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In order to satisfy the growing demand for high-performance computing in modern embedded devices, sev-
eral architectural and microarchitectural enhancements have been implemented in processor architectures.
Extended instruction (EI) is often used for architectural enhancement, while issuing multiple instructions is
a common approach for microarchitectural enhancement. The impact of combining both of these approaches
in the same design is not well understood. While previous studies have shown that EI can potentially improve
performance in some applications on certain multiple-issue architectures, the algorithms used to identify
EI for multiple-issue architectures yield only limited performance improvement. This is because not all
arithmetic operations are suited for EI for multiple-issue architectures. To explore the full potential of EI
for multiple-issue architectures, two important factors need to be considered: (1) the execution performance
of an application is dominated by critical (located on the critical path) and highly resource-contentious (i.e.,
having a high probability of being delayed during execution due to hardware resource limitations) operations,
and (2) an operation may become critical and/or highly resource contentious after some operations are added
to the EI. This article presents an EI exploration algorithm for multiple-issue architectures that focuses on
these two factors. Simulation results show that the proposed algorithm outperforms previously published
algorithms.
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1. INTRODUCTION

Next-generation digital entertainment and mobile communication devices will require
higher processor performance. This can be achieved by increasing the clock rates. How-
ever, this approach has not been actively pursued in recent years due to its quadratic
impact on power consumption. Another common approach is to extend the original in-
struction set architecture (ISA) with special instructions called extended instructions
(EI) or instruction set extension (ISE) [Galuzzi and Bertels 2011; Pozzi and Ienne 2006]
(note that an EI is an instruction in ISE). In this way, one instruction can be made
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to perform the work of multiple operations. In many applications, the same operation
patterns may be executed frequently. For example, multiply/accumulate (MAC) opera-
tion patterns are common in signal processing applications. The most straightforward
approach is to extend a MAC instruction in the ISA and provide an accelerated func-
tional unit in the implementation to execute it. In this article, a frequently executed
operation pattern selected as a new instruction is termed an EI (extended instruction),
and the dedicated (hardware) functional unit used to execute such an EI is known as an
application-specific functional unit (ASFU). Other examples of ISEs/Els are SSE, AVX,
and NEON; these all extend the computation width rather than the computation depth.
In addition to improving general execution performance, EI can be used to accelerate
special applications. For example, instructions to support CPU virtualization, such as
AMD-V and Intel VT-x, have been introduced to enable more efficient virtualization.
Furthermore, EI can also reduce the binary code (or bytecode) size of a program because
a single EI can represent multiple operations/instructions [David et al. 2001]. Many
commercial extensible processors that have become available recently allow designers
to exploit the power of EI. Some examples of these are Tensilica Xtensa [Halfhill 2003b],
ARC ARCtangent [Halfhill 2000], MIPS CorExtend [Halfhill 2003a], ARM OptimoDE
[Clark et al. 2004], and Altera Nios II [Altera 2004]. In this study, EI is used mainly
to improve the execution performance of specific applications for embedded devices.
In addition to increasing the clock rate and extending original ISA with Els, multiple
issue is a technique commonly implemented in superscalar and very long instruction
word (VLIW) architectures. Like other microarchitectural techniques, it has gradually
moved from general computing processors to embedded processors.

Several studies [Saghir et al. 2007; Atasu et al. 2003; Jain et al. 2004; Reddy 2006; L
et al. 2008] have demonstrated that EI can be combined with multiple issuing to yield
greater speedup in applications. Since multiple issuing is able to effectively exploit-
instruction-level parallelism, the performance bottleneck may shift to the critical path
of the application where the strength of EI lies. When a sequence of data-dependent
operations are executed as one combined operation, its execution latency can be re-
duced by using ASFU. On the other hand, when the exploitation of a newly defined EI
reduces the critical path of program execution, multiple issuing becomes important for
speeding up the processing of instructions in noncritical paths. EI and multiple issu-
ing complement each other, and the combination of both techniques achieves a critical
balance for a high-performance processor.

The process of exploring EI for multiple-issue architectures differs from the single-
issue case. In a single-issue architecture, packing more operations into one EI can yield
more performance improvement. However, this is not always true for multiple-issue
architectures, because packing an operation that is not on a critical path or does not use
critical resources into an EI may not yield faster execution and could result in wasted
resources and an increased area cost. Therefore, there should be a way to determine
which operations are worth exploring before exploring EI on a basic block. From ana-
lyzing the operation (instruction) scheduling results on a multiple-issue architecture,
we found that two factors should be considered when deciding the usefulness of each
operation. The first is that the execution performance of a multiple-issue architecture
is dominated by critical or highly resource-contentious operations. An operation in the
critical execution path is called a critical operation, and an operation is considered to
be contentious if there is a high possibility of delay in its execution due to hardware
resource contentions (e.g., when the number of original functional units or the number
of register read/write ports are limited) apart from data-dependent constraints. Thus,
if critical and/or contentious operations can be selected to develop EI, the performance
is then likely to be improved. Although both operation types (critical and contentious)
are important for EI exploration, only the critical type has been considered in some
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Fig. 1. EI design flow.

previous works [Clark et al. 2005; Lii et al. 2008]. The second factor is that these two
properties (contentiousness and criticalness) may change when operations are replaced
with new Els, that is, an operation that was not critical or contentious may become
critical and/or contentious after EI substitutions. However, if the EI exploration al-
gorithm is not aware of such changes, opportunities to pack more critical/contentious
operations into the EI may be lost, and the potential performance gain may not be
achieved. This important factor has not been addressed in the current literature.

This article proposes an EI exploration algorithm for multiple-issue architectures
that addresses these two factors. The proposed algorithm aims to minimize the execu-
tion cycle of the target application(s). To demonstrate the importance of the two factors,
we compared our proposed algorithm against algorithms proposed in Li et al. [2008]
in terms of the speedup, area cost, and area efficiency (i.e., the speedup ratio per unit
of the area cost). A study by Li et al. [2008] derived Els in a multiple-issue architec-
ture. However, this study only considered the criticalness of the operations and not
the contentiousness. We also compared different versions of the proposed algorithm,
including variations that do not consider the critical and/or contentious properties of
operations, or do not account for changes in the criticalness and/or contentiousness of
operations. From these comparisons, the importance of the aforementioned factors can
then be verified. The main contributions of this study are as follows.

(1) We provide an explanation of how current EI exploration algorithms do not ade-
quately explore EIs for multiple-issue architectures.

(2) We describe the important factors for designing an EI exploration algorithm for
multiple-issue architectures.

(3) We present proposal of an EI exploration algorithm for multiple-issue architectures
that considers the important factors just described.

(4) We quantify the improvement resulting from the proposed approach in terms of the
speedup, area cost, and area efficiency.

The rest of this article is organized as follows: Section 2 discusses the background
for this work and previous related studies. Section 3 describes the proposed algorithm.
Section 4 presents and discusses the simulation results. Conclusions are then presented
in Section 5.

2. BACKGROUND AND RELATED WORKS

This section provides an overview of the EI design flow and discusses related studies.
A motivating example is presented to illustrate the impact of the two important factors
emphasized in this article.

2.1. El Design Flow

The EI design flow is depicted in Figure 1. Once application profiling is complete, the
most time-consuming basic blocks are selected as the inputs for EI exploration. The EI
exploration process selects legal operation patterns as EIs which must conform to EI
exploration constraints. In EI merging, several isomorphic Els that would be derived
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in different basic blocks of the application are merged. For example, EI B is merged
into EI A if EI B is a subgraph of or identical to EI A. After EI merging, EI selection
sorts all derived Els based on a predefined ordering, such as the speedup. Finally,
some or all of the EIs are selected. Hardware sharing is also performed at this stage
to achieve higher hardware utilization. Hardware sharing refers to the assignment of
a hardware resource to multiple operations belonging to different Els. To ensure that
the performance is not reduced unnecessarily, the sharing process should be performed
only if two EIs do not execute simultaneously. Note that hardware sharing is optional
in the EI design flow. If it is assumed that the ASFU can concurrently execute multiple
EIls, the hardware sharing process may be not required. In this article, we focus on EI
exploration.

The constraints applied to EI exploration (I to V) and EI selection (II and V) are as
follows.

(1) Pipeline-Stage Timing. Under this constraint, the execution time of ASFU must
fit in a whole number of cycles of the original clock period of the processor core.

(i1) ISA Format. The ISA format imposes two constraints: the number of input/output
operands employed by an EI and the number of EIs selected.

(iii) Register File. The number of input/output operands adopted by an EI cannot
exceed the number of register file read/write ports.

(iv) Convex Property. The convex property is one where the EI output cannot be con-
nected to its input set via operations not grouped in this EI to ensure feasible
scheduling. Figure 2 shows examples of convex and nonconvex Els (operations
packed into an EI are circled with dashed lines).

(v) Silicon Area. This constraint restricts how much silicon area can be used for a
single and/or all Els.

2.2. Related Works

Several EI exploration algorithms have been proposed for single-issue architectures,
and Galuzzi and Bertels [2011] provide a comprehensive survey of the topic. EI explo-
ration algorithms can be classified into two categories. In the first type, the EI is grown
from a set of fundamental operation patterns available in advance [Liem et al. 1994;
Rao and Kurdahi 1992]. In the second type, no operation patterns are available in ad-
vance. All the Els are then grown from an operation under EI exploration constraints.
In the work proposed by Sun et al. [2002], EI exploration consists of two stages: EI
enumeration and EI pruning. In EI enumeration, all operations that could be packed
into EI are considered as basic EI candidates. By connecting several reachable basic EI
candidates, larger EI candidates may be generated. After EI enumeration, all candi-
dates are ranked by using a priority function that takes the number of inputs/outputs
and the reduced cycles of the EI candidate into account. Then, the algorithm selects the
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EI candidates whose ranking score is higher than a certain threshold ratio to be the
final result. Furthermore, the exact algorithm proposed by Atasu et al. [2003] maps
the EI search space, such as a basic block, to a search tree, where each level of the tree
represents an operation in the input basic block. Except for leaf node, each node in the
tree consists of two edges to its child node. One means to pack the operation into EI
while another one does not. After building the search tree, the algorithm traverses the
tree from the root to a leaf recursively and discards the path that violates EI explo-
ration constraints. A path from the root to a leaf (i.e., an exploration result that consists
of at least one EI) is regarded as a solution by EI exploration. However, as the exact
algorithm is highly computationally intensive, it does not support a large search space.
To overcome this problem, Pozzi et al. [2006] and Yu and Mitra [2007] proposed two
algorithms that reduced the computational complexity of EI exploration. Pozzi et al.’s
algorithm adopts a genetic algorithm where each solution is modeled by a gene. Yu and
Mitra’s algorithm recursively combines upward- or downward-connected subgraphs
generated by different operations to form an EI. EI exploration also can be considered
to be a hardware/software partition problem that divides all operations within a basic
block into two groups: software (operations that will be executed on the original ALU)
and hardware (operations that will be executed on the ASFU) [Biswas et al. 2006; Clark
et al. 2005; Wu et al. 2007; Lii et al. 2008]. Similar to the hardware/software partition
approach, most EI exploration algorithms provide a cost function to determine which
operations should be packed into Els.

To understand the effect of EI on multiple-issue architectures, AutoTIE [Goodwin
and Petkov 2003] (note that EI is called fusion operation in AutoTIE) and Jain et al.
[2004] applied an EI exploration algorithm [Atasu et al. 2003] to a very long instruc-
tion word (VLIW) processor. Although the algorithm they used was not designed for
multiple-issue architectures (i.e., it does not consider the two important factors ad-
dressed in this article), it still achieved significant speedup. Adopting the same EI
exploration algorithm [Atasu et al. 2003], Reddy [2006] proposed a fully automated
design methodology for exploring the design space of a VLIW-application-specific in-
struction set processor (ASIP). His experimental results were in agreement with those
of Jain et al. [2004] and demonstrated that EI can improve the performance of multiple-
issue architectures. In Saghir et al. [2007], the authors manually identified operations
for incorporating into the EI, including bit-reverse, bit-scrambling, bit-puncturing, and
sum-of-absolute-differences operations, and implemented them on a soft VLIW proces-
sor. Their experimental results show that the augmentation of EI on a VLIW processor
can deliver significant speedups using a small amount of FPGA resources. In contrast
to these works, a study by Lii et al. [2008] was designed to automatically explore EI for
multiple-issue architectures. In their work, the goal of exploring EI for multiple-issue
architectures was to minimize the length of the critical path in the input basic block.
They modeled the problem of EI exploration as a covering minimal length problem and
solved it using dynamic programming. However, the work of Li et al. only packs the
critical operation (not including contentious one) into EI and overlooks the fact that the
contentiousness and criticalness of an operation may change after EI substitutions.

Several processor architectures that aim to effectively combine EI with multiple-
issue implementations have been proposed. Lx [Faraboschi et al. 2000] is a customiz-
able multiclustered, very long instruction word (VLIW) processor. To support different
customizations, Lx allows variations in the issue width, number of functional units
(FU), functionality of each functional unit (FU), and instruction set architecture (ISA).
Based on Lx ISA, p-VEX [Stephan et al. 2008] is a reconfigurable and extensible VLIW
processor implemented using field-programmable gate arrays (FPGA). In both Lx and
p-VEX, designers can customize the functionality of an FU to support EI. XiRisc, pro-
posed by Lodi et al. [2003], consists of a VLIW processor and a reconfigurable unit
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Fig. 3. The criticalness and the contentiousness of an operation (bitcount).

which is a programmable logic that can be dynamically configured to offer different
functionalities for EI. The Xtensa processor [Halthill 2003] is a commercial processor
which allows designers to configure the issue width, register files as well as cache
structures, and customize the functional unit for EI(s). Apart from the Xtensa proces-
sor [Goodwin and Petkov 2003], these works mainly focus on architecture design and
not on customizing the functional unit for a specific application or algorithm. There-
fore, in order to accelerate the development of customized functional units on these
architectures, an algorithm that automatically generates EI is required.

2.3. Motivating Example

This section presents an example to illustrate the importance of the two factors men-
tioned in Section 1. Figure 3(a) shows a dataflow graph (DFG) that is transformed from
one of the hot basic blocks in the benchmark Bitcount. A DFG of a basic block can be
represented as a directed acyclic graph D = (V, E). Each node v € V is an operation
in the DFG. Each directed edge (u, v) € E represents the data dependency between
two operations. The directed edge marked with R represents the values read from the
register file. If the input value is an immediate value, the directed edge is marked
with I. For example, operation 1 (sft_1) shifts a value (read from the register file) by
the value in the immediate value field and writes the result to the register file. After
scheduling operations in the DFG shown in Figure 3(a), the criticalness and the con-
tentiousness of each operation can be found, as shown in Figure 3(b). In this article, the
criticalness and contentiousness of an operation refer to whether the operation lies in
the critical path and the possibility that it will be delayed during execution because of
hardware resource limitations, respectively. The criticalness of infinite (c0) means that
the operation locates on the critical path and the value of the criticalness will decrease
as the path on which the operation locates becomes less critical. The contentiousness
of an operation is proportional to the possibility of delaying its execution due to hard-
ware resource limitations. In Figure 3(b), the criticalness and the contentiousness of
each operation are given by the first and second numbers in parentheses within the
node, respectively. An operation is critical if its criticalness is infinite (c0), while the
contentiousness of zero represents that the operation will not delay its execution since
there exists at least one functional unit that the operation can be scheduled on.
Based on the DFG shown in Figure 3, Figures 4(a), 4(b), and 4(c) depict the scheduling
results for different EI exploration scenarios. Figure 4(a) does not account for the two
important factors. It is labeled as ‘Valid’, since the exploration result is legal and
attempts to pack as many operations into EI as possible. Figure 4(b) is based on
Figure 4(a), with the difference being that criticalness and contentiousness have been
considered. This is labeled as ‘Static C/C’. Figure 4(c) shows the result when considering
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Fig. 4. Results of different EI exploration scenarios.

the two factors more aggressively. This is labeled as ‘Dynamic C/C’. In Figure 4, we
assume that (1) only arithmetic operations can be selected to form the EI; (2) the
issue width and the number of original function units of the processor core are both
three; (3) only one EI can be issued and executed at a time; (4) the number of register
read/write ports is limited to six and three, respectively. In Figure 4, C, represents the
nth scheduling cycle. The scheduling result for Valid is shown in Figure 4(a). Since Valid
does not consider the two factors, some operations that provide no benefit are selected
(e.g., operations 3 and 6) to form the EI. Obviously, packing such operations in the EI
does not improve the performance and instead wastes hardware resources. Figures 4(b)
and 4(c) depict the scheduling results of Static C/C and Dynamic C/C, respectively. In
both scenarios, an operation is selected to form an EI only if its criticalness is infinite
or its contentiousness is larger than zero. However, Static C/C does not consider the
second factor, which is the change in the criticalness and/or contentiousness of an
operation. Thus, it does not account for the fact that operation 2 becomes critical after
operations 1, 5, and 7 are replaced with the EI. As a result, Static C/C usually shows
a much lower performance compared with Dynamic C/C.

3. EI EXPLORATION ALGORITHM

This section provides an overview of the proposed EI exploration algorithm and de-
scribes each major part of the algorithm in detail.

3.1. Overview

The proposed EI exploration algorithm consists of three major components: operation
profitability calculation, profitable operation packing, and illegal EI decomposition.
As mentioned earlier, the design of an EI exploration algorithm for multiple-issue
architectures must account for two important factors: (1) only critical or contentious
operations should be selected to form the EI, and (2) an operation’s criticalness and
contentiousness may change as a result of replacing operations with newly derived Els.
Therefore, the algorithm must be capable of (1) picking reachable critical or contentious
operations to form the EI under EI exploration constraints and (2) identifying all critical
and/or contentious operations iteratively.

Figure 5 depicts the flowchart of the proposed algorithm for EI exploration. The in-
put and output are the hot basic block(s) selected from a target application and ElIs,
respectively. In Step 1, the algorithm calculates the criticalness and the contentious-
ness of each operation. Based on these results, the operation profitability (OP) of all
the operations can then be determined. If an operation’s criticalness is infinite or its
contentiousness is larger than zero, then its OP is one; otherwise, the OP is zero. In
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Fig. 5. EI exploration flow.

addition, if the OP of an operation is equal to one, it is considered to be a profitable
operation and can be selected to form the EI. In Step 2, all reachable profitable op-
erations are packed together to form the EI. Step 3 checks whether the termination
condition is met. The termination condition is whether or not any new EI was derived.
If no further Els can be found, the algorithm terminates; otherwise, Step 4 checks the
legality of each new EI. If any of the derived Els violate exploration constraints, the
algorithm will execute illegal EI decomposition (Step 5) to divide the illegal EI into
several legal and smaller Els; otherwise, it moves to Step 6. Finally, the algorithm
replaces operations in the basic block with the newly discovered EI(s) (Step 6) and
begins the next iteration from Step 1. Note that each newly discovered EI is considered
to be a new operation in the basic block after operation replacement.

3.2. Operation Profitability Calculation

Two common approaches are used to accelerate the execution of an application. One ap-
proach is to reduce the length of the critical path; the other is to prevent operations from
delaying execution due to hardware resource contentions apart from data-dependent
constraints. In this article, we define criticalness and contentiousness to represent
whether an operation locates on the critical path and the possibility that an operation
may delay its execution because of the hardware resource contentions, respectively.
Based on the criticalness and the contentiousness, the operation profitability (OP) of
each operation can then be calculated. From the OP, the algorithm can determine which
operation should be selected to form the EI.

The criticalness of an operation is the difference between its as-late-as-possible
(ALAP) and as-soon-as-possible (ASAP) scheduling cycles, which are both determined
by unconstrained ASAP and ALAP schedules. Here, ‘unconstrained’ means that no
hardware resource limitation exists when scheduling operations. The ALAP and ASAP
scheduling cycles of an operation i are denoted by ALAP; and ASAP;, respectively. The
criticalness of operation i is

L 1
Criticalness; = (ALAP. — ASAP)’ (1
Operations located on the critical path have criticalness equal to infinity, and the criti-
calness will decrease as the path in which the operation is located becomes less critical.

Exploring EI must have the information of hardware resource usage. However,
this hardware resource usage depends on the result of EI exploration. So when EI
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exploration and operation scheduling are handled concurrently, it is hard to determine
the hardware resource usage, since it will be affected by EI exploration. However, if EI
exploration and scheduling are performed iteratively, the resource usage information
could be determined by the compiler at every cycle. To resolve this problem, we
define a variable, contentiousness, to represent the possibility that the execution of
an operation will be delayed due to hardware resource contentions. For an operation,
higher contentiousness implies higher possibility of delaying its execution, and the
contentiousness of zero means that it would have at least one functional unit to sched-
ule on or it is a critical operation. Accordingly, the contentiousness of an operation is
defined as zero if its criticalness is infinite; otherwise, it can be calculated using the
following steps. First, calculate number_of avaliable FU;, that is, the accumulation of
the number of the available original functional units between the ASAP scheduling
cycle to the ALAP scheduling cycle of operation i. If number_of avaliable FU; is larger
than one, it means there exists more than one functional unit on which operation i can
be. Second, subtract one from the minimum of one and number_of .avaliable FU;. The
contentiousness of operation i is derived as follows.

Contentiousness, — 1 — Min(number _of .avaliable FU,, 1), %f Crz.tz.calz.tyi # 00,
0, if Criticality;, = co.
(2)
ALAP, . .
' ber_of avaliable_ [_.FU,
number_of .avaliable FU; = Z number.of avalia e O Tt 3
number_of_non_critical operation,
t=ASAP,
number_of avaliable oringial _ FU; = number_of original FU
— number _of critical operation,. (4)
number_of_non_critical _operation, = Z y X operation;. (5)
ie€all_non_critical operation
_ |1, ift €« ASAP, — ALAP, (6)
V= 0, otherwise,

where number_of non_critical_operation; is the number of noncritical operations
that can be scheduled in scheduling cycle ¢, number_of.available_ original FU,
represents the number of original functional units available for noncritical op-
erations (i.e., in which no critical operation is scheduled) at scheduling cycle ¢,
number _of critical operation; is the number of critical operations scheduled at schedul-
ing cycle ¢, number_of.original FU denotes the number of original functional units,
and ASAP;—~ALAP; represents all scheduling cycle of operation; between its ASAP
scheduling cycle (ASAP;) and its ALAP scheduling cycle (ALAP;).

Figure 6 shows the contentiousness calculation step by step. The input DFG used in
this example is shown in Figure 3(a). We assume that (1) only arithmetic operations are
allowed to form an EI; (2) the issue width and the number of original function units of
the processor core are both equal to three; (3) only one EI can be issued and executed at
each scheduling cycle; (4) the number of register read and write ports is six and three,
respectively. Initially, all operations are scheduled without any hardware resource con-
straints to identify their possible scheduling cycles. Figure 6(a) shows the possible
scheduling cycle for all operations in the input DFG. In Figure 6(a), operations covered
by a gray rectangular grid are critical, and only one scheduling cycle can be allocated to
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Fig. 6. Example of contentiousness calculation.

them; they are operation 1 at C1, 5 at C2, 7 at C3, and 8 at C4. Furthermore, since these
operations are critical, their contentiousness defaults to zero according to Equation (2).
In Step 2 (Figure 6(b)), number_of critical operation, number_of _non_critical operation,
and number _of available_original FU in all the scheduling cycles are calculated using
Equations (4) to (6). Finally, in Step 3 (Figure 6(c)), using the results of Step 2, the con-
tentiousness of all noncritical operations can be computed using Equations (2) and (3).

The OP of an operation is calculated from its criticalness and contentiousness. The
OP of operation i is denoted as OP; and is derived as

1, if Criticality; = oo or Contentiousness; > 0,
0, otherwise.

OP; = { (7)

3.3. Profitable Operation Packing

Profitable operation packing encapsulates a set of reachable profitable operations to
form the EI. Note that not all profitable operations may be selected to form the EI.
In this article, only the operations of integer arithmetic (except division), comparison,
shift, and logic are permitted to form the EI. However, this limitation could be alleviated
when increasing the implementation cost of ASFU. Furthermore, some of the packing
results may be illegal (i.e., they may violate one of the constraints of EI exploration).
The EI exploration algorithm will decompose an illegal EI into smaller legal ones
by performing illegal EI decomposition. In addition, except for some multiple-cycle
operations, the algorithm discards Els that only contain a single operation, because
such EIs cannot improve the performance. For multiple cycle operations, if ASFU could
reduce their execution cycle, these operations would be permitted to form the EI even
if only one operation exists in an EI.

3.4. lllegal El Decomposition

The illegal EI decomposition process separates all of the operations in an illegal EI into
several disjoint and legal subgraphs, where each subgraph is a set of reachable prof-
itable operations that correspond to a legal EI. To maximize the speedup and minimize
the area cost, the illegal EI decomposition tries to make all legal subgraphs (where each
subgraph represents an EI) as large and as similar (isomorphic) as possible. Based on
this objective, we defined a metric called coverage to quantify the decomposition result.
The coverage of a legal subgraph denotes the sum of the sizes of all legal and fully/
subidentical subgraphs. Legal subgraph X is considered to be fully/sub-identical to
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Fig. 7. Example of coverage.

legal subgraph Y only if the graph formed by X is isomorphic/sub-isomorphic with that
formed by Y. Note that all subgraphs used to calculate the coverage must come from
the same illegal EI.

A legal subgraph with a higher coverage has the advantages that (1) it can share
its hardware resources with others (reducing the area cost), and (2) it can cover more
operations in an illegal EI (delivering higher speedup). Figure 7 shows an example to
illustrate the coverage calculation. Two legal subgraphs are depicted in the first and
fourth columns of the table. The second and fifth columns of the table show the (oper-
ation) replacement results for legal subgraph A and B, respectively; the replacement
results are circled with dashed lines. Based on the replacement result, the coverage
(labeled as C in Figure 7) of each legal subgraph can then be determined. Since
legal subgraph A could replace two groups of operations (operations 1, 2, 3, 6, and 9;
operations 4, 7, and 10), its coverage is 8. On the other hand, two groups of operations
are identical to legal subgraph B, and thus the coverage of legal subgraph B is 6.

Unfortunately, the problem of illegal EI decomposition is NP-complete, as can be
proved through a trivial reduction to the graph-partitioning problem (by translating
an illegal EI to a DFG)—a known NP-complete problem. Thus, in order to decom-
pose an illegal EI in reasonable time, we derive a heuristic algorithm in this article.
The basic idea of the proposed algorithm is to recursively merge several reachable
operations to form an EI using a combination profit function under EI exploration
constraints.

3.4.1. Flowchart of lllegal EI Decomposition. A flowchart of the illegal EI decomposition
algorithm is depicted in Figure 8. The input and output of the decomposition algorithm
are operation_set, which contains all operations in an illegal EI, and EI_set, which
stores the decomposition result (i.e., decomposed legal Els), respectively. Illegal EI
decomposition involves two stages: subgraph construction and subgraph combination.
First, subgraph construction generates upward and downward subgraphs for each
operation in the illegal EI and stores the generated results in a set called subgraph _set.

The upward and downward subgraphs are each a sequence of operations starting
from the operation or ending with it. For an operation, its corresponding upward
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operation_set
(Operation_Set € all nodes in an illegal EI)

‘ 1. Subgraph construction

!

subgraph_set

!

‘ 2. Sugraph combination

!

EI set

Fig. 8. Flowchart of illegal EI decomposition.

(downward) subgraph is generated by recursively packing its reachable predecessor
(successor) operations with itself along one data-dependence chain until either the
head (tail) operation of the illegal EI is reached or any of the EI exploration constraints
are not conformed. Note that an operation usually consists of several upward and
downward subgraphs. Moreover, each upward or downward subgraph must satisfy all
EI exploration constraints. In the second step, subgraph combination computes the
coverage for all subgraphs in subgraph _set. According to the coverage, subgraph com-
bination iteratively merges reachable subgraphs under EI exploration constraints to
form a larger subgraph. We will describe the subgraph construction and combination
stages in detail in the following sections.

3.4.2. Subgraph Construction. Subgraph construction finds all legal upward and down-
ward subgraphs for each operation in the illegal EI and stores them in subgraph _set.
Figure 9 shows an example of a maximal upward and downward subgraph (a subgraph
containing the maximum number of legal operations). In this example, the register file
constraint is assumed to be 4/2 (read/write). Since no predecessor operation exists for
operation 1, only one upward subgraph exists, that is, itself. Furthermore, since only
one path exists between operation 3 and the head operation (operation 1), it also has
only one maximal upward subgraph (the subgraph that includes operations 1, 2, and 3).
On the other hand, the number of maximal downward subgraphs of operation 1 is three
(operations 1, 2, 3, 6, and 9; operations 1, 2, 4, 7, and 10; operations 1, 2, 5, 8, and 11).
Since only one path exists between operation 3 and its tail operation (operation 9), the
number of maximal downward subgraphs is one (comprised of operations 3, 6, and 9).

3.4.3. Subgraph Combination. Subgraph combination iteratively merges connected sub-
graphs to form a bigger subgraph under EI exploration constraints. At this stage, all
operations have corresponding upward and downward subgraphs. Many subgraphs in
subgraph_set overlap with each other; in other words, an operation usually exists in
several subgraphs. However, the output of illegal EI decomposition should be disjoint
subgraphs. Thus, the subgraphs in subgraph_set cannot directly be considered as the
outcome of illegal EI decomposition. Furthermore, in our experiment, the number of
read/write ports of many subgraphs in subgraph_set is below the maximum allowed
value. This implies that we can fuse multiple subgraphs to make a larger subgraph
without violating EI exploration constraints (especially the register read/write con-
straint). Furthermore, in this work, except for multiplication, the execution cycle of
the operation that can be packed into the EI is set to one. Therefore, subgraphs that
contain only one single-cycle operation will be discarded after performing subgraph
combination, since they cannot improve the performance.
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Fig. 9. Example of maximal upward and downward subgraphs.

Figure 10 shows the pseudocode of the four-step subgraph combination algo-
rithm. Between Steps 1 to 3, the algorithm iteratively merges the subgraph with
the largest coverage with others until no subgraph remains in subgraph_set. In
Step 1, the algorithm calculates the coverage of all subgraphs in subgraph _set us-
ing CoverageCal() and then sorts the subgraphs in subgraph_set in decreasing or-
der of coverage. If two subgraphs have the same coverage, the larger one (having
more operations) has a higher priority and appears first in subgraph _set. In Step 2,
based on the order in subgraph_set, the algorithm selects the subgraph with the
highest combination profit, subgraphuighes:. It merges as many reachable subgraphs
as possible under EI exploration constraints. To represent the merged result, a
data structure called merged_subgraphc,rens is introduced. Another data structure,
merged _subgraphien,, is also created to substitute for merged_subgraph yrren:. The func-
tion LegalityVerify() is used to verify the legality after merging a reachable subgraph
with merged_subgraph yrren:. If merged_subgraphi.n,, satisfies all EI exploration con-
straints and has better coverage than merged_subgraphcyrren:, merged_subgraphiemy
becomes merged_subgraph, rens. Moreover, the algorithm removes all subgraphs that
overlap with merged_subgraph . ren:, that is, if a subgraph has any operation that exits
in merged _subgraph yrrent, it will be removed from subgraph _set. After examining all the
subgraphs in subgraph_set, the algorithm then enters Step 3, which pushes the cur-
rent merged result, merged_subgraph ., ren:, into result_subgraph set. If subgraph _set
has other subgraphs fully identical to merged_subgraph ,rens, all these subgraphs are
stored in identical _subgraph set and removed from subgraph _set. Similarly, if a sub-
graph in subgraph set overlaps with one in identical_subgraph _set, it is also removed
from subgraph_set. Finally, the algorithm checks whether Subgraph _set is empty. If so,
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Do
/* Step 1: sort subgraph_set */
For each subgraph; of subgraph_set
CoverageCal(subgraph;, subgraph_set);
End for
Sort subgraph set by coverage;
/* Step 2: subgraph combination */
subgraphyigress = pop subgraph_set;
merged_subgraphcyyen += subgraphyigest;
com_profiten = CoverageCal(merged _subgraph e, subgraph_set),
merged_subgraphie,, = merged_subgraphusrens;
For each subgraph; of subgraph_set
If merged_subgraphien, N subgraph; '= Null
merged_subgraphie,, += subgraph;;
com_profitie,, = CoverageCal(merged_subgraphie,, subgraph_set),
If LegalityVerify (merged_subgraphe,,) and com_profitie,,> com_profiteuren
merged_subgraph cuyyen += subgraph;;
merged_subgraphe,,, = merged_subgraphusrens;
Remove overlapped subgraphs with merged subgraph cren: from subgraph_set;
End if
End if
End for
/* Step 3: find fully/sub identical subgraph and remove overlapped ones */
result _subgraph_set += merged subgraph uyen
identical _subgraph_set = FindIndenticalSubgraph(merged subgraph.ren, subgraph_set);
For each subgraph; of identical _subgraph_set
Remove overlapped subgraphs with subgraph; from subgraph_set;
End for
While (subgraph set is not empty)
/* Step 4: remove the subgraph that contains only one single cycle operation */
For each subgraph; of result subgraph _set
If subgraph; contains one single cycle operation
Remove subgraph; from result_subgraph_set;
End if
End for

Fig. 10. Pseudocode of the subgraph combination algorithm.

the algorithm terminates the subgraph combination loop and enters Step 4; otherwise,
it continues to merge other subgraphs. In Step 4, the algorithm would discard sub-
graphs that consist of only one single-cycle operation, since these subgraphs cannot
improve the performance. After removing valueless subgraphs, the algorithm outputs
result_subgraph _set as the decomposition result (each subgraph in result_subgraph _set
is an EI). Note that since some subgraph is discarded at Step 4, not all operations in
the illegal EI are packed into Els after the decomposition algorithm is terminated.
Figure 11 shows an example of illegal EI decomposition. In this example, the register
file constraint is assumed to be 4/2 (read/write). The partition result is shown on
the right side of Figure 11. In the first iteration, the subgraph (called A) containing
operations xor, xor, sft,and, and add (i.e., 1, 2, 3, 6, and 9) is initially selected to perform
subgraph combination, because it has the largest coverage of 8 (Step 1 in Figure 10).
After merging with operations 4, 7, and 10, a new subgraph (called A’) is formed. Since
the subgraph containing the operations and and sft (5 and 8) can be legally merged
with subgraph A’, the algorithm merges them to form a new subgraph (called A”) again.
Then, since no other operation can be legally merged with A” further, the merging
process (i.e., Step 2) is terminated. After subgraph merging, all subgraphs that are
fully/sub-identical to subgraph A” must be removed. Therefore, operations 1, 2, 3, 4, 5,
6,7,8,9, and 10 would be removed from the illegal EI. In the second iteration, since only

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 92, Publication date: February 2014.



Extended Instruction Exploration for Multiple-Issue Architectures 92:15

Illegal EI Partition Result

R R

Fig. 11. Example of illegal EI decomposition result.

Table |. Characteristics of Selected Benchmarks

# of operations | Instruction level

in basic block parallelism (ILP)
Name # of selected basic blocks | Max Avg. Max ‘ Avg.
ADPCM decode 25 13 3.60 4 1.40
ADPCM encode 24 13 3.54 4 1.39
Bitcount 18 27 5.66 8 1.92
Blowfish 7 430 71.86 20 3.52
CRC32 1 23 23.00 10 3.83
Dijkstra 6 12 5.33 7 1.29
Rijndael 12 903 112.92 65 5.62
Stringsearch 8 23 9.88 6 1.81

one operation (i.e., operation 11) exists, a subgraph (called B) containing operation 11 is
formed. However, since subgraph B contains only one single-cycle operation, it would be
discarded (Step 4). Accordingly, the decomposition result consists of only one subgraph,
that is, subgraph A”.

4. EXPERIMENTS AND EVALUATION

In this article, two EI exploration algorithms are compared in terms of the speedup,
area cost, and area efficiency: the proposed algorithm and the one proposed by Lii et al.
[2008]. Furthermore, to demonstrate the benefit of addressing two important factors
(the criticalness and contentiousness of operations, and the change in these properties),
the proposed algorithm was also evaluated in different scenarios. To examine the effect
of the EI derived using the proposed algorithm in terms of the speedup of each bench-
mark, the structure of the EI and the associated speedups are presented in this section.

4.1. Experiment Settings

The benchmarks (ADPCM decode/encode, Bitcount, Blowfish, CRC32, Dijkstra,
Rijndael, and Stringsearch) used in this experiment were selected from MiBench
[Guthaus et al. 2001] and were compiled using LLVM 2.6 [Lattner 2002]. The charac-
teristics of the selected benchmarks are listed in Table I.
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Table Il. Hardware Implementation Options Setting

‘ Operation ‘ Delay (ns) ‘ Area (um?) H Operation ‘ Delay (ns) ‘ Area (um?) ‘
Add/Sub 0.50 5768.0 Multiply 1.66 30814.6
AND 0.03 230.8 OR/XOR 0.03 242.7
NOR 0.02 173.1 Barrel shifter 0.26 4773.1
Compare 0.40 1204.2

Table Ill. Area of the Register File Architectures
(32 x 32-bit)

Number of single adders
Spec. Area (um?2) (Area/5767.978m?2)
2R/1W 121,144.2 21.0
4R/2W 195,283.0 33.9
6R/3W 252,503.7 43.8
8R/AW 323,060.0 56.0
10R/5W | 403,825.0 70.0

In this experiment, all the derived EIs were generated using the design flow shown in
Figure 1. Note that EI selection is selecting how many explored EIs are to be realized
in hardware. Since this experiment does not limit the number of Els that can be
realized in ASFU and the area cost of ASFU (i.e., no limitation on EI selection), all the
derived Els were considered to be the final results. Moreover, we made the following
assumptions in this experiment.

(1) The execution frequency of the processor core is 300MHz (~3.3 nanoseconds). The
base architecture is very long instruction word (VLIW), and all instructions are
scheduled statically.

(i1) The software execution cycle of all the instructions is one cycle, except for multi-
plication (3 cycles) and division (12 cycles).

(iii) Several types of operations are prohibited from forming operation patterns. These
include memory access, since it is difficult to estimate the execution cycle; flow
control, to simplify the complexity of the control circuit of ASFU; and division, as
well as floating point operations, due to the high cost per area of implementing
these. However, other than memory operations, all prohibited operations in this
work could be packed into Els if a higher implementation cost of ASFU is granted.
Since memory operations have nondeterministic latency, packing them into Els
may have negative impacts.

(iv) Only one ASFU exists. Thus, El is allowed to execute when the hardware resource
of ASFU is available.

In this experiment, hardware was synthesized using 0.13um technology. All oper-
ations packed into ASFU are 32-bit. The synthesized results of the hardware imple-
mentation options are shown in Table II, and the area costs of various register files
are shown in Table III. In this work, six different processor configurations were ex-
amined. Namely, two-issue with 4/2 and 6/3 register read/write ports (called 4/2/2 and
6/3/2 for short), three-issue with 6/3 and 8/4 register read/write ports (6/3/3 and 8/4/3),
and four-issue with 8/4 and 10/5 register read/write ports (8/4/4 and 10/5/4). Among
these configurations, 4/2/2, 6/3/3, and 8/4/4 are base configurations, while 6/3/2, 8/4/3,
and 10/5/4 are extended from 4/2/2, 6/3/3, and 8/4/4, respectively (adding two/one reg-
ister read/write ports). Accordingly, four register file settings were examined in this
work. The proposed and related algorithms [Lii et al. 2008] were evaluated using an
in-house-developed cycle-accurate VLIW simulator.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 92, Publication date: February 2014.



Extended Instruction Exploration for Multiple-Issue Architectures 92:17

EFirstEl @ OthersEIl

1.70
1.60
1.50
=
= 1.40
@
2.1.30
wn
1.20
1.10
1.00
VoA N2 O W0 \CIIRNG ol
. ,V\q' \/b\\'\/ . ,‘o\ﬁ) ,‘o\(b K /‘o\"’: (o\": . %b‘ o&b‘ % % Q\‘v Q\“)
AN SRR AN W W F

Fig. 12. Average speedup.

4.2. Experimental Results

In Figures 12 to 15, “Lii” and “Wu” denote the algorithms proposed by Lii et al. [2008]
and the proposed algorithm, respectively; the three numbers after the dash represent
the number of register read and write ports and the issue width. For example, Wu-4/2/2
indicates the proposed approach with 4/2 register read/write ports and a two-issue
architecture. The results shown in Figures 12, 14, and 15 are averaged over all the
benchmarks. Furthermore, since most of the performance gain was contributed by a
particular EI in both approaches, all the experimental results are divided into two
parts in the following figures. The first one shows a single EI that exhibits the highest
speedup (called FirstEI), and the second includes all Els other than FirstEI (called
OthersEID).

Figure 12 depicts the average speedup resulting from Lii et al.’s algorithm and the
proposed algorithm. In all cases, the proposed algorithm yields better performance than
Lii et al’s algorithm. This is because the proposed algorithm iteratively selects critical
and highly contentious operations to form EI, while Lii et al.’s algorithm only selects
critical operations. In other words, as the EI derived from the proposed algorithm has
more operations, it provides higher speedup. According to Figure 12, the speedup is
mainly dominated by (1) the number of register read/write ports and (2) the issue
width. Relaxing the register file constraint (i.e., increasing the number of register
read/write ports) usually delivers better speedup. This is because relaxing the register
file constraint allows the EI to legally contain more operations. The issue width is
another important factor affecting the speedup. Since increasing the issue width would
reduce the number of profitable operations, the size of each EI may be reduced, and
thus the speedup achievable by EI may also be reduced.

Figure 13 shows the speedup of each benchmark with Lii et al’s algorithm and the
proposed algorithm. In most cases, the proposed algorithm yields higher speedup. In
CRC32, Dijkstra, and four cases of Stringsearch (6/3/3 to 10/5/4), FirstEIs derived from
both algorithms have the same speedup. For these benchmarks, the basic blocks where
FirstEl is derived are the same in both algorithms, and all operations selected to form
EI are critical operations (note: only in Stringsearch several operations are contentious
operations when the issue width is two), and FirstEIs consequently derived by both
algorithms are identical.

The average area cost that results from ASFU and the read/write port extension
of the register file (Reg) is depicted in Figure 14. In this figure, each bar consists of
several segments, where the bottom segment is the area cost used to extend the number
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Fig. 13. Speedup of individual benchmark.
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of register read/write ports (note: 4/2/2, 6/3/3, and 8/4/4 do not have this cost), and the
other two segments indicate the area cost of FirstEI and OthersEI, respectively. The
average area cost shown in Figure 14 is defined as follows.

area size of Ely,;,., + extra area size of register file
area coStgirst =

’

area size of a single adder
n . . . (8)
Y ¢ g area size of EI, + extra area size of register file
area coStothers =

s

area size of a single adder

where First is FirstEl, Others represents OthersEIL n is the total number of EIs derived
in each benchmark (EI; is FirstEl), Elp;.s; Elp; s is the FirstEl, extra area size of
register file is the area cost used to extend the number of read/write ports of the register
file, and the area of a single adder is 5768.0um?2. Note that since the architecture
configurations of 4/2/2, 6/3/3, and 8/4/4 are considered the base configurations, no extra
area cost of the register file is included (i.e., extra area size of register file is zero).
However, the architecture configurations of 6/3/2, 8/4/3, and 10/5/4 are extended from
the base configurations of 4/2/2, 6/3/3, and 8/4/4 by adding two/one register read/write
ports, respectively. Therefore, these three configurations would introduce the extra
area cost of the register file (i.e., extra area size of register file is not zero). In all the
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cases, the proposed algorithm has a higher area cost than Lii et al.’s algorithm. Since
Lu et al’s algorithm only packs critical operations into Els, the size of Els is smaller
than that of the proposed algorithm.

Figure 15 illustrates the average area efficiency with and without the extra area cost
from the register file. The area efficiency is used to represent the speedup that can be
achieved per unit area consumed by the ASFU and the register file (if needed), and is
defined as follows.

SpeedupF irst
areacostgirs:

speedupohers
areacostothers

where First is FirstEI, Others represents Others, speedup r;rs; and speedup ospers are the
speedup of FirstEI and OthersEI, respectively, and area costgi-s; and area costopers 1s
from Eq. (8). Note that since the architecture configurations of 4/2/2, 6/3/3, and 8/4/4
do not incur the extra area size of the register file, the average area efficiencies with
and without the extra area cost from the register file are identical. Therefore, each
approach (Li and Wu) only has two results (i.e., FirstEI and OthersEI) in these three
configurations. In 6/3/2, 8/4/3, and 10/5/4, all the results are categorized into two cate-
gories: with and without the extra area cost of the register file. In most cases, Lii et al.’s
algorithm has a higher area efficiency compared with the proposed algorithm. This is
because it has a lower area cost compared with the proposed algorithm. Nevertheless,
since the main objective behind adopting EI is to improve the speedup, the sacrifice of
some area efficiency is acceptable. Furthermore, according to the results depicted in
Figures 12 to 15, relaxation of the register file constraint may improve the performance
but not the area efficiency.

Table IV depicts the execution time of Lii et al’s algorithm and the proposed al-
gorithm (platform: AMD Opteron 6172 (2.1GHz)). For the basic block size of each
benchmark, please refer to Table I. Obviously, the execution time highly depends on
the basic block size (i.e., number of operations in the basic block). For example, the exe-
cution time of benchmarks with larger basic block size, such as Blowfish and Rijndael,
is significantly higher than others. Furthermore, in all cases, the proposed algorithm
is slower than Lii et al.’s. This is because the proposed algorithm must iterate several
times until no new EI are derived, while Lii et al.’s one does not. However, since EI
exploration is performed statically, a longer execution time is acceptable if the better
results can be achieved.

To show the impact of the two major factors considered in this study, we evaluated
four of the scenarios based on the proposed algorithm that differ as follows: (1) in terms
of the operation property (i.e., criticalness and contentiousness) that can be selected
to form the EI, and (2) whether a change in the criticalness and/or contentiousness
of operations is taken into account. Table IV shows the experimental results for these
four scenarios. In this table, C,, C,, and L represent the criticalness, contentiousness,
and all legal operations being selected to form the EI. M denotes that the exploration
algorithm is aware of the change in criticalness and/or contentiousness of operation,
while S denotes that it is not. In other words, the exploration algorithm is iteratively
executed in M, while it is only executed once (single iteration) in S. The numbers
following M or S denote the number of register read/write ports and the issue width.

Based on the results shown in Table V, the importance of two major factors considered
in the proposed algorithm was demonstrated. First, the speedup resulting from the
selection of both the critical and contentious operations to form the EI can be seen
by comparing C,-C,-M and C,-M. Second, if the algorithm considers that an operation
may become critical and/or highly contentious after some operations are replaced with

area efficiency g =
9)

area efficiency Others =
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Table V. Averaged Results of Different Scenarios

Speedup Area cost (# of single adder) Area Efficiency
FirstEI OthersEI FirstEI OthersEI

Scenario FirstEI|OthersEI||w/o Reg. ‘W Reg.|w/o Reg. ‘W Reg.||w/o Reg.|w Reg. |w/o Reg.|w Reg.
C,-Co-M-4/2/2 ||1.20 0.31 3.29 11.09 0.364 0.040
C,-Co-S-4/2/2 ||1.19 0.29 2.79 10.01 0.428 0.040
C,-M-4/2/2 1.16 0.22 2.92 10.50 0.400 0.029
L-M-4/2/2 1.20 0.32 3.29 10.99 0.364 0.041
C,-Co-M-6/3/2 ||1.22 0.37 341 13.33 |15.20 [21.72 |/0.359 |0.092 |0.031 [0.017
C,-Co-S-6/3/2 ||1.20 0.33 2.91 12.83 |14.36 [21.38 |/0.414 |0.094 |0.029 [0.015
C,-M-6/3/2 1.19 0.21 3.03 13.59 |14.38 [20.63 |/0.394 |0.092 |0.019 |0.010
L-M-6/3/2 1.22 0.37 341 13.33 |15.83 [22.35 |/0.358 |0.091 |0.029 |0.016
C,-Co-M-6/3/3 ||1.23 0.29 341 14.23 0.362 0.027
C,-Co-S-6/3/3 ||1.23 0.28 2.80 12.29 0.437 0.029
C,-M-6/3/3 1.19 0.20 2.98 14.02 0.400 0.018
L-M-6/3/3 1.20 0.31 3.41 15.70 0.352 0.025
C,-Co-M-8/4/3 ||1.29 0.28 4.46 16.69 |15.29 [23.07 |/0.290 |0.078 |0.026 [0.012
C,-C,-S-8/4/3 1.29 0.27 3.86 16.09 (15.45 23.83 ||0.334 0.080 |0.023 0.011
C,-M-8/4/3 1.20 0.23 3.67 1590 |14.18 [22.74 |/0.327 |0.076 |0.021 |0.010
L-M-8/4/3 1.27 0.31 4.46 16.69 |17.89 [25.67 |/0.284 |0.076 |0.023 [0.012
C;-C,-M-8/4/4 |1.32 0.22 4.46 14.64 0.295 0.025
C,-Co-S-8/4/4 |/1.30 0.18 3.65 11.62 0.356 0.023
C,-M-8/4/4 1.22 0.22 3.67 13.43 0.331 0.023
L-M-8/4/4 1.31 0.24 4.46 15.17 0.293 0.022
C,-Co-M-10/5/4|1.34 0.23 5.05 19.05 |15.07 [24.02 |/0.266 |0.070 |0.025 [0.010
C,-Co-S-10/5/4 |11.31 0.19 4.24 18.24 |12.70 [22.47 |/0.310 |0.072 |0.023 |0.009
C,-M-10/5/4 1.25 0.28 4.14 18.14 |14.79 [24.65 |/0.302 |0.069 |0.027 [0.012
L-M-10/5/4 1.30 0.27 4.93 18.93 |1597 [25.05 |/0.264 |0.069 |0.024 [0.011

newly discovered EI(s), then it will show a higher speedup. The C,-C,-M versus C,-C,-S
example illustrates this. Furthermore, C,-M exhibits poor speedup in benchmarks with
a higher ILP, such as Blowfish, CRC32, and Rijndael. This is because an application
with a higher ILP usually contains more contentious operations. Accordingly, if these
contentious operations cannot be packed into an EI, the speedup would then be limited.
Unlike C-M, C,-C,-S performs poorly in applications where operations change their
property to profitable after the first iteration (Bitcount and ADPCM). Consequently,
fewer operations are packed into the EI and fewer Els are formed in C,-C,-S. This
is why C-M and C,-C,-S have lower area cost. On the other hand, since several Els
derived by L-M contain some non-useful (i.e., nonprofitable) operations, L-M leads to
the highest area cost in most cases.

4.3. Discussion of the Experimental Results of Scenario C,-C,-M

The results in the previous paragraph are averaged from all the benchmarks. To under-
stand the performance impact of each benchmark in C,-C,-M, the following paragraphs
discuss each benchmark individually. The discussion mainly focuses on two parts:
(1) the dataflow graph (structure) of FirstEI derived under different hardware con-
straints (i.e. different microarchitecture configurations), and (2) the impact on speedup
from FirstEI and OthersEI under different hardware constraints. Furthermore, to
clearly identify the impact of individual constraints in terms of the speedup, when we
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Fig. 16. Speedup of each benchmark in C,-C,-M.

discuss the impact caused by relaxing the register file constraint, the issue width is
fixed, and vice versa.

Figure 16 depicts the speedup of C,-C,-M for each benchmark with different hard-
ware constraints. The dataflow graph of FirstEI, as derived from each benchmark, is
shown in Table VI, where each number set listed above the data flow graph is the con-
straint of the register file and the issue width. The first and second numbers represent
the number of register read and write ports, respectively, and the last number is the
issue width. ‘All’ represents all hardware constraints used in this work, that is, from
4/2/2 to 10/5/4. In Table VI, “R” indicates that the input value of an operation originates
from the register file, while “I” denotes an immediate value. The vertex is an operation,
and each edge denotes the dependence between two operations. The type of operation
is marked inside the vertex, where cmp and sft denote compare and shift operations,
respectively.

ADPCM Decode and Encode. (Table VI(a)) ADPCM decode and ADPCM encode are
two separate benchmarks. However, since the Els derived in both benchmarks are
almost identical, these two benchmarks are therefore discussed together. Under 4/2/2,
all profitable operations in the basic block, from which FirstEI is derived, have been
legally packed into the EI. Therefore, only one type of FirstEI is derived in ADPCM.
The dataflow graph of FirstEI is shown in Table VI(a).

Relaxing the register file constraint from 4/2 to 6/3 (4/2/2 to 6/3/2) improves the
performance of the processor core with an ASFU which realizes the functionality of
FirstEI. (Note that the processor core with an ASFU realizing the functionality of the
FirstElI and OthersEl is called Pro-FirstEI and Pro-OthersEI for short in the following
discussion, respectively.) Under 4/2 (4/2/2), one operation in the basic block where
FirstEI is derived may delay its execution because an insufficient number of register
read ports are available. When the register file constraint becomes 6/3, this operation no
longer delays execution and the performance improves. However, relaxing the register
constraint further to 8/4 or more does not improve the performance. For Pro-OthersEI,
relaxing the register file constraint generally increases the performance. When the
register file constraint is 4/2, not all profitable operations can be packed into one EI.
They need to be packed into multiple EIs. When the constraint is relaxed to 6/3, all
profitable operations are packed into one EI, therefore improving the performance. In
some cases, even though relaxed register file constraints do not lead to fewer packed
Els, more packed EIs may be able to execute in parallel with other operations, resulting

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 92, Publication date: February 2014.



92:24 |.-W. Wu et al.
Table VI. Dataflow Graph of FirstEl Explored by C,-C,-M
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(9]

in a performance increase. Therefore, relaxing the register file constraint from 6/3 to
8/4 still improves the overall performance. Relaxing the constraint further from 8/4
to 10/5 only marginally increases the performance. For this benchmark, having more
than 8/4 read/write ports is of little benefit.

Increasing the issue width from 2 would provide little speedup for Pro-FirstEI. This
is because (1) enlarging the issue width would reduce the total original execution
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cycles (i.e., without EI), and (2) the number of profitable operations in FirstEI would
not change. For Pro-OthersEI, enlarging the issue width leads to two different results.
When the issue width increases from 2 to 3, several operations become noncontentious
(i.e., nonprofitable), and the performance is reduced. However, when the issue width
is increased to 4, no operation properties change, and the total original execution cycles
are reduced. Thus, the performance will increase.

Bitcount (Table VI(c)). In Bitcount, only one kind of FirstEI is derived. This is because
all profitable operations have been legally packed into FirstEI as a single EI under 4/2/2.
The dataflow graph of FirstEI is shown in Table VI(c). In addition, it is notable that
several Els derived in Bitcount could be merged with FirstEI.

Relaxing the register file constraint does not improve Pro-FirstEI performance for
two reasons. First, all profitable operations have already been legally packed. Second,
none of the operations need to delay their execution because of insufficient register
read/write ports. On the other hand, relaxing the register file constraint would improve
the performance of Pro-OthersEI. When the register file constraint increases from 4/2
to 6/3, EI will legally contain more profitable operations and the performance will
increase. On the other hand, when the register file constraint is relaxed from 6/3 to
8/4 or higher, more operations and EIs will be able to execute simultaneously (no more
delays in execution), resulting in further performance gain.

Enlarging the issue width would reduce the performance of Pro-FirstEI. This is
because increasing the issue width further would make several operations too unprof-
itable. This would reduce the number of EIs that can be merged with FirstEI. Conse-
quently, the performance of Pro-FirstEI would then be reduced. For ASFU-OthersEI,
enlarging the issue width would degrade performance because some operations would
become unprofitable.

Blowfish (Table VI(b)). The Els derived in Blowfish are highly dependent on the
register file constraint. According to Table I, some basic blocks in Blowfish contain
many operations and have a higher ILP. This implies that relaxing the register file
constraint could potentially yield a larger EI. All FirstEls derived in Blowfish are
shown in Table VI(b). In addition, many EIs derived in Blowfish can also be merged
with FirstEI, thereby increasing the performance potential of Pro-FirstEL

Relaxing the register file constraint improves the performance of Pro-FirstEI, be-
cause it increases the size of the Els being derived. For Pro-OthersEI, relaxing the
register file constraint reduces performance except when 4/2 changes to 6/3. This is
because when relaxing the register file constraint, several profitable operations have
already been packed into FirstEI, and the size of the other EIs has decreased. As a
result, the performance impact is lower than expected.

The performance of Pro-FirstEI would reduce with issue width increases. When in-
creasing the issue width, a part of operations would become unprofitable. Consequently,
fewer numbers of operations could be selected to form EI so that less performance would
be achieved. Similar to Pro-FirstEI, the performance of Pro-OthersEI decreases with
the increase of the issue width.

CRC32 (Table VI(d)). Only one kind of FirstEI is derived in CRC32, as shown in
Table VI(d). FirstEI contains five operations out of which four operations are critical
and one is contentious.

Relaxing the register file constraint would not improve the performance of all EIs.
Since the hottest basic block in CRC32 takes up over 99% of the total execution cycles,
only one block is selected to explore the EI. In this basic block, all profitable operations
can be legally packed into the EIs under 4/2/2. Therefore, no further performance gain
can be achieved.
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Increasing the issue width would reduce the performance of Pro-FirstEI and Pro-
OthersEI. The reason is similar to that of Blowfish.

Dijkstra (Table VI(e)). Only two Els are derived in Dijkstra for all constraints. One
is FirstEI, as shown in Table VI(e). The other contains two critical operations, which
means that its structure does not change with changes in constraint.

As was observed with CRC32, relaxing the register file constraint does not improve
the performance for Pro-FirstEI and Pro-OthersEI, since all profitable operations have
been packed into EIs under 4/2/2.

Increasing the issue width would result in a small performance gain for Pro-FirstEI
and Pro-OthersEIL Since increasing the issue width would reduce the total number of
execution cycles (without EI), it may provide further performance gains.

Rijndael (Table VI(g)). The size of FirstEI derived in Rijndael is highly dependent on
the number of register read/write ports. Since four register file constraints are used in
this experiment, four kinds of FirstEI are derived, and all are shown in Table VI(g). As
was the case with Blowfish, many Els derived in Rijndael can be merged with FirstEI.

Relaxing the register file constraint can improve the performance of Pro-FirstEL
Among all the benchmarks selected, Rijndael has the largest number of profitable
operations. Even if the register file constraint is 10/5, not all reachable and profitable
operations can be packed into a single EI. Thus, relaxing the register file constraint
can let the EI legally contain more operations and achieve a higher performance gain.
On the other hand, relaxing the register file constraint decreases the performance
of Pro-OthersEI. This is because many profitable operations have been packed into
FirstEL

Increasing the issue width would decrease the performance of Pro-FirstEI and Pro-
OthersEI. This is because Rijndael has a very high ILP measure of about 5.62/65
(avg./max.), and thus, its performance would benefit more from an increased issue
width than from the EI. Therefore, for an application with a very high ILP, it is difficult
to improve the performance by increasing the issue width.

Stringsearch (Table VI(f)). Only one kind of FirstEI is derived in Stringsearch, as
shown in Table VI(f). Since the hottest basic block where FirstEI is derived takes up
over 95% of the total execution cycles, Els derived in the hottest basic block dominate
the total speedup.

Relaxing the register file constraint would not improve the performance of Pro-
FirstEI This is because all profitable operations have been legally packed into FirstEI
under 4/2/2. For Pro-OthersEI, relaxing the register file constraint would improve the
performance, except for the case where 8/4 changes to 10/5. This is because all profitable
operations have been packed into EI when the register file constraint is 8/4. Therefore,
no further performance gains are possible when the register file constraint is higher
than 8/4.

Increasing the issue width would improve the performance of Pro-FirstEI but not
Pro-OthersEI. Since increasing the issue width would reduce the total number of ex-
ecution cycles (without EI), the performance of Pro-FirstEI would therefore improve.
On the other hand, increasing the issue width would decrease the number of profitable
operations for OthersEI, resulting in a negative speedup.

5. CONCLUSION

This article discusses two important factors that need to be considered when exploring
EI in multiple-issue architectures. First, packing critical (located on critical paths)
and contentious (operations that might have a delay in execution due to hardware
resource contention) operations achieves the higher speedup. Second, the performance
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impact of each operation on the total schedule may change dynamically when critical
and/or contentious operations are replaced by EI(s). Based on these considerations, an
EI exploration algorithm for multiple-issue architectures is proposed and compared
against the approach from a previous study. We also evaluated four variations of our
algorithm to study the speedup, area cost, and area efficiency. The experimental results
show that accounting for these two factors (criticalness and contentiousness) yields a
higher performance gain.

We have also investigated the impact of relaxing the register file constraints and
increasing the issue width. Relaxing the register file constraints usually increases the
performance of EI, because more operations can be packed into one EI. Increasing the
issue width does not always improve the performance. For the case of the bottleneck
being the critical path of the schedule after increasing the issue width, adapting EI to
reduce the critical path would result in better speedup. Otherwise, the performance
would reduce when the issue width increases.

Among the many topics which may be explored in future research, two important
ones are described as follows. First, single-instruction multiple data (SIMD) is a widely
used EI that improves the execution performance of both single- and multiple-issue
architectures. However, in most SIMD ISA, each instruction only executes a simple
arithmetic/logical operation, such as addition or subtraction. To enhance the capability
of SIMD instructions, it would be interesting to explore the packing of multiple data-
independent and identical Els into a single SIMD instruction extension. Second, since
the area cost is an important design consideration in some embedded systems, reducing
this cost would be an interesting topic. According to experimental results, the area cost
highly depends on the similarity among the derived Els (i.e., if the derived EIs are as
similar as possible, more area cost could be saved). Consequently, if the algorithm can
take the similarity into account when exploring Els, the area cost can be reduced.
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