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We found missprints in two of our equations. In particular,
equation (13) should be∫

r,r′

[
ψ+

α (r) Mαβψ+
β (r) , ψ+

γ

(
r ′)Σi

γ δψδ

(
r ′)]

= −
∫

r

ψ+
γ (r)

(
Σi

γ δMδκ + MγδΣt i
δγ

)
ψ+

κ (r) .

while equation (15) should read

ΣiTj + TjΣt
i = 2iεijkTk.
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Abstract
Conventional phonon–electron interaction induces either triplet or one of two (degenerate)
singlet pairing states in time reversal and inversion invariant 3D Dirac semi-metal.
Investigation of the order parameters and energies of these states at zero temperature in a wide
range of values of chemical potential µ, the effective electron–electron coupling constant λ

and Debye energy TD demonstrates that when the exchange interaction is neglected the singlet
always prevails, however, in significant portions of the (µ, λ, TD) parameter space the energy
difference is very small. This means that interactions that are small, but discriminate between
the spin singlet and the spin triplet, are important in order to determine the nature of the
superconducting order there. The best candidate for such an interaction in the materials under
consideration is the exchange (the Stoner term) characterized by constant λex. We show that at
values of λex, much smaller than ones creating Stoner instability to ferromagnetism λex ∼ 1,
the triplet pairing becomes energetically favored over the singlet ones. The 3D quantum
critical point at µ = 0 is considered in detail. This can be realized experimentally in optically
trapped cold atom systems.

Keywords: Dirac semi-metals, unconventional superconductivity, exchange interaction

(Some figures may appear in colour only in the online journal)

1. Introduction

Recently, solids with electronic states described by the
Bloch wave functions, obeying the ‘pseudo-relativistic’ Dirac
equation (with Fermi velocity vF replacing the velocity of light)
attracted widespread attention. One outstanding example is
graphene, a two-dimensional (2D) hexagonal lattice made
of carbon atoms. The effective low-energy two-band model
(near its K and K ′ points in the Brillouin zone) is described
by the four-component (two pseudospins/sublattices and two
valleys) massless 2D Dirac Hamiltonian (in fact there are two
species of such quasiparticles for each spin). Although a
similar two-band electronic structure of bismuth was described
long ago by a four-component nearly massless Dirac fermion
in 3D caused by spin–orbit interaction [1] (with spin

replacing pseudospin), only recently several systems were
experimentally found to exhibit the 3D Dirac quasiparticles.
Their discovery followed recent exploration of the topological
band theory [2].

One of the effective ideas to get a 3D Dirac semi-metal is
to close the insulating gap by tuning a topological insulator
towards the quantum phase transition to trivial insulators
when the reflection symmetry is preserved [3]. The time
reversal invariant 3D Dirac point in materials like Na3Bi was
theoretically investigated [4] and experimentally observed [5].
A well-known compound Cd3As2 is a symmetry-protected
3D Dirac semi-metal with a single pair of Dirac points in
the bulk and nontrivial Fermi arcs on the surface [6, 7].
Most recently, conductivity and magneto-absorption of a
zinc-blende crystal, HgCdTe, was measured [8] and is
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in agreement with theoretical expectations in Dirac semi-metal
[9]. Ab-initio calculations and symmetry arguments predict [7]
that crystallite BiO2 exhibits Dirac points at three symmetry-
related X points on the boundary of the FCC Brillouin zone.
Perchlorate iridates [10] and inverse perovskites [11] were
also predicted to be Weyl—semi-metals. Several known
materials with well-known magnetic or transport properties
have recently undergone a ‘delayed’ realization that they are
actually Dirac semi-metals [12]. In addition, 3D Dirac semi-
metal was realized in a cold atom system [13] (following
the realization in 2D known as the ‘synthetic graphene’).
Interestingly, the sign and strength of the interaction can be
controlled.

The discovery of the 3D Dirac materials makes it
possible to study their physics including remarkable electronic
properties. This is rich in new phenomena, not seen in
2D Dirac semi-metals like graphene and the surface states
of a topological insulator harboring 2D Weyl quasiparticles.
Examples include the giant diamagnetism that diverges
logarithmically when the chemical potential approaches the
3D Dirac point; linear-in-frequency AC conductivity that has
an imaginary part [9]; quantum magnetoresistance showing
linear field-dependence in the bulk [11]. Most of the properties
of these new materials were measured at relatively high
temperatures. However, some of the topological insulators and
suspected 3D Dirac semi-metals exhibit superconductivity at
about the liquid He temperature.

The well-known topological insulator Bi2Se3 doped with
Cu, becomes superconducting at Tc = 3.8 K [14]. At
present, its pairing symmetry is unknown. Some experimental
evidence [15] points to a conventional phononic pairing
mechanism. The spin-independent part of the effective
electron-electron interaction due to phonons was studied
theoretically [16, 17]. For a conventional parabolic dispersion
relation, typically independent of spin, the phonon mechanism
leads to the s-wave superconductivity. The layered, non-
centrosymmetric heavy element PbTaSe2 was found to
be superconducting [18]. Its electronic properties like
specific heat, electrical resistivity and magnetic-susceptibility
indicate that PbTaSe2 is a moderately coupled, type-II
BCS superconductor with a large electron–phonon coupling
constant of λ = 0.74. It was shown theoretically to possess a
very asymmetric 3D Dirac point created by strong spin–orbit
coupling. If the 3D is confirmed, it might indicate that the
superconductivity is conventional phonon mediated.

More recently, when the Cu doped Bi2Se3 was subjected
to pressure [19], Tc increased to 7 K at 30 GPa. Quasilinear
temperature dependence of the upper critical field Hc2,

exceeding the orbital and Pauli limits for the singlet pairing,
points to the triplet superconductivity. The band structure
of the superconducting compounds is apparently not very
different from its parent compound Bi2Se3, so that one can
keep the two band k · p description (Se pz orbitals on
the top and bottom layer of the unit cell mixed with its
neighboring Bi pz orbital). Electronic-structure calculations
of the compound under pressure [19] reveal a single bulk
three-dimensional Dirac cone like in Bi with large spin–orbit
coupling. Usually the phonon mediated pairing leads to the

s-wave ‘conventional’ superconductivity, while the p-wave
pairing in SrRuO3 or heavy fermion superconductors like UPt3
‘unconventional’ non-phononic mechanism typically hinges
on nonlocal interactions.

The case of the Dirac semi-metals is very special due to
the strong spin dependence of the itinerant electrons’ effective
Hamiltonian. It was pointed out [20, 21] that in this case
the triplet possibility can arise although the triplet gap is
smaller than that of the singlet, the difference sometimes is
not large for spin independent electron–electron interactions.
Very recently, the spin-dependent part of the phonon induced
electron–electron interaction was considered [22] and it
was shown that the singlet is still favored over the triplet
pairing. Another essential spin-dependent effective electron–
electron interaction is the Stoner exchange among itinerant
electrons [23] leading to ferromagnetism in transition metals.
While in the best 3D Weyl semi-metal candidates it is too
small to form a ferromagnetic state, it might be important
to determine the nature of the superconducting condensate.
Obviously, it favors the triplet pairing.

It is therefore important to clarify theoretically two
questions. (i) Does a conventional phononic superconductivity
exist in these materials with just a minute density of states
compared even with high Tc cuprates that apparently utilize a
much more powerful pairing mechanism than phonons offer?
(ii) Is it possible that phonons in 3D Dirac materials lead
to triplet pairing that even becomes dominant under certain
circumstances?

In the present paper, we construct the theory of
the superconducting transition in 3D Dirac semi-metal at
arbitrary chemical potential including zero, assuming the local
(probably, but not necessarily, phonon-mediated) pairing. The
possible pairing channels are classified in this rather unusual
situation using symmetries of the system. In contrast to the
2D case [24], the triplet pairing is not only possible, but
for a moderately strong exchange interaction is the preferred
channel taking over the more ‘conventional’ singlet one.

It turns out that the triplet superconductivity is more easily
realized in the intriguing case of a small chemical potential.
The superconductivity there is governed by a quantum critical
point (QCP) [25]. The concept of QCP at zero temperature
and varying doping constitutes a very useful language for
describing the microscopic origin of superconductivity in high
Tc cuprates and other ‘unconventional’ superconductors [26].
Quantum criticality, although occurring often in 2D (even in the
context of surface superconductivity in topological insulators
[27]), is very rare in 3D. We find and characterize the quantum
critical points corresponding to both the singlet and the triplet
superconducting transitions. There are experimental methods
to tune the chemical potential by doping (for example by
copper [14]), gating [28], pressure [19] etc. The Dirac semi-
metal in optically trapped cold atom systems [13] is well suited
to study this fascinating phenomenon.

The paper is organized as follows. The model of the
phonon-mediated and exchange-effective local interactions of
Dirac fermion is presented and the method of its solution (in
the Gorkov equations form) including the symmetry analysis of
possible pairing channels is given in section 2. In section 3 the
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phase diagram for spin-independent interactions is established
and the regions in parameter space where singlet and triplet
states are nearly degenerate are identified. The Stoner
exchange interaction is considered perturbatively in section 4.
A novel case of zero chemical potential (QCP) is studied in
section 5. Section 6 contains discussion on the experimental
feasibility of the phonon-mediated superconductivity in 3D
Dirac semi-metals, as well as a comparison with earlier
calculations and conclusion.

2. The local pairing model in the Dirac semi-metal

2.1. Coulomb and electron–phonon interactions in the Dirac
semi-metal

Electrons in the 3D Dirac semi-metal are described by
field operators ψf s (r), where f = L, R are the valley
index (pseudospin) for the left/right chirality bands with spin
projections taking the values s =↑, ↓ with respect to, for
example, the z axis. To use the Dirac (‘pseudo-relativistic’)
notations, these are combined into a four component bi-spinor

creation operator, ψ† =
(
ψ

†
L↑, ψ

†
L↓, ψ

†
R↑, ψ

†
R↓

)
, whose index

γ = {f, s} takes four values. The non-interacting massless
Hamiltonian with Fermi velocity vF and chemical potential µ

reads [4],

K =
∫

r
ψ+ (r) K̂ψ (r) ; K̂γ δ = −ih̄vF∇ iαi

γ δ − µδγδ, (1)

where three 4 × 4 matrices, i = x, y, z,

α =
(

σ 0
0 −σ

)
, (2)

are presented in the block form via Pauli matrices σ. They are
related to the Dirac γ matrices (in the chiral representation,
sometimes termed ‘spinor’) by α = βγ with

β =
(

0 1
1 0

)
. (3)

Here 1 is 2 × 2 identity matrix.
We consider a special case of 3D rotational symmetry that

in particular has an isotropic Fermi velocity. Moreover we
assume the time reversal, �ψ (r) = iσyψ

∗ (r) and inversion
symmetries although the pseudo Lorentz symmetry will be
explicitly broken by the interactions. The spectrum of single
particle excitations is linear, see figure 1. The chemical
potential µ is counted from the Dirac point.

Electrons interact electrostatically via the density–density
potential v (r):

Ve−e = 1

2

∫
rr′

ρ (r) v
(
r − r′) ρ

(
r′) ;

ρ (r) = ψ+
α (r) ψα (r) = ψ+

LsψLs + ψ+
RsψRs.

(4)

The interaction of the electrons with the ion’s lattice vibrations
is described by the phonon–electron coupling [29],

He−ph = w

∫
ρ (r) ∇ · u (r) , (5)

to overpower it to create the Cooper pairs as mentioned in
the introduction. Here u (r) denotes the displacement of ions
and the electron–ion coupling w ∝ M−1/2, where M is the
ion mass.

2.2. Effective local Hamiltonian

The microscopic (Frőlich) Hamiltonian given by equations (1),
(4) and (5) generally leads to long range effective electron–
electron correlations and is to complicated to handle
analytically. As usual, in certain cases the actual interaction
can be approximated by a model local one. In these
cases the effective electron–electron interaction due to
both electron–phonon attraction and Coulomb repulsion
(pseudopotential) can be expanded in derivatives. The leading
term usually called the local (or the s-wave pairing) coupling is

Veff = −g

2

∫
rr′

ρ (r) δ
(
r − r′) ρ

(
r′)

= −g

2

∫
r
ψ+

α (r) ψ+
β (r) ψβ (r) ψα (r) . (6)

Unlike the free Hamiltonian K , equation (1), this interaction
Hamiltonian does not mix different spin components. Such
a coupling implicitly restricts the spin-independent local
interaction to be symmetric under the band permutation (the
constants in front of the interband ψ

†
1 ψ1ψ

†
2 ψ2 and intraband

ψ
†
1 ψ1ψ

†
1 ψ1 terms are the same). If the mechanism of pairing

is due to acoustic phonons only, such an additional term
is not generated. A more general case with an additional
independent term was considered in [20]. Below we provide
physical arguments that determine the validity range of this
approximation.

The phonon part of the effective electron–electron
coupling is local under very general circumstances since the
scale on which the effective model is defined, h̄/
, is typically
larger than the range of phonon exchange vs/ωD ∼ a, where
vs is the velocity of sound and ωD—Debye frequency and
a—interatomic distance. The reason is that the physical
condition on the cut-off scale of the theory is that it should
be smaller than the size of Cooper pair ξ . The justification
for using local interactions for initially long range Coulomb
interaction is qualitatively different for two different cases:
moderate electron density of the Dirac semi-metal and very
small electron density.

(a) Generally for a moderately dense electron gas the electron
repulsion does not prevent the phonon-mediated attraction
if the characteristic electron–electron interaction time τe

is smaller than the characteristic electron–phonon one,
τph (Coulomb suppression [29]). One can estimate the
times for the Dirac electrons at chemical potential µ using
the following arguments. For the Coulomb screening τe

is related to the typical Coulomb energy e2/rs , where
r−3
s ∼ n, n being the electron density, τe = h̄rs/e

2. For
the interaction with ionic lattice τph is the inverse Debye
frequency ω−1

D , so that the crossover electron density when
τe = τph is

ncr = 3

4π

(
TD

e2

)3

, (7)

3
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Figure 1. Chemical potential in Dirac semi-metals and the phonon-mediated pairing. (a) Chemical potential relative to Dirac point is
smaller than typical energy of phonons, the Debye energy TD. (b) The BCS approximation limit: the chemical potential is much larger than
the Debye energy TD.

where TD = h̄ωD. For TD = 200 K (for [15] Bi2Se3) one
requires ncr = 4 · 1014 cm−3. For the linear dispersion
relation of equation (1), this in turn leads to the minimal
chemical potential for which the argument is valid:

µcr =
(

9π

8

)1/3

vFh̄
TD

e2
. (8)

Taking vF ≈ 7 · 107 cm s−1 (for [22] Bi2Se3), one obtains
µcr = 100 K = 8 meV < TD. Therefore, in this case the
Coulomb pseudopotential just renormalizes the phonon
contribution [29]. What happens when µ < µcr? It is
more involved.

(b) At small µ, namely for neutral, not charged plasma,
the character of screening changes since the dominant
mechanism becomes the polarization via the copious
creation of the electron-hole pairs. In gapless Dirac
semi-metals, despite the fact that the range of powerwise
potential is large, its strength is greatly reduced. Even
in the extreme case, µ = 0, there is no static screening,
although dynamically (within RPA [9]) large dielectric
constant appears. Indeed in most materials that realize
the Dirac semi-metals [8], there is a large dielectric
constant ε ∼ 50. This suppression of the direct
Coulomb repulsion allows the Cooper pairing via the
phonon-mediated attraction. Note that phonon screens
the electric repulsion, but this effect is not dominant due
to cancellation leading to the Migdal theorem, proved
recently [30] for Dirac semi-metals. In the present paper,
we restrict ourselves to the condition µ > µcr for a
superconductor considering a special case µ = 0 as an
optically trapped cold atom model.

2.3. Exchange

Usually such an effective coupling with a positive coupling
constant g leads to the s-wave ‘conventional’ pairing, while an

‘unconventional’ p-wave pairing in SrRuO3 or heavy fermion
superconductors like UPt3 requires subleading interaction
terms with two derivatives (most probably beyond electron–
phonon mechanism). Two qualitatively different cases will
be considered, see figure 1. When the chemical potential µ

is much larger than the Debye energy TD characterizing the
outreach of the phonon–electron coupling, see figure 1(b), the
physics is similar to that considered for the parabolic bands
within the BCS approximations [29]. The opposite case,
µ 	 TD (figure 1(a)) is unusual and most of our findings
are devoted to this case.

The Coulomb forces in equation (4) in addition to direct
repulsion lead to spin-dependent forces due to exchange. The
exchange interaction among itinerant electrons first considered
by Stoner [23], although small and unable to form a
ferromagnetic state in materials under consideration, will be
important for the nature of the condensate since it will lift the
degeneracy between the singlet and the triplet pairing:

Vs−s = −1

2

∫
r,r′

J
(
r − r′) S (r) · S

(
r′) . (9)

Spin density in Dirac semi-metal has the form

S (r) = ψ+ (r)Σψ (r) , (10)

where the matrices

Σ = −αγ5 =
(

σ 0
0 σ

)
, γ5 =

(−1 0
0 1

)
, (11)

are also the rotation generators.

2.4. The symmetry classification of possible pairing channels

Since we consider the local interactions as dominant,
the superconducting condensate (the off-diagonal order
parameter) will be local

O =
∫

r
ψ+

α (r) Mαβψ+
β (r) , (12)

4



J. Phys.: Condens. Matter 27 (2015) 025701 B Rosenstein et al

where the constant matrix M should be a 4 × 4 antisymmetric
matrix. Due to the rotation symmetry they transform
covariantly under infinitesimal rotations generated by the spin
Si operator, equation (10):∫

r,r′

[
ψ+

α (r) Mαβψ+
β (r) , ψ+

γ

(
r ′)Σi

γ δψδ

(
r ′)]

=
∫

r

ψ+
γ (r)Σi

γ δ

{
Mt

δκ − Mδκ

}
ψ+

κ (r) . (13)

Here and in what follows ‘t’ denotes the transpose matrix.
The representations of the rotation group therefore characterize
various possible superconducting phases.

Out of 16 matrices of the four dimensional Clifford algebra
six are antisymmetric and one finds one vector and three scalar
multiplets of the rotation group. The multiplets contain:

(a) a triplet of order parameters:{
MT

x , MT
y , MT

z

} = {−βαz, −iβγ5, βαx} (14)

The algebra is [
MT

i ,Σj

] = iεijkM
T
k . (15)

(b) three singlets

MS
1 = iαy; MS

2 = i�y; MS
3 = −iβαyγ5. (16)

Which of the condensates is realized at zero temperature
is determined by the parameters of the Hamiltonian and is
addressed next within the Gaussian approximation.

3. The phase diagram for spin-independent
interactions

3.1. Gor’kov equations

The BCS type approximation can be employed. Using the
standard formalism, the Matsubara Green’s functions (τ is the
Matsubara time)

Gαβ

(
r, τ ; r′, τ ′) = −

〈
Tτψα (r, τ ) ψ

†
β

(
r′, τ ′)〉 ; (17)

F
†
αβ

(
r, τ ; r′, τ ′) =

〈
Tτψ

†
α (r, τ ) ψ

†
β

(
r′, τ ′)〉 ,

obey the Gor’kov equations [29]:

−∂Gγκ

(
r, τ ; r′, τ ′)
∂τ

−
∫

r′′

〈
r
∣∣K̂γβ

∣∣ r′′〉 Gβκ

(
r′′, τ ; r′, τ ′)

−gFβγ (r, τ ; r, τ ) F
†
βκ

(
r, τ, r′, τ ′)

= δγ κδ
(
r − r′) δ

(
τ − τ ′) ; (18)

∂F †
γ κ

(
r, τ ; r′, τ ′)
∂τ

−
∫

r′′

〈
r
∣∣K̂t

γβ

∣∣ r′′〉 F †
βκ

(
r′′, τ ; r′, τ ′)

−gF
†
γβ (r, τ ; r, τ ) Gβκ

(
r, τ, r′, τ ′) = 0.

In the homogeneous case the Gor’kov equations for
Fourier components of the Greens functions simplify
considerably [24],

D−1
γβ Gβκ (ω, p) − �γβF

†
βκ (ω, p) = δγ κ; (19)

D−1
βγ F

†
βκ (ω, p) + �∗

γβGβκ (ω, p) = 0,

where ω = πT (2n + 1) is the Matsubara frequency
and D−1

γβ = (iω − µ) δγβ + vFp
jα

j

αβ .

The matrix gap function can be chosen as

�βγ = gFγβ (0) = gdMγβ, (20)

with real scalar d. These equations are conveniently presented
in matrix form (superscript t denotes transposed and I—the
identity matrix):

D−1G − �F † = I ; (21)

Dt−1F † + �∗G = 0.

Solving these equations one obtains

G−1 = D−1 + �Dt�∗; (22)

F † = − Dt�∗G,

with the gap function found from the consistency condition

�∗ = −g
∑
ωq

Dt�∗G. (23)

Now we find solutions of this equation for each of the possible
superconducting phases.

3.2. Triplet solution of gap equation

In this phase rotational symmetry is spontaneously broken
simultaneously with the electric charge U (1) (global gauge
invariance) symmetry. Assuming z direction of the p-wave
condensate the order parameter matrix takes a form:

� = �T MT
z = �T βαx, (24)

which is constant. In this section we use the units of
vF = 1, h̄ = 1 and the energy scale will be set by the Debye
cut-off, TD = 1, of the electron–phonon interactions, see
below. The off-diagonal (41) matrix element of the matrix
gap equation, equation (23), for real �T > 0 is:

1

g
=

∑
ωq

[
�2

T + p2
⊥ − p2

z + µ2 + ω2

]

×
[ (

�2
T + ω2

)2
+

(
p2 − µ2

)2
+ 2

(
p2 + µ2

)
ω2

+ 2�2
T

(
p2

⊥ − p2
z + µ2

) ]−1

, (25)

where p2
⊥ = p2

x + p2
y . The spectrum of elementary excitations

obtained from the four poles of the Green’s function, see
figure 2, is (in physical units)

E2
± = �2

T + v2
Fp

2 + µ2 ± 2vF

√
�2

T p2
z + p2µ2. (26)

There are two nodes at px = py = 0, vFpz = ±
√

�2
T + µ2,

when the branches + |E−| and − |E−| cross, see figure 2(a)
and section p⊥ = 0 in figure 2(b). There is also a saddle point
with energy gap, 2�T on the circle p2

x + p2
y = µ2, pz = 0, see

the section in the pz = 0 direction in figure 2(c). The higher

5
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Figure 2. Spectrum of triplet excitations. (a) There are two nodes at px = py = 0, vFpz = ±
√

�2
T + µ2, when the branches + |E−| and

− |E−| cross. (b) Section p⊥ = 0. (c) A saddle point with energy gap, 2�T on the circle p2
x + p2

y = µ2, pz = 0. (d) The higher energy band
E+ touches the lower band at p = 0, so that there is a Dirac point for quasiparticles.

energy band E+ touches the lower band at p = 0, so that there
is a Dirac point for quasiparticles, see figure 2(d). Integration
over ω, using polar coordinates for p and x = cos θ, ζ =√

�2
T x2 + µ2, gives

1

g
= 1

8π2

∫ µ+1

max[µ−1,0]
dp

∫ 1

0
dx

p2

ζ

×

 ζ + px2√
�2

T + p2 + µ2 + 2pζ

+
ζ − px2√

�2
T + p2 + µ2 − 2pζ

 .

(27)

The lower bound on the momentum integration is nonzero
when the chemical potential µ exceeds TD, see figure 2. The
integral over x was performed analytically, while the last
integral was done numerically. The result of the numerical
solution of the gap equation for �T is presented in figure 3(a).
The lines of fixed g in the µ−�T plane are shown. As expected
the gap increases as a function of µ. However, when the same
is replotted as lines of fixed phonon–electron coupling,

λ = gD (µ) = gµ2/
(
8π2v3

Fh̄
3
)
, (28)

the gap increases upon reduction in µ, see figure 3(b). At large
µ � TD the gap becomes independent of µ as in BCS, which
is discussed next.

In several limiting cases the integrals can be performed
analytically. At zero chemical potential the results are

presented in section IV, while here we list the BCS limit of
µ � TD and the strong coupling case of gµ2 � 1, �T ∝ g.

(i) In the BCS limit one has

1

g
= aT µ2

4π2
sinh−1 TD

�T

, (29)

with aT = 0.69, leading to an exponential gap dependence
on λ when it is small:

�T = TD/ sinh (1/2aT λ) � 2TDe−1/2aT λ. (30)

(ii) In the strong coupling one obtains with solution

�T = g

12π2

{
6µ2 + 2 for µ < 1
(µ + 1)3 for µ > 1

, (31)

see figure 3(a). Usually the local coupling does not prefer
the triplet pairing and the singlet channels of coupling are
realized. We therefore turn to them.

3.3. Singlet representations

It turns out that the second singlet in equation (16) gives
results identical to that of the first one, while the third singlet
does not have a solution in the physically interesting range
of parameters. Therefore, we assume the order parameter in
the matrix form � = �SM

S
1 = i�Sα

y . The relevant (41)

6
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Figure 3. Triplet order parameter �T . (a) as function of λ, (b) as function of g.

matrix element of the matrix gap equation, equation (23), is
for real �S :

1

g
=

∑
ωp

[
�2

S + p2 + µ2 + ω2

]

×
[ (

�2
S + p2

)2
+

(
µ2 + ω2 + 2�2

S

) (
µ2 + ω2

)
+ 2p2

(
ω2 − µ2

) ]−1

. (32)

The spectrum (in physical units) now is isotropic,

E2
± = �2

S + (vF |p| ± µ)2 . (33)

Integration over ω gives

1

g
= µ

∑
µ−TD<εp<µ+TD

p

r+r− (r+ − r−)
, (34)

where r± =
√

�2
S + (|p| ± µ)2, while the p integration

results in:

16π2

g
= � (µ + 1) − � (max [µ − 1, 0]) ; (35)

� (p) = r− (p + 3µ) + r+ (p − 3µ) − (
�2

S − 2µ2
)

× log
[
(p + r− − µ) (p + r+ + µ)

]
.

The solution is presented in figures 4(a) and (b) as lines of
constant g and λ, respectively. One observes that the gaps are
comparable to those of the triplet shown in figure 3 in the whole
range of parameters. The expression for the gap simplifies for

(i) BCS, µ � TD

�S = TD/ sinh (1/2λ) � 2TDe−1/2λ. (36)

(ii) Strong coupling

�S = 2λ (TD + µ)3

3µ2
. (37)

Having found the order parameter, one has to determine
what symmetry breaking is realized by comparing the energies
of the solutions.

4. Singlet versus triplet

4.1. Energy

We calculate the energy of a solution using the well-known
formula [29]

F = 2
∫ �

�′=0

d (1/g)

d�′ �′2. (38)

For the triplet and singlet solutions the result of integration
performed numerically is presented in figure 5(a). One
observes that for all but the smallest coupling λ the channels
are nearly degenerate although the singlet is always lower. The
lines of constant difference FT −FS are given in figure 5(b) as
functions of µ and λ. The case of the quantum critical point
µ = 0 is analytically considered in detail in the following
section.

In limiting cases, one obtains expressions in closed form.

(i) BCS, µ > TD, using equations (29) and (30) for the
triplet and equation (36) for the singlet, one has the energy
density:

FT,S = −aT,Sµ
2TD

2π2v3
Fh̄

3

(√
�2

T + T 2
D − TD

)
� −aT,S

π2

µ2T 2
D

v3
Fh̄

3 exp

(
− 1

aT,Sλ

)
, (39)

7
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(a) (b)

Figure 4. Singlet order parameter �S . (a) as function of λ. (b) as function of g.

(a) (b)

Figure 5. Energy of triplet and singlet. (a) Profile of constant energy for singlet and triplet condensates in the µ − λ plane. (b) Difference
FT − FS .

with aT = 0.69, while aS = 1 and assuming λ 	 1. The
ratio of the two phases gives

FT

FS

= 0.69e−0.45/λ. (40)

(ii) Strong coupling limit, using equation (31) for triplet and
equation (37) for the singlet,

FT = FS = − 1

72π4v3
Fh̄

3

{
4

(
3µ2 + T 2

D

)2
for µ < TD

T −2
D (µ + TD)6 for µ > TD.

(41)

The difference appears at order 1/g.

To summarize, in most of the parameter range shown
the triplet is a bit higher than that of the singlet, but the
two condensates are nearly degenerate. The degeneracy in
practice is lifted in favor of the triplet by the spin–spin
interaction, equation (9), or magnetic impurities present in
materials exhibiting the 3D Dirac point.

4.2. The influence of exchange

Let us estimate the perturbatively of the energy change due
to the exchange interactions due to the Stoner exchange. In
the simplest case of local spin attraction one uses the Stoner
approximation [23], J (r) = Iδ (r), where I is the Stoner

8
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(a) (b) (c)

Figure 6. Comparison between energies of the singlet and triplet. (a) Exchange correction difference between the two channels:
δF =δFT − δFS . (b) Difference of energies including the exchange correction for λex = 0.02. The red line separates the singlet phase from
the triplet phase. Above the line on the brown curves the energy difference FT − FS is positive, while below it on the green line it is
negative. Portion of the phase diagram below the dashed line requires consideration beyond perturbation theory. (c) Same for much larger
exchange coupling λex = 0.32.

constant, using the Gaussian factorization one obtains

δF = − I

2V

∫
r
�i

αβ�i
γ δ

〈
ψ+

α (r) ψβ (r) ψ+
γ (r) ψδ (r)

〉
(42)

� I

2V

∫
r
�i

αβ�i
γ δ

〈
ψ+

α (r) ψ+
γ (r)

〉 〈
ψβ (r) ψδ (r)

〉
= I

2g2
�∗

γα�i
αβ�βδ�

it
δγ .

The triplet, � = �T βαx , predictably gains energy

δFT = −2I

g2
�2

T , (43)

while singlet, � = i�Sα
y loses energy

δFS = 6I

g2
�2

S. (44)

As in the case of the phonon-induced interactions, a more
convenient dimensionless quantity describing the exchange is

λex = ID (µ) = Iµ2/
(
8π2v3

Fh̄
3
)
. (45)

We assume that the value is quite far from the Stoner
ferromagnetic instability value (λex = 1). The gain of the
triplet over the singlet is therefore written as

δFT − δFS = −2λex

λ2
D (µ)

(
�2

T + 3�2
S

)
,

and is given in figure 6(a). The difference of full energies is
given in figures 6(b) and (c) for two values of the exchange
coupling. The crossover from singlet to triplet occurs,
FT + δFT = FS + δFS at the following value of the exchange
coupling:

λc
ex = λ2

2D (µ)

FT − FS

3�2
S + �2

T

. (46)

Since perturbation theory in exchange coupling was used, the
estimate is valid only when FS,T � δFS,T marked by dashed
lines on figures 6(b) and (c). On the lines the perturbation is

half of the leading order. We argue that in this region either a
ferromagnetic state is formed or the perturbation theory is not
valid. In limiting cases analytic expression can be obtained.

(a) For µ � TD according to equation (39)

FT + δFT = − 8D (µ) T 2
D

(
aT +

λex

λ2

)
e−1/aT λ; (47)

FS + δFS = − 8D (µ) T 2
D

(
1 − 3

λex

λ2

)
e−1/λ.

Therefore, the transition occurs when

λc
ex = λ2 e(a

−1
T −1)/λ − aT

3e(a
−1
T −1)/λ + 1

≈ λ2

3
. (48)

(b) In the strong coupling for µ < TD , �T = �S ∼ T 4
D

18π4v3
Fh̄3 ,

so that the difference is

δFT − δFS ∼ − 32

9π2

λexT
4

D

µ2
. (49)

The triplet is always favored in this limit due to degeneracy
of energies without the exchange coupling.

Critical exchange coupling for various chemical potential
and the phonon-induced electron–electron coupling is
presented in figure 7. As was mentioned in the introduction,
the ‘extreme’ case of zero chemical potential can be physically
achieved by tuning parameters of the material to the transition
between the topological insulator phase and the band insulator
phase, so that we can study it in more detail.

5. Quantum critical point at zero chemical potential
and Its critical exponents

A peculiarity of superconductivity in Dirac semi-metal at zero
chemical potential is that electrons (and holes) in Cooper pairs
are created themselves by the pairing interaction rather than
being present in the sample as free electrons. Therefore, it is

9
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Figure 7. Critical exchange coupling for various chemical potential
µ and the phonon-induced electron–electron coupling λ.

shown that it is possible to neglect the effect of weak doping
and consider directly the µ = 0 particle-hole symmetric
case. This point in parameter space is the QCP [25].
Microscopically, Cooper pairs of both electrons and holes are
formed. The system is unique in this sense since the electron-
hole symmetry is not spontaneously broken in both normal
and superconducting phases. Supercurrent in such a system
does not carry momentum or mass. We discuss the triplet state
followed by the singlet.

5.1. Triplet

The spectrum of the triplet becomes very simple, E2
± =

(�T ± vF |pz|)2 + v2
Fp

2
⊥. Performing analytically the integral

over the angle and the momentum in the gap equation,
equation (27), one obtains

12π2v3
Fh̄

3

g
=

{
T 2

D − �2
T

5 for �T < TD
T 3

D
�T

− T 5
D

5�3
T

for �T > TD
. (50)

The solution of the equation for �T as a function of coupling
g is presented in figure 8(a). The triplet superconducting
solution exists, as in the 2D case [27], only when the coupling
exceeds a critical value (in physical units),

gT
c = 12π2 v3

Fh̄
3

T 2
D

. (51)

The dependence on the cut-off TD is incorporated in the
renormalized coupling with the dimension of energy defined as

U 2
T = T 2

D

(
1 − gT

c

g

)
. (52)

This quantity can be interpreted as an effective binding energy
of the Cooper pair in the Dirac semi-metal. The dependence of
the gap is �T = √

5UT for UT < 5−1/2 (or g < 5/4gT
c ). The

critical exponent therefore is �T ∝ (
1 − gT

c /g
)β

for β = 1/2.
This defines the (zero temperature) triplet quantum critical
point.

Energy, calculated using the AGD formula, equation (38),
can be written via the energy gap in a closed form:

FT = − T 2
D

5gT
c

{
�4

T

T 4
D

for �T < TD

10 �T

TD
− 15 + 6TD

�T
for �T > TD

. (53)

Near criticality, equation (53), FT ∝ (
1 − gT

c /g
)2−α

,
determines the quantum critical exponent α = 2. Critical
exponents coincide with the classical mean field 3D exponents.

In the strong coupling limit �T = TDg/gT
c and FT =

−2gT 2
D/

(
gT

c

)2
. As can be seen in the next subsection, the

triplet QCP is unstable since the singlet order parameter
solution has lower energy.

5.2. Singlet

The spectrum is relativistic with the rest mass equal to the gap,
E2 = �2

S + v2
Fp

2. The gap equation after integrations is

8π2v3
Fh̄

3

g
= TD

√
�2

S + T 2
D − �2

S sinh−1 (TD/�S) . (54)

The critical value is therefore lower than that for the triplet

gS
c = 8π2 v3

Fh̄
3

T 2
D

. (55)

In terms of the renormalized coupling, U 2
S = T 2

D

(
1 − gS

c

g

)
, the

gap equation near criticality takes the form

U 2
S = �2

S log

(
2TD√
e�S

)
. (56)

The solution of equation (54) is given in figure 8(a) (red curve).
At small deviations from criticality one can approximate

the solution as �S = US log−1/2 (
2TD/

√
eUS

)
, while in the

strong coupling limit, �S = 2g

3gS
c
TD. The energy is

FS = 2TD

gS
c

(
TD −

√
�2

S + T 2
D

)
+

1

g
�2

S. (57)

Near critical coupling, FS � − U 4
S

T 2
DgS

c

log−1 (
2TD/

√
eUS

)
, while

in the strong coupling limit one obtains again degeneracy with
the triplet, FS = FT = −8T 2

Dg/
(
3gS

c

)2
, see figure 8 where

blue and red curves correspond to triplet and singlet states.

5.3. The singlet triplet crossover due to exchange interaction

When the exchange interaction is added perturbatively (at
coupling above the critical one for the triplet), the energies of
the competing condensates are shifted; the crossover exchange
(Stoner) coupling constant I, defined in equation (20), is
given in figure 9 as the function of the electron–electron local
coupling g. For g just above the critical for triplet gT

c , see
equation (51), the value of the Ic is about Ic = 6 (in units

10
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(a) (b)

Figure 8. Quantum critical point µ = 0. (a) Singlet and triplet order parameter as function of g. (b) Energies.

Figure 9. Critical exchange coupling as function of g at quantum
critical point.

of v3
Fh̄

3/T 2
D), so that Ic = 6

12π2 = 0. 05. As the phonon-
mediated attraction strength increases the critical value of
exchange decreases as 1/g.

The Dirac superconductor therefore is a rare example of
3D quantum critical point.

6. Discussion and conclusions

6.1. Summary

To summarize, we have constructed a microscopic theory of
superconductivity (at zero temperature) in 3D time reversal
and inversion invariant massless Dirac semi-metals. In these
materials there are at least two bands of opposite chiralities.
Such a band structure appears in many recently studied
materials including copper doped TI Bi2Se3 in which the triplet
superconductivity is suspected [19].

In the framework of the ‘conventional’ phonon-mediated
local attraction model we classified, under simplifying
assumptions of the 3D rotation invariance, inversion and the
time reversal, possible pairing channels. There are three singlet
channels and one triplet. The comparison of energies of these
condensates for arbitrary chemical potential and the electron–
electron interaction strength demonstrates that a singlet pairing
always prevails, as shown in figure 5. However, one notices
that in large portions of the phase diagram the energy density
differences are much smaller that the typical values of energy

densities themselves. This means that interactions that are
small but discriminate between the spin singlet and the spin
triplet are important in order to determine the nature of the
superconducting order there.

The best candidate for such an interaction in materials
under consideration is the exchange (the Stoner term).
Parameters of the model are therefore the chemical potential
µ, the effective electron–electron coupling strength g and
the Stoner coupling exchange constant I . Our main results
are given in figure 6. In certain ranges of parameters
that include the electron–phonon coupling parametrized by
dimensionally effective electron–electron coupling λ and the
exchange interaction parametrized by λex, the triplet pairing is
favored over the singlet one. Figures 6(b) and (c) demonstrate
that the triplet exists either at small chemical potential of order
Debye energy TD or perhaps as small λ and large chemical
potential, while the singlet prevails in the upper-right corner
of the diagram beyond the red line.

The second region where the triplet is competitive happens
to be beyond the range of validity of the perturbation theory
and in fact will not materialize since the superconducting order
instability is probably weaker than the Stoner instability for
ferromagnetic correlations, so we are left with the triplet states
when the chemical potential is small.

To this end we have investigated the limit of zero chemical
potential, where the tendency towards the triplet pairing should
be maximal. This is presented in figure 9. In this limit one
cannot use the dimensionless coupling strengths λ and λex,
therefore should go back to the dimensional coupling strengths
g and I related to the former by equations (28) and (45) used
in this phase diagram. Transition to superconductivity in this
case is a rare occurrence of quantum critical point in 3D with
distinct critical couplings and exponents.

6.2. Experimental feasibility of the triplet superconductivity
due to phonon and exchange interactions

To estimate the pairing efficiency due to phonons, one should
rely on recent studies [22]. The effective dimensionless
electron–electron coupling constant due to phonons λ, defined
in equation (28), is obtained from the exchange of acoustic
phonons and is of the order of [18] 0.1–1 (somewhat lower
values are obtained in [17]). Note that a reasonable electron
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density of n = 3 ·1011 cm−2 in Bi2Te3 already conforms to the
requirement that chemical potential less than the Debye cut-off
energy TD = 200 K.

To estimate the strength of the exchange interactions due
to itinerant electrons one, as usual, we start from the Coulomb
repulsion. The effects of Coulomb interaction in 3D Dirac
electrons are being studied extensively [9]. RG analysis
reveals the logarithmic divergence of Fermi velocity vF, while
the effective fine structure constant α = e2/h̄vF is marginally
irrelevant. When a Dirac point is located on the Fermi level, the
Coulomb interaction is not screened. The Stoner theory [23]
predicts that when λex becomes of the order of 1, the material
develops ferromagnetism. Below that only the correlations
play a role, but as is seen in figures 6(a) and (b), such a
relatively small exchange is sufficient to damage the singlet
condensate in favor of the triplet.

6.3. Feasibility of observing the quantum criticality

In this paper we especially focused on the qualitatively distinct
case of Dirac fermions with small chemical potential. The
situation is quite similar to that of the 2D Weyl semi-metal
in topological insulators. Although in the original proposal
of TI in materials [31] the chemical potential was zero, in
experiments one finds often that the Dirac point is shifted
away from the Fermi surface by a significant fraction of
eV [2]. There are however experimental methods to shift the
location of the point by doping (for example by copper [14]),
gating, pressure, etc. [28]. Superconductivity was in fact
observed in otherwise non-superconducting TIs Bi2Te3 and
Bi2Se3 under pressure [19]. It is possible that at a certain
pressure the system passes through the quantum critical point
and is therefore a candidate for the maximal enhancement
of the triplet superconductivity. The Dirac semi-metal in
optically trapped cold atoms [13] offers a well-controllable
system in which this phenomenon occurs both for repulsive
interaction (chiral symmetry breaking) and the attractive one
(superconductivity). The measurable quantity would be the
p-wave or the s-wave condensate.

6.4. Possible generalizations and comparison with other
works

Here we compare our results with the earlier work [20]
designed to model the symmetries and parameters of Cu
doped Bi2Se3. The case that can be directly compared
is when the relativistic mass term (denoted by m in [20])
is small compared to chemical potential. In this work
a more general effective electron–electron interaction was
considered with two couplings V and U for local intraband
and interband attractions, respectively. They are related to
our g by g = 2U = 2V . Qualitatively, for U/V = 1 one
gets nearly degenerate energies (critical temperatures were
compared in [20] instead). This is similar but not identical
to our result without exchange, see figure 6. We indeed obtain
the degeneracy of the two gaps, the singlet and the triplet (their
�1 and �2 respectively), but only in the limit of large g. The
gaps are definitely not degenerate when the coupling g is below

20π2v3
Fh̄

2/T 2
D. Even within the BCS regime (equations (36)

and (30)), �T /�S = sinh (0.35/λ) / sinh (0.5/λ). This is
consistent with 1 only for quite large coupling (whatever UV
cut-off is used in [20]).

The physics of the triplet superconductors of this type
is very rich and has already been investigated in connection
with heavy fermion superconductors. In particular, their
magnetic vortices appear as either vector vortices or so-called
skyrmions [32]—coreless topologically nontrivial textures. In
particular, their magnetic properties like the magnetization are
very peculiar and even without magnetic field the system forms
a ‘spontaneous flux state’. The material therefore can be called
a ‘ferromagnetic superconductor’. The superconducting state
develops weak ferromagnetism and a system of alternating
magnetic domains [32].
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