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Abstract This paper presents an integration-leakage
calibration technique for the switched-capacitor integrators
in a delta-sigma modulator (DSM). Integrators realized
with low-gain opamps are lossy. A DSM that uses lossy
integrators exhibits a degraded signal-to-quantization-noise
ratio. To calibrate an integrator, its integration leakage is
detected in the digital domain, and the leakage compen-
sation is applied to the same integrator in the analog
domain. The proposed scheme can calibrate all integrators
in a discrete-time DSM of any form. It can be proceed in
the background without interrupting the normal DSM
operation. The design considerations for the proposed
calibration scheme are discussed. Design cases of a 1st-
order, a 2nd-order, and a 3rd-order DSM are demonstrated
and simulated.

1 Introduction

Delta-sigma modulators (DSMs) are widely used in high-
resolution analog-to-digital converters (ADCs). A DSM
can effectively suppress the quantization noises arising
from its internal quantizer by combining its noise-shaping
function with the oversampling operation. Comparing to
Nyquist-rate ADCs of similar performance, DSMs require
analog circuits of higher speed. Consider a discrete-time
single-loop DSM that comprises a cascade of switched-

S.-H. Wu (X)) - J.-T. Wu

Department of Electronics Engineering and Institute

of Electronics, National Chiao Tung University, Hsin-Chu,
Taiwan

e-mail: wusuhao.ee93g@g2.nctu.edu.tw

J.-T. Wu
e-mail: jt.wu@g2.nctu.edu.tw

capacitor (SC) integrators. Each integrator contains an
opamp. The open-loop unity-gain frequency and slew rate
of the opamp determine the speed of the integrator, while
the dc voltage gain of the opamp dictates the quality of the
integration function. An SC integrator realized with a low-
gain opamp is lossy, i.e., it exhibits integration leakage. If
the integrators in a DSM are lossy, the noise-shaping
capability of the DSM is weakened, resulting in degraded
signal-to-quantization-noise ratio (SQNR).

As CMOS technologies advances, MOSFETs become
smaller and faster, but their intrinsic voltage gain, g,,/gus.
also decreases. Consider a standard 32 nm CMOS. A
minimum-channel-length MOSFET has a maximum transit
frequency f7 of over 400 GHz, but it has an intrinsic gain of
only about six [1]. Furthermore advanced CMOS technol-
ogies have lower supply voltage, it is difficult to design
high-speed opamps that also have a good dc gain. Although
correlated double sampling [2], correlated level shifting
[3], and multiple-stage configuration [4] can be used to
raise the dc gain of opamps, all sacrifice the speed.

To take advantage of the advanced nano-scale CMOS
technologies, we propose using opamps with simple circuit
configuration and MOSFETs of minimum channel length.
The resulting SC integrators are high-speed and low-power
but also lossy. We then employ calibration to compensate
the integration leakage of the integrator and recover the
noise-shaping capability of the DSM. There are calibration
techniques that can improve the frequency accuracy of the
noise-shaping functions of the DSMs [5-8]. They all
assume the opamps have sufficiently large dc gain. A
calibration technique has been proposed to correct both the
integration leakage and the distortion of the integrators in a
cascade DSM [9]. However, it is difficult to obtain the
required modeling parameters from the DSM digital output
alone.
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Fig. 1 A conventional switched-capacitor (SC) integrator
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Fig. 2 Integrator time-domain output response. V;[k] =0 for k > 0

This paper proposes an integration-leakage calibration
technique for the integrators in an SC DSM. To calibrate an
integrator, its integration leakage is detected in the digital
domain, while the leakage compensation is added to the
same integrator in the analog domain. Once all integrators
are calibrated, the SQNR performance of the DSM is
restored. The proposed scheme can calibrate all integrators
in a DSM of any form. It calibrates one integrator at a time.
It can proceed in the background without interrupting the
normal DSM operation.

The rest of this paper is organized as follows. Section 2
discusses the effect of integration leakage on the SQNR
performance of DSMs. Section 3 introduces the SC inte-
grators with leakage compensation. Section 4 introduces
the proposed calibration technique with a Ist-order DSM
design case. Design considerations are outlined. Section 5
applies the calibration technique to a 2nd-order DSM
design case. Section 6 applied the techniques to high-order
DSMs. Section 7 demonstrates a 3rd-order DSM design
case. Finally, Sect. 8 draws conclusions.

2 Integration leakage and its effect

Figure 1 presents a conventional SC integrator, its z-

domain transfer function is

@ Springer

sub-ADC
1 02
X[K] ~ - yIK]
- 1-pq2 - 1-Poz
\ DAC

Vo(2) o

H(z) = 1

(@) Vilz) 1—pz1 (1)
with

Cy 1 G+C,
_ e _ 1 +A_o. Ci l (2)
- 1 Ci+Ci+C, - 1 C+Ci+C,
1+A_0'7C,v 1+A_0'7C,v

where Ay is the dc voltage gain of the opamp and C, is the
total parasitic capacitance associated with the negative
terminal of the opamp. If the opamp is ideal with Ay = oo,
then o = —C;/C; and f§ = 1. Figure 2 illustrates the inte-
grator time-domain output response, in which V;[k] = 0 for
k> 0.1If p = 1, V,[k] maintains its V,[0] value for k > 0. If
p<1, then the charge on capacitor C; leaks and V,[k]
decreases as k progresses. An integrator with f<1 is a
lossy integrator.

Figure 3 shows a DSM that uses the lossy integrators.
Although the coefficient o for the integrator of Fig. 1 is
negative, the coefficients «; and o, in Fig. 3 are positive
for simplicity. Their polarities can be easily changed in a
fully differential circuit configuration. Assume the digital-
to-analog converter (DAC) is ideal. The difference
between the sampled analog input x[k] and the DAC
output is integrated by two lossy integrators and then
quantized by a sub-ADC. The sub-ADC introduces
quantization errors e[k]. The sub-ADC digital output y[k]
can be expressed as Y(z) =STF(z)-X(z) + NTF(z)-E(z).
Where STF(z) is the signal transfer function and NTF(z)
is the noise transfer function. If the integrators are lossy,
ie., f; <1 and f, <1, then the zeros of the NTF deviate
from the unit circle in the z-plane, diminishing the the
DSM’s ability of suppressing the sub-ADC quantization
errors. Consider an M-th order DSM with M lossy inte-
grators. Its NTF is expressed as

_I\M
— Pz 1) (3)
The f coefficients are assumed to be identical for sim-
plicity. If the sub-ADC in the DSM has B-bit resolution,
then the DSM’s maximum SQNR is
SQNR = 28 x /3/2 x SQNRyr¢ (4)

where SQNRyrr is the SQNR enhancement by the NTF. It
can be expressed as

NTF(z) = (1
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Fig. 4 DSM SQNR enhancement versus f§. Assume OSR = 64. For a
Ist-order DSM, M = 1. For a 2nd-order DSM, M = 2. For a 3rd-order
DSM, M =3
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Fig. 5 DSM SQNR enhancement versus oversampling ratio (OSR)
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where OSR is the oversampling ratio. If f = 1, then each
term of (6) is zero except n =0, and 0 = 1. If § # 1, then
0 > 1, yielding a larger in-band quantization noise power.

Figure 4 shows the effects of f on SQNRypr when
OSR = 64. If f =1, an ideal 3rd-order DSM can offer an
SQNRyrr of 105 dB. However, if f = 0.9, the resulting
SQNRyrr is degraded to 77 dB. Figure 5 shows the effects
of f on SQNRytr when OSR increases. For an ideal M-
order DSM, the SQNRytg is improved by 6 M + 3dB
when the OSR is doubled. If <1, it becomes less effec-
tive for the DSM to improve SQNRyrg by increasing OSR.
Although above conclusions are established on assuming
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Fig. 6 A switched-capacitor integrator with leakage compensation. It
is either an inverting integrator or a non-inverting integrator,
depending the clock phases denoted on the switches

that all NTF’s zeros are located at 5 for simplicity, similar
results are obtained even NTF’s zeros are separated.

3 Integrator with leakage compensation

Consider the lossy integrator, its output falls by (1 —
p)V,[k — 1] from cycle k — 1 to cycle k. Figure 6 shows the
proposed SC integrator to compensate this leakage. The
capacitor Cy is added to sample V,. The charge on Cy is
added to the integrator in the next clock cycle. Similar
integrators can be found in [10, 11]. The resulting f8
coefficient of the integrator is

1 GitGy
M—Aof’l (7)
[+ L SFCIGG
If G = Cs/ (Ap—1), then B=1 and the integrator

becomes lossless. Since Cy < Cy, this Gy capacitor and its
associated switches add minuscule loading and noise to the
integrator. The required C; is sensitive to process-voltage-
temperature variations. Therefore, the integrator requires
calibration to adjust Cy. In our design, a digital signal
T[k] € {0,1,2,...} controls C;. A calibration processor
(CP) continuously runs in the background to adjust Cr to
ensure § = 1. The adjustable f§ can be expressed as

B=Bo+AB X T[k] (8)
where
1 G+G,
Aot AG )
1 + 2 C,+C;+Cfo+cp Ci
Ci

and ACy is the digital-control capacitance step size. A
smaller ACy makes f closer to 1 when calibration is applied
to adjust Cy, resulting in a better SQNRyg.
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Fig. 7 A lst-order DSM with the proposed calibration scheme
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4 First-order DSM design case

4.1 Architecture

Figure 7 shows a 1st-order DSM using the integrator of
Fig. 6. If C; = C; and Ap = 8, then « = 0.8 and = 0.9.
This DSM includes a background calibration that auto-
matically adjusts the C; capacitor in the integrator to
maximize the DSM’s SQNR. The sub-DAC has N levels
and covers an output range of 1. The least-significant-bit
(LSB) size is A = 2/(N — 1). The DSM output is y[k]. If N
is odd, y[k] has its value among {0,+1,+2 ... +
(N—1)/2}. If N is even, y[k] has its value among
{£0.5,£1.5,...,£(N/2 - 0.5)}, The DAC output is
Vaalk] = A x y[k — 1]. The input thresholds of sub-ADC
correspond to the middle of adjacent DAC outputs, its LSB
size is also A. The DSM has a sampling rate of f;. The
modulator digital output y[k] is

A X Y = STF, - X + NTF, -E (10)

where

STFf=——— NTF, =——— 11
" 13z H "1y H (1)

and H is the transfer function of the integrator expressed in
(1). As proposed in Sect. 3, the f of the integrator is
adjustable. It is adjusted automatically by the calibration
processor (CP) shown in Fig. 7. To facilitate calibration, a
periodic square wave c[k] = g[k] x V. is added to the sub-
ADC input. The CP detects the calibrating signal embed-
ded in y[k|, generates a control signal T'[k], and adjusts f§ to
make f = 1.

Figure 8 shows a signal flow diagram of the calibration.
The modulator input x[k] and sub-ADC quantization errors
elk] are shaped by STF; and NTF, respectively. The cali-
brating signal c[k] is shaped by NTF, yielding d[k]. The
summation of the above three signals is converted to y[k]
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Fig. 10 Accumulation-and-reset (AAR) operation

with a conversion gain of 1/A. The calibrating signal c[k] is
expressed as a periodic binary square wave glk] €
{—1,41} multiplied by an amplitude of V.. Thus,
embedded in y[k], d[k] is the step response of NTF; trig-
gered by c[k]. Figure 9 shows the d[k] waveform. The step
response has an initial value of

2 1—
V.= V. x Lﬁ (12)
a+1—-p
and settles toward a final value of
1-p
Vip=Ve X ———— 13
/ % +1-p (13)

Since Vs depends on 1 — f, it can be used to detect f.
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Figure 8 shows the CP operation. The CP correlates
the DSM output yk] with a triple-valued sequence
glk] € {—1,0,+1}. The g[k] waveform is illustrated in
Fig. 9. It has the same polarity as g[k], but its value is set to
0 during the initial transition phase of d[k]. Thus, the
resulting product r[k] contains only the valid Vs informa-
tion. Following r[k] is an accumulator (ACC1). It is fol-
lowed by a binary peak detector (BPD). Together they
perform the accumulation-and-reset (AAR) operation [12]
to extract Vs from r[k] while removing the perturbations
caused by x[k] and e[k]. The AAR operation is described as
follows. Accumulator ACC1 accumulates the r[k]
sequence. Its output s[k] is monitored by a BPD with a
threshold Nth > 0. Whenever s[k] reaches either +Nth or
—Nth, the BPD issues an output blk] = +1 or b[k] = —1
for one clock cycle respectively and reset s[k] to 0. The
BPD output b[k] remains at 0 when no reset occurs. The
BPD output b[k] is an estimate of the (1 — f8) polarity. The
CP uses it to adjust the f of the integrator. As shown in
Fig. 7, following b[k] is another accumulator, ACC2, that
accumulates the b[k] sequence. Its output 7T'[k] controls the
f according to (8). Figure 10 illustrates the time-domain
waveform of the ACC1 output s, and the waveform of the
resulting 5. When f approaches 1, both |1 — f| and Vi
become smaller, and it takes a longer time to activate the
BPD.

4.2 Calibration parameters

This calibration has five design parameters, including the
c[k] amplitude V., the c[k] frequency f;, the g[k] duty ratio
D,, the BPD threshold Nth, and the T'[k] control step size
ApB. Referring to Fig. 9, the duty ratio D, is defined as the
ratio of the time for g[k] = +1 to the time for g[k] = +1.
The duty ratio for g[k] = —1 and g[k] = —1 is assumed to
be the same as D,.

We use the aforementioned 1st-order DSM design case
to illustrate the design considerations for the proposed
calibration scheme. The DSM block diagram is shown in
Fig. 7. Its sub-ADC and DAC have N = 16 quantization
steps. The corresponding quantization step size is
A =2/15. It has a sampling frequency of f; and a corre-
sponding sampling period of Ty = 1/f;. The integrator in
Fig. 7 is realized using the SC integrator of Fig. 6 with a
transfer function of (1). If the opamp has a dc gain of
Ay =8, then & = 0.8 and f = 0.9. Assume the OSR of the
DSM is 64. Its theoretical maximum SQNR is 74 dB when
Ay = oo. We will apply the proposed calibration to recover
SONR.

As shown in Fig. 7, the calibration square wave c[k] =
q[k] x V. is added to the sub-ADC input. Let c[k] have a

B=0.90 ]
$B=095 T
B=1.00
$p=1.05
B=1.10 |

d[k]

Fig. 11 The transient response of d[k| with different f§

frequency of f, a corresponding period of T, = 1/f,, and a
duty cycle of 50 %. The resulting d[k], as shown in Fig. 9,
is embedded in the sub-ADC output y[k]. In each f; cycle,
the transient response of d[k] is a step response of NTF;
triggered by c[k]. It can be expressed as

20‘(ﬁ_ ‘x)k + (1 _ﬁ) (14)
a+1—-p

This step response has an initial value of V; of Fig. (12)
and then settles toward the Vs of (13). Figure 11 shows
several d[k] waveforms with different f.

The d[k] waveforms have settled near Vs for k > 5. We
choose T, =167, and D, = 1/4, so that, in each d[k]
transient, d[k] has a period of 6 clock cycles to settle before
glk] is activated for 2 clock cycles. The frequency of the
injected signal c[k] is f; = f;/16. As long as OSR > 8, the
frequency components of d[k] in y[k] is outside the signal
band. It can be easily removed by the decimation filter
following the DSM.

The injection of the calibration signal c[k] degrades the
DSM’s maximum SQNR, since c[k] increases the input
signal range of the sub-ADC input. The SQNR degradation
is a function of the c[k] amplitude V.. Figure 12 shows the
simulated SQNR of the DSM design case. The injected c|k]
has a frequency f, =f;/16. In Fig. 12, SQNR is plotted
against x[k] input amplitude with different V.. The x[k]
frequency is fi, = (41/2'9)f,. If V.=1A=2/15, the
maximum SQNR is 71dB at —1.5dBFS. If V. =3A =
6/15, the maximum SQNR is 67dB at —3.0dBFS. If
V. =5A =10/15, the maximum SQNR is 66dB at
—4.5dBFS. In this design example, we choose V. = 1A.

Figure 10 illustrates the transient response of f§ during
the calibration. Consider the DSM shown in Fig. 7. The
averaged variation of s[k] for one clock cycle is
As =D,V /A. Tt takes Nth/As cycles for s[k] to accu-
mulate from 0 to +Nth (or —Nth) so that T[] is changed
by 1 and f is changed by Af. Thus, we have

dlk] = V. x
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Fig. 12 SQNR of the Ist-order DSM design case with different V..
The opamp in the DSM is ideal

24m T T T T T T T
20m - —

16mf

o(B)

AB=0.01

0 8 16 24 32 40 48 56 64

Fig. 13 o(p) versus Nth with different Af

dp _ Ap NAﬁDgVC(l_ﬁ)

= ~ 15
dk  Nth/As ~ aNthA (1)

This calibration loop can be modeled as a single-pole
feedback system. The transient response of [ can be
expressed as

BIk] =1 — (1 — B[0]) x e */* (16)
The time constant 7 is
D, V. AB (17)

From (17), a smaller Nth and a larger Af lead to a smaller
7, yielding a faster calibration speed. However, as the
calibration process converges, the behavior of f[k]
becomes a discrete random fluctuation around 1 [12].
Referring to Fig. 8, both x[k] and e[k] induce this fluctua-
tion. Their effects are diminished by the AAR operation. A
larger Nth and a smaller Af lead to a smaller fluctuation in
f, yielding the better SNDR performance for the DSM.
Figure 13 shows the standard deviation of the pf[k]
fluctuation from the system simulation of the DSM design
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Fig. 14 Output spectra of the Ist-order DSM design case

case. The standard deviation ¢(f) increases drastically for
Nth<8. As Nth increases, the standard deviation of f§
fluctuation, o(f3), converges to an averaged value, that can
be expressed as

Ap
o(f) =—% 18
) ="z (18)
From Fig. 4, SQNRyf is degraded by less than 1 dB if
3g(f) <0.015. Using (18), we need Af<0.0122. In this
design case, we choose A = 0.01 and Nth = 24.

4.3 Simulation results

This 1st-order DSM design case is verified by using time-
domain simulation. Calibration design parameters are
fa =1/16,D, =0.25,V, = 1A, Af = 0.01, and Nth = 24.
The resulting time constant t = 7680 sampling periods. It
takes a calibration time of 37 for f§ to converge from 0.9 to
0.995, where the SQNR degradation due to a non-ideal f is
less than 1 dB. Assume the DSM input bandwidth is 2 MHz
and the sampling frequency is f; = 256 MHz. Then a cal-
ibration time of 37 is 0.09 m/s. Figure 14 shows the DSM
output spectra before and after calibration. The input is a
sine wave with a frequency of (41/2!®)f; and an amplitude
of —2dBFS. The resulting SQNR is 58 dB before cali-
bration, and is improved to 70 dB after calibration. The
frequency components of c[k] are visible in Fig. 14. They
are far away from the signal band.

5 Second-order DSM design case

Figure 15 shows a 2nd-order DSM. It includes two inte-
grators. The internal opamps of the integrators have a dc
gain of 8.2 and 7.7 respectively, yielding o; = 0.804,
1 =0.902,0, = 0.794, and f, = 0.897. The regular sub-
ADCI following the 2nd integrator is single comparator.
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Fig. 16 Calibration signal flow diagram for f3; calibration.

Thus, for this 2nd-order DSM, N =2 and A = 2. If the
integrators are ideal and OSR = 64, then the theoretical
maximum SQNR is 79 dB.

The proposed calibration scheme adjusts f;, and f,
separately. Integrators with adjustable f are described in
Sect. 3. To calibrate 3, a calibration signal ¢, [k] = g;[k] x
V.1 is injected to the input of the 2nd integrator. A cali-
bration processor, CP1, takes the sub-ADCI output y[k] and
generates a control signal Tj[k] to adjust 5, of the Ist
integrator. The calibration signal c[k] is a square wave
with f,; frequency, V. amplitude, and 50 % duty cycle.
The calibration processor CP1 is identical to the CP shown
in Fig. 8. In the CP1, its g;[k] signal has a duty ratio of Dy
and its BPD has a threshold of Nthl. Its output T[k]
controls the f; of the first integrator such that
Bilk] = o1 + APy x Ti[k]. Figure 16 shows the calibra-
tion signal flow diagram, where e;[k] is the quantization
noise of sub-ADCI1. We have

A -Y = STF,X + NTFIE; + CTF,C, (19)
H\H,

STF, = 20
" 147 'H, +7 'HH, (20)

1
NTF, = 21
! 1—|—Z71H2—|—271H1H2 ( )

H
CTF, = 2 (22)

1+z'H, +z7'H H,

The sub-ADC1 output y[k] is a summation of the input x[k]
shaped by the signal transfer function STF, the sub-ADC1
quantization noise e;[k] shaped by the noise transfer
function NTF;, and the calibration signal c¢;[k] shaped by

ez [k]

x[k]

= s2[K]
eq [k]

g2 [k]
Bl W[k]%rzlk] AAR
A

Fig. 17 Calibration signal flow diagram for f3, calibration

> ba [k]

ca[k] a7k

CTF,. The sub-ADC1 has a conversion gain of 1/A. The
calibration signal ¢, [k] go through the CTF, filter, yielding
d, [k]. Thus, embedded in y[k],d,[k] is the step response of
CTF, triggered by ¢y [k]. This step response settles toward a
final value of

1—p

o

chl = Vcl X CTF] |Z=l ~ Vcl X (23)
This Vs value is used to detect ;. The calibration pro-
cessor CP1 masks y[k] with g [k] to extract only the valid
Ve information. It then uses the AAR processing to
diminish the calibration fluctuation caused by x[k] and
e1]k]. The CP operation is identical to those described in
Sect. 4. Following the design considerations outlined in
Sect. 4, we choose f;1 =f;/32,Dy =7/16,V, = 0.1A,
AB; = 0.01, and Nthl = 96. The resulting time constant is
71 = 176421 sampling periods.

To calibrate f3,, a calibration signal c;[k] = g2 [k] X Ve
is injected to the input of sub-ADCI1. The output of the 1st
integrator is digitized by an extra ADC, sub-ADC2,
yielding wik]. For this design case, sub-ADC2 is a single
comparator. A calibration processor, CP2, takes w[k] and
generates control signal T»[k] to adjust 8, of the 2nd
integrator. Design parameters are the calibration signal
frequency f;», the calibration signal amplitude V,, the g k]
signal duty ratio Dy, the BPD threshold Nth2, and the f,
control step size Apf,. Figure 17 shows the calibration
signal flow diagram, where e;[k] is the quantization noise
of sub-ADC1 and e,[k] is the quantization noise of sub-
ADC2. We have

A-W = E + STE:X + CTF, (E; + C,) (24)
H] +171H1H2
STF, = 25
27 +z7'H, +z7'H\H, @)
g
CTE, = < (26)

1+z'Hy, +z7'H H,

The sub-ADC?2 output w[k] is a summation of the input x[k]
shaped by the signal transfer function STF,, the sub-ADC1
quantization e [k] shaped by CTF,, the sub-ADC2 quanti-
zation ey[k], and the calibration signal c,[k] shaped by
CTF,. The sub-ADC2 has a conversion gain of 1/A. The
calibration signal ¢, [k] go through the CTF, filter, yielding
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Fig. 18 Output spectra of the 2nd-order DSM design case

dy [k]. Thus, embedded in w(k], d,[k] is the step response of
CTF, triggered by c; [k]. This step response settles toward a
final value of

Vepr = Vo X CTR|,_ 1= Ve X —1“—2[32 (27)
This Vs, value can be used to detect f8,. The CP2 operation
is similar to the CP1 operation. Note that Vs, is negative,
while Vs is positive. Thus, referring to Fig. 9, the polarity
of g»[k] is inverted. To simplify design, c,[k] is identical to
c1]k] and CP2 is identical to CP1. The design parameters
fp2:Dg2, Vea, AP,, and Nth2 are identical those for ¢ [k] and
CP1.

Figure 18 shows the DSM output spectra before and
after calibration. The DSM input bandwidth is 2 MHz and
the sampling frequency is f; = 256 MHz. The input is a
sine wave with a frequency of (41/2!®)f; and an amplitude
of —3dBFS. The resulting SQNR is 52 dB before cali-
bration, and is improved to 72 dB after calibration. The
SFDR is improved from 57.71 to 87.25 dB by the cali-
bration. The calibration time of 2 x 31; = 4.1 msec is
required for both f§; and f, to converge from 0.9 to 0.995.

6 Calibration of high-order DSMs

The proposed calibration can be applied to DSMs of any
structure. Figure 19 is a DSM containing P cascaded
integrators with distributed feedback (CIFB). The j-th

integrator, where j = 1, ..., P, is modeled as
-1
o oz
Hi(z) =——— or ———— (28)
1 - sz 1 1-— ﬁJZ 1

The calibration corrects the f§ of the integrators one at a
time. To calibrate the j-th integrator, H;(z), a calibration
signal c[k] is injected at the input of the (j+ 1)-th
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Fig. 20 c[k]-to-w[k] signal flow in a CIFB DSM

A

integrator, while the output of the (j — 1)-th integrator is
digitized as w(k] and send to the calibration processor (CP).
The CP output T'[k] adjusts the f§ of the j-th integrator.
Figure 20 shows the c[k]-to-w[k] signal flow, in which
x[k] and the quantization errors generated by the sub-ADCs
are neglected. The function F(z) is the transfer function
from y[k] to w[k]. It involves integrators from H; to H;_;.
The function G(z) is the transfer function from c[k] to y[k].
It involves integrators from H;.; to Hp but without the
contribution from H;(z). In the bottom half of Fig. 20, the
signal flow is redrawn so that F(z) and G(z) are in the
forward signal path and H;(z) and b;H;(z) are the feedback
paths. The c[k]-to-w[k] transfer function CTFj(z) =
W(z)/C(z) is
—F(2)G(2)

CTFj(z) = H;(2)F(z)G(z) + bjH;(z)G(z) + 1

(29)

Since the signal path of F(z) is a cascade of integrators, its

dc gain F(z)|._; = F(1) is much larger than 1. Then, the dc

gain of CTFj(z) can be approximated by
1 -8

CTE(1) ~ —— =
i) H;(1) %

(30)

We design c[k] as a square wave with an amplitude of V..
In each c[k] cycle, the step response of CTFj(z) is
embedded in w[k]. We design the c[k] period to be long
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Fig. 21 Calibration of a CIFF DSM

enough so that the step response can settle toward its final
value, which is Viy; = V. x —(1 — f;) /0. The CP extracts
Ver,j to determine the polarity of 1 — f3;, and then adjusts f3;
to make it approache 1.

To calibrate the Ist integrator, H;(z), the calibration
signal c[k] is injected to the input of the 2nd integrator and
the DSM regular digital output y[k] is used as the CP input.
The corresponding c[k]-to-y[k] signal flow is similar to
those shown in 20, but without the —F(z) block and the
outer H; feedback path. The c[k]-to-y[k] transfer function is

Y@2) G
C(z) 1+4+bH(2)G(z)

Since b1H;(1)G(1) > 1, the dc gain of CTF,(z) can be
approximated by
1 1= p

CTF,(1) ~ ——— =
o) biH;(1)  bjo

CTF,(z) = (31)

(32)

When clk] is applied, the final value of the CTF,(z) step
response is Ve ~ +V.(1 — f;)/(bio1). The polarity of
V.1 is different from that of V,¢; with j # 1.

Figure 21 is a DSM containing P cascaded integrators
with distributed feedforward summation (CIFF). Similar to
the CIFB DSM shown in Fig. 19, to calibrate the j-th
integrator, H;(z), a calibration signal c[k] is injected at the
input of the (j + 1)-th integrator, while the output of the
(j — 1)-th integrator is digitized as w[k] and send to the
calibration processor (CP). The CP output T'[k] adjusts the
p of the j-th integrator. Figure 22 shows the c[k]-to-w[k]
signal flow, where

Fi(z) = Hi(z) X Hy(2) X ... X H;_1(2)
F3(z) = biHi(z) X byHa(2) X ... X bj1Hj-1(2)
G(2) = bjs1Hj11(2) X bj2Hj42(2) X ... X bpHp(2)
(33)

From Fig. 22, it can be shown that CTFj(1) ~ —1/H;(1)
for j >2 and CTF,(1) ~ +1/H;(1).

The proposed calibration technique can correct the f§ of
all integrators in a DSM. It calibrates each individual

integrator one at a time. Although a square wave is injected
into the DSM for calibration, its effect on the DSM is

Fig. 22 c[k]-to-w[k] signal flow in a CIFF DSM

minuscule. The calibration itself is robust. It can easily
converge as long as the amplitude of the square-wave
calibration signal c[k] is sufficiently large. It does not
require high-precision analog circuitry, and does not
require cumbersome digital circuitry such as narrow-band
filters. It can tolerate the non-linearity of the sub-ADCs.
The design procedures for the proposed calibration scheme
are similar to those described in Sects. 4 and 5.

7 Third-order DSM design case

A third-order CIFF DSM is simulated to demonstrate the
proposed scheme. Figure 23 shows the DSM, which is
designed in a 65 nm CMOS technology with a 1 V supply
voltage. The entire circuit is fully differential. ADC1 and
DAC are 2-bit to increase system stability. ADC1 com-
prises three comparators with thresholds of {0,+2/9V}.
The output swing of DAC is 1 V. Signal scaling and feed-
forward paths are used to relax the linearity requirements
of integrators. A passive SC adder preceding ADC1 com-
bines the feed-forward paths. All of the integrators use
single-stage inverter-based opamps [13]. Figure 24 shows
the opamp schematic. The channel lengths of the MOS-
FETs are chosen to be 60 nm. The resulting dc gain is 8.4
and the gain-bandwidth is 3.9 GHz with a capacitive load
of 4 pF. The DSM is operated at 640 MHz with OSR = 32.
Its input bandwidth is 10 MHz.

To calibrate the first integrator Hj, the calibration signal
c) is injected into to the second integrator H,, and CP;
receives the data stream y from ADCI. To calibrate H,, ¢,
is injected to the input of the third integrator H3, and the
output u; from H; is quantized by ADC2 and sent to CP,.
To calibrate H3, c3 is injected to the input of ADC1, and the
output u, from H, is quantized by ADC3 and sent to CPs.
Both ADC2 and ADC3 are 2-bit. The compensation

@ Springer



654

Analog Integr Circ Sig Process (2014) 81:645-655

Fig. 23 A third-order CIFF
DSM with local resonator

feedback
Cs1 Ci1 Cs2 Ciz Css Cis Cy Cu1 Cuz Cus
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Fig. 24 Inverter-based opamp with common-mode feedback 100 k iM 0M 100 M
Frequency

capacitor Cy; comprising a 5-bit capacitor bank can vary
from 0 to 837 fF. Capacitor Cr, comprising a 4-bit
capacitor bank can vary from 0 to 240 fF. Capacitor C3
comprising a 4-bit capacitor bank can vary from 0 to 90 fF.
The calibrations are performed sequentially and run in the
background during the DSM operation. Calibration signals
c1, ¢, and c3 are identical, with a frequency of 11.43 MHz
and an amplitude of 0.01 V. All CPs have D, =2/7 and
Nth = 96. The calibration time, for each f to converge, is
around 15 msec.

Figure 25 shows the output spectra of the DSM from the
Spectre® circuit simulation. The input is a sine wave with a
frequency of 1.035 MHz and an amplitude of 0.625 V. The
standard variation of the outputs of all integrators is around
0.1 V. Before calibration, the quantization noise leaks into
the input band and the SNDR is 73 dB. After calibration,
the noise floor drops and a notch appears at 8 MHz. The
SNDR is increased to 87.3 dB and the SNR

The power consumption of this DSM excluding CPs is
21 mW. The integrators consume 14.7 mW. ADCI1, DAC,
and the adder consume 4.1 mW. ADC2 and ADC3 con-
sume 2.2 mW. This design reveals that the proposed
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Fig. 25 Output spectra of the 3rd-order CIFF DSM design case

technique can correct the NTF whether their zeros are
placed at dc or not.

8 Conclusions

Lossy integrators in a DSM degrade the SQNR. This paper
proposes a calibration technique to correct the integration
leakage of the SC integrators in a DSM of any form.
Although the integrators are embedded in a DSM, they can
be calibrated one at a time without interrupting the normal
DSM operation. Since each integrator is calibrated sepa-
rately, the design parameters of the corresponding calibra-
tion signal and calibration processor can be easily optimized.

This calibration technique has been used to design a
81-dB dynamic range 16-MHz bandwidth DSM chip [14].
This chip was fabricated using a 65 nm CMOS technology.
It can operate at 1.1 GHz clock rate under a 1-V supply. To
maximize speed, all MOSFETs in the opamps are sized
with the minimum channel length of 60 nm, resulting in an
opamp dc voltage of 10.
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The proposed calibration technique enables the use of
low-gain opamps in wide-band high-resolution discrete-
time DSMs. It is especially suitable for ultra-high-speed
DSMs in advanced nanoscale CMOS technologies. It
facilitates the use of amplifiers optimized for speed
regardless of their dc gain.
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