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Abstract This paper presents an integration-leakage

calibration technique for the switched-capacitor integrators

in a delta-sigma modulator (DSM). Integrators realized

with low-gain opamps are lossy. A DSM that uses lossy

integrators exhibits a degraded signal-to-quantization-noise

ratio. To calibrate an integrator, its integration leakage is

detected in the digital domain, and the leakage compen-

sation is applied to the same integrator in the analog

domain. The proposed scheme can calibrate all integrators

in a discrete-time DSM of any form. It can be proceed in

the background without interrupting the normal DSM

operation. The design considerations for the proposed

calibration scheme are discussed. Design cases of a 1st-

order, a 2nd-order, and a 3rd-order DSM are demonstrated

and simulated.

1 Introduction

Delta-sigma modulators (DSMs) are widely used in high-

resolution analog-to-digital converters (ADCs). A DSM

can effectively suppress the quantization noises arising

from its internal quantizer by combining its noise-shaping

function with the oversampling operation. Comparing to

Nyquist-rate ADCs of similar performance, DSMs require

analog circuits of higher speed. Consider a discrete-time

single-loop DSM that comprises a cascade of switched-

capacitor (SC) integrators. Each integrator contains an

opamp. The open-loop unity-gain frequency and slew rate

of the opamp determine the speed of the integrator, while

the dc voltage gain of the opamp dictates the quality of the

integration function. An SC integrator realized with a low-

gain opamp is lossy, i.e., it exhibits integration leakage. If

the integrators in a DSM are lossy, the noise-shaping

capability of the DSM is weakened, resulting in degraded

signal-to-quantization-noise ratio (SQNR).

As CMOS technologies advances, MOSFETs become

smaller and faster, but their intrinsic voltage gain, gm=gds,

also decreases. Consider a standard 32 nm CMOS. A

minimum-channel-length MOSFET has a maximum transit

frequency fT of over 400 GHz, but it has an intrinsic gain of

only about six [1]. Furthermore advanced CMOS technol-

ogies have lower supply voltage, it is difficult to design

high-speed opamps that also have a good dc gain. Although

correlated double sampling [2], correlated level shifting

[3], and multiple-stage configuration [4] can be used to

raise the dc gain of opamps, all sacrifice the speed.

To take advantage of the advanced nano-scale CMOS

technologies, we propose using opamps with simple circuit

configuration and MOSFETs of minimum channel length.

The resulting SC integrators are high-speed and low-power

but also lossy. We then employ calibration to compensate

the integration leakage of the integrator and recover the

noise-shaping capability of the DSM. There are calibration

techniques that can improve the frequency accuracy of the

noise-shaping functions of the DSMs [5–8]. They all

assume the opamps have sufficiently large dc gain. A

calibration technique has been proposed to correct both the

integration leakage and the distortion of the integrators in a

cascade DSM [9]. However, it is difficult to obtain the

required modeling parameters from the DSM digital output

alone.
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This paper proposes an integration-leakage calibration

technique for the integrators in an SC DSM. To calibrate an

integrator, its integration leakage is detected in the digital

domain, while the leakage compensation is added to the

same integrator in the analog domain. Once all integrators

are calibrated, the SQNR performance of the DSM is

restored. The proposed scheme can calibrate all integrators

in a DSM of any form. It calibrates one integrator at a time.

It can proceed in the background without interrupting the

normal DSM operation.

The rest of this paper is organized as follows. Section 2

discusses the effect of integration leakage on the SQNR

performance of DSMs. Section 3 introduces the SC inte-

grators with leakage compensation. Section 4 introduces

the proposed calibration technique with a 1st-order DSM

design case. Design considerations are outlined. Section 5

applies the calibration technique to a 2nd-order DSM

design case. Section 6 applied the techniques to high-order

DSMs. Section 7 demonstrates a 3rd-order DSM design

case. Finally, Sect. 8 draws conclusions.

2 Integration leakage and its effect

Figure 1 presents a conventional SC integrator, its z-

domain transfer function is

HðzÞ ¼ VoðzÞ
ViðzÞ

¼ a
1� bz�1

ð1Þ

with

a ¼
� Cs

Ci

1þ 1
A0
� CiþCsþCp

Ci

b ¼
1þ 1

A0
� CiþCp

Ci

1þ 1
A0
� CiþCsþCp

Ci

ð2Þ

where A0 is the dc voltage gain of the opamp and Cp is the

total parasitic capacitance associated with the negative

terminal of the opamp. If the opamp is ideal with A0 ¼ 1,

then a ¼ �Cs=Ci and b ¼ 1. Figure 2 illustrates the inte-

grator time-domain output response, in which Vi½k� ¼ 0 for

k [ 0. If b ¼ 1;Vo½k� maintains its Vo½0� value for k [ 0. If

b\1, then the charge on capacitor Ci leaks and Vo½k�
decreases as k progresses. An integrator with b\1 is a

lossy integrator.

Figure 3 shows a DSM that uses the lossy integrators.

Although the coefficient a for the integrator of Fig. 1 is

negative, the coefficients a1 and a2 in Fig. 3 are positive

for simplicity. Their polarities can be easily changed in a

fully differential circuit configuration. Assume the digital-

to-analog converter (DAC) is ideal. The difference

between the sampled analog input x½k� and the DAC

output is integrated by two lossy integrators and then

quantized by a sub-ADC. The sub-ADC introduces

quantization errors e½k�. The sub-ADC digital output y½k�
can be expressed as YðzÞ¼STFðzÞ �XðzÞ þNTFðzÞ �EðzÞ.
Where STFðzÞ is the signal transfer function and NTFðzÞ
is the noise transfer function. If the integrators are lossy,

i.e., b1\1 and b2\1, then the zeros of the NTF deviate

from the unit circle in the z-plane, diminishing the the

DSM’s ability of suppressing the sub-ADC quantization

errors. Consider an M-th order DSM with M lossy inte-

grators. Its NTF is expressed as

NTFðzÞ ¼ 1� bz�1
� �M ð3Þ

The b coefficients are assumed to be identical for sim-

plicity. If the sub-ADC in the DSM has B-bit resolution,

then the DSM’s maximum SQNR is

SQNR ¼ 2B �
ffiffiffiffiffiffiffiffi
3=2

p
� SQNRNTF ð4Þ

where SQNRNTF is the SQNR enhancement by the NTF. It

can be expressed as

Cs
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Cp

Vi
11
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Fig. 1 A conventional switched-capacitor (SC) integrator
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Fig. 2 Integrator time-domain output response. Vi½k� ¼ 0 for k [ 0
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Fig. 3 A delta-sigma modulator with lossy integrators
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SQNRNTF ¼
Pe

Pe;sh

¼ 2Mþ 1

h � p2M
� OSR2Mþ1 ð5Þ

with

h ¼
XM

n¼0

M!

n!ðM � nÞ!
ð2M þ 1ÞbM�n

2M � 2nþ 1

OSRð1� bÞ
p

� �2n

ð6Þ

where OSR is the oversampling ratio. If b ¼ 1, then each

term of (6) is zero except n ¼ 0, and h ¼ 1. If b 6¼ 1, then

h[ 1, yielding a larger in-band quantization noise power.

Figure 4 shows the effects of b on SQNRNTF when

OSR ¼ 64. If b ¼ 1, an ideal 3rd-order DSM can offer an

SQNRNTF of 105 dB. However, if b ¼ 0:9, the resulting

SQNRNTF is degraded to 77 dB. Figure 5 shows the effects

of b on SQNRNTF when OSR increases. For an ideal M-

order DSM, the SQNRNTF is improved by 6 M þ 3 dB

when the OSR is doubled. If b\1, it becomes less effec-

tive for the DSM to improve SQNRNTF by increasing OSR.

Although above conclusions are established on assuming

that all NTF’s zeros are located at b for simplicity, similar

results are obtained even NTF’s zeros are separated.

3 Integrator with leakage compensation

Consider the lossy integrator, its output falls by ð1�
bÞVo½k � 1� from cycle k � 1 to cycle k. Figure 6 shows the

proposed SC integrator to compensate this leakage. The

capacitor Cf is added to sample Vo. The charge on Cf is

added to the integrator in the next clock cycle. Similar

integrators can be found in [10, 11]. The resulting b
coefficient of the integrator is

b ¼
1þ Cf

Ci
þ 1

A0

CiþCp

Ci

1þ 1
A0

CiþCsþCfþCp

Ci

ð7Þ

If Cf ¼ Cs=ðA0 � 1Þ, then b ¼ 1 and the integrator

becomes lossless. Since Cf � Cs, this Cf capacitor and its

associated switches add minuscule loading and noise to the

integrator. The required Cf is sensitive to process-voltage-

temperature variations. Therefore, the integrator requires

calibration to adjust Cf . In our design, a digital signal

T ½k� 2 f0; 1; 2; . . .g controls Cf . A calibration processor

(CP) continuously runs in the background to adjust Cf to

ensure b ¼ 1. The adjustable b can be expressed as

b ¼ b0 þ Db� T½k� ð8Þ

where

Db ¼
1þ 1

A0

CsþCp

Ci

1þ 2
A0

CiþCsþCf 0þCp

Ci

� DCf

Ci

ð9Þ

and DCf is the digital-control capacitance step size. A

smaller DCf makes b closer to 1 when calibration is applied

to adjust Cf , resulting in a better SQNRNTF.
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4 First-order DSM design case

4.1 Architecture

Figure 7 shows a 1st-order DSM using the integrator of

Fig. 6. If Cs ¼ Ci and A0 ¼ 8, then a ¼ 0:8 and b ¼ 0:9.

This DSM includes a background calibration that auto-

matically adjusts the Cf capacitor in the integrator to

maximize the DSM’s SQNR. The sub-DAC has N levels

and covers an output range of �1. The least-significant-bit

(LSB) size is D ¼ 2=ðN � 1Þ. The DSM output is y½k�. If N

is odd, y½k� has its value among f0;�1;�2; . . .;�
ðN � 1Þ=2g. If N is even, y½k� has its value among

f�0:5;�1:5; . . .;�ðN=2� 0:5Þg, The DAC output is

Vda½k� ¼ D� y½k � 1�. The input thresholds of sub-ADC

correspond to the middle of adjacent DAC outputs, its LSB

size is also D. The DSM has a sampling rate of fs. The

modulator digital output y½k� is

D� Y ¼ STF1 � Xþ NTF1 � E ð10Þ

where

STF1 ¼
H

1þ z�1H
NTF1 ¼

1

1þ z�1H
ð11Þ

and H is the transfer function of the integrator expressed in

(1). As proposed in Sect. 3, the b of the integrator is

adjustable. It is adjusted automatically by the calibration

processor (CP) shown in Fig. 7. To facilitate calibration, a

periodic square wave c½k� ¼ q½k� � Vc is added to the sub-

ADC input. The CP detects the calibrating signal embed-

ded in y½k�, generates a control signal T ½k�, and adjusts b to

make b ¼ 1.

Figure 8 shows a signal flow diagram of the calibration.

The modulator input x½k� and sub-ADC quantization errors

e½k� are shaped by STF1 and NTF1 respectively. The cali-

brating signal c½k� is shaped by NTF1, yielding d½k�. The

summation of the above three signals is converted to y½k�

with a conversion gain of 1=D. The calibrating signal c½k� is
expressed as a periodic binary square wave q½k� 2
f�1;þ1g multiplied by an amplitude of Vc. Thus,

embedded in y½k�, d½k� is the step response of NTF1 trig-

gered by c½k�. Figure 9 shows the d½k� waveform. The step

response has an initial value of

Vci ¼ Vc �
2aþ 1� b
aþ 1� b

ð12Þ

and settles toward a final value of

Vcf ¼ Vc �
1� b

aþ 1� b
ð13Þ

Since Vcf depends on 1� b, it can be used to detect b.
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Fig. 7 A 1st-order DSM with the proposed calibration scheme
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Figure 8 shows the CP operation. The CP correlates

the DSM output y½k� with a triple-valued sequence

g½k� 2 f�1; 0;þ1g. The g½k� waveform is illustrated in

Fig. 9. It has the same polarity as q½k�, but its value is set to

0 during the initial transition phase of d½k�. Thus, the

resulting product r½k� contains only the valid Vcf informa-

tion. Following r½k� is an accumulator (ACC1). It is fol-

lowed by a binary peak detector (BPD). Together they

perform the accumulation-and-reset (AAR) operation [12]

to extract Vcf from r½k� while removing the perturbations

caused by x½k� and e½k�. The AAR operation is described as

follows. Accumulator ACC1 accumulates the r½k�
sequence. Its output s½k� is monitored by a BPD with a

threshold Nth [ 0. Whenever s½k� reaches either þNth or

�Nth, the BPD issues an output b½k� ¼ þ1 or b½k� ¼ �1

for one clock cycle respectively and reset s½k� to 0. The

BPD output b½k� remains at 0 when no reset occurs. The

BPD output b½k� is an estimate of the ð1� bÞ polarity. The

CP uses it to adjust the b of the integrator. As shown in

Fig. 7, following b½k� is another accumulator, ACC2, that

accumulates the b½k� sequence. Its output T ½k� controls the

b according to (8). Figure 10 illustrates the time-domain

waveform of the ACC1 output s, and the waveform of the

resulting b. When b approaches 1, both j1� bj and Vcf

become smaller, and it takes a longer time to activate the

BPD.

4.2 Calibration parameters

This calibration has five design parameters, including the

c½k� amplitude Vc, the c½k� frequency fq, the g½k� duty ratio

Dg, the BPD threshold Nth, and the T ½k� control step size

Db. Referring to Fig. 9, the duty ratio Dg is defined as the

ratio of the time for g½k� ¼ þ1 to the time for q½k� ¼ þ1.

The duty ratio for g½k� ¼ �1 and q½k� ¼ �1 is assumed to

be the same as Dg.

We use the aforementioned 1st-order DSM design case

to illustrate the design considerations for the proposed

calibration scheme. The DSM block diagram is shown in

Fig. 7. Its sub-ADC and DAC have N ¼ 16 quantization

steps. The corresponding quantization step size is

D ¼ 2=15. It has a sampling frequency of fs and a corre-

sponding sampling period of Ts ¼ 1=fs. The integrator in

Fig. 7 is realized using the SC integrator of Fig. 6 with a

transfer function of (1). If the opamp has a dc gain of

A0 ¼ 8, then a ¼ 0:8 and b ¼ 0:9. Assume the OSR of the

DSM is 64. Its theoretical maximum SQNR is 74 dB when

A0 ¼ 1. We will apply the proposed calibration to recover

SQNR.

As shown in Fig. 7, the calibration square wave c½k� ¼
q½k� � Vc is added to the sub-ADC input. Let c½k� have a

frequency of fq, a corresponding period of Tq ¼ 1=fq, and a

duty cycle of 50 %. The resulting d½k�, as shown in Fig. 9,

is embedded in the sub-ADC output y½k�. In each fq cycle,

the transient response of d½k� is a step response of NTF1

triggered by c½k�. It can be expressed as

d½k� ¼ Vc �
2aðb� aÞk þ ð1� bÞ

aþ 1� b
ð14Þ

This step response has an initial value of Vci of Fig. (12)

and then settles toward the Vcf of (13). Figure 11 shows

several d½k� waveforms with different b.

The d½k� waveforms have settled near Vcf for k [ 5. We

choose Tq ¼ 16Ts and Dg ¼ 1=4, so that, in each d½k�
transient, d½k� has a period of 6 clock cycles to settle before

g½k� is activated for 2 clock cycles. The frequency of the

injected signal c½k� is fq ¼ fs=16. As long as OSR [ 8, the

frequency components of d½k� in y½k� is outside the signal

band. It can be easily removed by the decimation filter

following the DSM.

The injection of the calibration signal c½k� degrades the

DSM’s maximum SQNR, since c½k� increases the input

signal range of the sub-ADC input. The SQNR degradation

is a function of the c½k� amplitude Vc. Figure 12 shows the

simulated SQNR of the DSM design case. The injected c½k�
has a frequency fq ¼ fs=16. In Fig. 12, SQNR is plotted

against x½k� input amplitude with different Vc. The x½k�
frequency is fin ¼ ð41=216Þfs. If Vc ¼ 1D ¼ 2=15, the

maximum SQNR is 71 dB at �1:5 dBFS. If Vc ¼ 3D ¼
6=15, the maximum SQNR is 67 dB at �3:0 dBFS. If

Vc ¼ 5D ¼ 10=15, the maximum SQNR is 66 dB at

�4:5 dBFS. In this design example, we choose Vc ¼ 1D.

Figure 10 illustrates the transient response of b during

the calibration. Consider the DSM shown in Fig. 7. The

averaged variation of s½k� for one clock cycle is

Ds ¼ DgVcf =D. It takes Nth=Ds cycles for s½k� to accu-

mulate from 0 to þNth (or �Nth) so that T½k� is changed

by 1 and b is changed by Db. Thus, we have
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0.00
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Fig. 11 The transient response of d½k� with different b
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db
dk
¼ Db

Nth=Ds
� DbDgVc

aNthD
ð1� bÞ ð15Þ

This calibration loop can be modeled as a single-pole

feedback system. The transient response of b can be

expressed as

b½k� ¼ 1� ð1� b½0�Þ � e�k=s ð16Þ

The time constant s is

s ¼ Nth

Dg

� D
Vc

� a
Db

ð17Þ

From (17), a smaller Nth and a larger Db lead to a smaller

s, yielding a faster calibration speed. However, as the

calibration process converges, the behavior of b½k�
becomes a discrete random fluctuation around 1 [12].

Referring to Fig. 8, both x½k� and e½k� induce this fluctua-

tion. Their effects are diminished by the AAR operation. A

larger Nth and a smaller Db lead to a smaller fluctuation in

b, yielding the better SNDR performance for the DSM.

Figure 13 shows the standard deviation of the b½k�
fluctuation from the system simulation of the DSM design

case. The standard deviation rðbÞ increases drastically for

Nth\8. As Nth increases, the standard deviation of b
fluctuation, rðbÞ, converges to an averaged value, that can

be expressed as

rðbÞ ¼ Db
ffiffiffi
6
p ð18Þ

From Fig. 4, SQNRNTF is degraded by less than 1 dB if

3rðbÞ\0:015. Using (18), we need Db\0:0122. In this

design case, we choose Db ¼ 0:01 and Nth ¼ 24.

4.3 Simulation results

This 1st-order DSM design case is verified by using time-

domain simulation. Calibration design parameters are

fq ¼ fs=16;Dg ¼ 0:25;Vc ¼ 1D;Db ¼ 0:01, and Nth ¼ 24.

The resulting time constant s ¼ 7680 sampling periods. It

takes a calibration time of 3s for b to converge from 0.9 to

0.995, where the SQNR degradation due to a non-ideal b is

less than 1 dB. Assume the DSM input bandwidth is 2 MHz

and the sampling frequency is fs ¼ 256 MHz. Then a cal-

ibration time of 3s is 0.09 m/s. Figure 14 shows the DSM

output spectra before and after calibration. The input is a

sine wave with a frequency of ð41=216Þfs and an amplitude

of �2 dBFS. The resulting SQNR is 58 dB before cali-

bration, and is improved to 70 dB after calibration. The

frequency components of c½k� are visible in Fig. 14. They

are far away from the signal band.

5 Second-order DSM design case

Figure 15 shows a 2nd-order DSM. It includes two inte-

grators. The internal opamps of the integrators have a dc

gain of 8.2 and 7.7 respectively, yielding a1 ¼ 0:804;

b1 ¼ 0:902; a2 ¼ 0:794, and b2 ¼ 0:897. The regular sub-

ADC1 following the 2nd integrator is single comparator.
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Thus, for this 2nd-order DSM, N ¼ 2 and D ¼ 2. If the

integrators are ideal and OSR ¼ 64, then the theoretical

maximum SQNR is 79 dB.

The proposed calibration scheme adjusts b1 and b2

separately. Integrators with adjustable b are described in

Sect. 3. To calibrate b1, a calibration signal c1½k� ¼ q1½k� �
Vc1 is injected to the input of the 2nd integrator. A cali-

bration processor, CP1, takes the sub-ADC1 output y½k� and

generates a control signal T1½k� to adjust b1 of the 1st

integrator. The calibration signal c1½k� is a square wave

with fq1 frequency, Vc1 amplitude, and 50 % duty cycle.

The calibration processor CP1 is identical to the CP shown

in Fig. 8. In the CP1, its g1½k� signal has a duty ratio of Dg1

and its BPD has a threshold of Nth1. Its output T1½k�
controls the b1 of the first integrator such that

b1½k� ¼ b0;1 þ Db1 � T1½k�. Figure 16 shows the calibra-

tion signal flow diagram, where e1½k� is the quantization

noise of sub-ADC1. We have

D � Y ¼ STF1Xþ NTF1E1 þ CTF1C1 ð19Þ

STF1 ¼
H1H2

1þ z�1H2 þ z�1H1H2

ð20Þ

NTF1 ¼
1

1þ z�1H2 þ z�1H1H2

ð21Þ

CTF1 ¼
H2

1þ z�1H2 þ z�1H1H2

ð22Þ

The sub-ADC1 output y½k� is a summation of the input x½k�
shaped by the signal transfer function STF1, the sub-ADC1

quantization noise e1½k� shaped by the noise transfer

function NTF1, and the calibration signal c1½k� shaped by

CTF1. The sub-ADC1 has a conversion gain of 1=D. The

calibration signal c1½k� go through the CTF1 filter, yielding

d1½k�. Thus, embedded in y½k�; d1½k� is the step response of

CTF1 triggered by c1½k�. This step response settles toward a

final value of

Vcf 1 ¼ Vc1 � CTF1jz¼1� Vc1 �
1� b1

a1

ð23Þ

This Vcf 1 value is used to detect b1. The calibration pro-

cessor CP1 masks y½k� with g1½k� to extract only the valid

Vcf 1 information. It then uses the AAR processing to

diminish the calibration fluctuation caused by x½k� and

e1½k�. The CP operation is identical to those described in

Sect. 4. Following the design considerations outlined in

Sect. 4, we choose fq1 ¼ fs=32;Dg1 ¼ 7=16;Vc1 ¼ 0:1D;
Db1 ¼ 0:01, and Nth1 ¼ 96. The resulting time constant is

s1 ¼ 176421 sampling periods.

To calibrate b2, a calibration signal c2½k� ¼ q2½k� � Vc2

is injected to the input of sub-ADC1. The output of the 1st

integrator is digitized by an extra ADC, sub-ADC2,

yielding w½k�. For this design case, sub-ADC2 is a single

comparator. A calibration processor, CP2, takes w½k� and

generates control signal T2½k� to adjust b2 of the 2nd

integrator. Design parameters are the calibration signal

frequency fq2, the calibration signal amplitude Vc2, the g2½k�
signal duty ratio Dg2, the BPD threshold Nth2, and the b2

control step size Db2. Figure 17 shows the calibration

signal flow diagram, where e1½k� is the quantization noise

of sub-ADC1 and e2½k� is the quantization noise of sub-

ADC2. We have

D �W ¼ E2 þ STF2Xþ CTF2 E1 þ C2ð Þ ð24Þ

STF2 ¼
H1 þ z�1H1H2

1þ z�1H2 þ z�1H1H2

ð25Þ

CTF2 ¼
�z�1H1

1þ z�1H2 þ z�1H1H2

ð26Þ

The sub-ADC2 output w½k� is a summation of the input x½k�
shaped by the signal transfer function STF2, the sub-ADC1

quantization e1½k� shaped by CTF2, the sub-ADC2 quanti-

zation e2½k�, and the calibration signal c2½k� shaped by

CTF2. The sub-ADC2 has a conversion gain of 1=D. The

calibration signal c2½k� go through the CTF2 filter, yielding

w[k]
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1T 1T
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Vda
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Fig. 15 A 2nd-order DSM with the proposed calibration scheme
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d2½k�. Thus, embedded in w½k�; d2½k� is the step response of

CTF2 triggered by c2½k�. This step response settles toward a

final value of

Vcf 2 ¼ Vc2 � CTF2jz¼1� Vc2 ��
1� b2

a2

ð27Þ

This Vcf 2 value can be used to detect b2. The CP2 operation

is similar to the CP1 operation. Note that Vcf 2 is negative,

while Vcf 1 is positive. Thus, referring to Fig. 9, the polarity

of g2½k� is inverted. To simplify design, c2½k� is identical to

c1½k� and CP2 is identical to CP1. The design parameters

fq2;Dg2;Vc2;Db2, and Nth2 are identical those for c1½k� and

CP1.

Figure 18 shows the DSM output spectra before and

after calibration. The DSM input bandwidth is 2 MHz and

the sampling frequency is fs ¼ 256 MHz. The input is a

sine wave with a frequency of ð41=216Þfs and an amplitude

of �3 dBFS. The resulting SQNR is 52 dB before cali-

bration, and is improved to 72 dB after calibration. The

SFDR is improved from 57.71 to 87.25 dB by the cali-

bration. The calibration time of 2� 3s1 ¼ 4:1 msec is

required for both b1 and b2 to converge from 0.9 to 0.995.

6 Calibration of high-order DSMs

The proposed calibration can be applied to DSMs of any

structure. Figure 19 is a DSM containing P cascaded

integrators with distributed feedback (CIFB). The j-th

integrator, where j ¼ 1; . . .;P, is modeled as

HjðzÞ ¼
aj

1� bjz
�1

or
ajz
�1

1� bjz
�1

ð28Þ

The calibration corrects the b of the integrators one at a

time. To calibrate the j-th integrator, HjðzÞ, a calibration

signal c½k� is injected at the input of the ðjþ 1Þ-th

integrator, while the output of the ðj� 1Þ-th integrator is

digitized as w½k� and send to the calibration processor (CP).

The CP output T½k� adjusts the b of the j-th integrator.

Figure 20 shows the c½k�-to-w½k� signal flow, in which

x½k� and the quantization errors generated by the sub-ADCs

are neglected. The function FðzÞ is the transfer function

from y½k� to w½k�. It involves integrators from H1 to Hj�1.

The function GðzÞ is the transfer function from c½k� to y½k�.
It involves integrators from Hjþ1 to HP but without the

contribution from HjðzÞ. In the bottom half of Fig. 20, the

signal flow is redrawn so that FðzÞ and GðzÞ are in the

forward signal path and HjðzÞ and bjHjðzÞ are the feedback

paths. The c½k�-to-w½k� transfer function CTFjðzÞ 	
WðzÞ=CðzÞ is

CTFjðzÞ ¼
�FðzÞGðzÞ

HjðzÞFðzÞGðzÞ þ bjHjðzÞGðzÞ þ 1
ð29Þ

Since the signal path of FðzÞ is a cascade of integrators, its

dc gain FðzÞjz¼1¼ Fð1Þ is much larger than 1. Then, the dc

gain of CTFjðzÞ can be approximated by

CTFjð1Þ � �
1

Hjð1Þ
¼ �

1� bj

aj

ð30Þ

We design c½k� as a square wave with an amplitude of Vc.

In each c½k� cycle, the step response of CTFjðzÞ is

embedded in w½k�. We design the c½k� period to be long

Fig. 18 Output spectra of the 2nd-order DSM design case
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enough so that the step response can settle toward its final

value, which is Vcf ;j ¼ Vc ��ð1� bjÞ=aj. The CP extracts

Vcf ;j to determine the polarity of 1� bj, and then adjusts bj

to make it approache 1.

To calibrate the 1st integrator, H1ðzÞ, the calibration

signal c½k� is injected to the input of the 2nd integrator and

the DSM regular digital output y½k� is used as the CP input.

The corresponding c½k�-to-y½k� signal flow is similar to

those shown in 20, but without the �FðzÞ block and the

outer Hj feedback path. The c½k�-to-y½k� transfer function is

CTF1ðzÞ ¼
YðzÞ
CðzÞ ¼

GðzÞ
1þ b1H1ðzÞGðzÞ

ð31Þ

Since b1H1ð1ÞGð1Þ 
 1, the dc gain of CTF1ðzÞ can be

approximated by

CTF1ð1Þ �
1

b1Hjð1Þ
¼ 1� b1

b1a1
ð32Þ

When c½k� is applied, the final value of the CTF1ðzÞ step

response is Vcf ;1 � þVcð1� b1Þ=ðb1a1Þ. The polarity of

Vcf ;1 is different from that of Vcf ;j with j 6¼ 1.

Figure 21 is a DSM containing P cascaded integrators

with distributed feedforward summation (CIFF). Similar to

the CIFB DSM shown in Fig. 19, to calibrate the j-th

integrator, HjðzÞ, a calibration signal c½k� is injected at the

input of the ðjþ 1Þ-th integrator, while the output of the

ðj� 1Þ-th integrator is digitized as w½k� and send to the

calibration processor (CP). The CP output T½k� adjusts the

b of the j-th integrator. Figure 22 shows the c½k�-to-w½k�
signal flow, where

F1ðzÞ ¼ H1ðzÞ � H2ðzÞ � . . .� Hj�1ðzÞ
F2ðzÞ ¼ b1H1ðzÞ � b2H2ðzÞ � . . .� bj�1Hj�1ðzÞ
GðzÞ ¼ bjþ1Hjþ1ðzÞ � bjþ2Hjþ2ðzÞ � . . .� bPHPðzÞ

ð33Þ

From Fig. 22, it can be shown that CTFjð1Þ � �1=Hjð1Þ
for j� 2 and CTF1ð1Þ � þ1=H1ð1Þ.

The proposed calibration technique can correct the b of

all integrators in a DSM. It calibrates each individual

integrator one at a time. Although a square wave is injected

into the DSM for calibration, its effect on the DSM is

minuscule. The calibration itself is robust. It can easily

converge as long as the amplitude of the square-wave

calibration signal c½k� is sufficiently large. It does not

require high-precision analog circuitry, and does not

require cumbersome digital circuitry such as narrow-band

filters. It can tolerate the non-linearity of the sub-ADCs.

The design procedures for the proposed calibration scheme

are similar to those described in Sects. 4 and 5.

7 Third-order DSM design case

A third-order CIFF DSM is simulated to demonstrate the

proposed scheme. Figure 23 shows the DSM, which is

designed in a 65 nm CMOS technology with a 1 V supply

voltage. The entire circuit is fully differential. ADC1 and

DAC are 2-bit to increase system stability. ADC1 com-

prises three comparators with thresholds of f0;�2=9 Vg.
The output swing of DAC is �1 V. Signal scaling and feed-

forward paths are used to relax the linearity requirements

of integrators. A passive SC adder preceding ADC1 com-

bines the feed-forward paths. All of the integrators use

single-stage inverter-based opamps [13]. Figure 24 shows

the opamp schematic. The channel lengths of the MOS-

FETs are chosen to be 60 nm. The resulting dc gain is 8.4

and the gain-bandwidth is 3.9 GHz with a capacitive load

of 4 pF. The DSM is operated at 640 MHz with OSR ¼ 32.

Its input bandwidth is 10 MHz.

To calibrate the first integrator H1, the calibration signal

c1 is injected into to the second integrator H2, and CP1

receives the data stream y from ADC1. To calibrate H2; c2

is injected to the input of the third integrator H3, and the

output u1 from H1 is quantized by ADC2 and sent to CP2.

To calibrate H3; c3 is injected to the input of ADC1, and the

output u2 from H2 is quantized by ADC3 and sent to CP3.

Both ADC2 and ADC3 are 2-bit. The compensation
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capacitor Cf 1 comprising a 5-bit capacitor bank can vary

from 0 to 837 fF. Capacitor Cf 2 comprising a 4-bit

capacitor bank can vary from 0 to 240 fF. Capacitor Cf 3

comprising a 4-bit capacitor bank can vary from 0 to 90 fF.

The calibrations are performed sequentially and run in the

background during the DSM operation. Calibration signals

c1; c2, and c3 are identical, with a frequency of 11.43 MHz

and an amplitude of 0.01 V. All CPs have Dg ¼ 2=7 and

Nth ¼ 96. The calibration time, for each b to converge, is

around 15 msec.

Figure 25 shows the output spectra of the DSM from the

Spectrer circuit simulation. The input is a sine wave with a

frequency of 1.035 MHz and an amplitude of 0.625 V. The

standard variation of the outputs of all integrators is around

0.1 V. Before calibration, the quantization noise leaks into

the input band and the SNDR is 73 dB. After calibration,

the noise floor drops and a notch appears at 8 MHz. The

SNDR is increased to 87.3 dB and the SNR

The power consumption of this DSM excluding CPs is

21 mW. The integrators consume 14.7 mW. ADC1, DAC,

and the adder consume 4.1 mW. ADC2 and ADC3 con-

sume 2.2 mW. This design reveals that the proposed

technique can correct the NTF whether their zeros are

placed at dc or not.

8 Conclusions

Lossy integrators in a DSM degrade the SQNR. This paper

proposes a calibration technique to correct the integration

leakage of the SC integrators in a DSM of any form.

Although the integrators are embedded in a DSM, they can

be calibrated one at a time without interrupting the normal

DSM operation. Since each integrator is calibrated sepa-

rately, the design parameters of the corresponding calibra-

tion signal and calibration processor can be easily optimized.

This calibration technique has been used to design a

81-dB dynamic range 16-MHz bandwidth DSM chip [14].

This chip was fabricated using a 65 nm CMOS technology.

It can operate at 1.1 GHz clock rate under a 1-V supply. To

maximize speed, all MOSFETs in the opamps are sized

with the minimum channel length of 60 nm, resulting in an

opamp dc voltage of 10.
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The proposed calibration technique enables the use of

low-gain opamps in wide-band high-resolution discrete-

time DSMs. It is especially suitable for ultra-high-speed

DSMs in advanced nanoscale CMOS technologies. It

facilitates the use of amplifiers optimized for speed

regardless of their dc gain.
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