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The Bounded Capacity of Fuzzy Neural Networks
(FNNs) Via a New Fully Connected Neural Fuzzy
Inference System (F-CONFIS) With Its Applications

Jing Wang, Chi-Hsu Wang, Fellow, IEEE, and C. L. Philip Chen, Fellow, IEEE

Abstract—In this paper, a fuzzy neural network (FNN) is trans-
formed into an equivalent three-layer fully connected neural infer-
ence system (F-CONFIS). This F-CONFIS is a new type of a neural
network whose links are with dependent and repeated weights be-
tween the input layer and hidden layer. For these special dependent
repeated links of the F-CONFIS, some special properties are re-
vealed. A new learning algorithm with these special properties is
proposed in this paper for the F-CONFIS. The F-CONFTIS is there-
fore applied for finding the capacity of the FNN. The lower bound
and upper bound of the capacity of the FNN can be found from
a new theorem proposed in this paper. Several examples are illus-
trated with satisfactory simulation results for the capacity of the
F-CONFIS (or the FNN). These include “within capacity training
of the FNN,” “over capacity training of the FNN,” “training by
increasing the capacity of the FNN,” and “impact of the capacity
of the FNN in clustering Iris Data.” It is noted that the finding of
the capacity of the F-CONFIS, or FNN, has its emerging values in
all engineering applications using fuzzy neural networks. This is to
say that all engineering applications using FNN should not exceed
the capacity of the FNN to avoid unexpected results. The clustering
of Iris data using FNN illustrated in this paper is one of the most
relevant engineering applications in this regards.

Index Terms—Capacity of neural networks, fuzzy neural net-
works (FNNs), fuzzy system, Iris data, neural networks.

1. INTRODUCTION

N the past decade, fuzzy neural networks (FNNs) have been
I widely used in many kinds of subject areas and engineer-
ing applications for problem solving, such as pattern recog-
nition, intelligent adaptive control, regression or density es-
timation, and so on [1]-[6]. The FNN possesses the charac-
teristics of linguistic information and the learning of a neural
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network (NN) [7]-[12]. If the FNN is properly constructed,
then it follows universal approximate theorem (UAT), i.e., the
properly constructed FNN can approximate any nonlinear func-
tions [13]-[16]. However, the universal approximate theorem
does not show us how to properly construct and tune the FNN.
This is to say that the FNN designed for certain applications by
human expert must have constraints, such as the maximum num-
ber of input and output samples it can approximate or memorize.
Similar to the discussions of the capacity of multilayer NNs [17],
the capacity of the FNN is thus defined as the maximum number
of arbitrary distinct input samples that can be mapped to desired
output samples with a zero error. The overcapacity may lead
training process to diverge in the FNN. The training samples
should be independent. During the past decade, the capacity of
an associative memory and multilayer perceptron (MLP) has
been derived, assuming a fully connected NN [18]-[24].
However, it is challenging to find the capacity of the FNN
because the links between the membership function layer and
fuzzy rule layer are not fully connected, and the operators of
the fuzzy rule layer of the FNN are the product form rather than
the adding form in an NN. For we can find the capacity of the
FNN by the method for a fully connected NN, the four-layer
FNN is converted into an equivalent three-layer fully connected
NN, namely, fully connected neural fuzzy inference System
(F-CONFIS) in [25]. This F-CONFIS is a new type of NN,
whose links are with dependent and repeated weights of mem-
bership functions in the premise part of the FNN. For these spe-
cial properties of the F-CONFIS, its learning algorithm should
be different from that of the conventional NNs with indepen-
dent and different link weights. The initial discussion of the BP
training for the F-CONFIS without a proper algorithm to find the
backward path has been proposed in [26]. It is, thus, very impor-
tant for this new type of the FNN (F-CONFIS) to develop a new
complete training algorithm with special properties. Therefore,
for these special dependent repeated links of the F-CONFIS,
some special properties are revealed. A new and complete gra-
dient descent training algorithm is thus proposed with these spe-
cial properties in this paper. By using this new F-CONFIS in this
paper, the lower bound and upper bound of the capacity of the
FNN can be found. Several examples are illustrated to validate
the theoretical capacity bounds and new gradient descent algo-
rithm for the F-CONFIS, or the FNN. These include “within ca-
pacity training of the FNN,” “over capacity training of the FNN,”
“increasing the capacity of the FNN to let the training process
converge,” and “impact of the capacity of the FNN in Clustering
Iris Data.” The clustering of Iris flower dataset using the FNN
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illustrated in this paper is one of the most relevant engineering
applications in this regard [27]-[29]. Excellent agreements have
been achieved between the training simulations and theoretical
bounds. The capacity using the Vapnik—Chervonenkis (VC) di-
mension (more precisely, the growth functions) is the maximum
number of dichotomies that can be induced by a model. Both
capacities are the measure of the complexity of a model. How-
ever, a VC dimension applies to only binary-valued functions.
If the FNN has only one output node and the output belongs
to one of two exclusive states, or binary states, then both ca-
pacities are the same. The pseudodimension is an extension of
the VC-dimension to real-valued functions [30]. The relation-
ship between the VC dimension or pseudodimension and the
mapping capacity needs to be further studied.

In this paper, the major contributions are as follows: 1) After
transforming the FNN into the F-CONFIS, some special proper-
ties of the F-CONFIS, which is a new type of the NN, were first
developed and formulated. 2) We propose a new complete gra-
dient descent training algorithm of the FNN via the F-CONFIS,
which can handle not only the weight of the consequent part but
also the repeated weights between the input layer and hidden
layer of the premise part for FNN or F-CONFIS. 3) We find
the lower bound and upper bound of the capacity of the FNN.
4) With the help of the theoretical capacity bounds in this paper,
we provide a practical and effective method to adjusting the
capacity of the F-CONFIS (or FNNs) in order to guarantee that
the training process converges successfully.

The paper is organized as follows. In Section II, the equiva-
lent three-layer F-CONFIS is briefly introduced, then a gradient
descent learning algorithm of the F-CONFIS with special prop-
erties is proposed. The capacity of the F-CONFIS (or the FNN)
is derived and formulated in Section III. In the next section,
some effective methods of adjusting the capacity for the FNN
are discussed. In Section V, examples to find the capacities for
different configurations of the F-CONFIS are illustrated. The
last section contains some conclusions.

II. FULLY CONNECTED NEURAL FUZZY INFERENCE SYSTEM
(F-CONFIS) AND ITS SPECIAL LEARNING ALGORITHM

A. Fully Connected Neural Fuzzy Inference System
(F-CONFIS)

Since the FNN is not a fully connected graph, discussions on
finding its capacity were hindered. For we can find the capacity
of the FNN by the method for a fully connected NN, the FNN
has to be converted, that is, into an equivalent three-layer fully
connected NN (or F-CONFIS) for the FNN as proposed briefly
in [25]. For the convenience of a more detailed discussion of
the capacity and new gradient descent training algorithm of the
FNN, we have to summarize the derivation of the F-CONFIS in
this section. The configuration of the FNN is shown in Fig. 1,
four layers comprised. The first layer is an input layer, while its
nodes correspond to input variables. The input vectors are {x},
i=1,2,3,..., N} Layer Il is a membership function layer, in
that the value of a node quantifies the degree of the membership
function of the input linguist variable Layer III is a fuzzy rule
layer. Therein each node represents a fuzzy rule. The last layer
is an output layer. The output vectors are {y;, k=1,2, ..., M}.
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Fig. 1. Configuration of the FNN.

The consequent part is a fully connected graph, but apparently,
the premise part is not, because not every node in a membership
function layer connects to all nodes in the fuzzy rule layer.

The fuzzy Mamdani model is represented as [31] given next.

Rule [: IF x; is Ay, and .. ...and xy is Ay, THEN vy, is By
and . ... and Ym is BM[

where Ay, ,..., Ay, and By, ..., By are the standard
fuzzy sets. When the input variables are given, the truth value
w of the [th rule is defined by

= Arr, (21) X - X Anpy (oN)

x{l=0,1,2,...,L—1;r,=0,1,2,...,R;, — 1}. (1)

From the previous discussion, converting the FNN into a fully
connected NN is necessary, however, will encounter two diffi-
culties. One is that, in the FNN, the links between the member-
ship function layer and fuzzy rule layer are not fully connected.
The other is that the operators of the fuzzy rule layer of the FNN
are the product form rather than the adding form.

To begin with, in order to overcome the first difficulty, in
Fig. 1, the membership function layer of the FNN can be
withdrawn, and substituted for new links between Layers I
and III, so that we can have a fully connected three-
layer NN as shown in Fig. 2. The new link weight
{Vi;(i=1,2,...,n;5=1,2,..., L)} in Fig. 2 is represented
as between the ith node of the input layer and the jth node of
the fuzzy rule layer. The equivalent solid line links substituted
for the withdrawal of dash line links.
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L-1

Input Layer Hidden Layer

Ouput Layer

Fig. 2. Withdraw Layer II (MF layer) in the original FNN and substitute it for
new links (solid line) between Layer I and Layer III.

Input Layer

Hidden Layer Ouput Layer

Fig. 3. Complete fully connected FNN, or F-CONFIS.

The next task is to overcome the second difficulty. The product
form of the fuzzy rule layer will be converted into an equivalent
adding form in Fig. 1. To do so, the new link weight V;; (i =1,
2,...N;j=0,1,...,L—1)1is defined as

Vij = Ln(A;r, () (i) (2)

where the ordinal indices 7;(1) (: = 1, 2, ..., N) of membership
functions correspond to rule [. If the exponential function was
taken as activation function o, then the output of the fuzzy rule
layer is

N N
pj=o (Z Ln(A,;, (j>(a?,'))> =0 (Ln <H A, (j)(xi)>
i=1 i=1
3)
Fig. 3 depicts the complete F-CONFIS for the FNN, and
apparently it is equivalent to the original FNN in Fig. 1. The
F-CONFIS has three layers as shown in Fig. 3, in which the
hidden layer is also a fuzzy rule layer. Moreover, the three-layer
fully connected NN (F-CONFIS) will be the foundation based
on which we develop training algorithm and find the capacity
of the FNN.

B. Special Learning Algorithm for the Fuzzy Neural Network
Via a Fully Connected Neural Fuzzy Inference System

The neuro-fuzzy system is usually represented as special 4
or 5 layers multilayer feed-forward NN. There are different
training algorithms with different emphasis [11], [32]-[34].
The gradient descent method is the most commonly used in
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the learning algorithm for feed-forward NNs and fuzzy systems
[35]-[41]. As aforementioned, the network architecture of the
F-CONFIS is a standard fully connected three layers feed-
forward NN except that there has repeated link weights be-
tween the input and hidden layer. This special property does
not exist in common NN. The essential difference between the
traditional gradient descent training algorithm for the FNN and
the proposed one for the F-CONFIS lies in that the dependent
repeated link weights between the input layer and hidden layer
need special treatment.

The output layer of the F-CONFIS adopts center average
defuzzification method as

L-1 L-1
ye =Y miwik [ Y pi(k=1,2,..., M) (4

j=0 j=0

where the number of outputs is M, the output vectors are {yy,
k=1,2,..., M}, 1y is the truth value of the Ith rule, and Wik
is the weighting vector between the fuzzy rule layer and output
layer. The number of training patterns is P, the total training
error [42] is given as

1 P M
- P gP)2
E(W)—QP;];(yk ;) ®)

where y}, is the kth actual output, dj, is the kth desired outputs. In
the F-CONFIS, the Gaussian membership functions is adopted:

— (& —my;)?

2
QUM

A,;j(x)exp[ ],il,...,n;jO,...,Ri

(6)
where m;; and o;; denote the center and width of the member-
ship functions, respectively.

In the F-CONFIS (or FNN), there are two types of param-
eters needed to be tuned. One is premise parameters, namely
the parameters of MFs (i.e., the means and the width of the
Gaussian function). The other is consequent parameters. There-
fore, weighting vector W is defined as

W =[mi; o

1=1

wj]

ny j=1,....R; k=1,....,M (7)

geeey

where wj}, is the link weights between the fuzzy rule layer and
output layer. The gradient of E(W) with respect to W is

_[oE 9E OE
9= 8mij 80” 8wjk
i=1,...,n; j=1,...,R;; k=1,...,M. (8

The training process is to update W in —g direction to mini-
mize total squared error E(W). The weighting vector W can be
tuned as

Ivguﬁ):EV——[ OE  OF aE}

aamm ,aaa',jq ’ aw]‘k
x(i=1,...,N;q=0,...,.Ri—1L;k=1,...,M) (9

where « and [3 are the learning rate of the premise part and the
consequent part in the F-CONFIS, respectively. From (4) and
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Fig. 4. FNN with two input variables, two output variables.

Fig.5. Gradient decent flow (dotted lines) for the first MF of 1 of F-CONFIS
with repeated link eights.

(5), by the chain rule, we have

OE 0E 0y 1<, , -
= —_— = — —dp

p=1

j=0,...,L—1, k=1,...,M. (10)

From (1), (2), and (4)—(6), by a series of the chain rule, we
have

P M
oE 1 (v — dp)(wie —yp) py (@] —mig)
— = -1 5
Bm,q Pp:1 el Zj:O %% Jiq
P M o,
oE 1 ZZ (v, — dp) (Wi —yp) py (] —miy)?
— = -1 3
daig Pp:1 k=1 D=0 M Tiq
i=1,...Nig=0,...,R —1.

(1D

For a normal multilayer network, every weight is updated
only once to reduce the error in the gradient descent process of
each epoch. The configuration of the FNN is shown in Fig. 4 and
the equivalent F-CONFIS is shown in Fig. 5. The configuration
of the FNN (or F-CONFIS) has two input variables and two
output variable, two MFs { A1¢(x1), A11(21)} for ; and three
MFs { Ao (z2), Ag1(x2), Age(x2)} for z5. In Fig. 5, the dotted
line is the gradient descent path for the first MF of x;, namely,
Ln(A;o(x1)). FromFig. 5, itis shown that the control parameters
of Ln( Ay (z1)) will be updated three times, the first time when
the gradient of the control parameters propagated form g to
x1, the second time when the gradient of the control parameters
propagated form p5 to 21, and the third time when the gradient of
the control parameters propagated form ju4 to x1. Ln(Ajo(z1))
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are also handled three times. Each centers (m;,,q =0, ...,
R;-1) and spreads (0;;,¢ =0,..., R; — 1) of Gaussian MFs
will update the number of repeated links NRL(z) for each fuzzy
variable z;. This multiple updates should be processed carefully.
From the previous illustration, it is important to find the number
of repeated links NRL(4) for each fuzzy variable z; in premise
part so that the gradient descent training algorithm can properly
be carried out for FNN, or F-CONFIS. The following Theorem 1
will show a precise formula of finding the number of repeated
links NRL(%) in the F-CONFIS (or FNN).

Theorem 1: In the FNN (or F-CONFIS), let R; be the number
of MFs for fuzzy variable x;, then each fuzzy variable z; will
have NRL (%) repeated link weights between the input layer and
hidden layer with repeated link weights equal to {A4;,]¢ =0, 1,
2,...,R; — 1}, where

NRL(i)=L/R; (i=1,...,N). (12)
Proof: From (1), the total number of fuzzy rules is
n
L=]]R (13)
i=1

where R; being the number of MFs for fuzzy variable x;. Since
the F-CONFIS is an equivalent fully connected network, there
are L links from every node of the input layer to all of nodes of
the fuzzy rule layer.

However, there are only different R; MFs for x;

{A,‘,q‘q2071,2,...,Ri—1}.

Therefore, there must have links come with repeated weights.
In the FNN, or F-CONFIS, it is quite obvious that for each fuzzy
variable x;, the number of repeated link weights with repeated
link weights equal to {A;,|¢ =0,1,2,...,R;—1}.

NRL (i) = L/R;.

Q.E.D.

To be compatible with 1 defined in [42], the ordinal index of

fuzzy rules should start from zero (0 <1< L—1)). Therefore,
ordinal index 1 of the first fuzzy rule is

N i—1
l=r + Z H Rj T
i=2 \j=1

where r; (0 < 7; < R; — 1) is the ordinal index for the r;th MF
for fuzzy variable x;. The range of [ is 0 <[ < (HfV:1 R;) —1.
From (14), all the 1 s for a specific rule number [ are represented
as

i—1
r(l) = 1%R;, ri(l)_<l/HRk) %R;, i=2,...,N
k=1

15)
where A % B denotes the remainder and A/B denotes the quo-
tient of the division of A over B.

For the jth hidden node, by (15), we can get the corresponding
n ordinal index r;(j) (i =1,2,...,N; j=0,1,...L—1) of

(14)
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Fuzzy
M Rule
Layer ) o
* links with
repeated weight Ay,

Input
Layer

&

o { foscsi-1})

Fig. 6. Finding the links with repeated weights.

MFs for ;. Therefore, (11) is revised as follows:

P M
l Z Z Uk 1/:]‘3) Hj (’T{) — Miri (5)
- 2
(9m“ Pp 1k=1 Z] 0 Hj O—ir%(j)
P M
_1 Z Z —dp)( w]A —yP) (2] —my,, (j))2
3
aazr () Pp:l k=1 Z o 1 Tiri (7)

It is important to find the links with repeated weight from the
input node to hidden nodes so that we can properly carry out
the gradient vector of algorithm for the F-CONFIS, or the FNN.
Fig. 6 illustrates this scenario. From Fig. 6, we know that the
repeated weight for the gth MF of z; is equal to 4;, = A;,. ()
Therefore, we have

qg=rily) = {l = hx(i,q);k=1,...,NRL(#)} (17)

where {{;, = hy(i,q); k= 1,...,NRL(?)} in (17) are the links
with repeated weight A;, for the qth MF of z;.

Theorem 2: The gradient components of the F-CONFIS in
the premise part should be summed NRL(7) times for fuzzy
variable x;. The gradient components 0E/0m;, and 0E/Jo;,
of g in (11) have the following forms:

OF NRZL:“ OE  Opin, (1) OAs,
3miq = Opn, i) OAig Omyg
OF _NRL“ OE O, (i) OAs,
6Ui11 1 auhk(i,q) 8Aiq 8aiq

i=1,..Nig=1,...,R. (18)

Proof: By Theorem 1, we know that each fuzzy variable z;
will have NRL(7) repeated links between the input layer and
the hidden layer. Let A;,(¢ € [1,R;-1]) be the g™ MF of the
fuzzy variable x;, and the weights of the repeated links are
Vihe(i,q)(k=1,...,NRL(%)). Let m;, and o;, be the param-
eters of A;,. In the error gradient decent process, error will
propagate along interconnection Vj, (; o)(k =1,... ,NRL(3))
to x; to get error’s partial derivative Wlth respect to m;, and o,.
From (1)—(4), by chain rule, we can get these partial derivate as

OE O, (i,q) 0Aiq
Opin, iy O0Aig Omyy
OE O, (i.q) OAig
O pipy (ig) 0 Aig

Jk=1,...,NRL(i)

8Jiq
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All these intermediate partial derivatives should be summed
up to give the final update for m;, and o;, as the following
equations:

o8 N 9B O g 04,
8miq kz_; Ol i) OAig Omy
08 " 0B O, g 04,
Doy - Opn, iq) OAig Ooig
1=1,..N;q=1,...,R;
QE.D.

The components of W are finally updated by the following
equations:

NRL(i)
oF é)/Lh . (1,q) é)f4i
mig(t+1) =m,(t) — i (i, q
I ! 1; 5#}”041) 8147(1 8miq
NRL(i)
OE O, (i,q) OA;
o (t+1)=0;,(t) — k(1,9 iq
q( ) q() }; 6M}Lk(i’(1) (3'A7q ao—jq
OE(W)
t+1)= t) —
wik(t+1) = wj(t) — B B
t= 1’ 7j\f;q - 07 .y ]%i——l,
j=0,....,.L-1k=1,....M
(19)

where ¢ is the number of iterations. The following Algorithm I
describes the complete gradient descent algorithm for the
F-CONFIS.

Algorithm I: A new gradient descent algorithm for FNN
via F-CONFIS

Step 1: Initializing the weight vector, learning rates. Let ¢ be
iteration count, t = 1.

Step 2: Calculate truth value y; by (1), output y; by (4), and
ordinal index [ of all fuzzy rule by (14).

Step 3: calculates the update changes of the parameters in the
premise part, i.e. the overall update changes of the centers and
spreads of the Gaussian MFs.

1) Let hidden node number / = 0.

2) For training inputdata¢ =1,..., N

a) By (15), get the ordinal index r; (1) of membership
functions for the i'" fuzzy variable.
b) Find the gradient components OF / dmy,, ;) and
8E/8 Oy, (1) in premise part via (16).
¢) From Theorem 1, find the number of repeated link
weights NRL(i). Since every repeated A;, weight
will be repeated for NRL(i) times, we have to sum
the update changes of 0E/dm;, and OE /do;, with
the same subscripts for i'" fuzzy variable z; for
NRL(i) times from Theorem 2.
3) If [ less than to the total number of fuzzy rules L, then [ =
I+ 1, go to 2), else go to next step 4
Step 4: Calculate the update changes of consequent part, .i.e.,
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consequent
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gradient vector
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by Theorem 2

Tnput NRL(i)

by
Theroem 1

OF
om,

i i

oE

Fig. 7.  Gradient descent training process of the FNN via F-CONFIS.

Step 5: Update the components of weighting vectors w;., mq
and o;, by (19).

Step 6: Calculate error E in (5)

Step 7: If error E' is less than error tolerance or iteration ¢
reaches maximum iterations, go to step 8, else iteration £ = ¢
1; go to step 2.

Step 8: Stop.

Fig. 7 shows the complete gradient decent training process

III. CAPACITY OF Fuzzy NEURAL NETWORK OR FULLY
CONNECTED NEURAL Fuzzy INFERENCE SYSTEM

The capacity of the FNN is thus defined as the maximum
number of arbitrary distinct input samples that can be mapped
to desired output samples with a zero error. All engineering
applications using the FNN should not exceed the capacity of the
FNN to avoid unexpected results. For we can find the capacity
of the FNN by the method for a fully connected NN, in the
Section II, the FNN has been converted into an equivalent three-
layer fully connected NN (or F-CONFIS) and hence both have
the same capacity. The capacity of the three-layer F-CONFIS
with exponential activation functions in the hidden layer will
be discussed in this section. As follows, both upper and lower
bound of the three-layer F-CONFIS, or FNN, can be determined
by Theorem 3.

Theorem 3: For the FNN defined in Fig. 1, where there are
N inputs, M outputs, and L neurons in the fuzzy layer (or the
hidden layer), each fuzzy variable z; has R; MFs, each MFs has
N, parameters, then the capacity P of the FNN can be bounded
by the following inequality:

N
L<P< <ZR¢,N@, +LM> /M.

i=1

(20)

Proof: In [24], it has been shown that standard single-hidden
layer feed-forward networks (SLFNs) with at most L hidden
neurons and with any bounded nonlinear activation function
which has limit in either direction can learn L distinct samples
with zero error. This implies that the SLEN with L hidden units
can memorize at least L distinct patterns. For the F-CONFIS,
the exponential activation function in the hidden layer satisfies
the condition of activation function in [24], and therefore, the
lower bound on the capacity P is the number of hidden nodes
L, i.e.,

P> L. 1)

—

Calculate

Update

Calculate

weighting
vector

output error

—>| Output

M , O

and A

Vi E

Furthermore, it has been shown in [17] that the upper bound
for the capacity of feed-forward networks with arbitrary hid-
den unit activation functions can be found. For a feed-forward
network (without bias) with N inputs, M outputs, L hidden
units, and arbitrary hidden activation functions, the number of
patterns P that can be memorized with no error is less than or
equal to L(N + M), divided by the number of outputs M. Then,
the upper bound for the capacity P of the SLFN is

P<L(N+M)/M. (22)

Following (22), we have P < L(N + M)/M = (LN +
LM)/M, in which LN denotes the amount of independent
links between the input and hidden layer, while LM denotes the
amount of independent links between hidden and output layer.
However, the link weights between input and hidden layer in
the F-CONFIS are dependent on input variables. Therefore, we
should find the total number of free parameters between the in-
put and hidden layer to find the upper bound of the capacity of
the F-CONFIS. Assume N, parameters are identical for every
MF in the FNN, e.g. Gaussian MFs (= Exp(—(x — u)?/20?)),
where parameters are mean and width (or variance), thus N,
is 2 for this case. Then, the number of independent parameters
(NICP) between the input and hidden layer is

N
NICP =" R, N,,.

i=1

(23)

Replacing NL in (23) with NICP, we have the following upper
bound for the capacity P of F-CONFIS:

N
P< (Z R;N., + LM) / M. (24)
i=1
From (21) and (24), we can conclude that
N
L<P< <Z RiN,, +LM> /M.

i=1

Q.ED.

From the previous Theorem 3, we can find the lower and
upper bound of the capacity of the F-CONFIS, or the FNN. It
is important to find the capacity of the FNN so that engineering
applications via the FNN can be achieved without unexpected
results.
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IV. SOME APPLICATION ISSUES FOR THE CAPACITY OF THE
Fuzzy NEURAL NETWORK

For a NN, it is impossible to map an unlimited number of
input/output vectors. This issue is also valid for the FNN. In this
paper, boundary of the capacity of the F-CONFIS, or the FNN,
is determined by Theorem 3. In practical applications, there are
several issues in training process related with F-CONFIS (FNN)
capacity: 1) training when samples size is less than the lower
bound; 2) training when the samples size is larger than the upper
bound; 3) how to change the capacity of the FNN, when the
training process fails to converge. For a FNN, when the number
of training patterns is less then the lower bound, the training
process will converge successfully, while the training patterns
are larger than upper bound, the training process will diverge. It
should be noted that the capacity is the basic property of a FNN,
which has nothing to do with the type of training patterns. This
is identical with the fact that the stability of a control system is
unrelated with the type of input signals. In order to fully check
the validity of the theoretical results, it is better that the set of
training data be uncorrelated.

In the practical application of FNNs, we may encounter the
case that training process cannot converge successfully, regard-
less of increasing the number of training iterations. This is due
to the training samples size is larger than the upper bound of the
capacity of the FNN. To guarantee the training convergence, it
is better to increase the capacity of the FNN. According to The-
orem 3, there are four ways to increase the capacity of the FNN:
1) Increase the number of input fuzzy variables; 2) increase the
numbers of MFs for input fuzzy variables; 3) increase the num-
ber of parameters of MFs; 4) decrease the number of output
variables. It is obvious that the second way to increase the num-
bers of MFs of input fuzzy variables is the most efficient and
feasible way. All the other ways are limited by the constraints of
physical applications, which cannot be altered at will to increase
the capacity of the FNN.

For example, assuming that there are 150 independent training
patterns and the configuration of the FNN (or F-CONFIS) has
four input variables and one output variable, i.e., N =4, M =
1. Let every linguistic variable have two MFs, namely, R; =
Ry = Ry = Ry = 2. Therefore, there are 2* = 16 rules, i.e., L =
16. We adopt Gaussian functions as the membership functions,
so that the number of parameters is 2, i.e., V., = 2. Boundary
of the capacity P of the FNN is determined by Theorem 3
(L<P<(X! ,RN,+LM)/M), that is, 16 < P < 32.
Since the number of training pattern is 150, which is larger than
the capacity. In such a case, training process cannot converge,
regardless of increasing the number of training iterations. The
training process will thus be failed. To guarantee the training
convergence, it is better to increase the capacity of the FNN. As
stated in the above discussion, the most efficient and feasible
way is the second way of increasing the capacity of the FNN,
which is to increase the numbers of MFs of input fuzzy variables.
Therefore, in a new architecture of the FNN (or F-CONFIS), we
let Ry = Ry =3, Ry = Ry = 4. Therefore, there are 3242 =
144 rules. Boundary of the capacity P of the FNN is determined
by Theorem 3, that is, 144 < P < 172. Therefore, the number
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of training samples (150) is within the capacity bounds which
will yield a successful training process.

It should be pointed out that there are two kinds of capabil-
ity for learning machine, i.e., learning and generalization. The
learning concerns the error rate on training data, while the gen-
eralization concerns the error rate on test data [44], [45]. In this
paper, we discuss only the learning capability. According to the
result in this paper, by increasing the capacity of the FNN, we
can always get small training error. But small training error does
not necessarily mean small test error. In statistical learning the-
ory, the VC dimension [46], [47] is a measure of the capacity of
a learning machine. With VC dimension, we can predict a prob-
abilistic upper bound on the test error of a classification model.
The expected risk R(«) with probability 1 — 7, the following
bound holds [41]:

R(a) < Romp(a) + \/ h(log(21/h) 4; 1—Tlog(n/4)

where Ry, (v) is an empirical risk, [ is number of samples, and
h is the VC dimension. A system with low empirical risk and
high VC dimension may encounter overfitting problem. In our
paper, given a training set, we should design the architecture
of the FNN to let the number of samples falls within the lower
and upper bound given by Theorem 3. If the upper bound is less
than the number of training samples, the empirical risk may be
large; if the lower bound is larger than the number of training
samples, although the empirical risk may converge to zero, the
generalization error will be deteriorated. This scheme is also in
accordance with the principle of Occam’s razor [48], [49].

In this paper, the capacity of the FNN is defined as the max-
imum number of arbitrary distinct input samples that can be
mapped to desired output samples with zero error. The capacity
using VC dimension (more precisely, the growth functions) is
the maximum number of dichotomies that can be induced by
a model. Both capacities are the measure of the complexity of
a model. However, the VC dimension applies to only binary-
valued functions. If the FNN has only one output node and the
output belongs to one of two exclusive states, or binary states,
then both capacities are the same. The pseudo-dimension is an
extension of the VC-dimension to real-valued functions [30].
The relationship between VC dimension or pseudodimension
and the mapping capacity needs to be further studied.

(25)

V. ILLUSTRATED EXAMPLES

In Section IV, we have found the lower and upper bound
of the capacity of the F-CONFIS. This means that the number
of training samples has significant impact on training conver-
gence. When the number of training sample is less than the lower
bound, training process is guaranteed to converge successfully.
On the other hand, if the number of training sample size is
larger than the upper bound, then the training process will fail
to converge. All applications using the FNN should not exceed
the capacity of the FNN to have unexpected results. Four exam-
ples will be to further discuss this phenomenon. Example 1
will perform the validation of “Within Capacity training of
F-CONFIS,” in which the training sample size is less than the
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Fig. 8. Original configuration of the FNN has three input variables, where

each variable has four MFs.

63
Hidden Layer

Input Layer Ouput Layer

Fig. 9. Transformed complete fully connected F-CONFIS has three input
variables, where each variable has four MFs.

lower bound of the FNN capacity. Example 2 will illustrate the
“Overcapacity training of F-CONFIS,” in which the training
sample size is larger than the upper bound of the FNN capacity.
Example 3 will demonstrate a method to deal with overcapacity
issue by increasing the capacity of the F-CONFIS. Example 4
will further illustrate the influence of the capacity of the FNN
in clustering the Iris flower dataset [27].

In order to fully check the validity of the theoretical re-
sults, it is better that the set of training data be uncorrelated.
Examples 1-4 share the same random (uncorrelated) dataset
and FNN configuration.

A. Example 1: Within Capacity Training of Fuzzy Neural
Network—The training Process Convergent Successfully.

In this example, the pattern number is less than the lower
bound of the capacity of the FNN. The configuration of the
FNN is shown in Fig. 8, by which the equivalent F-CONFIS
shown in Fig. 9. There are three input variables (N = 3) and
one output variable (M = 1). Each linguistic variable has four
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Fig. 10. Within capacity training of the FNN in Example 1, total pattern
number = 20.
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Fig. 11. Within capacity training of the FNN in Example I; total pattern
number = 40.

membership functions. Therefore, hidden nodes of the fuzzy
rule layer are 64 corresponding to 64 fuzzy rules (L = 64).
The membership functions are the Gaussian functions, the out-
put node is a linear summing unit. We apply algorithm I to
conduct gradient descent training algorithm of the FNN, or the
F-CONFIS in the following examples. The transformed com-
plete fully connected F-CONFIS has three input variables, each
variable with four MFs. Both the input (21, €2, 3) and output
(y) training data are random data generated by MATLAB func-
tion normrnd(). Since both the input and output training data
are random data, there is no relationship between the input and
output. We cannot expect the F-CONFIS model to learn any
underlying relationship from the training dataset. We make this
on purpose to prove that if the lower bound of the FNN capacity
is larger than samples size n, then the FNN can map any n pairs
of data, even if they are totally uncorrelated. The original FNN
is shown in Fig. 8. Fig. 9 shows the equivalent F-CONFIS. In
this case, n = 3, L = 64, Ry = Ry = R3 =4, N, = 2, and
M = 1. Boundary of the capacity P of the FNN is determined by
Theorem3 (L < P < (3" | RiN,, + LM)/M), thatis, 64 <
P < 88. When the number of training pairs is less than the lower
bound, the training error will converge successfully. Let the
number of training patterns be 20, 40, and 60. Figs. 10—12 show
the experimental results. On each figure, the top curve is the
F-CONFIS (or FNN) output (green dashed line) over training
data (black solid line) and the bottom curve is the prediction
process between the F-CONFIS output and original training
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Fig. 12. Within capacity training of FNN in Example 1; total pattern
number = 64.
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Fig. 13. Overcapacity training of the FNN in Example 2; total pattern
number = 88 > 88.

data. From Figs. 10-12, it is shown that if the pattern number
is less than the lower bound (=64), the prediction error can be
made as close as possible to zero. The difference between the
original training data and the output of the F-CONFIS is trivial,
thus, we can only see one curve in the top parts of Figs. 10—12.

From Example 1, it is shown that when the numbers of train-
ing patterns is less then the lower bound, the training error
converges to zero and training process is successful.

B. Example 2: Overcapacity Trainings of the Fuzzy Neural
Network —Training Process Converge Unsuccessfully

In this case, the pattern number is great than the upper bound
of the capacity of the FNN. This example is to illustrate the
overcapacity training of the FNN. The upper bound of the
F-CONFIS, or the FNN, can be determined by Theorem 3 in
Fig. 8, that is, 88. This is to say, when the samples size is
larger than the upper bound (= 88) and training samples are
uncorrelated, the training error will not converge to zero suc-
cessfully. Let the number of training patterns be 88, 100, and
110. Figs. 135 show the experimental results.

From Figs. 13-15, it is shown that all the four training pro-
cesses failed to converge. Table I summarizes the result of MSE
(mean square error) versus the number of training patterns. It
is obvious that the MSE increases as the number of training
patterns is increased. The training process converges unsuccess-
fully when the number of training patterns is over the capacity of
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Fig. 14. Overcapacity training of the FNN in Example 2; total pattern
number = 100 > 88.
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Fig. 15. Overcapacity training of the FNN in Example 2; total pattern

number = 110 > 88.

TABLE I
RELATIONSHIP BETWEEN THE MSE AND PN FOR OVERCAPACITY
TRAINING OF F-CONFIS

Pattern Number (PN) MSE
PN=88 0.025924
PN=100 0.058892
PN=110 0.08591

the FNN. Therefore, all engineering applications using the FNN
should not exceed the capacity of the FNN to avoid unexpected
results.

C. Example 3: Increasing the Capacity of the Fuzzy Neural
Network to Let the Training Process Convergent Successfully.

In Example 2, it is shown that when the number of train-
ing pattern is larger than the upper bound (= 88) of the FNN
capacity, the training process will not converge. In this case,
increasing the number of training pattern is helpless and on
the contrary, will increase the training error. With the help of
Theorem 3, we can handle this issue by increasing the capacity
of the FNN.

To make the lower bound larger than 88, let each linguistic
variable has five MFs, then there are 125 nodes in the hidden
layer (L = 125). The boundary of the capacity P of the FNN is
determined by Theorem 3, that is, 125 < P < 155. The lower
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Fig. 18. Increasing the capacity of the FNN total pattern in Example 3; pattern

number = 110.

bound of the FNN will now become 125.With this new FNN,
we reconduct the experiments in Example 2. Let the number of
training patterns be 88, 100, and 110 again. Figs. 16-18 show
the results.

It can be seen that the prediction error in Figs. 1618 is as
close as possible to zero. Table II summarizes the result of MSE
versus the number of training patterns. The training process can
not converge successfully in Example 2 when the number of
training patterns is over the capacity of the FNN. From Example
3, we increased the capacity of the FNN so that the number of
training patterns is within the capacity of the FNN. Then, the
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TABLE I
RELATIONSHIP BETWEEN THE MSE AND PN AFTER INCREASING THE
CAPACITY OF AN FNN

Pattern Number (PN) MSE
PN=88 7.6911e-008
PN=100 3.7116e-006
PN=110 2.013e-005

Fig. 19.  Iris setosa (left), Iris virginica (middle), and Iris versicolor (right) of
Iris data.
Iris Data (
Sopal.Longth
Paiol.Length
- ]
C
o _‘;_J Potal. Width
)
Fig. 20. Iris data.

training process can be converged successfully again. Thus, the
improvement is effective and satisfactory.

D. Example 4: Impact of the Capacity of the Fuzzy Neural
Network in Clustering Iris Data

This example will adopt a well-known Iris flower dataset to
be clustered in pattern recognition. An Iris flower dataset is a
multivariate dataset [27]-[29]. It consists of 150 samples and
from three species of Iris, i.e., Iris setosa, Iris virginica, and
Iris versicolor as shown in Fig. 19. Each species consists of 50
samples. Four features were measured from each sample: the
Sepal length (SL), the Sepal width (SW), Petal length (PL), and
the Petal width (PW) in centimeters, as in Fig. 20.

Corresponding to the four features as input and one species
class as output, the input variable x; has four features as follows:

Input variable z;= {xiSepal lengths LiSepal widths LiPetal lengths
TiPetal width ) (1 <@ < 150).

The output y; is the species of flower as follows:
y; € {Iris setosa, Iris virginica, Iris versicolor}.

In each training pattern, we let I stands for Iris setosa, 2
stands for Iris virginica, and 3 stands for Iris versicolor. The
membership functions are the Gaussian functions, the out-
put node is a linear summing unit. The threshold error value
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TABLE III
INITIAL VALUE OF THE CENTER AND WIDTH FOR 14 MFS
MFs width center MFs width center
number number
1 0.7644 4.3 8 0.8352 2.967
2 0.7644 6.1 9 0.8352 4.933
3 0.7644 7.9 10 0.8352 6.9
4 0.5096 2.0 11 0.3397 0.1
5 0.5096 3.2 12 0.3397 0.9
6 0.5096 4.4 13 0.3397 1.7
7 0.8352 1.0 14 0.3397 2.5
L wmme ) U w74889410 a1 #2613 414
#4#5 He 05
0.5 05 05
02 4 6 S0 0T 23456 203 468 10505 1528
Sepal length Sepal width Petal length Petal width
Fig. 21. Fourteen MFs before training.
TABLE IV
FINAL VALUES OF THE CENTER AND WIDTH FOR 14 MFs
MFs width center MFs width center
number number
1 0.96 4.557 8 0.9187 3.103
2 0.7073 6.235 9 0.7495 4.865
3 0.7937 7.822 10 0.9352 6.695
4 0.2945 1.942 11 0.3779 0.12
5 0.3538 3.097 12 0.09288 1.101
6 0.5859 4.258 13 0.0207 1.789
7 0.913 1.034 14 0.1515 2.386
, #1423 HAHS 6| (k7 ssmoie 1 LD #IZABIA
0.5 0.5 0.5
02 3% 6 ®¥001 2 3 4 5601 1 3 5 7 901 0 1 2 3
Sepal length Sepal width  Petal length Petal width
Fig. 22.  Fourteen MFs after training.

(= ¢) for successful classification is set as € = 0.05. We apply
Algorithm I to conduct gradient descent training algorithm of
the FNN, or F-CONFIS. Therefore, we will take all the 150
samples of training pattern. We will use two examples to show
the influence of the FNN capacity on the training process.

1) Example 4.1: Pattern Number Is Less Than the Capacity
of the Fuzzy Neural Network—Training Process Converges Suc-
cessfully: In this example, let the first two linguistic variables
to have three MFs, and the next two linguistic variables to have
four MFs, namely, R = Ry =3, and Ry = R4 = 4. The initial
values of the centers and widths for all the MFs are shown in
Table III and the corresponding MFs are shown in Fig. 21. The
boundary of the capacity P of the FNN is determined by Theo-
rem3 (L <P < (3" RN,+LM)/M),thatis, 144 < P
< 172. The pattern number is 150, which is smaller than the
capacity upper bound (= 172). After applying the BP training
algorithm in Section III (see Algorithm I), the final values of the
center and width for all the MFs are shown in Table IV and the
corresponding MFs are shown in Fig. 22.

Fig. 23 shows the experimental result when the number of
iterations reaches 200. It can be seen that all the training errors
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Fig. 23.  Pattern number is less than the capacity of FNN in Example 4.
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Fig. 24. Relationship between the training error and iterations.

TABLE V
CENTER AND WIDTH FOR EIGHT MFs

The initial values of the The final values of the centers and
center and width for eight MFs widths for eight MFs
MFs width center MFs number width center
number
1 1.529 43 1 1.63 4.353
2 1.529 7.9 2 1.552 7.912
3 1.019 2.0 3 0.9699 | 1.989
4 1.019 4.4 4 0.9358 | 4.443
5 2.505 1.0 5 2.624 1.086
6 2.505 6.9 6 2.674 6.859
7 1.019 0.1 7 0.3251 0.06315
8 1.019 2.5 8 02117 | 2.82

approach zeros in all three classes. Fig. 24 shows the relationship
between the training error and iterations. It is shown that when
the iteration is larger than 115, the MSE value converges to
zero successfully. From this example, it is shown that when the
number of training patterns is less than the capacity of the FNN,
the training will converge successfully.

2) Example 4.2: Pattern Number Is Larger than the Capac-
ity of the Fuzzy Neural Network —Overcapacity Training of
the Fuzzy Neural Network: In this case, let Ry = Ry = R3 =
R4 = 2. The initial values of the centers and widths for all the
MFs are shown in Table V and the corresponding MFs are shown
in Fig. 25. The boundary of the capacity P of the FNN is de-
termined by Theorem 3 (L < P < (3°!" | R;N,, + LM)/M),
that is, 16 < P < 32. The pattern number is 150, which is larger
than the capacity upper bound (=32). The final values of the
centers and widths for all the MFs are shown in Table V, and
the corresponding MFs are shown in Fig. 26.

Fig. 27 shows the experimental result when iteration reaches
200. It can be seen that some of the training errors cannot
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Fig. 27. Pattern number is larger than the capacity of the FNN in Example 4.
0.03 ¢ y
0.026 a
7 i ]
= 0.022[ ]
0.018 .
0.014 .
10 60 110 160 210 260
Iteratlons
Fig. 28. Relationship between the training error and iterations.

converge to zeros, especially in Class 2 (Iris virginica) and Class
3 (Iris versicolor). The pattern number (150) is larger than the
upper bound of the capacity in this example.

The classification accuracy in this case is only 58.000%.
Fig. 28 shows the relationship between the training error and
iterations. It can be seen that when the iteration is larger than
200, the MSE values will hardly be decreased. This is to say
that if the number of training sample is larger than the upper
bound of the capacity of the FNN, the training process will
not converge to zero and there are the unexpected results in
the application, regardless of the increasing of the number it-
erations. To guarantee the training convergence, it is better to
increase the capacity of the FNN, which has been discussed in
Section V.

Table VI shows the classification accuracy rates in different
cases. The threshold error value (= ¢) for successful classifi-
cation is set as ¢ = 0.05. Case 1 is the result of Example 4.1,
whose pattern number (150) is less than the upper bound of the
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TABLE VI
CLASSIFICATION ACCURACIES IN DIFFERENT CASES
Case | R; Rule P AC ACAR Status
1 R=3.R=3 | 144 | 144=p<172 .
R R 150 | 100.000% | In
2 R=3R:=3 | 81 | 81<P<I05 ;
Rk 131 | 87333% | Over
3 R=2R=2 | 36 | 36=P<56 :
R R 128 | 85333% | Over
4 g‘fg’gjfg 16 | 16sP<32 | o7 | 58.000% | Over
3T 4. .
3 g‘j’g‘i 4 | 4=psl6 79 | 52.667% | Over
34,4

P-Capacity AC-Accuracy value In-In capacity
ACAR-Average Classification Accuracy Rate Over-Overcapacity

FNN capacity (= 172). Therefore, the classification accuracy is
100%. The training will converge successfully. Cases 2—5 show
that pattern numbers are larger than the capacity of the FNN.
Case 4 is actually the result from Example 4.2 with its clas-
sification accuracy dropped to 58.000%. Therefore, excellent
agreements have been achieved between the training simula-
tions and theoretical bounds. All engineering applications using
the FNN should not exceed the capacity of the FNN to avoid
unexpected results.

VI. CONCLUSION

By transforming the conventional four-layer FNN into an
equivalent fully connected three layer feed-forward NN, or
F-CONFIS, this paper proposes a new approach to find the lower
and upper bounds of the capacity of the FNN. The proposed
F-CONFIS is a new architecture of the FNN with dependent
and repeated link weights, in which a new gradient descent
training algorithm is also developed in this paper. Several ex-
amples are illustrated to demonstrate the validity of theoretical
bounds for the capacity of the F-CONFIS (or FNN), such as
the famous classification of Iris flower dataset. Satisfactory re-
sults have been obtained between the theoretical bounds and
simulation results. The impacts of this paper are as follows: 1)
All engineering applications via FNN (or F-CONFIS) can now
adopt the proposed F-CONFIS architecture with its new gra-
dient descent training algorithm to tune its parameters. 2) All
engineering applications via the FNN should have the capacity
of their imperfect FNN (or F-CONFIS) in mind to complete
their successful engineering applications.
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