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Nodal adsorbate bound states in armchair graphene nanoribbons: Fano resonances and adsorbate
recognition in weak disorder
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We consider adsorbates on metallic armchair-graphene nanoribbons (AGNRs). An adsorbed atom on a nodal
site of the gapless subband in the AGNR is found to induce a bound state. The nodal-adsorbate bound state
alone does not cause reflection in the AGNR quantum transport in the one propagating-channel regime. Yet
its manifestation, as a Fano resonance in G, is brought forth by the presence of a non-nodal adsorbate (or a
scatterer) located on a longitudinally separated site. Both the adsorbate-dependent nature and the significantly
enhanced energy resolution of the Fano structure in G invite adsorbate recognition. The Fano peak is shown to
be robust against weak disorder such as from edge vacancies, due to the localized nature of the Fano resonant
state. Adsorbates F and OH, described within an extended Hückel model, are considered as examples.
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I. INTRODUCTION

The novel Dirac properties of graphene [1,2] has prompted
much recent research on the quantum transport of graphene
nanoribbons (GNRs), both experimentally [3–9] and theoret-
ically [10–23]. One of the spectacular manifestations of the
Dirac physics is in the metallic armchair GNRs (AGNRs),
where a subband intercepts the Dirac point to become gapless
[24]. Disorder effects on the GNR transport have been
studied, with disorder due to edge vacancies [11,12,16], edge
adsorbates [19], and adsorbates [20,21]. On the other hand, the
motivation to tune the GNR energy gap from a microscopic
point of view has led to researches on the effects of individual
microscopic objects on the GNR. There have been studies of
individual doping atoms [13], lattice defects [14,15], vacancies
[17,18,22], and adsorbates [19,23] on the quantum transport of
GNRs. These single-scatterer studies have found dip structures
in G [13–15,17,19,22], whose dip energies are associated with
the resonant-state energies due to the scatterer in the GNRs.

Interestingly, for the case of AGNRs, a single dopant [13]
or a singe vacancy [17] are found to cause no reflection to
the subband when they are located at certain sites of the
AGNR. These sites are found to coincide with the nodal
sites of the gapless subband in the AGNR [25]. The nodal
sites are at transverse coordinate (see Fig. 1) M = 3m − 1 for
integer m. This is obtained from the transverse profile of the
gapless-subband wave function, given by sin[knxa(M + 1)]
(a complete form of the wave function will be presented in
Sec. II AII), and from the quantized knx = 2π/(3a) where the
Dirac cone is intercepted. Further nodal-type behaviors are
found in the AGNR current density profile [14,23], also at
the nodal sites of the AGNR. There is no energy in these
studies from which one can derive deeper insights about
the nodal behavior. Thus far, the nodal behavior has evaded
attentions. In this work, we will show that there is indeed a
characteristic energy, namely, the nodal-adsorbate bound-state
energy, for an adsorbate on a metallic AGNR. The intriguing
features of this bound state are explored. Furthermore, its
adsorbate-dependent energy is shown appropriate for adsor-
bate recognition.

Using graphene for adsorbate recognition has been a goal
of interest recently. An experimental observation of single
gas-molecule adsorption/desorption events had been done on

graphene [26]. The basic quanta of charge transfer at the
adsorbate site is obtained from the step changes in the Hall
resistivity. This charge quanta is used for adsorbate recognition
by comparing it with the theoretical calculation results for a
number of target adsorbates [27]. Research on the graphene-
based gas senors has since been intensive, in both the basic
physical aspects [28,29], and the implementation aspects [30].
An alternate adsorbate-recognition scheme of single-adsorbate
capability has been proposed recently [31]. This is by way of an
optical measurement and with the introduction of a localized
state called the localized plasmon resonance (LPR) [32], a
collective mode on a patterned two-dimensional nanostructure.
Incident lights will undergo diffractive coupling [33] with
the LPR to give zero reflection at a wavelength λc for a
given incident angle [31]. At the zero reflection, the phase
of the complex reflection coefficient encounters a singularity,
meaning that it is highly sensitive and changes sharply with
λ ≈ λc [34]. This sharp-change nature in the phase allows a
larger phase change to be measured when λc is shifted minutely
due to the presence of an adsorbate [31].

In this work, we consider quantum transport in metallic
AGNR with nodal adsorbates. Our purpose is threefold here.
First, we want to show that the nodal sites of the gapless
subband have provided us a natural way to obtain localized
states. Simply put, the localized state is a bound state induced
by an adsorbate located on a nodal site of the gapless subband.
As the localized state now carries information about the
adsorbate, it plays an even more involved role for the adsorbate
recognition here than the LPR states for the optical experiment
above. Second, we want to show that the adsorbate bound
state provides a significant boost in the energy resolution for
the adsorbate recognition. The bound state will manifest as a
Fano structure [35] in G, when another adsorbate is located
on a longitudinally (along the ribbon) separated non-nodal site
of the gapless subband. This Fano structure is robust against
weak disorder from random edge vacancies. Third, quantum
transport for mesoscopic systems is known to be sensitive to
individual scatterers [36] and should thus be so to individual
adsorbates.

This paper is organized as follows. In Sec. II, we present
our theoretical method for the analysis of the nodal-adsorbate
bound state, the nodal-and-non-nodal adsorbate pair, and the
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Green’s function for disordered AGNRs. Numerical results and
discussions are presented in Sec. III. A conclusion is given in
Sec. IV.

II. THEORY

In this section, we consider adsorbate-induced bound and
resonant states in metallic AGNRs. Interplay between these
states gives rise to adsorbate-dependent Fano resonance in G.
Our focus is upon the one-propagating-channel (the gapless
subband) regime. The energy of our interest is indicated in
Fig. 1 by the G = 2e2/h region for a pristine AGNR (dotted
curve). This energy range, unless explicitly stated otherwise,
is the energy for all our following discussions.

A. Nodal-adsorbate bound state

We show here that an adsorbate located on a nodal site of
the gapless subband induces a bound state. For W -AGNR of
large width W (the number of rows of carbon atoms across
the AGNR) the bound-state energy is pinned at the band edge
of the AGNR first-gapped subband (FGSB), and is adsorbate
independent. For sufficiently narrow W -AGNRs, the bound-
state energy moves away from the FGSB’s band edge, and
becomes adsorbate dependent. Figure 1 is shown first to put
things into perspective. A bound state alone does not contribute
to the scattering, as is shown in Fig. 1 (the A1-only curve).
On the other hand, an adsorbate located on a non-nodal site
of the gapless subband induces a resonant state [14,20–22],
which alone gives rise to a broad dip structure in G, as is
shown in Fig. 1 (the A2-only curve). In the presence of both
A1 and A2, a Fano structure is found in G, as is denoted by
the black curve in Fig. 1. The Fano peak coincides nicely with
the adsorbate-dependent bound-state energy.

The physical picture for the above finding follows naturally
from the Lippmann-Schwinger scattering description of the
AGNR. The total wave function �, projected onto lattice site

FIG. 1. (Color online) Fano resonances in conductance G of an
AGNR with an adsorbate pair A1 and A2. A1 (A2) is a nodal (non-
nodal) adsorbate. G’s are shown for a pristine AGNR (dotted curve),
individual A1 (red curve), A2 (grey dashed curve), and a pair (black
curve). Inset is the AGNR (width W = 20, along x̂, and length along
ŷ) with the scatterers separated by L = 5 unit cells along ŷ. Also
indicated are Bravais lattice vectors A1 (blue arrows), A2 (red arrows),
transverse site-position M , and M-spacing a. The adsorbates are F
atoms.

|j,s〉, given by
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∑
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is expressed in terms of the lattice-site representation of φ,
Ĝ, and V̂ , which are the incident wave function, the AGNR
Green’s function, and the scatterer on-site potentials, respec-
tively. The lattice sites |j,s〉 denote the unit-cell coordinates
(Mj,Nj ), and the sites s ∈ {A,B} within a unit cell. The
Bravais lattice point is thus Rj = Mj A1 + Nj A2, with the
Bravais lattice vectors given by A1 = a(x̂ − √

3ŷ) and A2 =
2
√

3aŷ. For an AGNR of width W , we choose 0 � Mj �
W − 1. The horizontal distance between two neighboring rows
of carbon atoms is a = 1.23Å. In this work, we consider
W -AGNRs with W = 3p + 2 for integer p, which support a
gapless subband [24,37,38], when the quantized kx intercepts
the Dirac point.

The standard nearest-neighbor tight-binding model is used
for the AGNR, and the adsorbates, located on sites |ji,si〉,
are represented by on-site potentials Vji

. The on-site potential
Vji

= Va of the adsorbate on the site, whose specific form is
derived from an extended Hückel model [20]. The extended
Hückel model, as described in Ref. [20], has included
the extended molecular orbitals α that are formed from
the adsorbate-valence orbitals and the carbon atom-valence
orbitals (pz excluded) to which the adsorbate is attached. It
results in an energy-dependent on-site potential Va, of the form

Va = t
∑

α

|γα|2
E − εα

, (2)

where t = 2.66 eV is the hopping coefficient of graphene.
The values of the adsorbate parameters γα and εα have been
obtained by Ihnatsenka et al. [20]. For completeness, we list
the parameters for adsorbates F and OH in Table I

For the case of a single nodal adsorbate, the condition for
the induction of a bound state is derived from Eq. (1), by setting
φ = 0, to give [

1 − G
s1s1
j1j1

(E) Va
]
�

s1
j1

= 0. (3)

That the bound state can be found is facilitated by G
s1s1
j1j1

(E)
becoming a real function of E when j1 is a nodal site of the
gapless subband. This is clearly shown in a subband-index (n)
summation form of Gss ′

jj ′(E).

From Gss ′
jj ′ (E) = 〈js|Ĝ(E)|j ′s ′〉, where Ĝ(E) = (E −

Ĥ + iη)−1 is the retarded Green’s function, and Ĥ the

TABLE I. Parameters for adsorbate F and OH obtained by
Ihnatsenka et al. in Ref. [20].

Adsorbate εα(t) γα(t)

F −10.862 4.363
−2.460 1.645
−0.914 1.180

OH −8.536 3.203
−1.802 1.779
−0.709 1.540
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Hamiltonian of a pristine AGNR, we have

Gss ′
jj ′ (E) =

∑
kn, ν

〈js|kn,ν〉 1

E − νEkn
+ iη

〈kn,ν|j ′s ′〉, (4)

of which νEkn
is the graphene dispersion relation, ν = ±1,

kn = (knx,ky), and η is a positive quantity of infinitesimal
magnitude. The subband wave function is given by

〈js|kn, ν〉 =
√

2

(W + 1)Ny

eiky

√
3a(2Nj −Mj )

× sin
[
knxa(Mj + 1)

]
Cs

knν
, (5)

where Ny denotes the total number of unit cells
along the AGNR, ( CA

knν
, CB

knν
)T = 1√

2
(1,νH ∗

kn
/|Hkn

|)T is
the normalized pseudospinor [39], with Hkn

= −t [1 +
2e−i

√
3kyacos(knxa)], and Ek = |H (k)|.

Simplifying Eq. (4) leads to a useful subband-index
summation form of Gss ′

jj ′ , given by

Gss ′
jj ′ (E) =

√
3a

2π (W + 1)

∑
n

F n
jj ′ g

n
jj ′,ss ′ (E), (6)

where gn
jj ′,ss ′ (E) is the reduced Green’s function,

gn
jj ′,ss ′ (E) =

∑
ν

∫ π/
√

3a

−π/
√

3a

dky

eiky

√
3a Ljj ′ Cs∗

knν
Cs ′

knν

E − νEkn
+ iη

. (7)

The factor in the summation of Eq. (6),

Fn
jj ′ = 4 sin[knx(Mj + 1)a] sin[knx(Mj ′ + 1)a], (8)

is associated with the nth subband’s transverse profile, and
is zero when j or j ′ are at a nodal site. In Eq. (7), Ljj ′ =
(Rjy − Rj ′y)/

√
3a is the longitudinal distance between the

Bravais lattice points j and j ′. The subband index ranges
1 � n � 	W/2
 such that knx = π

a(W+1) (�W/2� + n), where
�x� (	x
) denotes the largest (smallest) integer not greater
(less) than x.

The same-site reduced Green’s function gn
jj,ss(E) is a real

(complex) function of E when E lies outside (inside) of the
nth subband. This is seen from applying the Cauchy principal-
value analysis to Eq. (7). Consequently, within our energy
range of interest, a nodal adsorbate will shunt the only term of
Gss

jj (E) in Eq. (6) that is complex—the term from the gapless
subband. The nodal-bound state is hence orthogonal to the
gapless subband, and does not cause reflection to the gapless
subband, leaving G = 2e2/h in our energy of interest. Its wave
function is given by

�s
j = Va G

ss1
jj1

�
s1
j1

, (9)

with the energy fixed at the bound-state energy EB, and �
s1
j1

fixed by the normalization.
A non-nodal adsorbate, following a similar argument, will

have retained in Gss
jj (E) the term from the gapless subband

such that Gss
jj (E) becomes complex. The non-nodal adsorbate

cannot then form a bound state, since the condition Eq. (3)
does not hold, but forms a resonant state instead. The resonant
condition is given by

1 − Va Re
[
G

s1s1
j1j1

(E)
] = 0. (10)

B. N Nodal adsorbates and one non-nodal adsorbate

Coherent interplay between the bound and resonant states
gives rise to a Fano resonance in G. Taking the point of view
that a non-nodal adsorbate plays the role of revealing the
adsorbate-induced bound states in the AGNR, we consider
in this subsection first a nodal and a non-nodal adsorbate
pair. Then we consider N nodal adsorbates and one non-nodal
adsorbate.

For an adsorbate pair consisting of a nodal (A1) and a
non-nodal (A2) adsorbate, the Fano peak in G occurs exactly
at the bound-state energy, and with G = 2e2/h. This is most
easily seen from projecting Eq. (1) onto the lattice sites of A1
and A2, to give(

1 − Va G
s1s1
j1 j1

−Va G
s1s2
j1 j2

−Va G
s2s1
j2 j1

1 − Va G
s2s2
j2 j2

)(
�

s1

j1

�
s2
j2

)
=

(
φ

s1
j1

φ
s2
j2

)
. (11)

The φ
s1
j1

= 0 for the incident wave function at A1 leads to the
important result

�
s2
j2

= 0, (12)

when the incident energy is at the A1’s bound-state energy,
where Eq. (2) holds. That the total scattering wave function
�

s2
j2

vanishes (note: not the total scattering wave function �
s1
j1

at the site of A1) is a result of the no-damping nature of the A1-
induced bound state. The total wave function �s

j , according to
Eq. (1), becomes

�s
j = φs

j + Va G
ss1
jj1

�
s1
j1

. (13)

The second term (scattered wave) in Eq. (13) is shown, in the
following, to be evanescent waves, and does not contribute to
the current. Thus we have perfect transmission (G = 2e2/h)
at the Fano peak whose energy is at EB.

The reduced Green’s function gn
jj ′,ss ′ (E) is calculated by

both numerical and analytical methods. Excellent consistent
results are obtained. Analytical results shed light on our un-
derstanding of the physics. The characteristics of the reduced
Green’s function are best illustrated by the analytic expression
(s = s ′ case) we obtained below via explicit calculations of
the integral in Eq. (7) [40]. The calculation is facilitated by the
canceling of a branch-cut integral through the ν summation in
Eq. (7). We get

gn
jj ′,ss (E) = −ξn

E

π

4
√

3 at2

E

βn

e−ξn
E

√
3 �jj ′ κny a

sinh(
√

3 κny a)
, (14)

for a non-flat-band subband, where �jj ′ = |Ljj ′ |. For a flat-
band subband (the n = 1 subband when W is odd), we have

g1
jj ′,ss (E) = 2π√

3 a

E

E2 − t2 + 2iEη
δjj ′ . (15)

Here

κny = 1√
3 a

ln(�n +
√

�2
n − 1), (16)

where �n = βn + [1 − (E/t)2]/(4βn), and βn = − cos(knx a).
When E lies outside of the nth subband, ξn

E = 1 and κny is
real, we have an evanescent nature in gn

jj ′,ss (E). When E lies
inside the nth subband, ξn

E = −sgn(E) and κny is complex,
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then gn
jj ′,ss(E) is of a propagating-wave nature. These features

also lead to our finding that the coupling between the bound
and the resonant states, represented by the off-diagonal terms
in Eq. (11), decreases with increasing �j1j2 exponentially.

Remarkably, for configurations that involve N nodal adsor-
bates and a non-nodal adsorbate, the Fano-peak conductances
still manage to maintain their G = 2e2/h value. Following
our analysis in Eq. (11) and Eq. (13), but for N nodal
adsorbates, the vanishing of the total scattering wave function
�N+1 ≡ �

sN+1
jN+1

= 0 at the (N + 1)th adsorbate, that is, the
non-nodal adsorbate, can be achieved. It is given by the
condition

det Q(E) = 0. (17)

Matrix elements of Q are given by

Qii ′ =
{

1 − Va Gii, i = i ′,
−Va Gii ′ , i �= i ′. (18)

Here subscripts i and i ′ denote the nodal adsorbates. To keep
notations simple, we define Gii ′ ≡ G

sisi′
ji ji′

.
The useful relation Gii ′ = G∗

i ′i is obtained from the trans-
formation properties of E(k) and Cs

knν
when ky changes sign.

That Qii ′ is, in fact, real results from CA
knμ

being real. These
properties of Q lead to a real equation in Eq. (17); the
energies it gives correspond to the Fano peak energies, and
should also correspond to the bound-state energies of the N

nodal-adsorbate configurations. The exponential behavior of
Gii ′ for i �= i ′ helps to suppress the energy shift of these Fano
peaks from the adsorbate bound-state energies of the individual
nodal adsorbate.

C. Green’s function ˆ̃G for disordered AGNRs

The AGNR Green’s function ˆ̃G in the presence of vacancies
is given by the relation

ˆ̃G = Ĝ + ĜV̂ ˆ̃G = Ĝ + V0Ĝ Îv
ˆ̃G, (19)

where Ĝ is the Green’s function for the pristine AGNR. The
vacancy potential V̂ ≡ V0 Îv = V0

∑
i ′ |i ′〉 〈i ′|, where Îv is the

projection operator into {|i ′〉}, the subspace spanned by the
vacancy lattice sites. Here V0 is the vacancy on-site potential,
which will be set to infinity at the end of the derivation. The
derivation in this subsection becomes that for edge vacancies
when their lattice sites are at the edge sites of the AGNR.

Applying the projection operator Îv from the left to
Eq. (19), we get

Îv
ˆ̃G = Îv Ĝ + V0 Îv Ĝ Îv

ˆ̃G.

After rearranging terms, we obtain

Îv
ˆ̃G = [Îv − V0 Îv Ĝ Îv]−1Îv Ĝ. (20)

We substitute Eq. (20) into Eq. (19) to get

ˆ̃G = Ĝ + V0Ĝ Îv[ Îv − V0 Îv Ĝ Îv]−1Îv Ĝ. (21)

Finally, taking the V0 → ∞ limit, we arrive at

ˆ̃G = Ĝ − Ĝ Îv[ Îv Ĝ Îv ]−1 Îv Ĝ. (22)

The expression for the one-vacancy case of Eq. (22) is the
same as in Ref. [41].

Our results also check with the expectation that the
eigenstates φ̃ in the presence of the vacancies should vanish
at their respective lattice sites. This expected condition Îvφ̃ =
φ̃†Îv = 0 is satisfied by applying Îv to Eq. (22) to get

Îv
ˆ̃G = ˆ̃G Îv = 0.

The eigenstates φ̃ and their counterparts φ for the pristine
AGNR are connected by the relation φ̃ = φ + Ĝ V0 Îv φ̃. The
relation is reexpressed in the form

φ̃ = φ − Ĝ Îv[ Îv Ĝ Îv ]−1 Îv φ. (23)

Building on the above relations for the treatment of the edge
vacancies, we consider the case of an adsorbate pair with the
edge vacancies in the background. The adsorbate pair consists
of a nodal (A1) and a non-nodal (A2) adsorbates. The total
scattering wave function �̃ resulted from an incident wave φ̃

is given by

�̃s
j = φ̃s

j + VaG̃
ss1
jj1

�̃
s1
j1

+ VaG̃
ss2
jj2

�̃
s2
j2

. (24)

Projecting �̃ at the adsorbate lattice sites, we obtain a similar
equation as in Eq. (11), given by(

1 − Va G̃
s1s1
j1j1

−Va G̃
s1s2
j1j2

−Va G̃
s2s1
j2j1

1 − Va G̃
s2s2
j2j2

)(
�̃

s1
j1

�̃
s2
j2

)
=

(
φ̃

s1
j1

φ̃
s2
j2

)
. (25)

In the weak disorder regime, when the density of the edge
vacancy is low, the nodal physics and its evanescent effects
will play a crucial role. The evanescent effects are exerted via
G1i or Gi1, where i denotes the edge-vacancy lattice sites.
In the following, we will trace these evanescent effects in
several physical quantities of interest for the elucidation of the
evanescent effects on the Fano structures.

The incident wave function φ̃
s1
1 is found to take on the

form φ̃
s1
1 = δφ̃

evan,s1
1 from projecting Eq. (23) to the nodal site

A1. The superscript in δφ̃
evan,s1
1 indicates that the term is of

evanescent nature (between A1 and the edge vacancies) and
is small when evanescent suppression prevails. Since φ

s1
1 = 0,

the G1i factor in the scattering term of Eq. (23) brings about
the evanescent effects to φ̃

s1
1 .

For ˆ̃G, or its matrix element G̃j1, the second term in Eq. (22)
contains Gi1 such that G̃j1 should be cast in the form

G̃j1 = Gj1 + δG̃evan
j1 , (26)

where j denotes a general lattice site. Furthermore, for the
j = 1 case, the second term of Eq. (26) is of even higher order
in the evanescent effects. Finally, for the Fano structure, we
consider Eq. (25). At around the Fano peak energy EB, we
have the equation

−Va δG̃evan
11 �̃

s1
1 − Va G̃12 �̃

s2
2 = δφ̃

evan,s1
1 , (27)

from which we conclude for �̃
s2
2 the form �̃

s2
2 = δ�̃

evan,s2
2 .

Putting all these together, the total scattering wave function in
Eq. (24) becomes

�̃s
l = φ̃s

l + Va

[
Gl1 + δG̃evan

l1

]
�̃

s1
1 + VaG̃l2 δ�̃

evan,s2
2 . (28)

The term involving Gl1 is an evanescent wave and does
not contribute to G. The last two terms in Eq. (28) consist
of the propagating channel but suffer suppression from the
evanescent effects. Thus, in the vicinity of EB, the conductance
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G is basically that determined by φ̃. In other words, the Fano
peak will rise to the conductance as is determined by the
background edge vacancies. The shift in the Fano-peak energy
is also small, being protected by the evanescent effects. These
features are confirmed in our numerical results.

III. RESULTS

Numerical examples presented in this section aim at the
illustration of three major points. The first point is the
nodal-adsorbate bound states. The second is the adsorbate
recognition from using the bound states. And the third is the
robustness of the adsorbate recognition against weak disorder.

A. Nodal-adsorbate bound states

The nodal-adsorbate-induced bound state in metallic AG-
NRs is presented in this subsection. Taking a 20-AGNR as an
example, the nodal sites are at M = 2, 5, and 8, which are
equivalent to nodal sites at M = 17, 14, and 11, respectively.
For the case when the adsorbate is F, their bound-state
energies are −0.209t , −0.171t , and −0.159t , corresponding
sequentially to the nodal sites listed earlier. As a reference, the
first-gapped subband band edge is at −0.25t .

Key features we present include the nodal-adsorbate
bound-state wave functions, their Fano structures in G by a
neighboring non-nodal adsorbate, the localized (or evanescent)
nature of the bound state, and the bound states that are formed
from a few nodal adsorbates.

Figure 2 presents (a) the wave function � and (b) the |�|2.
Equation (9) is used for this purpose. The adsorbates F are
located on nodal sites M = 17 (a); 5 (b); and 8 (c). The fact that

� is real, according to the discussion in the paragraph just after
Eq. (18), allows us to make the � plot as it is. The positions of
the nodal adsorbate are at the centers of the yellow triangular
structures in the � contours. Similar triangular structures have
been obtained, but in the local density of states at zero energies
around a vacancy in bulk graphene [41,42]. For the sake of our
following discussions, we denote the nodal-adsorbate site to be
an A site. Its nearest neighboring site along the ribbon direction
is the B site in the same unit cell. The |�|2 contour in Fig. 2
(lower figures) shows that |�|2 weights more, in general, on
the B site. This trend is in agreement with that for a vacancy
[41]. The very large on-site potential V0 for the vacancy has
pushed the wave function of its zero-energy state to the B (A)
site entirely when the vacancy is at an A (B) site.

Another trend of interest that holds better for the more
central-nodal adsorbate (M = 8) is related to the asymmetric,
or symmetric, weighting of the |�|2 for the A, B sites in a
unit cell. This weighting feature depends on the longitudinal
displacement of the unit cell of interest from the nodal
adsorbate. In Fig. 2, asymmetric (symmetric) weighting of
|�|2 occurs when the unit cell is on the smaller (larger)
y-coordinate side of the nodal adsorbate. The origin of this is
that |�|2 for A sites exhibit a π/3 symmetry (with a y → −y

symmetry) while that for B sites exhibit a 2π/3 symmetry
(without a y → −y symmetry). The A-, B-site correlations
in the above conclusion will switch accordingly if the nodal
adsorbate is switched to a B site. It is because of the A,
B site symmetry in the AGNR. When the nodal adsorbate
is close to the AGNR edge (M = 17), the second trend
is greatly disrupted. Similarly, looking at the central-nodal
adsorbate in the �-contour plot, Fig. 2(c) (upper figure), we
see that the three lines of A-B sites leading outward from

FIG. 2. (Color online) Nodal-adsorbate bound-state wave functions � (upper figures) and |�|2 (lower figures). Adsorbates at nodal sites
M = 17, 5, and 8 are presented in (a)–(c), respectively. The adsorbate is F. The sites in (b) marked by grey (red) open symbols are B sites to
be attached upon by non-nodal adsorbates in Fig. 3. For display purpose, s-like functions are used in place of the site orbitals.
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FIG. 3. (Color online) A-, B-site symmetry (asymmetry) in Fano
structures for adsorbate pairs. Adsorbate pair in Fig. 2(b) with the
non-nodal adsorbate located on a site of the A-B unit cell denoted
by (a) grey (red) open square, and (b) grey (red) open circle. Solid
(black) curves are for non-nodal adsorbate located on the A site, and
open (red) symbols are for non-nodal adsorbate located on the B site.

the three vertices of the yellow triangle have � exhibiting
monotonically decreasing characteristics. On the other hand,
the three directions leading outward from the three bases of
the yellow triangle have � exhibiting oscillatory decaying
characteristics. These characteristics should be of interest for
exploring interactions between nodal adsorbates.

The asymmetric (symmetric) weighting of |�|2 in a unit cell
is reflected in Fig. 3, via the Fano structure in G, when a non-
nodal adsorbate is in the neighborhood. The nodal adsorbate
is the one in Fig. 2(b). The unit-cell locations of the non-nodal
adsorbates for the adsorbate pair are denoted by grey (red) open
symbols in Fig. 2(b). The symmetric weighting case, Fig. 3(a),
occurs when the non-nodal adsorbate is located on the larger
y-coordinate side of the nodal adsorbate. It is illustrated by the
almost complete overlapping in the Fano structures in Fig. 3(a).
The solid black curve and the red open symbols denote the
case of an A- and B-site non-nodal adsorbate, respectively.
On the other hand, the asymmetric weighting case, Fig. 3(b),
occurs when the non-nodal adsorbate is located on the smaller
y coordinate side of the nodal adsorbate. It is illustrated by
the very different Fano-structure widths in Fig. 3(b). Again,
the solid black curve and the red open symbols denote the
case of an A- and B-site non-nodal adsorbate, respectively.
Note that both of the dip structures in G experience quite a
significant relative energy shift (≈ 0.025t) between the two
G curves. In contrast, that the Fano-peak energy shows no
relative energy shift, and the Fano-peak G remains at 2e2/h

is in excellent accord with our analysis leading up to Eq. (17).
Since these two key features of our focus in this work remain
intact, regardless of whether the adsorbate pair belongs to AA
type or AB type, we will assume only AA-type adsorbate-
pair configurations in the following examples for the sake of
focusing our presentations on the essentials.

The robustness in the Fano peak is due to the localized
nature of the bound state. This is shown in Fig. 4, when
the L dependencies of the Fano structure in G and the Fano
width are presented in Figs. 4(a) and 4(b), respectively. As

FIG. 4. (Color online) Fano structures and Fano widths vs sepa-
ration L in an adsorbate pair. (a) Conductance G for L = 10, 5, and 2,
in units of 2

√
3a. (b) Exponential-type dependence of the Fano width

�εFano, the peak-dip energy difference, on L for non-nodal adsorbate
at M = 4, 6, and 9. Inset (solid curve) is for non-nodal adsorbate at
M = 3.

the longitudinal separation L decreases, from L = 10, 5, to
2, the Fano peaks in Fig. 4(a) show broadening peak-and-
dip structures, while the Fano-peak energy and G remain
unchanged. Here L is in units of 2

√
3a. A more systematic

study is shown in Fig. 4(b), when the L dependence of
the Fano width �εFano is presented. The Fano-peak width
�εFano is defined as the Fano peak-dip energy difference. For
the same nodal adsorbate, we present curves from different
non-nodal adsorbates (M = 3,4,6,9). The cases for M = 4,
6, 9 show exponential dependence of �εFano on L. The
case for M = 3, shown in the inset of Fig. 4(b), seems to
need further exploration below. It turns out, as is shown
in Fig. 1 (dotted curve), that the band edge of the first
and second gapped subbands contribute comparably to the
exponential behavior, because of their proximity in energy to
the bound state. Our analysis shows that these two exponential
contributions come to a cancellation at a certain L, leading to
the seemingly nonexponential dependence on L. An explicit
exposition of this understanding is by artificial keeping in Ĝ

only the first-gapped subband (the �ε̃1 curve), or only the
second-gapped subband (the �ε̃2 curve), or only both (the
�ε̃3 curve), and compare with the full numerical calculation
(full curve), as is nicely presented in Fig. 4(b) (inset). The
exponential or evanescent nature behind the Fano structures is
thus established.

Fano characteristics for adsorbate configurations involving
more than one nodal adsorbates are presented in Fig. 5. The
implication on the bound states is our focus here. Specifically,
we consider the N = 3 case, where indicated in the inset
are the nodal-adsorbate positions (red solid circles) and the
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FIG. 5. (Color online) G for three nodal adsorbates and one non-
nodal adsorbate. Lattice sites (M,N ) are (8,6), (5,−3), and (17,−6)
for the nodal adsorbates, and (4,0) for the non-nodal adsorbate. All
adsorbates are F in (a), and the non-nodal adsorbate is changed to OH
in (b).

non-nodal adsorbate position (black solid circle). The non-
nodal adsorbate plays the role of revealing the bound states.
Figure 5(a) shows that there are three Fano structures. The fact
that these Fano peaks all have G = 2e2/h shows, according
to our analysis following Eq. (17), that the Fano-peak energies
correspond to bound states. These bound-state energies are
at −0.216t , −0.169t , and −0.158t , which are pretty close
to the bound-state energies for individual nodal adsorbate,
at M = 17, 5, and 8, respectively, given in the beginning of
this subsection. In terms of percentage-energy shifts, they are
−3.2%, + 1.2%, and +0.6%. The signs of these percentage-
energy shifts are consistent with level repulsion. The M = 17
bound-state level has a greatest percentage-energy shift due to
the proximity of the M = 17 to the M = 5 adsorbates. The
Fano width of the M = 17 is narrowest because of the farthest
distance the associated nodal adsorbate is separated from the
non-nodal adsorbate. To illustrate that the results are robust
against the type of non-nodal adsorbate, we show in Fig. 5(b)
the case when the non-nodal adsorbate becomes OH. For refer-
ence, we also plot in Fig. 5(b) the G (dotted curve) for a single
OH. In summary, the exponential nature of the nodal bound
states has kept intact the Fano-peak energies and G values.

B. Adsorbate recognition

The key feature we present here is the adsorbate-recognition
capability provided by the adsorbate-dependent bound states.
For comparison, we use both F and OH as adsorbates. For
illustration, we have included three metallic AGNR of different
widths.

Presented in Figs. 6(d) and 6(e) are Fano peaks of adsorbate
pairs from adsorbate species F and OH, respectively, and for
20-AGNR. The Fano-peak energy spectrum is clearly distinct
for the two adsorbate species. In contrast to the broad dip of
the adsorbate resonant state, the Fano profile has significantly
enhanced the energy resolution. Adsorbate recognition is

FIG. 6. (Color online) Look-up figures for adsorbate recognition.
(a)–(c) are look-up figures for AGNR of W = 17, 20, and 23,
respectively. Va curves for adsorbate OH (F) are denoted by solid
left- (right-)pointing triangles with Va referring to the right-ordinate
scale. 1/Re [G11] curves for W -AGNR at nodal sites MI are denoted
by open symbols. G curves in (d) and (e) denote adsorbate pairs
(L, M1, and M2) for F and OH, respectively. Vertical dotted lines in
(a)–(c) are guides to adsorbate recognition for (d).

facilitated by look-up-figures, as in Figs. 6(a)–6(c). Here
1/[G11] (which is also 1/Re [G11] in the energy range of our
interest) intercepts Va to produce the adsorbate bound-state
energies. Each nodal site MI , the I th nodal site counted from
a ribbon edge, contributes a 1/Re [G11] curve. These curves, as
shown in Figs. 6(a)– 6(c) for W = 17, 20, and 23, respectively,
serve to identify the adsorbate represented by, for instance, the
Fano peaks in Fig. 6(d). Guided by the three vertical dotted
lines, we see that OH is clearly out of the consideration, and F
fits best for the W = 20 case in Fig. 6(b). Furthermore, both
the W = 23 and 17 cases can be ruled out when the entire
Fano-peak spectrum is utilized. Thus our scheme could also
provide us information about W . The boasting of the energy
resolution by the Fano structures, in contrast to the energy
resolution provided by the width of the resonant state, has
made possible the above adsorbate recognition scheme.

C. Robustness of our adsorbate recognition
against weak disorder

The robustness of the Fano structures as well as the
adsorbate recognition capability against weak disorder is
illustrated. The disorder is provided by edge vacancies. We
have performed the ensemble average of G over disorder
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FIG. 7. (Color online) Effects of disorder due to edge vacancies
on the Fano resonance of an adsorbate pair from F (a)–(c) and OH
(d)–(f). The adsorbates are at M1 and M2 with separation L = 5
along a 20-AGNR. Conductance curves Gp (dashed curves) are for
an adsorbate pair only, 〈GBG〉 (grey curves) are for edge-vacancy
disorder only, and 〈G〉 (solid curves) are for both the adsorbate pair
and edge-vacancy disorder. The edge vacancies distribute over L0 ∼
1 μm with concentration Pv = 0.125%. Average conductance 〈G〉 is
obtained for 100 disorder samples.

configurations. We have also performed the average of G for
a given disorder configuration over a small energy interval.
Both averages have demonstrated the robustness of the nodal
physics found in this work.

Effects of disorder on our Fano-peak results due to random
edge vacancies are presented in Fig. 7. The edge vacancies
are distributed on the AGNR sites along its two edges with an
occupancy Pv = 0.125%, and over a length L0 ∼ 1 μm. An
edge vacancy is described by an on-site potential V0 → ∞.
The ensemble average over 100 edge-vacancy configurations
gives us 〈G〉 (solid curves) in the presence of an adsorbate pair,
and the background conductance 〈GBG〉 (grey curves) in the
absence of any adsorbate. The adsorbate pairs in Fig. 7 are the
same as those in Figs 6(d) and 6(e), where their conductances
are plotted again in Fig. 7 as Gp (dotted curves) for comparison.
Disorder effects of G on an adsorbate pair for F is presented
in Figs. 7(a)– 7(c), and for OH is in Figs. 7(d)– 7(f).

Figure 7 shows that our Fano results remain significant in
the presence of disorder. Equally remarkable is the robustness
of the Fano-peak energies against the disorder. Even though
the conductance at the Fano peak is no longer of value 2e2/h, it
manages to rise to the same level as 〈GBG〉. This is understood
from our analysis in Eq. (28). The monotonic decreasing of
〈GBG〉 to zero as E approaches the Dirac point (E = 0) is the
symmetric edge-vacancy-induced gap-opening feature [20].
Thus the Fano-peak conductances for F suffer less suppression
from disorder than that for OH, due to the farther distance
of their Fano-peak energies from the Dirac point. Yet the
Fano structures of OH remain significant enough for our
purposes here. On the same token, our results should hold
for the case of hydrogen-passivated AGNR, due to its small
energy-gap opening effect on the metallic AGNR (|E| � 0.02t

FIG. 8. (Color online) Same plot as in Fig. 7 except that the
number of edge-vacancy configurations is 3. The adsorbates are at
M1 and M2 with separation L = 5 along a 20-AGNR. Adsorbate pair
is from F (a)–(c) and OH (d)–(f). Conductance curves Gp (dashed
curves) are for an adsorbate pair only, and 〈GBG〉 (grey curves)
are for edge-vacancy disorder only (100 configurations average,
Pv = 0.125% over 1 μm). Conductance 〈G〉�E is averaged over both
an energy interval �E and over three edge-vacancy configurations,
where �E = 2.5 × 10−3t .

for W = 20) [43,44]. The recent atomically precise bottom-up
fabrication of AGNR [45–47] shows an encouraging trend of
achieving low edge-disorder W -AGNR in the near future. The
recent development of the STM tip-assisted nanopatterning
[48] would provide the exciting adsorbate-maneuvering capa-
bility for the experimental implementation of this study.

The ensemble averaged 〈G〉 in Fig. 7 has taken 100 random
edge-vacancy configurations into consideration. It is legitimate
to see how this large demand of configurations could be
reduced for the realization in an experiment. Making use of
the mesoscopic characteristics of the quantum transport [36],
we introduce, for a given edge-vacancy configuration, an
energy average of G over a small energy interval �E. For
our purpose here, we choose �E = 2.5 × 10−3 t . We show,
in Fig. 8, that this energy average procedure has dramatically
reduced the demand on the configuration size by using only
three randomly chosen configurations. With merely three
configurations, we see that the Fano characteristics in 〈G〉�E

are very clear in Figs. 8(a), 8(b), 8(d), and 8(f). As for
Figs. 8(c) and 8(e), the 〈G〉�E already shows sharp-change
characteristics at the positions of the Fano peaks (guided by the
Gp curves). This rapid converging to the Fano characteristics
by energy averaging is an impressive demonstration of the
mesoscopic physics [36].

We have established that the Fano structures of an adsorbate
pair (a nodal and non-nodal pair) is robust against weak
edge-vacancy disorder. The effect of other adsorbates on
the adsorbate pair is addressed in the following. Figure 5
has shown that when these other adsorbates are nodal, the
Fano structures of the adsorbate pair are not suppressed. On
the other hand, when these other adsorbates are non-nodal,
they could affect the Fano structures. In the low adsorbate
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FIG. 9. (Color online) Effects of an additional random adsorbate
A3 on the Fano structures of an adsorbate pair in the presence of
edge-vacancy disorder. The adsorbate pair, located at M1 and M2, are
separated by L = 3. Adsorbates are F in (a)–(c), and OH in (d)–(f).
A3 locates randomly over M and A3-pair L separation is within a
0.5-μm range. 〈G〉�E is defined as in Fig. 8, but for five configurations
of edge vacancies and A3.

concentration regime, we consider the effects of an additional
random adsorbate on the Fano structures of the adsorbate pair
in the presence of edge-vacancy disorder. This is presented in
Fig. 9. Adsorbates are F in (a)–(c), and OH in (d)–(f). For the
〈G〉�E , we have included five random configurations of the

additional adsorbate and the edge vacancies. The additional
adsorbate locates randomly over all possible M sites and over
a longitudinal distance of 1.0 μm. This is equivalent to an
adsorbate concentration Pa ≈ 3.1 × 10−3% for the adsorbate
system. The edge-vacancy concentration Pv ≈ 0.125% is the
same as in Fig. 8. Overall, Fig. 9 shows that the Fano structures
remain evident even though there are signs of suppression.
In particular, they are quite robust for Figs. 9(a)– 9(d), and
recognizable (guided by the Gp curves) for Figs. 9(e) and 9(f).

IV. CONCLUSION

In conclusion, using AGNR as a platform, we have
performed investigation on the concept of nodal physics and
the possible physical objects that it can lead to. Specifically,
we have pointed out that nodal adsorbate induces a bound state
in metallic AGNRs, that the bound-state energy is adsorbate
dependent, and that it is robust against weak disorder. It is
revealed in Fano resonances via a non-nodal adsorbate, which
greatly enhanced the energy resolution. It allows adsorbate
recognition, when its Hückel parameters are known, and
Hückel parameters probing, when the adsorbate is known.
Finally, the generic nature of this work should encourage
further research on nodal physics in other physical systems.
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