value dl.k at pixel i on
frame k can be expressed as

df = [v]' B + fo

where B = B, B¢, Bp]” and By is a constant. As mentioned
above, B, Be, Pp, and fo are locally constant, but may be
different for different image regions.

Moreover, to combine the values of dl.k at different image
frames, we adopt

13)

(14)

K
S
k=1

In (14), p¥ = p(C; = k|I$®) has been defined in (10) to
represent the probability that the kth frame is the best focused
frame for the image pixel i. By combining (13) with (14),
we have the representation

1 K]

di = pi[ V7 1][?0}
FR &

where p; = [pl.l,...,piK]isalmeatrix,Viz [v ;
is an 3 x K matrix, and 1 is a K x 1 vector with all
elements being 1. By defining f; = p,-ViT , (15) can be further

rewritten as
B
=0 1 .
di =1 ] [/30~i|

In (16), we represent the depth value at a single pixel as an
affine transformation of image features at that pixel. Since
we have assumed that the affine transformation coefficients
{B, Po} are locally constant, we can further derive an affine
model for the depth values within a local neighborhood.

15)

(16)
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Same as before, we define W, as an r x r window,
d, = [dy,dy,,. ..,d,M]T as the vector of depth values of
all pixels within W,, and M = r? as the number of pixels
in W,. In addition, we define F, = [f,Tl, o, f,Tj, R f'TTM]T to
denote an M x 4 matrix stacked by the corresponding feature
vectors f, ;= [f,j 1]. Based on the above notations, the depth

prediction for all pixels within W, can be expressed as

a=%,| 4|

Equation (17) relates the depth values within W, with the cor-
responding image features within W,. When crossing different
surfaces, the entries of the depth vector d, can be rapidly
changing with respect to the feature vectors.

If both d; and F, are given, then the optimal 8 and S can
be derived by minimizing the quadratic cost function as

0%, | ]

where cp is a parameter for regularization. For the cost
function in (18), the optimal solution of 8 and fo can be
easily derived to be

B* -1
[ﬁg = (F[F, +csDp)” F]d,.

A7)

2
E(B, po) = +csB"B (18)

19)

In (19), we denote B* and fj to be the optimal coefficients

I0
for W, and define Dy = 00
the 3 x 3 identity matrix. By substituting (19) back to (17),
we can express the optimal depth value dj as

as a 4 x 4 matrix, where I3 is

d;=17r4, (20)
where Z, = F,(F]F, + csDg) 'FL.
In (20), Z; is an M x M transformation matrix. In this
equation, each entry in the left-hand side d; is expressed as
a linear combination of the entries in the right-hand side d,.
This means that, with the spatial consistency assumption, the
depth value of each pixel in W, can actually be expressed as a
linear combination of the depth values themselves within W,.
With this property, we will be able to eliminate outliers in d
over low-contrast regions.

Based on the above deduction, we design the local prior
model based on the following square error function with
respect to dg:

—log(p(dy)) = [d, —a: |’

= qu - ngq H2

=d] Iy — Zy)" Ay — Z,)d,

=d/L,d, 21
where Iy is the M x M identity matrix and

L, = Iy — Zy)" Ay — Z,) is the graph Laplacian
matrix. In [16], we need an additional all-in-focus image
to calculate the Laplacian matrix. Now, based on the local
learning scheme, we derive the Laplacian matrix directly
from the multifocus image sequence.
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To interpret the graph Laplacian matrix, we may refer to
the spectral graph theory in [19] and [20]. Assume we define
a graph I';, in which the vertices represent the image pixels
in W, and the edge between a pair of vertices represents the
affinity between the corresponding image pixels. For I'y, its
corresponding graph Laplacian matrix is defined as

L, =D, - A, (22)

where D, is the degree matrix and A, is the affinity matrix.
The entry A, (ij) represents the affinity value between pixels
i and j, while the degree matrix Dy is a diagonal matrix with
its diagonal term being defined as

N
Dy, i) = D" Ay, j). (23)
j=1

In our approach, we do not explicitly define the affinity matrix.
Instead, the affinity matrix is implicitly embedded in the graph
Laplacian, which is the result of the optimization process
expressed in (21). Furthermore, the local prior model in (21)
can also be interpreted as

—log(p(dy)) = d; "Lyd,
1
=30 > SAG DI~ 4P @4

ieNg jEN,

Strictly speaking, the model in (24) is not a typical prior model
since it actually depends on the image features of the given
image data. However, we can treat it as a generalized prior
model and use it to obtain spatially consistent depth maps.
This generalized prior model prefers smoothly changing depth
values for pixel pairs with larger affinity values and may allow
depth values to fluctuate more for pixel pairs with smaller
affinity values.

C. Global Optimization

With the local prior model in (21) and the local likelihood
model in (9), we have the local MAP model as

- log(p(lq|dq)p(dq))
= (d, —d))" Ay (d, —d,) +d]L,d,. (25)

As mentioned before, by assuming that the local observations
are mutually independent, the global posterior probability can
be represented as a product of local posterior probabilities.
That is

— log(p(1|D) p(D))
- Z —log(p(,|dy) p(dy))

qeQ

= Z {dy —dp)" A,y —dy) + d;quq}
qeQ

(26)
where Q denotes the whole set of ¢’s. We can further deduce
a matrix format of (26) as

—log(p@®D)pD)) = (d —d)"Ad —d) +d"Ld. (27)

In (27), we define d = [31,...,67N]T as an N x 1 vector
that denotes the predicted depth values of all image pixels.
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Here, N denotes the total number of pixels in an image frame.
Moreover, we define d = [d;,...,dy]" as an N x 1 vector
that denotes the corresponding target depth values. In addition,
A is an N x N diagonal matrix, whose diagonal term A(i, i)
equals to 4;, the precision value at the pixel i. L is an N x N
graph Laplacian matrix defined as

L=>1,

qeQ

(28)

where L, is an N x N matrix expanded from the M x M
matrix Ly in (26). Here, M denotes the total number of pixels
within the local window W, around the pixel g. For those
pixels in W,, the related entries in L', are equal to the
corresponding entries in L, ; while for those pixels outside W,,
the corresponding entries in L”, are simply set to zero.

Finally, the global minimum of (27) can be obtained by
solving system of linear equations as

(L + A)d = Ad. (29)

In summary, with the inclusion of the prior model in the
proposed MAP estimation framework, we can reconstruct a
spatially consistent depth image based on the spatial affinity
information embedded in the image intensity data. This will
improve the performance of depth estimation over low-contrast
regions and also suppress edge-bleeding artifacts over bound-
ary regions.

III. EFFICIENT CELL-BASED FRAMEWORK
A. Overview

In Section II, we have presented an MAP approach for gen-
erating a 3-D depth map from a multifocus image sequence.
The final global optimal solution can be obtained by solving
the linear equations described in (29). However, it will be very
time consuming to deal with large-scale images that require
solving a huge system of linear equations. Hence, in this paper,
we further propose a cell-based framework to improve the
computational efficiency.

The proposed scheme is motivated by the observation that
depth values at adjacent pixels are usually highly correlated.
If we can properly utilize this property, we would be able to
eliminate a considerable amount of redundant computations
without sacrificing the quality of the output results.

The idea of the proposed cell-based framework is shown
in Fig. 2. Unlike the pixel-based approach that obtains the
optimal 3-D depth image (green points) for all pixels based on
the observed image data (red points), the cell-based approach
proposes the use of an intermediate grid cells [orange points
in Fig. 2(b)] by grouping pixels into cells. In the cell-based
scheme, we estimate the depth value of each cell first and
then estimate the cell-wise 3-D depth map based on the depth
values at cells. Since the number of cells could be much
less than the number of pixels, we can greatly reduce the
computational load by performing cell-wise MAP estimation.
After that, the pixel-wise 3-D depth map can be reconstructed
based on the cell-wise depth estimation results.

In [16], we have proposed a cell-based framework to reduce
the computations by coarsening the matting Laplacian matrix.
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To achieve that, we express the image pixels as vectors
scattering in a 5-D space, with each vector containing the
spatial coordinates and the RGB values at a pixel. The reason
that performing down sampling in that space rather than in the
spatial domain is because the RGB values can be very helpful
in avoiding blending conflicting depth values from different
surfaces. In that 5-D space, we apply a grid data structure for
down sampling and then estimate the depth data for grid cells.
After that, we reconstruct the final 3-D depth map based on
a nonlinear interpolation over the grid data. In this paper, we
adopt a similar approach. However, a major difference is that
we do not directly apply a coarsening process to reduce the
scale of the linear equation system in (29). Instead, we revisit
the construction of the local posterior model in the previous
section and derive a more efficient scheme.

B. Cell-Based MAP Estimation

To reduce the computations for depth inference, we modify
the pixel-based MAP estimation into a cell-based one, where
a pixel-to-cell mapping function is derived using a grid data
structure in a high-dimensional space. Given a pixel i, we have
its spatial coordinates s; and its multifocus feature vector
fi = p:iVi T which is used to predict the depth value in the
prior model in (16). For the pixel i, we define its index vector
h; = [s; f;]7 in the high-dimensional space, as shown in
Fig. 3(a). We then apply a grid structure in that space for
the grouping of the index vectors. This grid structure is con-
structed by uniformly down sampling the spatial coordinates
into by bins and uniformly down sampling the multifocus
feature coordinates into by bins. After scanning through the
entire image, we record the pixel-to-cell mapping in terms
of an N x R binary matrix m, where N is the number of
image pixels and R is the number of grid cells. If the pixel i
is classified into the cell j, we define m(i, j) = 1 and
m(i, k) =0 for all k # j.

Assume we denote g; as the 3-D depth value of the jth
cell in the grid structure and denote g as the collection
of gj’s. Based on the grid structure, we treat the cell-based
depth reconstruction process as an MAP estimation problem,
in which we derive the optimal cell-wise depth vector g* as

g" = argmax {p(g [1*)}. (30)
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Fig. 3. Illustration of cell-based depth inference with a high-dimensional
grid. (a) Multifocus image sequence 1. (b) High-dimensional space. (c) Recon-
structed depth image. (d) Grid structure in high-dimensional space.

To formulate the MAP estimation, we rewrite the posteriori
probability in (30) as

p(g 15 oc p(15* |g) p(g).

In the following paragraphs, we proceed to present the for-
mulation of the cell-based likelihood model p(IS¢t|g) and the
prior model p(g) based on the derivations in (26) and (27).

1) Cell-Based Likelihood Model: To model the cell-based
likelihood function p(IS¢t|g), we first find an R x 1 predicted
depth vector g, where R denotes the total number of cells in
the grid structure. Similar to (9), we assume g is governed
by the hidden depth g with a cell-based precision matrix Ag.
That is

€19

—log(p(®|g)) = @ —2) A (@ — 2).

For the cell j, its predicted depth value g; is computed as the
mean of the predicted depth values of all the pixels mapped
into the cell j. That is

(32)

N
- 1 Lo
gj= w_j E m(i, j)d; (33)
i=1

where w; = vazl m(i, j) and m(i, j)’s are the entries of the
previously mentioned pixel-to-cell mapping matrix m.
Similarly, the cell-based precision matrix A is computed by

N
AALJ%=$f2}MLDAUJ) (34)
1 i=1
2) Cell-Based Prior Model: In Section II, the establishment
of the pixel-based prior model is based on the local learning
of multifocus feature vectors. For the cell-based prior model,
we adopt a similar approach. Here, we first define the expected
feature vector ¢; for each cell. For the cell j, its feature
vector @; is derived by the accumulation of the pixel-wise
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feature vectors f; = iniT based on the pixel-to-cell mapping
function m. That is

1 N
¢, =— > m@, jf;.
Wiim

Here, we assume the depth value g; of the cell j can be
predicted by an affine transformation of the cell-wise feature

vector @ ;. That is
gj =lo; 1][20}

Similar to the derivation of the pixel-based prior model, the
cell-based prior model is derived from an integration of local
models. To compute the local models, we place the same
r x r local window in the pixel domain. Within each window,
we inspect the pixels and their corresponding cells. Here,
we denote €, as the set of referred cells for the window
around p and denote N, as the number of cells in Q,.
Since some pixels in the window may map to the same cell,
N, would be a value between 1 and r2.

Similar to the derivations of (17) from (16), we define the
cell-based local prediction model as

gﬂz"’p[ﬂﬁ.]'

In (37), we use a N, x 1 vector g, = [gp>---»&pn, 1"
to denote the vector of depth values of all the cells in Q,
and denote ®, = [(bz],...,gbZNp]T as a matrix stacked by
¢; = lo; 1]. Note that in the local window, several pixels
may map to the same cell. These many-to-one mappings
are condensed into one-to-one mappings when constructing
the cell-based local prediction model. The simplification of
the many-to-one mappings will be compensated later in the
construction of the cell-based global Laplacian matrix.
Similar to the derivation of pixel-based local model from
(16) to (20), the cell-based local prediction is modeled as

(38)

(33)

(36)

(37)

g, =Hg

where H, = @,(®] ®, +cslp) '@, .
Based on (38), we define the cell-based local prior model as

—~log(p(gy)) = |g, — &3]
= llzo — M}, ”2
=2/ Q,8. (39)

In (39), Q, = (I, — H,))" (I, — Hy) is the cell-based local
Laplacian matrix. I, is the N, x N, identity matrix.

After the construction of local Laplacian matrices, the cell-
based global Laplacian matrix is derived via the summation
of local Laplacian matrices. As mentioned, within a local
window, there could be many pixels that map to the same
cell. Hence, during the summation, the entry Q,(i, j) has
to be multiplied by a scalar that reflects both the duplicated
mappings onto the cell i and the duplicated mappings onto
the cell j. If we denote Q as the R x R cell-based global
Laplacian matrix. Its entry Q(i, j) is calculated by

QG. j) = D 1y ()1, (j)Q, s j)

peQ

(40)
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Fig. 4.
(b) Focused in the middle. (c) Focused at the far end.

where 7, (i) and 7, (j) denote the number of duplicated pixels
mapped into cells i and j, respectively. After the formation
of Q, the cell-based prior is modeled as

—log(p(g)) = g" Qg. (41)

C. Cell-Based MAP Estimation

With the cell-based likelihood model in (32) and the cell-
based prior model in (41), the posterior probability is given by

—log(p(>*|g)p(g)) = @ — 2)" A, (& —g) + 2" Qg.

The global minimum of (42) can be obtained by solving a
system of following linear equations:

(Q+ Ag)g = A,8.

(42)

(43)

Since the number of cells is typically much smaller than the
number of image pixels, the dimension of the system in (43)
is much smaller than the pixel-based system in (29). Hence,
we can greatly reduce the computational load and efficiently
estimate a cell-wise depth map.

D. Cell-Based Iterative Refinement

During the MAP estimation, the existence of some inaccu-
rate data in the likelihood model may degrade the accuracy of
depth inference. To solve this problem, a refinement process
is proposed to iteratively eliminate inaccurate data. The
refinement process is similar to the expectation-maximization
algorithm and consists of two steps. The first step refers to
the previously mentioned global optimization process in (43),
while the second step refers to the update of the likelihood
model. The update process aims to minimizing the influence
of the inaccurate data in the likelihood model. To achieve
that, after having derived the globally optimized depth values,
we compare the optimized depth vector g* with the previously
predicted depth vector g. For any cell i, if the square difference
between g’ and g; exceeds a predefined threshold ¢, we treat
the previously predicted depth value as unreliable and we set
the corresponding precision term Ag(i, i) to be zero. That is

0 for |gf — & H2 > 1,
Ag(i,i) otherwise

after updating the likelihood model, the global minimum
of (43) will be recomputed. In our system, we repeat this
two-step refinement process five times. This iteration number
five is chosen empirically.

A, 0) = ’ (44)

W

(b)
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Sample frames of the 13-frame image sequence for spatial consistency evaluation. The frame size is 1145 x 411. (a) Focused at the near end.

E. Depth Map Reconstruction From Grid Cells

After obtaining the optimal cell-wise depth map by solv-
ing (43), we proceed to reconstruct a pixel-wise depth map.
The construction of pixel-wise depth map is illustrated in
Fig. 3(c) and (d). For any pixel i, we use N (i) to denote a
set of neighboring cells. In Fig. 3(d), the red dot represents a
pixel in the high-dimensional space, with its neighboring cells
J € N(i) colored in blue and the center of the neighboring
cells marked by @. The depth value of the pixel i can be
interpolated from the depth values of its neighboring cells
based on the conditional probability p;;

L (=i
Pjli = F, p o

where Fi = 3oy exp(—Il fi — £il%/o ).

Here, we use f; and f; to denote the position of pixel i and
the averaged position of the pixels inside cell j, respectively,
in the high-dimensional space. The conditional probability
in (45) models the probability that pixel i belongs to cell j,
based on the distance between the pixel i and the averaged
position of cell j in the high-dimensional space. A shorter
distance between them refers to a higher probability with a
Gaussian kernel and oy controls the bandwidth of the kernel.
Finally, the interpolated depth value of pixel i, denoted as d,
can be computed by

di = 2. & pii

JEN()

(45)

(46)

IV. EXPERIMENTAL RESULTS
A. Evaluation of Spatial Consistency

To evaluate the performance of our system, we first conduct
an experiment to reconstruct a 3-D planar surface. In our
experiment, a blue carpet is laid on the ground and a few
pasteboards markers are evenly placed on the left side of
the carpet to help camera focusing and the measurement of
physical distance. Since this carpet is horizontally placed in the
scene, a planar 3-D depth map is expected. In this experiment,
a 13-frame image sequence is acquired with 13 different focus
settings. Three frames of the image sequence are shown in
Fig. 4. By keeping one frame for every two frames of the
13-frame sequence, we obtain a 7-frame sequence. Similarly,
by keeping one frame for every four frames of the 13-frame
sequence, we obtain a 4-frame sequence. Based on these
three image sequences, we compare the proposed method
with some related approaches, including the Laplacian-based
approach [1], the ANDF approach [6], and the adaptive focus
measure operator [4]. When implementing the Laplacian-based
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Fig. 5. Depth reconstruction results. (a) Results by [1], (b) [6], (c) [4], and (d) our results. For these depth maps, the black color indicates the closest while
the white color indicates the farthest. From left to right, the depth maps are reconstructed based on the 13-, 7-, and 4-frame sequences, respectively.
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(a)—(c) Depth profiles with respect to the vertical coordinate. Each curve refers to the horizontal average of the depth values from the 440th column

to the 450th column of the depth maps. For these plots, black is the result by [1], blue is the result by [6], green is the result by [4], and red is the result of
ours. (d) Depth profiles with respect to the horizontal coordinate based on the 13-frame sequences (bounded by the green rectangles in Fig. 5).

approach, we employ the DoG operator as described in (5).
As shown in Fig. 5, the result obtained by the Laplacian-based
approach is quite noisy over the low-contrast regions. On the
other hand, Mahmood and Choi [6] suggest; the use of a 3-D
ANDF to enhance the estimated focus volume, which refers to
a stack of image planes consisting of the focus measure values
of the multifocus image sequence. Unfortunately, to obtain
satisfactory results, the ANDF approach usually requires a
large number of image frames to form a dense focus volume.
As shown in Fig. 5, the performance of the ANDF approach
deteriorates quickly for the 7- and 4-frame sequences. In
comparison, Aydin and Akgul [4] present an adaptive focus
measure operator, which includes more information from
neighboring pixels using adaptive weightings based on both
the spatial distance and the color distance. Even though this
approach can obtain less noisy results, the estimated depth
values are restricted to discrete levels. In addition, the lack of
smooth transitions between two adjacent depth values may
cause inconsistent boundaries in the estimated depth map.
Compared with these three approaches, our approach infers
the depth values by maximizing the posterior probability. This

MAP approach provides continuous depth values. In addition,
the inclusion of the spatial consistency model may effectively
recover the depth values for low-contrast regions. As a result,
the proposed method can generate more consistent results even
for the image sequences that contain only four or seven image
frames.

To assess the performance of the depth maps in Fig. 5,
we select a few columns bounded by the red rectangles and
average the depth values along the horizontal direction. The
profiles of the averaged depth values with respect to the
vertical axis are plotted in Fig. 6(a)-(c). The depth profile
is expected to be a decreasing function from the top to the
bottom according to the planar surface shape in the 3-D
scene. As shown in Fig. 6, both the ANDF approach [6]
and the adaptive focus measure operator [4] may properly
suppress the fluctuation of depth value. However, we can
observe unstable jitters in the results of the ANDF approach
and some discontinuous depth values in the results of the
adaptive focus measure operator, especially for the 4-frame
image sequence. In addition, since the prior model guides
the depth inference through a graph, we would expect our
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(c-2) Result'y [6].

(c-1) Result by [1].

Fig. 7.

(b-3) Result by [4

(c-3) Result by [4].

(b-4) Our result. (b-5) Frame # 3.

(c-4) Our result. (c-5) Frame # 3.

(a) Frames of multifocus image sequence. The image size is 680 x 720 pixels. (b) Depth reconstruction results. For these depth maps, white indicates

the closest and black indicates the farthest. (c) Zoomed depth reconstruction results.

approach can generate sharp depth edges along with sharp
image structures based on the image features. Fig. 6(d) shows
the depth profiles of the averaged depth values with respect to
the horizontal axis bounded by the green rectangles in Fig. 5.
This experiment shows that our approach can properly pre-
serve sharp edges in the depth image, with only a slight level of
blurring.

We further analyze the spatial consistency of the recon-
structed depth maps around edges and low-contrast regions.
Fig. 7(a) and (b) illustrate a multifocus image sequence
and the reconstructed depth maps, respectively. Again, we
compare our approach with the Laplacian-based approach [1],
the ANDF approach [6], and the adaptive focus measure
operator [4]. As shown in Fig. 7, these existing approaches
usually have problems over low-contrast regions. Among these
approaches, the adaptive focus measure operator [4] obtains
the smoothest depth map, but it fails in avoiding the edge
bleeding problem due to the lack of continuous-valued depth
inference. In Fig. 7(c), we show a zoomed portion of the recon-
structed depth map. In this example, both the blue cap and
the background contain smooth surfaces, while the boundary
between the blue cap and the background has an apparent
depth change. It can be easily observed that our approach may
not only properly handle the low-contrast problem but also
avoid the occurrence of edge bleeding artifacts. However, our
model is based the assumption of constant illumination. This
assumption may fail when dealing with transparent objects or
objects with specular reflection. In these cases, we may infer
incorrect depth information due to the interference of varying

TABLE I
SYNTHESIZED IMAGE SETS FOR QUANTITATIVE EVALUATION

S2

Number 4 6 6 7
of frames
Frame 512x512 512x512 512x512 512x512

size

illumination. As shown in Fig. 7(b-4), the specular reflection
does induce some error in depth estimation.
B. Quantitative Evaluation

Another experiment is conducted to quantitatively evaluate
the performance of the proposed approach as compared with
three related approaches [1], [4], [6]. In this experiment, depth
reconstructions are performed over a set of synthesized image
sequences. The synthesized scenes include disjointed planar
surfaces, a tilted planar surface, a curved surface, and cluttered
surfaces, as shown in Table I. The reconstructed depth images
are reported in Table II. On the other hand, the corresponding
mean square error (mse) measure and the bad pixel ratio are
reported in Table III. Here, by setting a threshold over the
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TABLE II
RECONSTRUCTED DEPTH MAPS. (a) LAPLACIAN-BASED APPROACH [1].
(b) ANDF APPROACH [6]. (c) ADAPTIVE FOCUS MEASURE
OPERATOR [4]. (d) OUR APPROACH

S2

TABLE III
MSE MEASURE OF RECONSTRUCTION RESULTS. RATIO OF BAD PIXEL IN
RECONSTRUCTION RESULTS. ERROR Threshold = 5e¢ — 3.
ERROR Threshold = 3¢ — 3

Image set Sl S2 S3 S4
(a) Laplacian [1] 5.54e-2 1.62¢-2 2.70e-2 6.80e-2
(b) ANDF [6] 2.3%-2 9.20e-3 7.53e-3 4.35e-2
(c) Adaptive [4] 6.94e-4 3.40e-3 6.03e-3 8.87e-3
(d) Our method 4.72¢-4 5.19¢-4 1.95¢-3 2.08e-3

Image set S1 S2 S3 S4
(a) Laplacian [1] 20.2% 59.5% 49.9% 26.3%
(b) ANDF [6] 72% 57.7% 41.2% 14.9%
(c) Adaptive [4] 0.62% 57.2% 43.0% 14.5%
(d) Our method 1.07% 0.211% 8.25% 6.12%

Image set S1 S2 S3 S4
(a) Laplacian [1] 20.2% 69.5% 59.1% 322%
(b) ANDF [6] 7.2% 68.1% 51.7% 22.0%
(c) Adaptive [4] 0.62% 67.3% 53.2% 19.8%
(d) Our method 1.94% 1.24% 17.5% 14.3%

value of square error, we identify bad pixels that have large
square errors and we measure the percentage of bad pixels in
the depth image. In the S1 sequence, one low-contrast surface
is placed at the center. The simulation result shows that our
approach can effectively deal with the low-contrast problem. In
S2 and S3, the challenge is to recover the continuously varying
depth values. These simulation results show that our approach
can provide more consistent continuous-valued depth maps.
In comparison, the other three approaches can only generate
discontinuous depth values.

In Table IV, the performance of the cell-based framework
is evaluated in terms of mse, the number of cells, and the
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TABLE IV
QUANTITATIVE EVALUATION FOR OUR APPROACH WITH DIFFERENT
PARAMETER SETTINGS. (a) SETTING A: by = 15 AND by = 7.
(b) SETTING B: bs = 20 AND by = 10. (c) SETTING C: by = 25
AND by = 15. (d) WITHOUT USING GRID STRUCTURE

Mean square error measurement.

Image set S1 S2 S3 S4

(a) Setting A 5.31e-4 1.27e-3 2.43e-3 4.40e-3
(b) Setting B 4.72e-4 5.19¢-4 1.95¢-3 2.08e-3
(c) Setting C 7.45¢e-4 1.20e-3 2.16e-3 1.82e-3
(d) Setting D 1.19e-3 2.94¢-3 2.61e-3 2.26¢-3
Number of cells R.

(a) Setting A 5.83k 5.56k 6.40k 3.36k
(b) Setting B 13.1k 12.5k 14.0k 7.01k
(c) Setting C 30.0k 28.5k 28.2k 13.7k
(d) Setting D - - - -
Computational time (sec).

(a) Setting A 3.68 2.92 3.96 3.27
(b) Setting B 6.26 6.05 6.74 4.28
(c) Setting C 13.1 12.6 12.1 6.70
(d) Setting D 235 214 307 271

Sequence #3. The frame size is 1487 x 1375.

Fig. 8. Three test sequences, with each sequence containing three image
frames only.

computation time, with respect to different parameter settings.
Here, the first three types of parameter setting are obtained by
adjusting the values of by (the number of spatial bins) and b ¢
(the number of feature bins) from small to large. The compari-
son shows that Setting B provides more balanced performance
in accuracy and efficiency. In comparison, Setting A overly
merges pixels into cells and the blending of conflicting data
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@ @
Fig. 9. Depth reconstruction results. For these depth maps, the red color
indicates the closest objects, followed by the green color, and then the blue
color. (a) Results by [1], (b) [6], (c) [4], and (d) our results.

may cause the degradation of accuracy. On the other hand, for
Setting C, which corresponds to an oversampling situation,
many cells may contain too few pixels so that the inference
process may get easily biased by local observations. This also
causes the degradation of accuracy. On the other hand, the
fourth setting, Setting D, represents the case that does not use
the grid structure at all. In this case, the accuracy is degraded
and the computational time is much longer. One major factor
for the degradation of accuracy in Setting D is that outlier
data may easily bias the inference results. As a comparison,
Settings A—C adopt the grid structure and they can effectively
suppress the influence of outliers by averaging the data within
each grid cell.

C. More Experiments Over Real Images

In Figs. 8 and 9, we present more experiments over real
image sets for depth reconstruction. Here, we test three multi-
focus image sequences, with each test sequence containing
only three image frames acquired by a digital single-lens
camera (Panasonic DMC-GX1 with a 20-mm f1.7 lens) using
varying focus settings. In these experiments, we manually
choose the camera setting to focus on objects of different
depths in the scene. The goal of depth reconstruction is to infer
the relative depths among the objects, rather than the physical
distance of the objects away from the camera. In Fig. 9,
we show the reconstructed depth maps by our approach and
by the three previously mentioned approaches [1], [4], [6].
Since there are only three image frames in each sequence
and there are several smooth surfaces in the scene, it is quite
difficult for these existing approaches to obtain satisfactory
depth maps. In comparison, our approach can generate much
cleaner continuous-valued depth maps for all three cases.
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TABLE V
PARAMETER SETTING

Parameter cp to bs by oy tr r
Value 107 0.95 20 10 0.05 0.01 3

In Table V, we list the empirical parameter setting of
our experiments. The meaning and the influence of these
parameters are also briefly mentioned below.

1) cp is the parameter of regularization to avoid the overfit-
ting problem in the learning process. If c¢g is too small,
results would be sensitive to image noise. In contrast,
a large value of cg will cause the suppression of edge
sharpness.

2) tg is the threshold to remove uncertain data. If 7y is too
small, it may overly remove significant data and cause
the decrease of accuracy. In contrast, using a large value
of o may generate noisy results.

3) by and by are down-sampling parameters. Detailed
descriptions and experiments about these two parameters
can be found in Section IV-B.

4) o controls the level of smoothness for the depth
reconstruction from grid cells. In general, with a larger
value of o r, we generate smoother depth images. With a
smaller value of ¢ y, we generate sharper results but may
also generate inconsistent artifacts between grid cells.

5) t, controls the amount of data to be refined. If 7, is
too large, some significant data may get removed and
cause the degradation of accuracy. If # is too small,
there would be almost no refinement.

6) r corresponds to the window size. For a larger value
of r, more pixels are involved in the local prediction
process and the derived result would be more spatially
consistent. One drawback of using a large value of r is
the increase of computational load. In addition, the local
affine transformation assumption would not be suitable
for a large window.

D. Limitations

Even though the proposed method can improve the perfor-
mance of depth inference over low-contrast regions, it still
cannot effectively deal with surfaces with no texture. In such
circumstance, we can only obtain information from the bound-
aries between the surface and its neighboring surfaces. How-
ever, the neighboring surfaces may not be at the same depth
with the smooth surface so that some conflictions may occur
in the depth inference process. Fig. 10 shows an example of
this problem. In this example, the white wall is a texture-less
background. To infer the depth value of the white wall, we can
only rely on the focus measure values on the surrounding
boundaries of the white wall. Unfortunately, without any clue
to identify whether the white wall should share the same depth
value with the foreground human body or the painting on the
wall, our MAP inference process chooses a neutral solution
that infers a depth value in between. Fortunately, although this
inferred depth value of the nontexture surface is not correct,
it may still help in distinguishing the foreground object from
the surrounding background. In the future, to deal with this
kind of texture-less surfaces, we may need to further discuss
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Fig. 10.  Illustration of depth reconstruction for a nontexture surface.
(a) Sequence #2. (b) A close look when focusing at the far end. (c) A close
look when focusing at the near end. (d) Results by [1], (e) [6], (f) [4], and
(g) ours.
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how to learn a more robust foreground/background model for
the whole image.

E. Computational Complexity

To analyze the computational complexity of the proposed
approach, we divide the whole process into three major steps
and analyze the complexity of each step individually. First, the
computational complexity of the construction of the local prior
model is dominated by the calculation of (38) as the window
is scanning over the entire image pixels. For each r x r local
window, the dominated complexity to calculate H, in (38)
is O(Ng), where N, denotes the number of corresponding
cells in the window and N, would be a value between 1 and r2.
Hence, the complexity of the entire local learning process
would be 0(r4N ), where N denotes the total number of image
pixels in an image frame. Second, the complexity in solving
the MAP optimization is dominated by the system of linear
equations in (43). The complexity would be about O(R3/?)
by applying the conjugate gradient method, where R denotes
the total number of grid cells. Empirically, the value of R
is about 5-15 K. Finally, the complexity of the pixel-wise
depth map reconstruction is dominated by the computation
of the conditional probability p;; in (45). Empirically, we
choose two neighboring cells along each dimension in the 5-D
space and we include 2° neighboring cells in the computation
of (46). Hence, the complexity for the computation of (46)
would be O(2°N). Since typically R is much smaller than N,
the computational complexity of the whole process would be
O((r* +29)N).

Our algorithm has been implemented in MATLAB on an
AMD FX6100 3.3-GHz CPU with 4 GB of memory. Currently,
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the proposed framework takes about 10 s to reconstruct an
800 x 640 depth image from a 3-frame multifocus image
sequence. In comparison, for the approaches in [4] and [6],
they may need several minutes to generate a depth image of
similar size. This is because they need to locally refine the
results of focus estimation by performing smoothing over the
entire image sequence.

V. CONCLUSION

In this paper, we propose an MAP framework for the
depth reconstruction from a multifocus image sequence. In the
proposed MAP framework, a spatial-consistency prior model
learned directly from the multifocus image sequence is pro-
posed to deal with the low-SNR problem. With the inclusion of
the prior model in the MAP framework, we can obtain spatially
more consistent depth maps and prevent the occurrence of
edge bleeding artifacts. Even for a multifocus image sequence
that contains only a few image frames, the proposed method
may still effectively suppress the noise and infer a reasonable
depth map. The experimental results demonstrate that the
proposed method can generate more convincing results as
compared with some state-of-the art approaches. In addition,
the proposed cell-based framework can effectively improve the
computational efficiency so that the proposed SFF process can
actually be applied to some practical applications.
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