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This paper focuses on analyzing data collected in situations where investigators use multiple discrete
indicators as surrogates, for example, a set of questionnaires. A very flexible latent class model is used
for analysis. We propose a Bayesian framework to perform the joint estimation of the number of latent
classes and model parameters. The proposed approach applies the reversible jump Markov chain Monte
Carlo to analyze finite mixtures of multivariate multinomial distributions. In the paper, we also develop
a procedure for the unique labeling of the classes. We have carried out a detailed sensitivity analysis for
various hyperparameter specifications, which leads us to make standard default recommendations for the
choice of priors. The usefulness of the proposed method is demonstrated through computer simulations
and a study on subtypes of schizophrenia using the Positive and Negative Syndrome Scale (PANSS).
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1. Introduction

Latent class analysis (LCA), originally described by Green (1951) and systematically de-
veloped by Lazarsfeld and Henry (1968), as well as by Goodman (1974), has been found useful
for classifying subjects based on their responses to a set of categorical items. The basic model
postulates an underlying categorical latent variable with, say, J levels; and measured items are
assumed independent of one another within any category of the latent variable. Recently, several
authors extended the LCA model to describe the effects of measured covariates on the underly-
ing categorical latent variable (Dayton & Macready, 1988; Bandeen-Roche, Miglioretti, Zeger, &
Rathouz, 1997), or on measured item distributions within latent levels (Melton, Liang, & Pulver,
2005). This paper studies a more general latent class model proposed by Huang and Bandeen-
Roche (2004), which incorporates covariate effects both on the latent variable and the measured
items themselves (henceforth, the regression extension of latent class analysis (RLCA) model).

To reduce complexity and enhance interpretability, one usually fixes the number of levels
or “classes” in a given latent class model and does the parameter estimation under the fixed
number of classes. When prior knowledge does not mandate the number of classes, selecting the
number of classes to fit becomes an analytic challenge. Standard practice is to base selection
on either the Pearson χ2 or the likelihood ratio goodness-of-fit test, and to fix J at the lowest
number of classes that yields acceptable fit (Goodman, 1974; Formann, 1992). Instead of testing
the goodness of fit of a specified model, we might use a criterion for selecting among different
numbers of classes. The AIC (Akaike, 1987) and BIC (Schwarz, 1978) criteria, which trade off
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the value of the likelihood at the maximum likelihood solution and the number of estimated
parameters, are commonly used approaches.

One common feature of the above methods is that they all must fit the latent class model
repeatedly under different numbers of classes. Due to the slow convergence of commonly used
fitting methods (e.g., the EM algorithm), these procedures may be infeasible in practical appli-
cations. Huang (2005) developed a new tool for identifying the number of latent classes, which
requires no model fit based on the assumed number of classes and synthesizes ideas from factor
analysis, latent variable theory and generalized linear model residuals. However, such two-stage
approaches are inefficient and may create misleading results. A poor goodness of fit may be the
result of poor parameter estimation or wrong model assumptions or a bad choice for the number
of classes. Without knowing the exact sources for poor goodness of fit, the use of goodness-of-
fit tests in the specification of the number of classes may result in over parameterization in the
number of classes and create a meaningless interpretation.

Joint inferences on the number of classes and model parameters are preferable because it
is convenient, accurate and flexible. Traditional frequentist likelihood-based approaches do not
allow this joint analysis, but advances in Bayesian inferences provide possible solutions. Markov
chain Monte Carlo (MCMC) has had a profound effect on Bayesian statistics. MCMC draws
samples from the posterior distribution by running a cleverly constructed Markov chain (e.g.,
a Metropolis–Hastings algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953;
Hastings, 1970), and then forms sample averages to approximate posterior expectations of model
parameters. The MCMC method is restricted to problems where the joint distribution has a den-
sity with respect to a fixed dimensional parameter space. Green (1995) proposed the reversible
jump Markov chain Monte Carlo (RJMCMC) method, which offers a general framework for
construction of reversible Markov chain samplers that jump between parameter subspaces of
different dimensionality. Latent class models with different numbers of classes correspond to pa-
rameter subspaces of different dimensionality. RJMCMC thus provides a solution that can jointly
estimate the number of classes and model parameters.

Richardson and Green (1997) made use of RJMCMC to estimate the number of compo-
nents and the mixture component parameters jointly in finite mixtures of univariate normal dis-
tributions. Since then, RJMCMC has been applied to many other mixture distributions, such
as mixtures of exponential distributions (Gruet, Philippe, & Robert, 1999), mixtures of Poisson
distributions (Viallefont, Richardson, & Green, 2002), mixtures of multivariate normal distri-
butions (Dellaportas & Papageorgiou, 2006), and mixtures of multivariate Poisson distributions
(Meligkotsidou, 2007). Bartolucci, Mira, and Scaccia (2003) and Pandolfi, Bartolucci, and Friel
(2010) discussed the RJMCMC implementation on latent class models with binary measured
items. These can be viewed as finite mixtures of multivariate Bernoulli distributions. Bartolucci
et al. (2003) used standard RJMCMC methods for updating estimates between different num-
ber of classes, and applied the delayed rejection strategy for increasing the acceptance rate of
class number change. Pandolfi et al. (2010) generalized the multiple-try Metropolis algorithm
for RJMCMC, and applied this generalization to latent class models to improve the mixing of
estimates. In this paper, we propose to implement the RJMCMC method to perform the joint
estimation of the number of classes and model parameters on a more general latent class model
that has polytomous measured items and incorporates various covariate effects. We thus focus
on the model of finite mixtures of multivariate multinomial distributions incorporating covariate
effects.

We now provide an outline for the remainder of the paper. Section 2 gives a Bayesian version
of RLCA. Section 3 illustrates the RJMCMC scheme we propose and how we deal with the
label switching problem. In Section 4, simulation studies are conducted to evaluate the behavior
of the proposed estimation method and the comparison with existing approaches. In Section
5, we perform a sensitivity analysis that discusses results from various hyperparameters and
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proposal parameters, and provides default recommendations for the values of hyperparameters
and proposal parameters. In Section 6, data on determining subtypes of schizophrenia using the
Positive and Negative Syndrome Scale (PANSS) are used to illustrate the proposed methods.
A discussion is provided in Section 7.

2. Bayesian Models for Regression Extension of Latent Class Analysis

2.1. Regression Extension Latent Class Model

To specify a latent class model with J classes, we define Yi = (Yi1, . . . , YiM)T to be a set of
M polytomous response variables for the ith individual, i = 1, . . . ,N . The mth variable, Yim, can
take one of values {1, . . . ,Km}, where Km ≥ 2; the latent variable, Si , denotes the subpopulation
in which the ith individual belongs to, and takes a value {1, . . . , J }. The basic idea of latent
class modelling is that the components of Yi are associated because the overall population is
comprised of a mixture of J subpopulations or classes, and these components are assumed to be
statistically independent within latent classes. Therefore, the distribution of Yi can be expressed
as the finite mixture density:

Pr(Yi1 = yi1, . . . , YiM = yiM) =
J∑

j=1

{
Pr(Si = j)

M∏

m=1

Km∏

k=1

[
Pr(Yim = k|Si = j)

]yimk

}
, (1)

where yimk = I (yim = k) = 1 if yim = k; 0 otherwise. The LCA model assumes that Pr(Si =
j) = ηj and Pr(Yim = k|Si = j) = πmkj for all i. Thus, the model treats class membership
probabilities, ηj , and item response probabilities conditional on class membership, πmkj , as ho-
mogeneous over individuals. Huang and Bandeen-Roche (2004) incorporated covariates (xi , zi )

into LCA, where xi = (1, xi1, . . . , xiP )T are predictors associated with latent variable Si , and
zi = (zi1, . . . , ziM); zim = (zim1 . . . , zimL)T with m = 1, . . . ,M are covariates built to have direct
influence on response variables. Then the LCA model can be broadened to RLCA and be stated
as

Pr(Yi1 = yi1, . . . , YiM = yiM |xi , zi ) =
J∑

j=1

{
ηj (xi)

M∏

m=1

Km∏

k=1

π
yimk
mkj (zim)

}
, (2)

where ηj (xi) and πmkj(zim) are often implemented assuming the generalized logit link function
under the generalized linear model framework (McCullagh & Nelder, 1989):

log

[
ηj (xi)

ηJ (xi)

]
= β0j + β1j xi1 + · · · + βPjxiP (3)

and

log

[
πmkj′(zim)

πmKmj′(zim)

]
= γmkj ′ + α1mkzim1 + · · · + αLmkzimL (4)

for i = 1, . . . ,N;m = 1, . . . ,M; k = 1, . . . , (Km − 1); j = 1, . . . , (J − 1); j ′ = 1, . . . , J .
Notice that in the conditional probability model (4), we allow unrestricted intercepts and

level- and item-specific covariate coefficients, but we do not allow the coefficients to vary across
classes (i.e., αlmk is dependent on m, k but independent of j ′). This constraint is logical if the
primary purpose of modeling conditional probabilities is to prevent possible misclassification
by adjusting for characteristics associated with item measurements (Huang & Bandeen-Roche,
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2004). It is also necessary to unambiguously distinguish covariate effects on measured response
probabilities from covariate effects on class probabilities. Three assumptions are necessary to
complete model (2):

(i) Pr(Si = j |xi , zi ) = Pr(Si = j |xi );
(ii) Pr(Yi1 = yi1, . . . , YiM = yiM |Si,xi , zi ) = Pr(Yi1 = yi1, . . . , YiM = yiM |Si, zi );

(iii) Pr(Yi1 = yi1, . . . , YiM = yiM |Si, zi ) = ∏M
m=1 Pr(Yim = yim|Si, zi ).

These assumptions give rise to implications that, from (i), class membership probabilities are as-
sociated with xi only; from (ii), conditioning on class membership, responses are only associated
with zi ; and from (iii), the multiple measurements are independent given class membership Si

and zi .

2.2. Hierarchical Model and Priors

Under a Bayesian framework, we specify prior distributions for the parameters in the
RLCA model. Parameters in RLCA can be summarized as the number of classes J , regres-
sion parameters for membership probabilities β = [βpj ]0≤p≤P,1≤j≤J−1, regression intercepts
for modelling conditional probabilities γ = [γ T

1 , . . . ,γ T
M ]T with γ m = [γmkj ]1≤k≤Km−1,1≤j≤J ,

and covariate coefficients for modelling conditional probabilities α = [α1, . . . ,αM ]T with αm =
[αlmk]1≤l≤L,1≤k≤Km−1.

We set all components of β , γ and α to be independently and normally distributed with mean
0 and pre-specified variance σ 2

P . Here, we adopt a noninformative prior mean zero. Such a setting
is common when prior scientific knowledge does not provide appropriate values of parameters
(Garrett & Zeger, 2000). For J , we assume it to follow an uniform distribution between 1 and a
pre-specified integer Jmax. Class membership inference is often of our interest. We thus add the
latent class variable into the joint distribution where Bayesian estimation is inferred from. There-
fore, based on assumptions (i), (ii) and (iii) with selected prior distributions, the joint distribution
of all variables for the RLCA model given covariates (x, z) can be represented as

p(J,β,γ ,α,S,Y;x, z) = p(J )×p(β|J )×p(γ |J,β)×p(α|J,β,γ )

× p(S|J,β,γ ,α;x, z)×p(Y|J,β,γ ,α,S;x, z)

= p(J )×p(β|J )×p(γ |J )×p(α)

× p(S|J,β;x)×p(Y|J,γ ,α,S; z), (5)

where Y = [YT
1 , . . . ,YT

N ]T , S = (S1, . . . , SN)T and, here and throughout this paper, we use p(·)
and p(·|·) to denote joint and conditional distribution functions, respectively. Moreover, the dis-
tributions of S and Y given S can be expressed as

p(S|J,β;x) =
N∏

i=1

Pr(Si = si |J,β;xi )

=
N∏

i=1

J∏

j=1

η
sij
j (xi ) (6)
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and

p(Y|J,γ ,α,S; z) =
N∏

i=1

Pr(Yi1 = yi1, . . . , YiM = yiM |J,γ ,α, Si = si; zi )

=
N∏

i=1

J∏

j=1

(
M∏

m=1

Km∏

k=1

π
yimk

mkj (zim)

)sij

(7)

with sij = I (si = j) and yimk = I (yim = k).
It is important to talk about the issue of labeling the classes. Our RLCA likelihood is in-

variant when switching class labels. As a result, the posterior distribution is not identifiable for
various permutations of class labels. We thus need to adopt a unique labeling for the class mem-
bership. Once a unique labeling is determined, such a procedure is equivalent to ordering the
joint prior distribution. So, the joint prior distribution of the parameters is the number of invari-
ant class label permutations times the product of the individual densities. Our labeling procedure
is detailed in Section 3.4.

3. Bayesian Inferences with Variable Dimension Parameters

3.1. Reversible Jump Markov Chain Monte Carlo Algorithm

The Markov chain Monte Carlo (MCMC) method for the simulation of a distribution pro-
duces an ergodic Markov chain whose stationary distribution is the distribution of interest (Robert
& Casella, 2004). There have been several earlier approaches on MCMC computation to deal
with models with changing dimensionality, for instance, birth-and-death processes (Ripley, 1977;
Geyer & Møller, 1994) or pseudo-priors (Carlin & Chib, 1995), but the general formalization
named reversible jump MCMC (RJMCMC) had not been proposed until Green (1995). In brief,
RJMCMC is a random sweep Metropolis–Hastings method (Metropolis et al., 1953; Hastings,
1970) adapted for general state spaces (Richardson & Green, 1997). In this paper, we use the
RJMCMC algorithm for the situation where the number of classes is unfixed and to be deter-
mined.

For our hierarchical RLCA model, we shall make use of six move types:

(a) Updating the class memberships S;
(b) Updating the regression parameters for membership probabilities β;
(c) Updating the regression intercepts for conditional probabilities γ ;
(d) Updating the covariate coefficients for conditional probabilities α;
(e) Birth or death of a class;
(f) Splitting one class into two, or merging two classes into one.

Move types (a)–(d) are conventional and can apply the Gibbs sampling scheme (Geman
& Geman, 1993; Zeger & Karim, 1991). Moves (e) and (f) involve updating the value of J ,
implying a change of dimensionality for the parameters in (b) and (c). One complete pass over
these six moves will be called “a sweep” and is the basic time step of the algorithm.

3.2. Gibbs Sampling Scheme

For illustrating Gibbs sampling, we need to calculate the full conditional distribution of the
interested variable given all others. In the case of Si , the full conditional distribution is

p(Si|J,β,γ ,α,Yi;xi , zi ) ∝ p(Yi|J,γ ,α, Si; zi) × p(Si|J,β;xi). (8)
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Since Si is discrete, the sample of Si given all other variables can be drawn directly from a
multinomial distribution with probabilities in the right-hand side of (8), scaling to sum to 1.

The form of the full conditional distribution of β makes sampling from it difficult. Instead
of sampling directly from the full conditional distribution, we use rejection sampling methods,
where a sample from an envelope distribution where sampling is easier is first generated and
this sample is then accepted with certain probability such that the accepted samples are pre-
cisely from full conditional distributions (Zeger & Karim, 1991). We had tried out the stan-
dard Metropolis–Hastings procedure for Steps (b), (c) and (d). However, the acceptance rate of
Metropolis–Hastings sampling was very low and very long MCMC runs were needed. To gener-
ate samples of β , β is divided into components {β[1], . . . ,β[J−1]} with β[j ] being the j th column
of β . Each component β[j ] is then updated conditioning on β[−j ], where β[−j ] is the β matrix
deleting the j th column. The full conditional distribution of β[j ] given β[−j ] is in the form of

p
(
β[j ]|J,β[−j ],γ ,α,S,Y;x, z

) ∝ p(S|J,β;x) × p
(
β[j ]|J )

= p
(
S|J,β[j ],β[−j ];x

)
p
(
β[j ]|J )

. (9)

Following the approach of Zeger and Karim (1991), we choose the envelope distribution for β[j ],
g1(β

[j ]), to be a multivariate Gaussian distribution with mean β̂
[j ]

, the maximum likelihood
estimator of β[j ] in (9), and variance cΣ̂β[j ] , the inverse of the observed fisher information of
(9) multiplied by a constant c. To perform rejection sampling, a constance c∗ is chosen so that
p(S|J,β[j ],β[−j ];x)p(β[j ]|J ) ≤ (c∗ · g1(β

[j ])), over all β[j ] ∈ R
P+1. A vector sample of β[j ]

is produced by the followings steps:

1. Generate a random variate β∗ from g1(β
[j ]);

2. Generate a random variate u from uniform (0, 1);

3. If u ≤ p(S|J,β∗,β[−j ];x)p(β∗|J )

c∗·g1(β
∗) , accept β∗, otherwise return to Step 1.

In β’s rejection sampling scheme, we let c = 1.2 and set c∗ to attain

p
(
S|J, β̂

[j ]
,β[−j ];x

)
p
(
β̂

[j ]|J ) = c∗ · g1
(
β̂

[j ])
.

Our selection of c∗ is adopted from Zeger and Karim (1991). These selections worked well in
covering (9) in the simulations and real data analysis below.

Rejection method is applied to γ as well. First, γ is separated into column vectors
{γ [1], . . . ,γ [J ]}. A column vector γ [j ] is then updated from the full conditional distribution

p
(
γ [j ]|J,β,γ [−j ],α,S,Y;x, z

) ∝ p(Y|J,γ ,α,S; z) × p
(
γ [j ]|J )

= p
(
Y|J,γ [j ],γ [−j ],α,S; z

)
p
(
γ [j ]|J )

, (10)

where γ [−j ] is the γ matrix deleting the j th column. The procedure of sampling γ [j ] is similar
to that for β[j ], and γ is drawn by completing the loop for γ [j ], j = 1, . . . , J . In γ ’s rejection
sampling, we let c = 1.3 and set c∗ to attain p(Y|J, γ̂ [j ]

,γ [−j ],α,S; z)p(γ̂ [j ]|J ) = c∗ ·g2(γ̂
[j ]

),
where g2(·) denotes the density of a multivariate Gaussian distribution with mean γ̂ [j ] and vari-
ance cΣ̂γ [j ] .

For generating α, we choose to update {α1, . . . ,αM} sequentially. Each αm is divided into
{α[1]

m , . . . ,α
[Km−1]
m } with α

[k]
m being the kth column of αm. We first sample the values of α

[k]
m from

the full conditional distribution

p
(
α[k]

m |J,β,γ ,α[−k]
m ,α−m,S,Y; z

) ∝ p(Y|J,γ ,α,S; z) × p
(
α[k]

m

)

= p
(
Y|J,γ ,α[k]

m ,α[−k]
m ,α−m,S; z

)
p
(
α[k]

m

)
(11)
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by the rejection sampling, where α
[−k]
m is the αm matrix deleting the kth column and α−m

is the α collections without the component αm. The rejection sampling steps are simi-
lar to those for β and γ . The value of α was completely drawn by executing the loop
{α[1]

1 , . . . ,α
[K1−1]
1 , . . . ,α

[1]
M , . . . ,α

[KM−1]
M }. In α’s rejection sampling, we let c = 1.2 and set c∗

to attain p(Y|J,γ , α̂[k]
m ,α

[−k]
m ,α−m,S; z)p(α̂[k]

m ) = c∗ · g3(α̂
[k]
m ), where g3(·) denotes the multi-

variate Gaussian density with mean α̂[k]
m and variance cΣ̂

α
[k]
m

.

3.3. Reversible Jump Steps

For moves (e) and (f), the reversible jump mechanism is needed. The strategy of moves
in RLCA is similar to Richardson and Green (1997). Increasing or decreasing of J fetches a
dimensional change of β and γ . In Step (e), a choice of birth or death is made given the equal
probability 0.5. When a birth is selected, we produce a (P + 1) × 1 random vector β[j∗] with
each component generated from N(0, σ 2

BD). Next, β[j∗] is added to the first column of β and
the newly formed matrix is labeled as βbirth. The same procedure holds for γ as well, and the
(
∑M

m=1(Km − 1))×(J + 1) matrix γ birth is the newly born matrix. It remains to propose the
reallocation of Si ∈ {1, . . . , J + 1}. This is done analogously to our Gibbs allocation (8) and
creates a new class allocation Sbirth. Reversely, a death move first randomly draws a number
among {1, . . . , J − 1}, say j∗, and then the columns β[j∗] and the γ [j∗] are removed from β

and γ , respectively, to form new parameter matrices βdeath and γ death. The reallocation of Si ∈
{1, . . . , J − 1} is done analogously to (8), and the new class allocation is labeled as Sdeath. Note
that in the birth-and-death step, the generated group or deleted group does not directly birth in
or delete out the reference group. We leave the opportunity of removing or adding the reference
(j∗ = J ) to the work done by the split-and-merge step. Also, it is easy to see that the proposed
birth-and-death move forms a reversible pair.

Following the RJMCMC recipe in Richardson and Green (1997), the acceptance probability
for the birth move is min{1,AB} with

AB = p(J + 1)

p(J )
× L+1 × p(βbirth|J + 1) × p(γ birth|J + 1)

p(β|J ) × p(γ |J )

× 1

h1(β
[j∗]) × h2(γ [j∗])

× 1

J
. (12)

In (12), J is the number of classes before birth. L+1 arises from the order statistics for the
unique class labeling, and L+1 is J !/(J − 1)! if J ≥ 3; 1 if J = 2; 2 if J = 1. In the second
line of (12), h1(β

[j∗]) = ∏P
p=0 h(βpj∗) and h2(γ

[j∗]) = ∏M
m=1

∏Km−1
k=1 h(γmkj∗) are the proposal

densities for the birth columns β[j∗] and γ [j∗] with h(·) being the N(0, σ 2
BD) density. Technical

details in deriving this acceptance probability AB for the birth move can be found in Section S.1
of the supplementary information. For the corresponding death move, the acceptance probability
is min{1,AD}, where

AD = p(J − 1)

p(J )
× L−1 × p(βdeath | J − 1) × p(γ death | J − 1)

p(β | J ) × p(γ | J )

× h1
(
β[j∗]) × h2

(
γ [j∗]) × J − 1, (13)

and L−1 is 1/(J − 1) if J ≥ 4; 1 if J = 3; 0.5 if J = 2.
For move (f), we make a random choice between attempting to split or merge with equal

probability 0.5. Once the split procedure is adopted, randomly chosen columns β[j∗] and
γ [j∗] from β and γ , respectively, are each split into two columns, where j∗ ∈ {1, . . . , J } and
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β[J ] = 0. Given a random vector u generated from a multivariate normal distribution with mean

(

P+1︷ ︸︸ ︷
0, . . . ,0)T and variance diag(

P+1︷ ︸︸ ︷
σ 2

SM, . . . , σ 2
SM), β[j∗] is divided into two column vectors β[j1] and

β[j2] with β[j1] = β[j∗] + u and β[j2] = β[j∗] − u. Similarly, a random vector v is generated from

a multivariate normal distribution with mean (

∑
m(Km−1)

︷ ︸︸ ︷
0, . . . ,0 )T and variance diag(

∑
m(Km−1)

︷ ︸︸ ︷
σ 2

SM, . . . , σ 2
SM) as

well, and γ [j∗] is split into γ [j1] = γ [j∗] + v and γ [j2] = γ [j∗] − v. The new beta and gamma
matrices, βsplit and γ split, are formed by inserting β[j1] and γ [j1] before the first column of β

and γ , and replacing β[j∗] and γ [j∗] with β[j2] and γ [j2], respectively. Reallocation of subjects
is done with the Gibbs sampling move (8). The new allocation is then labeled as Ssplit. When the
reference class is chosen (i.e., j∗ = J ), splitting β needs additional attention. When j∗ = J , the
two split beta matrices are β[j1] = u and β[j2] = −u. By the splitting rule we established above,
u is with respect to the first class and −u is with respect to the new reference class. To maintain
β[J ] = 0 in latent class model (3), the beta matrix should be adjusted for −u, and βsplit becomes
[2u,β[1] + u, . . . ,β[J−1] + u].

A merge move in γ starts with a randomly selected column vector γ [j2] with j2 ∈ {1, . . . , J },
and then γ [j2] and its “closest” column vector γ [j1] are merged, where

j1 = arg min
i∈{1,...,J−1}\{j2}

(
γ [j2] − γ [i])T (

γ [j2] − γ [i]). (14)

Note that we exclude J from the possible closest index set for the purpose of forming a reversible
pair in the split-and-merge step. The merged column γ [j∗] = (γ [j1] + γ [j2])/2. With j1 and j2

obtained from γ , β[j1] and β[j2] are also merged as β[j∗] = (β[j1] +β[j2])/2. The new allocation
Smerge is formed by reallocating all subjects according to (8). The new merged matrices, γ merge

and βmerge, are formed by replacing γ [j2] and β[j2] with γ [j∗] and β[j∗], respectively, and deleting
γ [j1] and β[j1]. When the reference group is selected to be merged (i.e., j2 = J ), β[j1] is first
deleted from β and then every remaining column of β is subtracted by β[j1]/2 to maintain zero
β coefficients of the reference class. It can be readily shown that our merge and split proposals
are reversible.

The acceptance probability for the split is min{1,AS}, where

AS = p(J + 1)

p(J )
× L+1 × p(βsplit|J + 1) × p(γ split|J + 1)

p(β|J ) × p(γ |J )

× 1

h3(u) × h4(v)
× J

J + 1
× 1

wJ (j∗)
×

(
1

2

)(P+1)+(
∑M

m=1(Km−1))

. (15)

Here, J is the number of class before splitting. As before, L+1 arises from the order statistics
permutations of the current and split states, and h3(u) and h4(v) are the densities for generating
u and v. The weight wJ (j∗) is defined as

wJ

(
j∗) =

{
2, if j∗ �= J,

1, if j∗ = J.

Technical details in deriving the acceptance probability AS for the split move can be found in
Section S.1 of the supplementary information. Notice that, in split move, it is necessary to check
whether the adjacency condition (14) is satisfied. If not, the split move is rejected forthwith for
the reason that the split-merge pair is not reversible (Richardson & Green, 1997). The acceptance
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probability for the merge can be similarly obtained as min{1,AM}, where

AM = p(J − 1)

p(J )
× L−1 × p(βmerge | J − 1) × p(γ merge | J − 1)

p(β | J ) × p(γ | J )

× h3(u) × h4(v) × J

J − 1
× wJ−1

(
j∗) × 2(P+1)+(

∑M
m=1(Km−1)). (16)

There are some special features in the proposed reversible jump steps. First, the reallocation
of class membership in reversible jump steps is done for all subjects, not just for subjects who
belong to the classes that are selected for change. This is because any birth–death or split-merge
in the β coefficient will result in different class weights in all classes (Equation (3)); thus, subjects
in the new state have different probabilities to be in any of the classes, and reallocation for all
subjects is necessary. Second, unlike Richardson and Green (1997), where the birth-and-death
step is only for empty classes, our birth–death step is applied to all classes. We experimented with
the empty-class-only birth–death step for our model; however, the acceptance rate was so low that
the empty classes existed all the time. Our approach allows birth or death on all classes and then
reallocates all subjects, which can efficiently eliminate empty classes. Third, our β coefficient
only corresponds to the first J − 1 classes (the reference class has zero β coefficients); thus,
some care is needed for renewing the β coefficient with respect to the reference class. We choose
to update parameters of the reference class in the split-merge move but not in the birth–death to
ease the model complication. We have found this simplification works well in our model.

3.4. Labeling Procedure

For identifiability concerns, we have adopted a unique labeling for class membership in each
RJMCMC sweep. In our labeling, we use a modified version of the on-line processing method
originally developed by Celeux, Hurn, and Robert (2000). The labeling procedure corresponds
to an ordering of columns of γ . It is performed to relabel classes after running each RJMCMC
sweep, and sweeps resulting in the same number of classes are collected altogether for the re-
labeling process. Specifically, let γ 1 = [γ 1

mkj ], γ 2 = [γ 2
mkj ], . . . be the sequence of RJMCMC

samples for γ that contains J latent classes. The first q samples after burn-in γ 1, . . . , γ q are
used to initialize the procedure, where the choice of q has to be large enough to ensure initial
estimates that crudely approximate posterior means, but is not so large that any label switch has
occurred. For choosing a proper value of q , one can begin the RJMCMC with a pilot run. Then a
trace plot of one particular parameter at every class can be drawn to look for where the first class
switching phenomenon is taking place after burn-in. The choice of value of q should be smaller
than the first sweep of switching problem. We take the dataset used in the sensitivity analysis for
illustrating how to choose the value of q . The left-hand side of Figure 1 contains the trace plots
of γ52j , j = 1, . . . ,6 at the first 5000 sweeps after burn-in before relabeling. From the figure,
the first class switching occurred at about the 3000th sweep, and we can take the value of q not
larger than 3000. Note that q is typically set to be 100 in this study.

Reference centers and variances are defined, respectively, as

γ
(0)
mkj = 1

q

q∑

t=1

γ t
mkj

and

s
(0)
mkj = 1

q

q∑

t=1

(
γ t
mkj − γ

(0)
mkj

)2
.
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Let (γ t )[i] denote the ith column of γ t , and let γ (0) be the matrix with components γ
(0)
mkj . The

procedure runs to update the class labels for γ q+1,γ q+2, . . . sequentially with γ q+r being pro-
cessed as follows:

1. Let

1.1 (ij1 , j1) = arg min{(i,j)|i,j=1,...,J }

M∑

m=1

Km−1∑

k=1

(γ
q+r
mki − γ

(r−1)
mkj )2

s
(r−1)
mkj

= arg min{(i,j)|i,j=1,...,J }
∥∥(γ q+r )[i] − (γ (r−1))[j ]∥∥2;

1.2 (ij2 , j2) = arg min{(i,j)|i,j=1,...,J ; i �=ij1 ,j �=j1}
∥∥(γ q+r )[i] − (γ (r−1))[j ]∥∥2;

...

1.J (ijJ
, jJ ) = arg min

{(i,j)|i,j=1,...,J ; i �=ijn ,j �=jn,n=1,...,J−1}
∥∥(γ q+r )[i] − (γ (r−1))[j ]∥∥2

.

2. Reorder columns of γ q+r as γ̃ q+r = [(γ q+r )[i1], . . . , (γ q+r )[iJ−1], (γ q+r )[iJ ]] and βq+r

as β̃
q+r = [(βq+r )[i1] − (βq+r )[iJ ], . . . , (βq+r )[iJ−1] − (βq+r )[iJ ]], where we define

(βq+r )[J ] = 0.
3. Update centers and variances:

γ
(r)
mkj = q + r − 1

q + r
γ

(r−1)
mkj + 1

q + r
γ̃

q+r
mkj

s
(r)
mkj = q + r − 1

q + r
s
(r−1)
mkj + q + r − 1

q + r

(
γ

(r−1)
mkj − γ

(r)
mkj

)2 + 1

q + r

(
γ̃

q+r
mkj − γ

(r)
mkj

)2
,

where γ̃
q+r
mkj are components of the relabeled matrix γ̃ q+r . In other words, we first compute γ (0)

to be regarded as the reference of labeling and use the standardized column distance to identify
the ordering of columns of the gamma matrix. At the (q + r)th run of samples, columns of γ q+r

is permuted to the status that is the most marginally similar to γ (r−1), and γ (r−1) is updated to
γ (r) by incorporating relabeled γ q+r . Indices (ij1 , . . . , ijJ

) apply to β as well. The right-hand
side of Figure 1 shows the relabeled trace plots. The proposed relabeling procedure appears to
work well.

4. Simulation Study

The simulation study consists of two parts. The first part aims to examine the performance
of our proposed RJMCMC method, and the second part focuses on the comparison with other
existing approaches.

4.1. Performance of the Proposal Method

Two different RLCA (2) models were simulated. One was a three-class RLCA model with
five measured indicators, each indicator with three levels (i.e., J = 3,M = 5,K1 = · · · = K5 =
3). Four independent covariates were generated; two covariates (zi1 ∼ Bernoulli(0.5), zi2 ∼
Normal(0,1)) were associated with Yim given Si for all m and the other two covariates (xi1 ∼
Bernoulli(0.5), xi2 ∼ Normal(0,1)) were associated with Si (i.e., P = L = 2). The other RLCA
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FIGURE 1.
Trace plots for selecting the first q samples to initial the relabelling procedure. The left-hand side of the plot is the
trace plot of γ521–γ526 at the first 5000 sweeps before labelling. In the figure, one color represents one parameter of
γ521–γ526. After adopting the relabelling procedure, the relabeled trace plot is shown in the right-hand side of the plot.

model was a six-class model with all others settings the same as for the three-class model (i.e.,
J = 6, M = 5, K1 = · · · = K5 = 3, P = L = 2). For each model, parameters β were selected with
the purpose of allocating a similar number of individuals to each class. Each element of α and γ

was determined by randomly choosing from Uniform(−5,5). For the three-class RLCA, we set
the sample size N = 500, which gave roughly 10 individuals per parameter of RLCA (2). For the
six-class model, N = 1500 was selected, which gave roughly 16 individuals per parameter. In
the simulation, we set hyperparameters σP = 3.0, σBD = σSM = 0.3, and Jmax = 30. Observable
measurements Yi were generated from each of the two RLCA models with 100 replicates, and
each replication was run for 100,000 RJMCMC sweeps. Because it was tedious to determine
a best burn-in period for each of the 100 replications, to simply the process we examined first
several replications and found that the occupancy fraction plots (as will be described in Section
S.3.1 of the supplementary information and Section 6.2 of the following real data analysis) be-
came stable roughly after the first 10,000 sweeps. We thus took the first 10,000 sweeps as the
burn-in period for each replication. We did not use different initial values for RJMCMC esti-
mation in the simulation study. However, the proposed procedure’s sensitivity to initial values
is evaluated in Section S.3.4 of the supplementary information. To obtain posterior distributions
of parameters for the class number J , in each replication we calculated: the sample mean θ̂ (J ),
the sample standard deviation s

θ̂
(J ) and the 2.5th and 97.5th percentiles of the one-dimensional

marginal posterior distributions (i.e., a 95 % credible interval) from sweeps with the class number
being equal to J .
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FIGURE 2.
Proportions of sweeps resulting in different values of J for 100 replications with data generated from the three-class
RLCA model. The darkest region represents the proportion for the true number of class (J = 3 in this scenario), and re-
gions above the darkest represent proportions of over-estimation (J > 3) and regions below for under-estimation (J < 3).
Out of 100 replications, 95 replicates suggested the number of classes to be three.

Figure 2 shows J ’s marginal posterior distribution for the three-class RLCA model for all
replications. Proportions of sweeps resulting in different values of J in each replication are coded
in one bar, where the darkest region represents the proportion for the true number of classes (J =
3 in this scenario); regions above the darkest represent proportions of over-estimation (J > 3)

and regions below for under-estimation (J < 3). Among 100 replications, 95 give correct class
number estimates (i.e., have the largest proportion for J = 3), while the other five replications
support four classes. Figure 3 displays J ’s marginal posterior distribution for the six-class RLCA
model for 100 replications. There are 84 out of 100 replications correctly estimating the number
of classes (J = 6). Fourteen replicates show the class number to be five and the remaining two
suggest four classes. We also examined the Bayes factors to see how strongly the simulation
outputs support the true number of latent classes. This information is presented in Section S.2.1
of the supplementary information. We found that the evidence from most replications supported
strongly the true underlying number of classes. We also showed that the best number of classes
suggested by Bayes factors was also the mode of the posterior distribution of J , which we used
for class number selection in RJMCMC.

Tables 1 and 2 list results of parameter estimation under the true number of classes, averaging
over replications whose estimated J (the mode of posterior J ) was equal to the true value: the

true parameter θ , the average of sample means ¯̂
θ , the average of sample standard deviations s̄

θ̂
,

and the coverage rate (CR) of the 95 % credible intervals to contain the true parameter value.
Table 1, showing the results from J = 3, indicates that the RJMCMC gives sensible inferences

in this case. The estimated posterior means ¯̂
θ are reasonably close to the true values of the
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FIGURE 3.
Proportions of sweeps resulting in different values of J for 100 replications with data generated from the six-class RLCA
model. The darkest region represents the proportion for the true number of class (J = 6 in this scenario), and regions
above the darkest represent proportions of over-estimation (J > 6) and regions below for under-estimation (J < 6). Out
of 100 replications, 84 replicates suggested the number of classes to be six, 14 replicates suggest five, and two replicates
suggest four.

parameters, and the estimated posterior standard deviations s̄
θ̂

are within the interval from 0.23
to 2.00. The coverage rates of 95 % credible intervals range from 88.42 % to 100 %. Table
2 gives the results from J = 6. Here, most of the estimated posterior means are close to the
true values of the parameters, and the estimated posterior standard deviations range from 0.22
to 1.01, except one that attains 3.06. There are two (out of 95) CRs that are less than 80 %;
nevertheless, other CRs are pretty close to 95 %. Although most parameter estimates have small
biases and large CRs, some parameters are significantly overestimated with substantially larger
standard deviations; for example, α142 in Table 1 and (β12, β04, β14) in Table 2. After careful
examination, we found that these may be caused by the sparseness between response indicators
and incorporated covariates, which is often encountered in a given dataset. Detailed explanation
can be found in Section S.2.2 of the supplementary information.

Moreover, we ran an additional simulation with a small sample size relative to the number
of model parameters. We adopted a three-class RLCA model similar to the one used above but
with the sample size N = 50. The sample size (50) was less than the number of parameters
of RLCA (56), which was similar in size to that in our real data example. The results indicate
that only 41 % of the replications give correct class number estimates, which is a much lower
correct rate as compared with when the sample size is large (95 %). Given that, we further
examined the distribution of empty classes in RJMCMC to justify the class number estimation.
The parameter estimation under the true number of classes is reasonably accurate, except for
parameters with true values larger than 3 or smaller than −3. These biases in extreme values are
probably due to our selection of noninformative prior mean zero of θ , which can dominate the
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TABLE 1.
The posterior distributions of model parameters from simulated data with J = 3 and N = 500 over 100 replications.

β01 β11 β21 β02 β12 β22 α111 α211 α112 α212

θ 1.97 −2.36 1.38 1.43 −4.59 3.73 1.82 −1.26 4.53 4.29

θ̂ 1.98 −2.37 1.48 1.65 −4.54 3.64 1.60 −1.62 4.33 4.12
s
θ̂

0.33 0.38 0.24 0.36 0.52 0.36 0.55 0.44 0.59 0.52
CR 100.00 100.00 100.00 100.00 100.00 97.89 89.47 88.42 97.89 94.74

α121 α221 α122 α222 α131 α231 α132 α232

θ −2.11 −3.92 −0.25 −2.49 −0.04 −3.61 −2.11 −1.05

θ̂ −2.17 −3.87 −0.19 −2.51 0.04 −3.57 −2.22 −1.13
s
θ̂

0.48 0.42 0.35 0.31 0.37 0.43 0.46 0.28
CR 97.89 97.89 96.84 97.89 92.63 96.84 90.53 95.79

α141 α241 α142 α242 α151 α251 α152 α252

θ 3.57 3.08 −3.93 0.93 −2.62 4.90 2.50 2.76

θ̂ 3.53 2.93 −1.07 0.79 −2.59 4.81 1.99 2.82
s
θ̂

0.46 0.33 2.00 0.31 0.40 0.44 0.77 0.43
CR 93.68 91.58 91.58 93.68 97.89 93.68 92.63 94.74

γ111 γ112 γ121 γ122 γ131 γ132 γ141 γ142 γ151 γ152

θ 1.24 3.82 −1.77 −0.20 −3.87 −0.15 3.75 3.86 2.86 −2.41

θ̂ 1.14 3.89 −1.74 −0.20 −3.91 −0.21 3.84 3.91 2.97 −1.95
s
θ̂

0.72 0.70 0.43 0.27 0.63 0.23 0.79 0.78 0.41 0.82
CR 93.68 96.84 96.84 95.79 94.74 96.84 95.79 95.79 93.68 94.74

γ211 γ212 γ221 γ222 γ231 γ232 γ241 γ242 γ251 γ252

θ 1.51 2.13 −2.08 3.17 4.13 −1.76 −3.80 −1.30 2.51 −3.62

θ̂ 1.68 2.35 −2.59 3.33 4.40 −1.98 −3.83 −1.29 2.56 −3.40
s
θ̂

0.65 0.66 1.38 0.45 0.59 1.47 0.50 0.32 0.40 0.88
CR 98.95 97.89 98.95 96.84 96.84 100.00 91.58 96.84 94.74 96.84

γ311 γ312 γ321 γ322 γ331 γ332 γ341 γ342 γ351 γ352

θ −3.98 −3.63 2.91 −2.96 0.00 −2.88 −3.00 −4.52 2.11 −2.66

θ̂ −4.22 −3.45 2.88 −3.10 0.02 −3.09 −2.90 −4.44 2.20 −2.23
s
θ̂

0.61 0.51 0.45 1.30 0.30 0.88 0.43 1.07 0.37 0.80
CR 94.74 95.79 97.89 98.95 89.47 96.84 91.58 98.95 91.58 94.74

a θ : the true parameter.

θ̂ : the average of posterior sample means over replications whose posterior mode of J was equal to the true
value.
s
θ̂

: the average of posterior sample standard deviations over replications whose posterior mode of J was
equal to the true value.
CR: the coverage rate of the 95 % credible intervals to contain the true parameter value over replications
whose posterior mode of J was equal to the true value.

posterior distribution of θ when the sample size is small. Details of this simulation are shown in
Section S.2.3 of the supplementary information.
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TABLE 2.
The posterior distributions of model parameters from simulated data with J = 6 and N = 1500 for 100 replications.

β01 β11 β21 β02 β12 β22 β03 β13 β23

θa 0.76 −2.91 −1.30 −1.71 −4.52 4.10 −0.42 1.19 2.12

θ̂ 0.90 −3.54 −1.77 −1.64 −2.53 3.26 −0.34 1.26 1.64
s
θ̂

0.34 0.97 0.48 0.56 3.06 0.95 0.43 0.45 0.38
CR 100.00 100.00 80.00 100.00 100.00 98.18 100.00 100.00 94.55

β04 β14 β24 β05 β15 β25 α111 α211 α112 α212

θ −3.48 0.24 −4.60 −0.15 1.28 1.20 −4.54 1.10 2.98 −4.06

θ̂ −2.26 −0.95 −3.87 −0.16 1.29 0.92 −4.35 1.11 3.12 −4.14
s
θ̂

0.71 0.62 1.00 0.39 0.50 0.46 0.47 0.24 0.30 0.27
CR 54.55 23.64 96.36 100.00 100.00 94.55 94.55 96.36 90.91 89.09

α121 α221 α122 α222 α131 α231 α132 α232

θ 2.12 2.71 −0.60 −3.27 −1.99 2.98 −0.03 −3.30

θ̂ 2.02 2.70 −0.66 −3.23 −1.90 2.81 0.02 −3.50
s
θ̂

0.23 0.22 0.23 0.27 0.33 0.39 0.25 0.32
CR 94.55 96.36 89.09 98.18 94.55 94.55 90.91 94.55

α141 α241 α142 α242 α151 α251 α152 α252

θ −3.09 4.41 −4.65 −2.99 −3.90 2.25 −0.11 −4.75

θ̂ −2.98 4.42 −4.38 −2.89 −3.82 2.13 −0.14 −4.91
s
θ̂

0.30 0.32 0.44 0.34 0.41 0.28 0.23 0.35
CR 94.55 96.36 89.09 94.55 94.55 94.55 96.36 92.73

γ111 γ112 γ121 γ122 γ131 γ132 γ141 γ142 γ151 γ152

θ 3.80 1.01 −0.79 −1.06 −1.45 4.72 −3.51 −4.48 −1.95 −0.15

θ̂ 3.69 0.84 −0.67 −0.94 −1.09 5.15 −3.42 −4.51 −2.02 −0.06
s
θ̂

0.48 0.48 0.25 0.30 0.71 0.60 0.42 0.75 0.36 0.28
CR 94.55 92.73 92.73 92.73 92.73 89.09 98.18 98.18 94.55 96.36

γ211 γ212 γ221 γ222 γ231 γ232 γ241 γ242 γ251 γ252

θ −0.99 0.80 −3.44 −2.20 4.79 1.40 −0.71 4.56 1.57 3.18

θ̂ −1.05 0.84 −3.36 −2.16 4.56 1.23 −0.90 4.24 1.64 3.35
s
θ̂

0.47 0.34 0.39 0.36 0.72 0.73 0.52 0.51 0.51 0.51
CR 92.73 94.55 94.55 94.55 92.73 96.36 94.55 90.91 100.00 96.36

γ311 γ312 γ321 γ322 γ331 γ332 γ341 γ342 γ351 γ352

θ −2.55 −0.92 −4.25 3.96 2.74 1.76 3.92 1.79 −0.19 2.91

θ̂ −2.63 −0.98 −4.05 4.05 2.84 1.85 3.90 1.66 −0.14 3.01
s
θ̂

0.40 0.22 0.50 0.37 0.40 0.40 0.39 0.43 0.35 0.33
CR 92.73 96.36 94.55 98.18 96.36 98.18 98.18 96.36 96.36 96.36

γ411 γ412 γ421 γ422 γ431 γ432 γ441 γ442 γ451 γ452

θ 3.83 2.88 −1.65 −1.90 −4.30 0.37 2.00 −4.16 −4.67 −2.10

θ̂ 3.69 2.69 −1.56 −1.84 −4.06 0.26 1.94 −4.13 −4.72 −2.02
s
θ̂

0.60 0.58 0.27 0.32 0.62 0.26 0.31 0.65 0.71 0.34
CR 96.36 94.55 92.73 96.36 90.91 92.73 90.91 94.55 96.36 89.09
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TABLE 2.
(Continued)

γ511 γ512 γ521 γ522 γ531 γ532 γ541 γ542 γ551 γ552

θ −1.37 0.34 2.64 4.31 −3.88 3.14 1.40 −4.60 −4.62 −4.02

θ̂ −1.44 0.36 2.52 4.14 −3.42 3.29 1.19 −4.17 −4.40 −4.16
s
θ̂

0.34 0.23 0.86 0.86 0.67 0.34 0.26 0.69 0.59 0.49
CR 98.18 100.00 100.00 100.00 85.45 94.55 85.45 96.36 100.00 94.55

γ611 γ612 γ621 γ622 γ631 γ632 γ641 γ642 γ651 γ652

θ 4.08 −1.03 −1.47 −1.26 4.69 0.82 4.08 3.81 −4.87 −0.39

θ̂ 4.04 −1.06 −1.38 −1.25 4.56 0.58 4.06 3.70 −4.66 −0.32
s
θ̂

0.60 0.62 0.31 0.36 0.76 0.77 0.61 0.64 1.01 0.35
CR 94.55 100.00 92.73 92.73 98.18 90.91 92.73 92.73 96.36 96.36

aθ : the true parameter.

θ̂ : the average of posterior sample means over replications whose posterior mode of J was equal to the true
value.
s
θ̂

: the average of posterior sample standard deviations over replications whose posterior mode of J was
equal to the true value.
CR: the coverage rate of the 95 % credible intervals to contain the true parameter value over replications
whose posterior mode of J was equal to the true value.

4.2. Comparison with Alternative Approaches

Here we compare our proposed RJMCMC method with traditional frequentist two-stage
approaches, where the number of classes is selected first, and the parameter estimation under the
selected number of classes is then performed using Huang and Bandeen-Roche (2004) maximum
likelihood estimation (MLE). Four approaches for selecting the number of classes are compared:
(a) the goodness-of-fit (GOF) approach, where the RLCA model is fitted under different number
of classes and the selected class number is the lowest number of classes that yields acceptable fit
under the likelihood ratio goodness-of-fit test; (b) the AIC criterion, where the estimated number
of classes is fixed at the class number J that minimizes −2 logL+ 2T , where L is the likelihood
and T is the total number of parameters in the RLCA model; (c) the BIC criterion, where the
estimated number of classes is fixed at J that minimizes −2 logL + T logN , where N is the
number of observations; and (d) Huang’s (2005) approach, where a factor-analysis analogical
method is used for the class number estimation—a method that does not require repeated model
fitting.

The simulated datasets were generated from two different RLCA (2) models. One was a
three-class RLCA model with M = 5,K1 = · · · = K5 = 2,P = L = 1; and the other was a
six-class RLCA model with M = 5,K1 = · · · = K5 = 2,P = L = 1. All parameters in both
models were randomly generated from Uniform(−5,5). To avoid sparse response patterns that
might invalidate the GOF approach, the covariates associated with conditional probabilities
zim1, m = 1, . . . ,5 and the covariate associated with latent prevalences xi1 were binary from
Bernoulli(0.5). To build up the correlation between zim1 and xi1, one-fourth of the individuals
had their conditional probability covariate values the same as latent prevalence covariate values,
and the other individuals had independent values from two covariates. For the three-class RLCA,
the selected sample sizes N were 500 and 1500, which gave 20 and 62 individuals per parameter,
respectively. For the six-class RLCA, we set N = 3000 and 10,000, which gave 76 and 254 indi-
viduals per parameter, respectively. One hundred replications were performed for each generated
RLCA model.
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The results for estimating the number of classes are shown in Table 3. Apparently, our
RJMCMC approach outperforms other alternative approaches in selecting the correct number
of classes, for both J = 3 and J = 6. It seems that increasing the sample size can improve the
accuracy in class number estimation. When the sample size is large (i.e., (J,N) = (3, 1500) and
(6, 10,000)), our approach can correctly identify the class number over 97 % and 94 % of repli-
cations for J = 3 and 6, respectively, which indicates its ability in recovering the true number
of classes. Also, under large sample size the selected numbers of classes by RJMCMC (Bayes
factor) and BIC are very consistent, which verifies the well known fact that Bayes factor and
BIC yield similar results (Kass & Raftery, 1995). RJMCMC and BIC disagree when (J,N) =
(3, 500) and (6, 3000). This may be due to having some extremely small classes (details can
be found in Section S.2.4 of the supplementary information). Notice that the GOF and Huang
(2005) approaches can seriously underestimate the class number when the true class number is
6. One possible explanation is due to the correlation between zim1 and xi1, which violates the
independence assumption made in Huang (2005).

For simulated data with J = 3, the comparison of Bayes posterior estimates from our RJM-
CMC procedure and MLEs using the Huang and Bandeen-Roche (2004) procedure for model
parameters can be found in Tables 4 and 5 for N = 500 and N = 1500, respectively. Both Bayes
posterior estimates and MLEs were calculated under the true class number for each replication
and were then averaged over all 100 replications. The MLEs seem to be more biased than the
Bayes estimates, especially when the absolute value of the true γ is larger than 3. For β and
α, the standard deviation estimates of the MLEs are typically smaller than the posterior sample
standard deviations from RJMCMC. This is not surprising because the MLEs from the two-stage
approach do not take the variation of class number selection into account, but the RJMCMC
estimates do. Some γ ’s MLEs have extremely large standard deviations, which is probably due
to the convergence to boundary solutions in γ estimates for some replicates. The comparison of
Bayes estimates and MLEs for the cases with J = 6 is shown in Tables S.6 and S.7 of the supple-
mentary information, which is similar to the results for J = 3. However, due to the much more
complex model structure of the six-class model, problems of large biases and standard deviations
of MLEs were more serious.

5. Sensitivity Analysis

In the sensitivity analysis, we highlight some specifications of hyperparameters and proposal
parameters, and give a detailed discussion of their influence on the posterior distributions of
J , class allocation and parameters. We also examine the proposed procedure’s sensitivity to
initial values, the de-outlier step, and rejection sampling. This de-outlier step was implemented
in our simulation studies and in the real data example to exclude extreme RJMCMC samples
from the calculation of the posterior distribution, which can greatly reduce the impact due to
the disturbance in parameter estimates and class allocation created by the jumping moves. In
the simulation presented in Section 4, we begin with the default setting σP = 3.0, σBD = 0.3
and σSM = 0.3. Different settings are specified to illustrate their impacts on the reversible jump
procedure. These settings are applied to 100 simulated datasets with true J = 6 and N = 1500,
generated in Section 4.1. Details of the sensitivity analysis and relevant results can be found in
Section S.3 of the supplementary information.

In view of the results from sensitivity analysis, we suggest starting with hyperparameter
settings σP = 3 and σBD/σP = σSM/σP = 0.1. Then, one can tune the value of σP to make
sure the posterior distribution of β to be unimodal and tune the values of σBD/σP and σSM/σP

to ensure stable and well mixing Figures S.2–S.5 of the supplementary information. We also
suggest running several Markov chains in the selected setting but engaging in different initial
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TABLE 4.
The average of Bayes posterior means and MLEs of model parameters from simulated data with J = 3 and N = 500
over 100 replications.

β01 β11 β02 β12 α111 α121 α131 α141 α151

θa −1.12 1.89 0.97 0.54 0.53 1.35 4.15 −1.30 2.73

θ̂PM −1.12 2.03 0.98 0.60 0.48 1.19 4.21 −1.38 2.63
s
θ̂PM

0.48 0.49 0.17 0.31 0.44 0.61 0.39 0.39 0.29

CRPM 98.00 93.00 98.00 94.00 95.00 95.00 99.00 95.00 92.00

θ̂MLE −0.62 1.45 0.71 0.37 0.54 1.17 4.24 −1.32 2.60
s
θ̂MLE

0.18 0.26 0.14 0.23 0.33 0.35 0.38 0.29 0.24

CRMLE 37.00 0.00 70.00 0.00 89.00 76.00 95.00 91.00 74.00

γ111 γ121 γ131 γ141 γ151 γ211 γ221 γ231 γ241 γ251

θ −1.17 −2.12 −2.27 0.25 4.22 −4.02 2.51 −3.90 3.43 −1.10

θ̂PM −1.21 −2.14 −2.26 0.24 2.71 −4.28 2.86 −3.95 3.65 −1.02
s
θ̂PM

0.42 0.67 0.45 0.36 1.25 0.60 0.56 0.40 0.44 0.20

CRPM 97.00 99.00 94.00 92.00 87.00 95.00 98.00 99.00 92.00 89.00

θ̂MLE −2.15 −1.07 −2.71 0.95 1.70 −5.79 5.18 −4.06 4.49 −1.15
s
θ̂MLE

0.74 0.29 0.37 0.25 0.63 6.54 17.69 0.39 1.98 0.18

CRMLE 52.00 35.00 72.00 48.00 10.00 89.00 54.00 91.00 65.00 81.00

γ311 γ321 γ331 γ341 γ351

θ 1.69 −4.58 −1.65 −1.40 −3.16

θ̂PM 2.03 −4.64 −1.63 −1.53 −3.13
s
θ̂PM

0.56 0.98 0.36 0.42 0.55

CRPM 95.00 96.00 95.00 92.00 93.00

θ̂MLE 1.71 −6.17 −1.66 −1.45 −2.70
s
θ̂MLE

0.32 435.99 0.32 0.30 0.30

CRMLE 62.00 79.00 91.00 83.00 54.00

aθ : the true parameter.

θ̂PM: the average of posterior sample means over 100 replicates.
s
θ̂PM

: the average of posterior sample standard deviations over 100 replicates.

CRPM: the coverage rate of the 95 % credible intervals to contain the true parameter value over 100 repli-
cates.

θ̂MLE: the average of MLEs over 100 replicates.
s
θ̂MLE

: the average of standard deviation estimates over 100 replicates.

CRMLE: the coverage rate of the 95 % confidence intervals to contain the true parameter value over 100
replicates.

values. Keep running these chains until they all converge to the neighborhood of the same value.

The proposed de-outlier step can be used to remove extreme posterior estimates of parameters

due to the dimension jump. The selection of c = 1.2 for β , c = 1.2 for α and c = 1.3 for γ in

rejection sampling provides reasonable balance between accuracy and computational effort.
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TABLE 5.
The average of Bayes posterior means and MLEs of model parameters from simulated data with J = 3 and N = 1500
over 100 replications.

β01 β11 β02 β12 α111 α121 α131 α141 α151

θa −1.12 1.89 0.97 0.54 0.53 1.35 4.15 −1.30 2.73

θ̂PM −1.11 1.96 0.97 0.58 0.53 1.26 4.18 −1.37 2.71
s
θ̂PM

0.26 0.27 0.10 0.17 0.24 0.37 0.23 0.22 0.17

CRPM 96.00 94.00 96.00 93.00 97.00 100.00 95.00 94.00 89.00

θ̂MLE −0.63 1.49 0.76 0.36 0.54 1.24 4.21 −1.25 2.62
s
θ̂MLE

0.11 0.15 0.08 0.13 0.18 0.19 0.22 0.16 0.14

CRMLE 31.00 0.00 61.00 0.00 92.00 62.00 94.00 84.00 74.00

γ111 γ121 γ131 γ141 γ151 γ211 γ221 γ231 γ241 γ251

θ −1.17 −2.12 −2.27 0.25 4.22 −4.02 2.51 −3.90 3.43 −1.10

θ̂PM −1.18 −2.14 −2.30 0.24 3.21 −4.08 2.71 −3.94 3.56 −1.07
s
θ̂PM

0.22 0.39 0.26 0.21 1.16 0.31 0.29 0.23 0.25 0.12

CRPM 97.00 96.00 94.00 95.00 86.00 96.00 92.00 95.00 97.00 92.00

θ̂MLE −1.69 −1.25 −2.67 0.79 1.88 −5.27 6.09 −4.04 4.12 −1.17
s
θ̂MLE

0.16 0.16 0.22 0.14 0.63 5.21 11.98 0.22 0.48 0.10

CRMLE 48.00 31.00 58.00 44.00 10.00 77.00 62.00 89.00 61.00 78.00

γ311 γ321 γ331 γ341 γ351

θ 1.69 −4.58 −1.65 −1.40 −3.16

θ̂PM 1.82 −4.70 −1.65 −1.46 −3.22
s
θ̂PM

0.28 0.65 0.21 0.23 0.32

CRPM 94.00 97.00 94.00 98.00 94.00

θ̂MLE 1.67 −5.22 −1.71 −1.37 −2.74
s
θ̂MLE

0.17 13564.74 0.20 0.16 0.17

CRMLE 62.00 63.00 93.00 78.00 51.00

aθ : the true parameter.

θ̂PM: the average of posterior sample means over 100 replicates.
s
θ̂PM

: the average of posterior sample standard deviations over 100 replicates.

CRPM: the coverage rate of the 95 % credible intervals to contain the true parameter value over 100 repli-
cates.

θ̂MLE: the average of MLEs over 100 replicates.
s
θ̂MLE

: the average of standard deviation estimates over 100 replicates.

CRMLE: the coverage rate of the 95 % confidence intervals to contain the true parameter value over 100
replicates.

6. Real Data Analysis

To illustrate the proposed RJMCMC method for RLCA, we use data from the Multidimen-
sional Psychopathological Study on Schizophrenia (MPSS) project and the Study on Etiologi-
cal Factors of Schizophrenia (SEFOS) project. The data are described in detail in Huang, Tsai,
Hwu, Chen, Liu, Hua, and Chen (2011). Briefly, the MPSS and SEFOS projects recruited sub-
sided patients of schizophrenia (N = 225) from three hospitals in Taiwan, based on the DSM-IV
(American Psychiatric Association, 1994) criteria for schizophrenia. In this study, schizophrenia
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is characterized by the Positive and Negative Syndrome Scale (PANSS) (Kay, Flszbein, & Opfer,
1987; Cheng, Ho, Chang, Lan, & Hwu, 1996). The purpose of our analysis here is to explore the
underlying subgroups of schizophrenia based on the PANSS ratings, and study the relationship
between external covariates and obtained patient subgroups.

6.1. Data

In both MPSS and SEFOS projects, schizophrenia symptoms were assessed by the PANSS.
The PANSS has 30 items (M = 30) and is composed of three subscales: positive (seven symp-
toms, P1–P7), negative (seven symptoms, N1–N7) and general psychopathology (16 symptoms,
G1–G16). Each item was originally rated on a 7-point scale (1 = absent, 7 = extreme), but
we reduced the 7-point scale to a binary scale (no symptom and having symptom) to ease the
sparseness problem (K1 = · · · = K30 = 2). External covariates considered in this study included
demographic variables and one neuropsychological variable. Demographic variables were gen-
der, age at recruitment, onset-age of psychotic symptoms, years of education, and occupation
(having versus no occupation). The neuropsychological variable is the sensitivity score of atten-
tion based on the Continuous Performance Test (CPT) (Rosvold, Mirsky, Sarason, Bransome, &
Beck, 1956; Chen, Liu, Chang, Lien, Chang, & Hwu, 1998). The CPT score was transformed
into a z-score compared with a control group matched for age, gender and education years (Liu,
Hsieh, Huang, Liu, Liu, Hua, Chen, & Hwu, 2006). The z-score was adjusted so that a higher
score indicated better performance.

In our application, RLCA was applied to the 30 dichotomized PANSS items. Demographic
variables and the z-standardized CPT score were the covariates associated with the underlying
latent class through Equation (3). We identified gender and age as covariates incorporated in
conditional probabilities in Equation (4). This analysis used the subsample of subjects that had
no missing values (N = 160). The RLCA model was fitted through the proposed RJMCMC
algorithm.

6.2. Analysis Results

In this data analysis, we set σP = 1.5 and σBD = σSM = 0.2. This setting was selected based
on the recommended procedure for selecting hyperparameter and proposal parameter values pro-
vided in Section 5. We did not set σBD/σP = σSM/σP = 0.1 because this setting required many
more RJMCMC sweeps to have a well mixing J (data are not shown). The posterior distribu-
tion of the number of classes is listed in Figure 4, which suggests the appropriate class number
to be three. To further justify this class number estimation, we calculated the total number of
sweeps with posterior J = j and the proportion of sweeps that contain empty classes among
them for j = 1, . . . ,9 (Table 6). The proportion of sweeps with empty classes for J = 3 is 0.03
and is very large for J ≥ 4. This indicates that J = 3 is the maximum and meaningful number
of nonempty classes obtained in RJMCMC. To examine the stability of Markov chains, we drew
a plot in which the x-axis indicated the sweep index, and the y-axis was the occupancy fraction
for a specific value of J . Figure 5 is given to show the occupancy fractions for different values
of J . We had found that the occupancy fractions for different J values went stable roughly after
150,000 sweeps. Thus, the burn-in period we took was 150,000 sweeps. The algorithm was run
for additional 350,000 sweeps for estimating the posterior distribution.

Table 7 contains the association estimation between latent class membership and external
covariates. The odds ratios (OR) are obtained by exponential transformation of regression coef-
ficients β . The same exponential transformation is also applied to the 2.5 % and 97.5 % quartiles
of the posterior samples of β to obtain the 95 % credible interval (CI) of the corresponding OR.
By comparing with the patients from Class 3, we can characterize the other two classes as fol-
lows. Patients of Class 1 tended to be younger at onset-age of psychotic symptoms. Patients of
Class 2 were more likely to be younger at recruitment and have an occupation.
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FIGURE 4.
Histogram of posterior distribution of J in analyzing the PANSS rating scale data.

TABLE 6.
The proportions of sweeps that contain empty classes in data from schizophrenia PANSS ratings.

J total sweeps proportion of empty classes

2 30917 0.00
3 360779 0.03
4 68907 0.78
5 28778 0.95
6 6093 0.99
7 3303 1.00
8 804 1.00
9 400 0.98

Table 8 displays the direct relationship between PANSS symptom items and incorporated
covariates. The OR is the exponential transformation of regression coefficients α. Males were
more likely to have the G12 symptom than females. The older the age, the higher the probability
of having symptoms P4, G5, G6, G7, G8 and G14, but the lower the probability of having N4.

It is worthy to notice that the number of parameters of the RLCA model used to analyze
this dataset (164) exceeds number of observations (160). Our RJMCMC suffered from this small
sample size and needed a much longer run as compared with analyzing the data generated from
the simulation study; nevertheless the algorithm can be stable and obtain satisfactory results.
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FIGURE 5.
Occupancy fractions for different values of J in analyzing the PANSS rating scale data.

TABLE 7.
Latent prevalence regression from RLCA for the relationship between subtypes underlying PANSS symptoms and exter-
nal covariates.

Variable Class 1 vs. Class 3 Class 2 vs. Class 3

ORa CIb OR CI

Male gender 0.41 (0.15, 1.07) 0.97 (0.31, 3.03)
Age 0.95 (0.87, 1.04) 0.90* (0.82, 0.98)
Age of onset 0.78* (0.66, 0.92) 0.89 (0.73, 1.06)
Years of education 0.48 (0.16, 1.41) 1.55 (0.40, 5.88)
Having occupation 1.07 (0.96, 1.20) 1.12* (1.00, 1.27)
Z-standardized CPT 0.78 (0.61, 1.00) 1.21 (0.94, 1.57)

*Values with asterisk are significantly different from 1, judged by CI not covering 1.
aOR: odds ratio.
bCI: 95 % credible interval of OR.

7. Discussion

We have proposed a Bayesian method for simultaneously estimating the unknown number of
classes and parameters of the RLCA model. The proposed approach applies the reversible jump
MCMC with Gibbs sampling scheme to analyze the multinomial finite mixture model. To deal
with the issue of labeling the latent classes, we have developed a multivariate on-line labeling
process. We successfully applied the methodology to simulated datasets and obtained satisfactory
results. According to the performance of the proposed RJMCMC on various hyperparameter and
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TABLE 8.
Conditional probability regression from RLCA for the direct relationship between PANSS symptoms and external co-
variates.

Variable Male gender Age

ORa CIb OR CI

P1 Delusis 1.24 (0.60, 2.58) 1.01 (0.97, 1.04)
P2 Conceptual disorganization 1.05 (0.46, 2.37) 1.03 (0.99, 1.07)
P3 Hallucinatory behavior 1.21 (0.58, 2.54) 1.02 (0.99, 1.06)
P4 Excitement 1.09 (0.46, 2.61) 1.04* (1.00, 1.08)
P5 Grandiosity 1.37 (0.59, 3.25) 1.03 (0.99, 1.07)
P6 Suspiciousness/persecution 1.83 (0.86, 3.95) 1.01 (0.98, 1.05)
P7 Hostility 1.14 (0.48, 2.74) 1.03 (0.99, 1.07)
N1 Blunted affect 0.50 (0.19, 1.19) 0.98 (0.94, 1.02)
N2 Emotional withdrawal 1.19 (0.49, 2.80) 0.99 (0.96, 1.03)
N3 Poor rapport 0.67 (0.27, 1.59) 1.02 (0.98, 1.06)
N4 Passive/apathetic social withdrawal 1.28 (0.54, 3.01) 0.95* (0.91, 0.99)
N5 Difficulty in abstract thinking 0.96 (0.44, 2.04) 1.00 (0.96, 1.04)
N6 Lack of spontaneity/flow of conversation 0.89 (0.40, 1.94) 1.02 (0.99, 1.06)
N7 Stereotyped thinking 1.85 (0.85, 4.04) 1.02 (0.99, 1.06)
G1 Somatic concern 0.91 (0.45, 1.81) 1.00 (0.97, 1.04)
G2 Anxiety 1.05 (0.52, 2.14) 1.02 (0.98, 1.05)
G3 Guilt fellings 0.42 (0.18, 0.96) 1.01 (0.97, 1.04)
G4 Tension 0.55 (0.25, 1.20) 1.00 (0.97, 1.04)
G5 Mannerisms and posturing 1.27 (0.46, 3.59) 1.08* (1.03, 1.13)
G6 Depression 1.12 (0.53, 2.37) 1.05* (1.02, 1.10)
G7 Motor retardation 0.73 (0.32, 1.67) 1.04* (1.00, 1.08)
G8 Uncooperativeness 1.11 (0.45, 2.73) 1.04* (1.00, 1.09)
G9 Unusual thought content 1.02 (0.47, 2.22) 1.02 (0.98, 1.06)
G10 Disorientation 0.41 (0.16, 1.01) 1.02 (0.98, 1.06)
G11 Poor attention 1.11 (0.48, 2.59) 1.02 (0.98, 1.06)
G12 Lack of judgment and insight 2.49* (1.18, 5.38) 0.98 (0.94, 1.01)
G13 Disturbance of volition 1.07 (0.51, 2.21) 1.02 (0.98, 1.06)
G14 Poor impulse control 0.80 (0.35, 1.85) 1.04* (1.00, 1.08)
G15 Preoccupation 0.76 (0.30, 1.86) 1.02 (0.98, 1.06)
G16 Active social avoidance 0.71 (0.34, 1.46) 1.02 (0.98, 1.05)

*Values with asterisk are significantly different from 1, judged by CI not covering 1.
a OR: odds ratio.
b CI: 95 % credible interval of OR.

proposal parameter settings, we provided standard default recommendations for the choice of
priors. Finally, we analyzed a real dataset whose sample size was small relative to the number
of parameters of the fitted RLCA model. Our RJMCMC algorithm demonstrated the ability to
handle sparse data. Our algorithm is implemented using C++ and we have made the software
available from our web page: http://ghuang.stat.nctu.edu.tw/software.htm.

Recently, many alternative methods have been proposed to deal with the label switching
problem. These relabeling algorithms can be deterministic by minimizing a specified loss func-
tion (Stephens, 2000; Jasra, Holmes, & Stephens, 2005), be probabilistic by allowing for incor-
poration of the uncertainty in the relabeling process (Sperrin, Jaki, & Wit, 2010), or be based
on the posterior modes and an ascending algorithm (Yao & Lindsay, 2009). These methods offer
both on-line and post-processing approaches and are shown to have very good performance under

http://ghuang.stat.nctu.edu.tw/software.htm
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certain circumstances. Applying these relabeling algorithms to our Bayesian RLCA modelling
might improve the goodness-of-fit results.

Models with many parameters sometimes are trapped in the sparseness problem when the
sample size is relatively small. To overcome this spareness problem, some constraints on the pa-
rameters are required when implementing a traditional EM approach for parameter estimation.
These constraints can be arbitrary and are specified by trial and error. In RJMCMC, model pa-
rameters are assumed to be from their corresponding prior distribution, which can be viewed as
a systematic way for specifying the constraints. A Bayesian approach is much more flexible with
the sample size and helps to alleviate this predicament.

The computation time of our RJMCMC procedure depends on the number of sweeps in
RJMCMC, the number of parameters in RLCA, and the number of individuals in the dataset. For
the three-class RLCA model with 56 parameters and 500 individuals and the six-class RLCA
model with 95 parameters and 1500 individuals in the simulation study of Section 4.1, our RJM-
CMC procedure took on average 3.07 hours and 7.47 hours, respectively, to run 100,000 sweeps
for each replication on an Intel Core 2 Quad 2.33 GHz laptop with 4 Gb memory. For the same
three-class RLCA model but with a relatively small sample of 50 individuals, the computation
time was 0.34 hours. For the three-class RLCA model with 24 parameters and 500 individuals
and the six-class RLCA model with 45 parameters and 1500 individuals in the simulation study
of Section 4.2, the computation times were 0.96 hours and 3.25 hours, respectively. In real data
analysis, we ran a RLCA model with 164 parameters and 160 individuals for 500,000 sweeps,
and the computation time was 67.93 hours. In comparison with the EM approach, our RJMCMC
procedure took a much longer time to obtain satisfactory results, which was the price paid for
our joint inferences on the number of classes and the model parameters.
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