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In order to simplify key management, two-party and three-party key agreement schemes based on user identities have been
proposed recently. Multiparty (including more than three parties) key agreement protocols, which also are called conference key
schemes, can be applied to distributed systems and wireless environments, such as ad hoc networks, for the purpose of multiparty
secure communication.However, it is hard to extend two- or three-party schemes tomultiparty oneswith the guarantee of efficiency
and security. In addition to the above twoproperties, interdomain environments should also be considered in key agreement systems
due to diversified network domains. However, only few identity-based multiparty conference key agreement schemes for single
domain environments and none for interdomain environments were proposed in the literature and they did not satisfy all of the
security attributes such as forward secrecy and withstanding impersonation. In this paper, we will propose a novel efficient single
domain identity-based multiparty conference key scheme and extend it to an interdomain one. Finally, we prove that the proposed
schemes satisfy the required security attributes via formal methods.

1. Introduction

The technique of key agreement allows two ormore parties to
exchange information and negotiate a common session key.
The first key exchange scheme was proposed by Diffie and
Hellman in 1976 [1] where two parties can exchange public
information and then compute a commonkey by their private
keys and received information. However, the basic Diffie-
Hellman protocol lacks mutual authentication between two
parties such that theman-in-the-middle attack is valid in this
scheme. Many researchers modified Diffie-Hellman protocol
to ensure mutual authentication between two parties, which
are called authenticated key agreement (AKA) protocols. Lots
of varieties of Diffie-Hellman protocol have been proposed
and several different kinds of key agreement mechanisms
have been shown in [2]. Up to now, Diffie-Hellman key
exchange protocol is still an important basis for most key
agreement protocols.

In 1984, Shamir proposed an identity-based cryptosystem
[3], where the public key of each user is her/his public identity
information, and there exists a private key generator (PKG),

a key generation center (KGC), or a Trusted Authority (TA)
which is trusted by all users. PKG, KGC, or TA, which will
be called TA below, can produce each user’s private key
according to her/his public key. In almost all of the identity-
based key agreement schemes, TA provides the private/public
key generation services for users. When a user registers with
TA, the user’s public information like ID or email address will
be her/his public key and TA gives the user the private key
corresponding to her/his public key.

Pairing is a tool which is initially applied to cryptography
to convert the Discrete Logarithm problem in elliptic curves
to that in finite fields, and it can be derived from bilinear
pairing, namely, Weil pairing [4] or Tate pairing [5]. First,
Joux [6] used pairing to construct the first 3-party key
agreement protocol based on a certificate system in 2000 and
his scheme. Later, researchers found that pairing is suitable
for the implementation of identity-based cryptosystems.
Smart [7] proposed a two-party identity-based authenti-
cated key agreement scheme in 2002. Boneh and Franklin
[4] proposed an identity-based encryption scheme based
on Weil pairing in 2003. Afterwards, pairing has become
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an important mathematic foundation of cryptography. There
are many identity-based key agreement schemes, which have
been proposed in the literature [7–11], based on pairings.

A conference key agreement scheme is a variety of a
multiparty key agreement or group key agreement scheme,
but it is different from conference key distribution scheme.
In a conference key distribution scheme, a session conference
chair decides the conference key and then broadcasts it to
every member in this session conference. In particular, in a
conference key agreement scheme, we must guarantee that
the protocol satisfies the following three properties.

(1) Each conference key is negotiated by all session
members.

(2) Every session member can compute the conference
key via the same algorithm.

(3) No session member can predict or preselect the
conference key.

The first formal security analysis in an identity-based
two-party key agreement scheme was introduced by Chen
and Kudla [9] and they improved the first identity-based key
agreement scheme based on pairings [7]. Chen and Kudla
proved that their protocol is secure on the security model of
Bellare and Rogaway [12]. Later, Al-Riyami and Paterson also
proposed four kinds of tripartite authenticated key agreement
protocols by improving Joux’s scheme [13], and they showed
that their scheme is secure. Unfortunately, Shim and Woo
[14] pointed out that their scheme has some weaknesses.
Furthermore, there are several conference key agreement
schemes based on bilinear pairing which have been proposed
in the literature [15–19], but they are all insecure, where their
security weaknesses will be shown in Section 3 of the paper.

Section 4 will present two new hard problems, the 𝑛-
Linear Diffie-Hellman (𝑛-LDH) problem and the Decisional
𝑛-Linear Diffie-Hellman (𝑛-DLDH) problem, on which our
key agreement schemes are based.

In Section 5, we will propose a novel efficient identity-
based conference key agreement scheme by combining the
concepts of [16, 19]. In addition to a single TA, we also
discuss how the users, who have registered with distinct
TAs, negotiate a common conference key. Moreover, in
order to formally demonstrate the security of our proposed
schemes, we adopt the random oracle method, which was
proposed by Bellare and Rogaway [12], to prove the security
of our schemes under some well-known assumptions. We
will define several security attributes in the third part of
Section 2 and formally prove the security of our schemes in
Section 6. Finally, we also provide performance comparison
to demonstrate that our proposed schemes are more efficient
than others.

Our contributions are summarized as follows.

(1) We find some security flaws in the schemes of [15–19].
(2) We introduce two new hard problems.
(3) We propose interdomain identity-based conference

key agreement schemes.
(4) We formally prove that our schemes completely sat-

isfy all of the security attributes.

2. Preliminaries

In this section, we review the concept of pairing which
includes definitions, computationally hard problems, and
security attributes of key agreement based on pairings.

2.1. Pairing. Pairing [20] in an elliptic curve cryptosystem is
a function which maps a pair of elliptic curve points to an
element of a multiplicative group in a finite field. It has been
applied to key agreement, signatures, broadcast encryption,
and identity-based encryption widely. In the following, we
will review the definitions and properties of pairings.

2.1.1. Bilinear Pairing. We briefly describe the concept of
bilinear pairing [20]. Let (G

1
, +) and (G

2
, +) be abelian groups

written in additive notation with prime order 𝑞 and identity
elements 𝑂

1
and 𝑂

2
, respectively, such that 𝑞𝑃 = 𝑂

1
and

𝑞𝑄 = 𝑂
2
, where ∀𝑃 ∈ G

1
and ∀𝑄 ∈ G

2
. Suppose that (G

𝑇
, ∗)

is a cyclic group of order 𝑞 written in multiplicative notation
with identity element 1

𝑇
. Now we have the groups (G

1
, +),

(G
2
, +), and (G

𝑇
, ∗). The mapping function is

𝑒 : G
1
× G

2
→ G

𝑇
. (1)

Typically, G
1
and G

2
are subgroups of the points on an

elliptic curve over a finite field and G
𝑇
is a subgroup of a

multiplicative group over a finite field.
In addition, the following additional properties must be

satisfied:

(i) bilinearity

∀𝑃, 𝑃

∈ G

1
, 𝑄, 𝑄


∈ G

2
,

𝑒(𝑃+𝑃

, 𝑄) = 𝑒(𝑃, 𝑄)⋅𝑒(𝑃


, 𝑄) and 𝑒(𝑃, 𝑄+𝑄

) =

𝑒(𝑃, 𝑄) ⋅ 𝑒(𝑃, 𝑄

),

𝑒(𝑎𝑃, 𝑄) = 𝑒(𝑃, 𝑄)
𝑎
= 𝑒(𝑃, 𝑎𝑄) for all 𝑎 ∈ Z∗

𝑞
;

(ii) nondegeneracy

∀𝑃 ∈ G
1
, with 𝑃 ̸= 𝑂

1
, ∃𝑄 ∈ G

2
such that

𝑒(𝑃, 𝑄) ̸= 1
𝑇
,

∀𝑄 ∈ G
2
, with 𝑄 ̸= 𝑂

2
, ∃𝑃 ∈ G

1
such that

𝑒(𝑃, 𝑄) ̸= 1
𝑇
,

∀𝑃 ∈ G
1
and ∀𝑄 ∈ G

2
, 𝑒(𝑃, 𝑂

2
) = 𝑒(𝑂

1
, 𝑄) =

1
𝑇
;

(iii) computability

if 𝑃 ∈ G
1
and 𝑄 ∈ G

2
, there exists an

efficient algorithm which can compute 𝑒(𝑃, 𝑄)
in polynomial time.

The schemes in Section 3 use symmetric bilinear pairing,
so they setG

1
= G

2
. In order tomake the following decisional

problems remain hard, we set G
1

̸= G
2
and there is no

polynomial-time computable isomorphism 𝜙 : G
1
→ G

2
,

such that 𝜙(𝑃) = 𝑄, where 𝑃 is a generator of G
1
and 𝑄 is a

generator of G
2
.
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2.2. Hard Problems

(1) The Discrete Logarithm (DL) problem:
given 𝑃, 𝑃 ∈ G

1
, find an integer 𝑥 ∈ Z∗

𝑞
such that

𝑃

= 𝑥𝑃.

(2) The Computational Diffie-Hellman (CDH) problem:
for 𝑥, 𝑦∈

𝑅
Z∗

𝑞
, given (𝑃, 𝑥𝑃, 𝑦𝑃) ∈ G3

1
, compute 𝑥𝑦𝑃.

(3) The Decisional Diffie-Hellman (DDH) problem:
for 𝑥, 𝑦∈

𝑅
Z∗

𝑞
, given (𝑃, 𝑥𝑃, 𝑦𝑃, 𝑧𝑃) ∈ G4

1
where 𝑧 =

𝑥𝑦 (mod 𝑞) or 𝑧∈
𝑅
Z∗

𝑞
is decided by flipping a coin.

Output “Yes” if 𝑧 = 𝑥𝑦 (mod 𝑞); otherwise output
“No”.

(4) TheDivisible Computational Diffie-Hellman (DCDH)
problem [21]: for 𝑥, 𝑦∈

𝑅
Z∗

𝑞
, given (𝑃, 𝑥𝑃, 𝑦𝑃) ∈ G3

1
,

compute 𝑥𝑦−1𝑃.
(5) The Decisional Linear Diffie-Hellman (DLDH) prob-

lem in G
1
[22, 23]: for 𝑥

1
, 𝑥

2
, 𝑥

3
, 𝑥

4
∈
𝑅
Z∗

𝑞
, given

(𝑃, 𝑥
1
𝑃, 𝑥

2
𝑃, 𝑥

1
𝑥
3
𝑃, 𝑥

2
𝑥
4
𝑃,𝑍) ∈ G6

1
, where 𝑍 = (𝑥

3
+

𝑥
4
)𝑃 or 𝑍∈

𝑅
G
1
is decided by flipping a coin. Output

“Yes” if 𝑍 = (𝑥
3
+ 𝑥

4
)𝑃; otherwise output “No”.

This hard problem was first proposed by Boneh et
al. [22] in 2004 and then Boyen and Waters [23]
extended it to asymmetric bilinear groups in 2006.

(6) The co-Bilinear Diffe-Hellman (co-BDH) problem
[4]: given (𝑃

1
, 𝑎𝑃

1
, 𝑏𝑃

1
) ∈ G3

1
and (𝑃

2
, 𝑎𝑃

2
, 𝑐𝑃

2
) ∈

G3

2
in asymmetric bilinear map groups (G

1
,G

2
,G

𝑇
),

compute 𝑒(𝑃
1
, 𝑃

2
)
𝑎𝑏𝑐
∈ G

𝑇
.

We propose the variant-CDH problem and extend
the DLDH problem to the 𝑛-LDH and 𝑛-DLDH
problems. We will prove that they are also hard in
Section 4.

(7) The Variant Computational Diffie-Hellman (variant-
CDH) problem: given (𝑃

1
, 𝑎𝑃

1
, 𝑏𝑃

1
) ∈ G3

1
and

(𝑃
2
, 𝑎𝑃

2
) ∈ G2

2
, compute 𝑎𝑏𝑃

1
.

(8) Then-Linear Diffie-Hellman (𝑛-LDH) problem: given
𝑃, 𝑥

𝑖
𝑃’s, and 𝑥

𝑖
𝑥
𝑛+𝑗
𝑃’s ∈ G

1
for all 𝑖, 𝑗with 1 ≤ 𝑖, 𝑗 ≤ 𝑛,

𝑖 ̸= 𝑗, and 𝑛 ≥ 2, compute (𝑥
𝑛+1

+ 𝑥
𝑛+2

+ ⋅ ⋅ ⋅ + 𝑥
2𝑛
)𝑃.

(9) The Decisional n-Linear Diffie-Hellman (𝑛-DLDH)
problem: given𝑍,𝑃, 𝑥

𝑖
𝑃’s, and 𝑥

𝑖
𝑥
𝑛+𝑗
𝑃’s ∈ G

1
for all 𝑖,

𝑗with 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ̸= 𝑗, and 𝑛 ≥ 2, where𝑍 = (𝑥
𝑛+1
+

𝑥
𝑛+2

+ ⋅ ⋅ ⋅ + 𝑥
2𝑛
)𝑃 or 𝑍∈

𝑅
G
1
is decided by flipping a

coin. Output “Yes” if 𝑍 = (𝑥
𝑛+1

+ 𝑥
𝑛+2

+ ⋅ ⋅ ⋅ + 𝑥
2𝑛
)𝑃;

otherwise output “No”.

2.3. Security Attributes. There are some security definitions
in the identity-based key agreement schemes based on
pairing [13, 14]. We describe them as follows.

Known Session Key Security.Akey agreement protocol should
produce a unique common secret key, which is called a
session key, for every session. The protocol should still
achieve this goal when an adversary has learned all of the
other session keys.

(Perfect) Forward Secrecy. Forward secrecy is that any
adversary cannot derive previous session keys from
compromised long-term private keys of one or more parties.
Partial forward secrecy is that one or more (not all) parties’
long-term private keys are corrupted but any adversary
cannot get any previous session keys which were established
by these parties. Perfect forward secrecy means that any
adversaries cannot derive previous session keys even though
they have obtained the long-term private keys of all parties.
In ID-based systems, perfect forward secrecy implies that
TA’s and all users’ long-term private keys are corrupted but
any previous session key established by the registered users
cannot be derived by adversaries. We also call it TA forward
secrecy.

Key-Compromise Impersonation. A protocol can resist key-
compromise impersonation if an adversary cannot imperson-
ate some users even though the other users’ long-term private
keys were disclosed.

Man-in-the-middle attack is a special case of key-
compromise impersonation in ID-based systems. If an adver-
sary intercepts messages, retransmits them, and then com-
municates with users without being detected in the key agree-
ment protocol, we say that he succeeds in impersonation.

Withstanding key-compromise impersonation also
covers unknown key-share resilience. It is the basic security
attribute for key agreement scheme. Some users cannot have
a key agreement with the other users without the knowledge
of them. If some users cannot impersonate the others, they
cannot run the key agreement scheme for them.

Key Control. It should be impossible for any participant (or
an adversary) to preselect a value as a session key or predict
the value of the session key.

3. Security Problems in the Previous Schemes

In the section, we briefly introduce security weaknesses
on the schemes [15–19, 24–26]. The details of the security
problems in these schemes are in the Appendices.

Shi et al. [19] proposed an ID-based authenticated group
key agreement protocol in 2005. The design of the protocol
is efficient because it only takes one round to finish a group
key agreement and it needs no exponentiation computation
besides a pairing computation.We find that the protocol does
not resist key-compromise impersonation since the users do
not verify the messages with one another in the protocol.
Moreover, it only achieves partial forward secrecy.

Du et al. [15] proposed an ID-based authenticated group
key agreement protocol in 2003 and improved it in the
same year. Both of them does not achieve perfect forward
secrecy. Although they embed a signature scheme to verify
the messages, both of the protocols still suffer from key-
compromise impersonation found by Zhang and Chen [29].
In the attack of [29], the adversaries collect the messages
of the user in the previous session and replay them after
modifying the messages. Zhang and Chen [30] also attacked
Choi et al. [24] with the same method in 2004. The protocol
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of Zhang et al. [18] in 2005 has the same security problem
as Du’s since they embed the same signature scheme in the
protocol.

Kim et al. [17] aims to design a one-round key agreement
protocol. But we find that the protocol cannot even achieve
known session key security. Anyone can compute the session
key through collecting the broadcasting messages.

Zhou et al. [26] proposed two schemes, one is one-round
and the other is two-round. We find that both of them
cannot withstand key-compromise impersonation. For the
first scheme, the other users can collide to impersonate the
user𝑈

𝑖
. For the second one, the user𝑈

1
can impersonate any

other user he wants. We also find that the protocol of Yao
et al. [25] is not immune to key-compromise impersonation,
either. A user can impersonate another by rebroadcasting the
messages. The work of [31] improved the flaw but did not
provide any formal proofs. Yuan et al. [27] improved it with
formal proofs.

4. Three New Hard Problems

We formally prove our proposed problems, the Variant
Computational Diffie-Hellman problem, the 𝑛-Linear Diffie-
Hellman problem, and the Decisional 𝑛-Linear Diffie-
Hellman problem, being hard by using problem reduction
and generic model, respectively.

4.1. The Variant Computational Diffie-Hellman
(Variant-CDH) Problem

Theorem 1. The variant-CDH problem is hard if the co-BDH
problem is hard.

Proof. Suppose that there exists an oracle which can solve
the variant-CDH problem with nonnegligible probability.
We will prove that the oracle can help us to solve the co-
BDH problem with nonnegligible probability. Given any
parameters of the co-BDH problem, (𝑃

1
, 𝑎𝑃

1
, 𝑏𝑃

1
) ∈ G3

1
and

(𝑃
2
, 𝑎𝑃

2
, 𝑐𝑃

2
) ∈ G3

2
, we input (𝑃

1
, 𝑎𝑃

1
, 𝑏𝑃

1
) and (𝑃

2
, 𝑎𝑃

2
) into

the variant-CDH oracle. The oracle will output 𝑎𝑏𝑃
1
. Then,

we solve the co-BDH problem by computing 𝑒(𝑎𝑏𝑃
1
, 𝑐𝑃

2
) =

𝑒(𝑃
1
, 𝑃

2
)
𝑎𝑏𝑐.

4.2. The 𝑛-Linear Diffie-Hellman (𝑛-LDH) Problem

Theorem 2. The 𝑛-LDH problem is hard if and only if the
DCDH problem is hard.

Proof. (1) 𝑛-LDH⇒DCDH. Suppose that there exists an ora-
cle which can solve the 𝑛-LDH problem with nonnegligible
probability. We will prove that the oracle can help us to solve
the DCDH problem with nonnegligible probability.

For any DCDH triple (𝑃, 𝑥𝑃, 𝑦𝑃), we convert them into
the 𝑛-LDH oracle’s input parameters which are shown in (2):

[

[

[

[

[

[

[

[

[

𝑥
1
𝑃 𝑥

2
𝑃 . . . 𝑥

𝑛−1
𝑃 𝑥

𝑛
𝑃

⊥ 𝑥
2
𝑥
𝑛+1
𝑃 . . . 𝑥

𝑛−1
𝑥
𝑛+1
𝑃 𝑥

𝑛
𝑥
𝑛+1
𝑃

𝑥
1
𝑥
𝑛+2
𝑃 ⊥ . . . 𝑥

𝑛−1
𝑥
𝑛+2
𝑃 𝑥

𝑛
𝑥
𝑛+2
𝑃

.

.

.

.

.

.

.

.

.

.

.

.

𝑥
1
𝑥
2𝑛−1

𝑃 𝑥
2
𝑥
2𝑛−1

𝑃 . . . ⊥ 𝑥
𝑛
𝑥
2𝑛−1

𝑃

𝑥
1
𝑥
2𝑛
𝑃 𝑥

2
𝑥
2𝑛
𝑃 . . . 𝑥

𝑛−1
𝑥
2𝑛
𝑃 ⊥

]

]

]

]

]

]

]

]

]

. (2)

We randomly pick 𝑡
2
, 𝑡
3
, . . . , 𝑡

𝑛
∈ Z∗

𝑞
and 𝑄

1
, 𝑄

2
, . . . ,

𝑄
𝑛−1

∈ G∗

1
, compute 𝑄

𝑛
= 𝑥𝑃 − 𝑄

1
− 𝑄

2
− ⋅ ⋅ ⋅ − 𝑄

𝑛−1
, and set

other parameters in (3):

[

[

[

[

[

[

[

[

[

𝑦𝑃 𝑡
2
𝑦𝑃 𝑡

3
𝑦𝑃 . . . 𝑡

𝑛−1
𝑦𝑃 𝑡

𝑛
𝑦𝑃

⊥ 𝑡
2
𝑄
1

𝑡
3
𝑄
1

. . . 𝑡
𝑛−1
𝑄
1

𝑡
𝑛
𝑄
1

𝑄
2

⊥ 𝑡
3
𝑄
2

. . . 𝑡
𝑛−1
𝑄
2

𝑡
𝑛
𝑄
2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

𝑄
𝑛−1

𝑡
2
𝑄
𝑛−1

𝑡
3
𝑄
𝑛−1

. . . ⊥ 𝑡
𝑛
𝑄
𝑛−1

𝑄
𝑛

𝑡
2
𝑄
𝑛

𝑡
3
𝑄
𝑛

. . . 𝑡
𝑛−1
𝑄
𝑛

⊥

]

]

]

]

]

]

]

]

]

. (3)

Equation (2) is equal to (3); that is, 𝑥
1
𝑃 = 𝑦𝑃, 𝑥

2
𝑃 =

𝑡
2
𝑥
1
𝑃 = 𝑡

2
𝑦𝑃, 𝑥

3
𝑃 = 𝑡

3
𝑥
1
𝑃 = 𝑡

3
𝑦𝑃, . . . , 𝑥

𝑛
𝑃 = 𝑡

𝑛
𝑥
1
𝑃 =

𝑡
𝑛
𝑦𝑃 in row 1, 𝑥

2
𝑥
𝑛+1
𝑃 = 𝑡

2
𝑥
1
𝑥
𝑛+1
𝑃 = 𝑡

2
𝑄
1
, 𝑥

3
𝑥
𝑛+1
𝑃 =

𝑡
3
𝑥
1
𝑥
𝑛+1
𝑃 = 𝑡

3
𝑄
1
, . . . , 𝑥

𝑛
𝑥
𝑛+1
𝑃 = 𝑡

𝑛
𝑥
1
𝑥
𝑛+1
𝑃 = 𝑡

𝑛
𝑄
1
in row

2 (suppose that 𝑥
1
𝑥
𝑛+1
𝑃 = 𝑄

1
), 𝑥

1
𝑥
𝑛+2
𝑃 = 𝑄

2
, 𝑥

3
𝑥
𝑛+2
𝑃 =

𝑡
3
𝑥
1
𝑥
𝑛+2
𝑃 = 𝑡

3
𝑄
2
, . . . , 𝑥

𝑛
𝑥
𝑛+2
𝑃 = 𝑡

𝑛
𝑥
1
𝑥
𝑛+2
𝑃 = 𝑡

𝑛
𝑄
2
in

row 3, . . ., and 𝑥
1
𝑥
2𝑛
𝑃 = 𝑄

𝑛
, 𝑥

2
𝑥
2𝑛
𝑃 = 𝑡

2
𝑥
1
𝑥
2𝑛
𝑃 = 𝑡

2
𝑄
𝑛
,

𝑥
3
𝑥
2𝑛
𝑃 = 𝑡

3
𝑥
1
𝑥
2𝑛
𝑃 = 𝑡

3
𝑄
𝑛
, . . . , 𝑥

𝑛−1
𝑥
2𝑛
𝑃 = 𝑡

𝑛−1
𝑥
1
𝑥
2𝑛
𝑃 =

𝑡
𝑛−1
𝑄
𝑛
in row 𝑛 + 1. The oracle will output (𝑥

𝑛+1
+ 𝑥

𝑛+2
+

𝑥
𝑛+3

+ ⋅ ⋅ ⋅ + 𝑥
2𝑛−1

+ 𝑥
2𝑛
)𝑃. Thus, we have that

𝑥𝑃 = 𝑄
1
+ 𝑄

2
+ ⋅ ⋅ ⋅ + 𝑄

𝑛−1
+ 𝑄

𝑛

= 𝑥
1
𝑥
𝑛+1
𝑃 + 𝑥

1
𝑥
𝑛+2
𝑃 + ⋅ ⋅ ⋅ + 𝑥

1
𝑥
2𝑛−1

𝑃 + 𝑥
1
𝑥
2𝑛
𝑃

= (𝑥
𝑛+1

+ 𝑥
𝑛+2

+ ⋅ ⋅ ⋅ + 𝑥
2𝑛−1

+ 𝑥
2𝑛
) 𝑥

1
𝑃

= (𝑥
𝑛+1

+ 𝑥
𝑛+2

+ ⋅ ⋅ ⋅ + 𝑥
2𝑛−1

+ 𝑥
2𝑛
) 𝑦𝑃.

(4)

From (4), we can get 𝑥𝑦−1𝑃 = (𝑥
𝑛+1
+𝑥

𝑛+2
+⋅ ⋅ ⋅+𝑥

2𝑛−1
+𝑥

2𝑛
)𝑃.

(2) 𝑛-LDH⇐DCDH. Suppose that there exists an oracle
which can solve the the DCDH problem with nonnegligible
probability. We will prove that the oracle can help us to solve
the 𝑛-LDH problem with nonnegligible probability, too.

For any 𝑛-LDH tuple in (2), we input (𝑥
1
𝑥
𝑛+2
𝑃, 𝑥

1
𝑃),

(𝑥
1
𝑥
𝑛+3
𝑃, 𝑥

1
𝑃), . . . , (𝑥

1
𝑥
2𝑛
𝑃, 𝑥

1
𝑃), and (𝑥

2
𝑥
𝑛+1
𝑃, 𝑥

2
𝑃) into

the oracle. Then the oracle outputs 𝑥
𝑛+2
𝑃, 𝑥

𝑛+3
𝑃, . . . , 𝑥

2𝑛
𝑃,

and 𝑥
𝑛+1
𝑃, respectively.

Finally, we can compute 𝑥
𝑛+1
𝑃 + 𝑥

𝑛+2
𝑃 + ⋅ ⋅ ⋅ + 𝑥

2𝑛
𝑃 =

(𝑥
𝑛+1

+ 𝑥
𝑛+2

+ ⋅ ⋅ ⋅ + 𝑥
2𝑛
)𝑃 to solve the 𝑛-LDH problem.

We use a way similar to [22] to prove the 𝑛-DLDH
problem being hard. In the generic model, elements of G

1
,

G
2
, and G

𝑇
are encoded as unique random strings, where G

1

and G
2
are additive groups and G

𝑇
is a multiplicative group.

There is a bilinear pairing function 𝑒 : G
1
× G

2
→ G

𝑇
. Let

𝑆
1
, 𝑆

2
, and 𝑆

𝑇
be the sets of strings. The opaque encoding

of the elements of G
1
is modeled as an injective function
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𝜁
1
: Z

𝑞
→ 𝑆

1
, where 𝑆

1
⊂ {0, 1}

∗, which maps all 𝑎 ∈ Z
𝑞

to the string representation 𝜁
1
(𝑎) of 𝑎𝑃 ∈ G

1
. Analogous

mapping 𝜁
2
: Z

𝑞
→ 𝑆

2
and 𝜁

𝑇
: Z

𝑞
→ 𝑆

𝑇
map all 𝑎 ∈ Z

𝑞

to the string representation 𝜁
2
(𝑎) of 𝑎𝑃 ∈ G

2
and 𝜁

𝑇
(𝑎) of

𝑔
𝑎
∈ G

𝑇
, where 𝑔 = 𝑒(𝑃, 𝑃).

4.3. The Decisional 𝑛-Linear Diffie-Hellman
(𝑛-DLDH) Problem

Theorem 3. Let A be an algorithm that solves the 𝑛-DLDH
problem in the generic bilinear group model with at most 𝑞

𝑘

oracle queries. Let 𝑥
𝑖
’s, 𝑥

𝑛+𝑗
’s, and 𝑧 ∈ Z

𝑞
be chosen at random,

where 1 ≤ 𝑖, 𝑗 ≤ 𝑛, and 𝑛 ≥ 2, 𝜁
1
, 𝜁

2
, and 𝜁

𝑇
are random

encoding functions for 𝐺
1
, 𝐺

2
, and 𝐺

𝑇
, and 𝑏 ∈ {0, 1} is a

random bit. Let 𝑤
𝑏
= 𝑧 and 𝑤

1−𝑏
= ∑

𝑛

𝑗=1
𝑥
𝑛+𝑗

mod 𝑞. The
probability is

Pr [

[

A (𝜁
1
, 𝜁
2
, 𝜁
𝑇
; 1, 𝑥

𝑖
’𝑠, 𝑥

𝑖
𝑥
𝑛+𝑗

’𝑠, 𝑤
0
, 𝑤

1
) = 𝑏 :

∀𝑖, 𝑗, 𝑥
𝑖
, 𝑥

𝑛+𝑗
∈ Z∗

𝑞
,

1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ̸= 𝑗, 𝑛 ≥ 2, 𝑏 ∈ {0, 1}

]

]

=

1

2

+

2 (𝑛
2
+ 3 + 𝑞

𝑘
)

2

𝑞

.

(5)

Proof. B plays the following game with A. B maintains
the lists 𝐿

1
= {(𝐹

1,𝑠
, 𝜁
1,𝑠
) : 𝑠 = 0, 1, 2, . . . , 𝜏

1
− 1},

𝐿
2

= {(𝐹
2,𝑡
, 𝜁
2,𝑡
) : 𝑡 = 0, 1, 2, . . . , 𝜏

2
− 1}, and

𝐿
𝑇
= {(𝐹

𝑇,𝑢
, 𝜁
𝑇,𝑢
) : 𝑡 = 0, 1, 2, . . . , 𝜏

𝑇
− 1}. Let 𝑋

𝑖
’s, 𝑋

𝑖
𝑋
𝑛+𝑗

’s,
𝑊
0
, and 𝑊

1
(∀𝑖, 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ̸= 𝑗) be indeterminate.

All 𝐹
1,𝑠
’s, 𝐹

2,𝑡
’s, and 𝐹

𝑇,𝑢
’s ∈ Z

𝑞
[𝑋

𝑖
’s, 𝑋

𝑖
𝑋
𝑛+𝑗

’s, 𝑊
0
,𝑊

1
] are

polynomials and 𝜁
1,𝑠
’s, 𝜁

2,𝑡
’s, 𝜁

𝑇,𝑢
’s ∈ {0, 1}∗ are distinct strings.

At the beginning of the game, B sets 𝐹
1,0

= 1, 𝐹
1,1

= 𝑋
1
,

𝐹
1,2
= 𝑋

2
, . . . , 𝐹

1,𝑛
= 𝑋

𝑛
, 𝐹

1,𝑛
2
+1
= 𝑊

0
, 𝐹

1,𝑛
2
+2
= 𝑊

1
, 𝐹

2,0
= 1,

𝐹
𝑇,0

= 1, and the following polynomials: [(⊥, 𝐹
1,𝑛+1

=

𝑋
2
𝑋
𝑛+1
, . . . , 𝐹

1,2𝑛−2
= 𝑋

𝑛−1
𝑋
𝑛+1
, 𝐹

1,2𝑛−1
= 𝑋

𝑛
𝑋
𝑛+1
), (𝐹

1,2𝑛
=

𝑋
1
𝑋
𝑛+2
,⊥, . . . , 𝐹

1,3𝑛−3
= 𝑋

𝑛−1
𝑋
𝑛+2
, 𝐹

1,3𝑛−2
= 𝑋

𝑛
𝑋
𝑛+2
), . . . ,

(𝐹
1,𝑛
2
−2𝑛+3

= 𝑋
1
𝑋
2𝑛−1

, 𝐹
1,𝑛
2
−2𝑛+4

= 𝑋
2
𝑋
2𝑛−1

, . . . , ⊥

, 𝐹
1,𝑛
2
−𝑛+1

= 𝑋
𝑛
𝑋
2𝑛−1

), (𝐹
1,𝑛
2
−𝑛+2

= 𝑋
1
𝑋
2𝑛
, 𝐹

1,𝑛
2
−𝑛+3

=

𝑋
2
𝑋
2𝑛
, . . . , 𝐹

1,𝑛
2 = 𝑋

𝑛−1
𝑋
2𝑛,
, ⊥)], where the symbol “⊥”

means emptiness and B gives A the distinct strings
𝜁
1,0
, 𝜁
1,1
, . . . , 𝜁

1,𝑛
2
+2
, 𝜁

2,0
, and 𝜁

𝑇,0
. In the initial list index, the

numbers of the records in 𝐿
1
, 𝐿

2
, and 𝐿

𝑇
are 𝜏

1
= 𝑛

2
+ 3,

𝜏
2
= 1, and 𝜏

𝑇
= 1, respectively, where 𝜏 = 𝜏

1
+𝜏

2
+𝜏

𝑇
= 𝑛

2
+5.

At any step in the game, A can make the group and pairing
queries.B performs and responds toA as follows.

Group Action. A gives B two operands 𝜁
1,𝑠
, 𝜁

1,𝑡
and a sign

bit, where 0 ≤ 𝑠, 𝑡 < 𝜏
1
.B sets 𝐹

1,𝜏
1

← 𝐹
1,𝑠
±𝐹

1,𝑡
. If 𝐹

1,𝜏
1

= 𝐹
1,𝑙

for some 𝑙 < 𝜏
1
, B sets 𝜁

1,𝜏
1

← 𝜁
1,𝑙
. Otherwise, B sets 𝜁

1,𝜏
1

to be a string in {0, 1}
∗ distinct from 𝜁

1,0
, 𝜁
1,1
, . . . , 𝜁

1,𝜏
1
−1
.

Finally,B adds (𝐹
1,𝜏
1

, 𝜁
1,𝜏
) to the list 𝐿

1
, gives 𝜁

1,𝜏
1

toA, and
sets 𝜏

1
← 𝜏

1
+ 1. The group action queries in 𝐺

2
and 𝐺

𝑇
are

simulated similarly.

Pairing.A givesB two operands 𝜁
1,𝑠

and 𝜁
1,𝑡

with 0 ≤ 𝑠 < 𝜏
1

and 0 ≤ 𝑡 < 𝜏
2
.B sets the product 𝐹

𝑇,𝜏
𝑇

← 𝐹
1,𝑠
𝐹
2,𝑡
. If 𝐹

𝑇,𝜏
𝑇

=

𝐹
𝑇,𝑙

for some 𝑙 < 𝜏
𝑇
, B sets 𝜁

𝑇,𝜏
𝑇

← 𝜁
𝑇,𝑙
. Otherwise, B sets

𝜁
𝑇,𝜏
𝑇

to be a string in {0, 1}∗ distinct from 𝜁
𝑇,0
, 𝜁
𝑇,1
, . . . , 𝜁

𝑇,𝜏
𝑇
−1
.

Finally,B adds (𝐹
𝑇,𝜏
𝑇

, 𝜁
𝑇,𝜏
𝑇

) to the list 𝐿
𝑇
, gives 𝜁

𝑇,𝜏
𝑇

toA, and
sets 𝜏

𝑇
← 𝜏

𝑇
+ 1.

Consider the operation that B performs: (1)B
adds/subtracts all polynomials in the list 𝐿

1
, 𝐿

2
, and 𝐿

𝑇
by

any A’s query. (2) B produces any of two polynomials
in 𝐿

1
and 𝐿

2
to generate a new polynomial in 𝐿

𝑇
.

For any variant 𝑋
𝑛+𝑗

, it occurs within the monomials
𝑋
1
𝑋
𝑛+𝑗
, 𝑋

2
𝑋
𝑛+𝑗
, . . . , 𝑋

𝑛+𝑗−1
𝑋
𝑛+𝑗
, 𝑋

𝑛+𝑗+1
𝑋
𝑛+𝑗
, . . . , 𝑋

2𝑛
𝑋
𝑛+𝑗

in 𝐿
1
and 𝐿

𝑇
lists and it occurs no monomial in 𝐿

2
list.

Therefore, B cannot produce any polynomial that contains
the monomial 𝑐𝑋

𝑛+𝑗
’s in 𝐺

1
or 𝐺

2
and the monomial

𝐹
2,𝑡
𝑋
𝑛+𝑗

’s in 𝐺
𝑇
for any coefficient 𝑐 ̸= 0 and any nonzero

monomial 𝐹
2,𝑡

in 𝐿
2
in the available operations.

After at most 𝑞 queries, A terminates and returns a
guess ̂𝑏 ∈ {0, 1}. The distinct values of operands provide
no information to A because they are random bit strings.
Therefore, the probability thatAwins the game in the generic
model is 1/2.

However, when B randomly chooses 𝑥
𝑖
’s, 𝑥

𝑛+𝑗
’s, and

𝑧 ∈ Z, sets 𝑤
𝑏
= ∑

𝑛

𝑗=1
𝑥
𝑛+𝑗

and 𝑤
1−𝑏

= 𝑧, and assigns
𝑋
1
← 𝑥

1
, 𝑋

2
← 𝑥

2
, . . . , 𝑋

2𝑛
← 𝑥

2𝑛
,𝑊

𝑏
← 𝑤

𝑏
, and

𝑊
1−𝑏

← 𝑤
1−𝑏

, a nontrivial equality relation may occur and
give A some information that is not revealed in the generic
model; that is, for some 𝐹

1,𝑠
̸= 𝐹

1,𝑡
(and 𝐹

𝑇,𝑠
̸= 𝐹

𝑇,𝑡
, resp.)

and 𝑠, 𝑡 < 𝜏
1
(and 𝑠, 𝑡 < 𝜏

𝑇
, resp.), 𝐹

1,𝑠
(𝑥

𝑖
’s, 𝑥

𝑖
𝑥
𝑛+𝑗

’s, 𝑤
0
, 𝑤

1
)

= 𝐹
1,𝑡
(𝑥

𝑖
’s, 𝑥

𝑖
𝑥
𝑛+𝑗

’s, 𝑤
0
, 𝑤

1
) (and 𝐹

𝑇,𝑠
(𝑥

𝑖
’s, 𝑥

𝑖
𝑥
𝑛+𝑗

’s, 𝑤
0
, 𝑤

1
) =

𝐹
𝑇,𝑡
(𝑥

𝑖
’s, 𝑥

𝑖
𝑥
𝑛+𝑗

’s, 𝑤
0
, 𝑤

1
), resp.).

The probability of the occurrence is computed according
to the following lemma.

Lemma 4 (see [32]). Let 𝑞 be prime and let 𝑡 ≥ 1. Let
𝐹(𝑋

1
, 𝑋

2
, . . . , 𝑋

𝑘
) ∈ 𝑍/𝑞

𝑡
[𝑋

1
, 𝑋

2
, . . . , 𝑋

𝑘
] be a nonzero poly-

nomial of total degree 𝑑. Then for random 𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑘
∈

𝑍/𝑞
𝑡, the probability that 𝐹(𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑘
) = 0 is at most 𝑑/𝑞.

By Lemma 4, all polynomials in the 𝐿
1
have degree at

most 2, so that, for some 𝑠, 𝑡 and 𝐹
1,𝑠

̸= 𝐹
1,𝑡
, the probability of

𝐹(𝑥
𝑖
’s, 𝑥

𝑖
𝑥
𝑛+𝑗

’s, 𝑤
0
, 𝑤

1
) = 𝐹

1,𝑠
(𝑥

𝑖
’s, 𝑥

𝑖
𝑥
𝑛+𝑗

’s, 𝑤
0
, 𝑤

1
) − 𝐹

1,𝑡
(𝑥

𝑖
’s,

𝑥
𝑖
𝑥
𝑛+𝑗

’s,𝑤
0
, 𝑤

1
) = 0 is atmost 2/𝑞.The degree of polynomials

in the 𝐿
2
is 0. All polynomials in the 𝐿

𝑇
have degree at most

2, so that, for some 𝑠, 𝑡 and 𝐹
𝑇,𝑠

̸= 𝐹
𝑇,𝑡
, the probability of

𝐹

(𝑥

𝑖
’s, 𝑥

𝑖
𝑥
𝑛+𝑗

’s,𝑤
0
, 𝑤

1
) = 𝐹

𝑇,𝑠
(𝑥

𝑖
’s, 𝑥

𝑖
𝑥
𝑛+𝑗

’s, 𝑤
0
, 𝑤

1
)−𝐹

𝑇,𝑡
(𝑥

𝑖
’s,

𝑥
𝑖
𝑥
𝑛+𝑗

’s, 𝑤
0
, 𝑤

1
) = 0 is at most 2/𝑞. Therefore, A wins the

game with the probability 𝜀 ≤ 1/2 + (
𝜏
1

2
)(2/𝑞) + (

𝜏
𝑇

2
)(2/𝑞).

Since 𝜏
1
+𝜏

𝑇
≤ 𝑛

2
+4+𝑞

𝑘
, we have 𝜀 ≤ 1/2 + (𝑛2 +4+𝑞

𝑘
)
2
/𝑞,

where the advantage is not greater than O(𝑞2
𝑘
/𝑞).

5. Our Key Agreement Schemes

In this section, we propose two conference key agreement
schemes. The first scheme is designed for the situation where
the users who register with a single TA (single domain)
want to negotiate a session conference key. Furthermore, the
second scheme makes it possible for the users in distinct
groups who register with different TAs (interdomain) to
negotiate a session conference key. In addition, we will prove
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the security of the two proposed schemes in Section 6 and
compare them with others in Section 7.

5.1. The Proposed Scheme in Single TA

Setup.TA inputs a security parameter 𝜅 into a setup algorithm
which returns groups G

1
, G

2
, and G

𝑇
(G

1
̸= G

2
) of prime

order 𝑞 with 𝑞 ∈ {0, 1}
𝜅, a suitable bilinear mapping 𝑒 :

G
1
× G

2
→ G

𝑇
, generators 𝑃 ∈ G

1
, 𝑃 ∈ G

2
, and three

hash functions 𝐻 : {0, 1}
∗
→ G

1
, 𝐻

1
: G

1
→ {0, 1}

𝑙, 𝐻
2
:

G
1
× {0, 1}

∗
→ {0, 1}

𝑙, and𝐻
3
: G

1
→ {0, 1}

𝑙 where 𝑙 is the
output length of the hash functions. TA randomly generates a
long-term private key 𝑠 ∈ Z∗

𝑞
and the public key (𝑠𝑃, 𝑠𝑃) and

then publishes ⟨𝑞, 𝑒,G
1
,G

2
,G

𝑇
, 𝑃, 𝑠𝑃, 𝑃


, 𝑠𝑃


, 𝐻,𝐻

1
, 𝐻

2
, 𝐻

3
⟩.

Extract.When a user 𝑈
𝑖
registers a public identity (ID), such

as an email address, with TA, TA will check whether the ID
belongs to the user. If true, TA issues a long-term private key
𝑠𝑄

𝑖
to 𝑈

𝑖
where 𝑄

𝑖
= 𝐻(TA’s ID‖𝑈

𝑖
’s ID) is 𝑈

𝑖
’s public key.

Conference Key Agreement. Suppose that there are 𝑛 legal
users 𝑈

1
, 𝑈

2
, . . ., and 𝑈

𝑛
who want to negotiate a conference

key. Our conference key agreement scheme contains three
rounds described as follows.

Round 1: every user 𝑈
𝑖
(1 ≤ 𝑖 ≤ 𝑛) randomly picks an

integer 𝑟
𝑖
∈ Z∗

𝑞
as a blinding factor, and then 𝑈

𝑖
computes

𝑏
𝑖
= 𝑟

−1

𝑖
𝑃 and broadcasts 𝑏

𝑖
to all users who join this session.

The flow is shown in Algorithm 1.
Round 2: after𝑈

𝑖
receives all 𝑏

𝑗
’s (1 ≤ 𝑗 ≤ 𝑛, 𝑗 ̸= 𝑖), she/he

randomly picks an integer 𝑘
𝑖
∈ Z∗

𝑞
as an ephemeral key and

computes 𝐵
𝑖
= (𝑘

𝑖
𝑏
1
, 𝑘

𝑖
𝑏
2
, . . . , 𝑘

𝑖
𝑏
𝑖−1
, ⊥, 𝑘

𝑖
𝑏
𝑖+1
, . . . , 𝑘

𝑖
𝑏
𝑛
), and

then 𝑈
𝑖
broadcasts 𝐵

𝑖
. The flow is shown in Algorithm 2.

Round 3: for all 𝐵
𝑖
’s in Round 2, we can rearrange them

as shown in (7). When receiving 𝐵
𝑗
’s, 𝑈

𝑖
only stores 𝑘

𝑗
𝑏
𝑖
(1 ≤

𝑗 ≤ 𝑛, 𝑗 ̸= 𝑖) and drops other useless information 𝑘
𝑗
𝑏
𝑡
’s (1 ≤

𝑗 ≤ 𝑛, 1 ≤ 𝑡 ≤ 𝑛, 𝑡 ̸= 𝑖). For example, 𝑈
1
stores column 1 and

𝑈
2
stores column 2 in (7). Then 𝑈

𝑖
computes𝐾 as follows:

𝐾 = 𝑟
𝑖

𝑛

∑

𝑗=1

𝑘
𝑗
𝑏
𝑖

= 𝑟
𝑖
⋅ (𝑘

1
𝑟
−1

𝑖
+ 𝑘

2
𝑟
−1

𝑖
+ ⋅ ⋅ ⋅ + 𝑘

𝑖
𝑟
−1

𝑖
+ ⋅ ⋅ ⋅ + 𝑘

𝑛
𝑟
−1

𝑖
) 𝑃

= (𝑘
1
+ 𝑘

2
+ ⋅ ⋅ ⋅ + 𝑘

𝑖
+ ⋅ ⋅ ⋅ + 𝑘

𝑛
) 𝑃.

(6)

All 𝐵
𝑖
’s in Round 2

𝑈
1

𝑈
2

. . . 𝑈
𝑖

. . . 𝑈
𝑛

𝐵
1

⊥ 𝑘
1
𝑟
−1

2
𝑃 . . . 𝑘

1
𝑟
−1

𝑖
𝑃 . . . 𝑘

1
𝑟
−1

𝑛
𝑃

𝐵
2
𝑘
2
𝑟
−1

1
𝑃 ⊥ . . . 𝑘

2
𝑟
−1

𝑖
𝑃 . . . 𝑘

2
𝑟
−1

𝑛
𝑃

.

.

.

.

.

.

.

.

. d
.
.
.

.

.

.

.

.

.

𝐵
𝑖
𝑘
𝑖
𝑟
−1

1
𝑃 𝑘

𝑖
𝑟
−1

2
𝑃 . . . ⊥ . . . 𝑘

𝑖
𝑟
−1

𝑛
𝑃

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. d
.
.
.

𝐵
𝑛
𝑘
𝑛
𝑟
−1

1
𝑃 𝑘

𝑛
𝑟
−1

2
𝑃 . . . 𝑘

𝑛
𝑟
−1

𝑖
𝑃 . . . ⊥

(7)

𝑈
𝑖
computes 𝛼 = 𝐻

1
(𝐾), 𝑇

𝑖
= 𝛼𝑠𝑄

𝑖
+ 𝑟

−1

𝑖
𝑠𝑃, and

𝛽
𝑖
= 𝐻

2
(𝑇

𝑖
, 𝛼), and then she/he broadcasts (𝑇

𝑖
, 𝛽

𝑖
). When

𝑈
𝑖
receives all (𝑇

𝑗
, 𝛽

𝑗
)’s (1 ≤ 𝑗 ≤ 𝑛, 𝑗 ̸= 𝑖), she/he first

verifies all 𝛽
𝑗
’s by checking if𝐻

2
(𝑇

𝑗
, 𝛼) = 𝛽

𝑗
for each 𝑗. If they

are true, 𝑈
𝑖
randomly chooses 𝑎

1
, 𝑎

2
, . . . , 𝑎

𝑛
∈ Z∗

𝑞
, computes

𝑉
𝑖
= 𝑒(∑

𝑛

𝑖=1
𝑎
𝑖
𝑏
𝑖
+ 𝛼∑

𝑛

𝑖=1
𝑎
𝑖
𝑄
𝑖
, 𝑠𝑃


), and verifies whether 𝑉

𝑖
=

𝑒(∑
𝑛

𝑖=1
𝑎
𝑖
𝑇
𝑖
, 𝑃


) or not. If true,𝑈

𝑖
accepts𝐾 and computes the

session conference key SCK = 𝐻
3
(𝐾). Algorithm 3 illustrates

the flow in Round 3.

5.2.The Proposed Scheme in Distinct TAs. Our single domain
conference key agreement scheme can be extended to an
interdomain conference key agreement scheme. Interdomain
means that there are distinct domains with different TAs’,
respectively. In this subsection, we present our interdomain
conference key scheme. Assume that there are 𝑚 Trusted
Authorities TA

1
,TA

2
, . . ., and TA

𝑚
and 𝑚 user groups

𝐺
1
, 𝐺

2
, . . ., and 𝐺

𝑚
who register with the 𝑚 distinct TAs,

respectively. In the proposed scheme, the users in𝑚 different
groups can negotiate a session conference key SCK via the
following process.

Setup. TA
𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑚}, inputs a security parameter 𝜅

into a setup algorithm which returns two groups G
1
, G

2
,

and G
𝑇
(G

1
̸= G

2
) of prime order 𝑞 ∈ {0, 1}

𝜅, a suitable
bilinear mapping 𝑒 : G

1
× G

2
→ G

𝑇
, generators 𝑃 ∈ G

1
,

𝑃

∈ G

2
, and three hash functions 𝐻 : {0, 1}

∗
→ G

1
,

𝐻
1
: G

1
→ {0, 1}

𝑙, 𝐻
2
: G

1
× {0, 1}

∗
→ {0, 1}

𝑙, and
𝐻
3
: G

1
→ {0, 1}

𝑙 where 𝑙 is the output length of the hash
functions. TA

𝑖
randomly generates a long-term key 𝑠

𝑖
∈ Z∗

𝑞

and public key (𝑠
𝑖
𝑃, 𝑠

𝑖
𝑃

) and then publishes ⟨𝑞, 𝑒,G

1
,G

2
,G

𝑇
,

𝑃, 𝑠
𝑖
𝑃, 𝑃


, 𝑠
𝑖
𝑃

, 𝐻,𝐻

1
, 𝐻

2
, 𝐻

3
⟩.

Extract. When a user 𝑈
𝑗
in group 𝑖 registers a public ID

with TA
𝑖
, TA

𝑖
will check whether the ID belongs to the

user. If true, TA
𝑖
issues private key 𝑠

𝑖
𝑄
𝑖,𝑗

to the user, where
𝑄
𝑖,𝑗
= 𝐻(TA

𝑖
’s ID‖𝑈

𝑖,𝑗
’s ID) is the public key and𝑈

𝑖,𝑗
denotes

user 𝑈
𝑗
who has registered with TA

𝑖
.

Interdomain Conference Key Agreement. Suppose that users in
𝑚 distinct domains or groups want to negotiate a conference
key. Let 𝑛

ℎ
(1 ≤ ℎ ≤ 𝑚) be the number of users in the ℎth

domain and 𝑁 be the number of the total users (𝑁 = 𝑛
1
+

𝑛
2
+ ⋅ ⋅ ⋅ + 𝑛

𝑚
). Our interdomain conference key agreement

protocol contains three rounds where Round 1 and Round 2
are similar to those of the proposed single domain conference
key protocol.

Round 1: every user 𝑈
𝑖,𝑗
randomly picks an integer 𝑟

𝑖,𝑗
∈

Z∗

𝑞
and then broadcasts 𝑏

𝑖,𝑗
= (𝑟

𝑖,𝑗
)
−1
𝑃 to the users who join

this session.
Round 2: after receiving 𝑏

ℎ,𝑙
’s (1 ≤ ℎ ≤ 𝑚, 1 ≤ 𝑙 ≤

𝑛
ℎ
, ℎ ̸= 𝑖, 𝑙 ̸= 𝑗), 𝑈

𝑖,𝑗
computes 𝑘

𝑖,𝑗
𝑏
ℎ,𝑙
, where

𝑘
𝑖,𝑗
∈
𝑅
Z∗

𝑞
is 𝑈

𝑖,𝑗
’s ephemeral key, and broadcasts

𝐵
𝑖,𝑗
= (𝑘

𝑖,𝑗
𝑏
1,1
, 𝑘

𝑖,𝑗
𝑏
1,2
, , . . . ,𝑘

𝑖,𝑗
𝑏
1,𝑛
1

, . . . , 𝑘
𝑖,𝑗
𝑏
𝑖,1
,. . . , 𝑘

𝑖,𝑗
𝑏
𝑖,𝑗−1

, ⊥

, 𝑘
𝑖,𝑗
𝑏
𝑖,𝑗+1

, . . . , 𝑘
𝑖,𝑗
𝑏
𝑖,𝑛
𝑖

, . . . , 𝑘
𝑖,𝑗
𝑏
𝑚,1
, . . . , 𝑘

𝑖,𝑗
𝑏
𝑚,𝑛
𝑚

).
Round 3: when receiving 𝐵

ℎ,𝑙
’s, 𝑈

𝑖,𝑗
only stores 𝑘

ℎ,𝑙
𝑏
𝑖,𝑗
’s

(1 ≤ ℎ ≤ 𝑚, 1 ≤ 𝑙 ≤ 𝑛
ℎ
, ℎ ̸= 𝑖, and 𝑙 ̸= 𝑗) and drops other

useless information 𝑘
ℎ,𝑙
𝑏
𝑢,V’s (1 ≤ ℎ ≤ 𝑚, 1 ≤ 𝑙 ≤ 𝑛ℎ, 1 ≤ 𝑢 ≤
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Round 1
𝑈
𝑖

𝑈
1
, 𝑈

2
, . . . , 𝑈

𝑖−1
, 𝑈

𝑖+1
, . . . , 𝑈

𝑛

Pick 𝑟
𝑖
∈
𝑅
Z∗

𝑞

Compute 𝑏
𝑖
= 𝑟

−1

𝑖
𝑃

Broadcast 𝑏
𝑖

→

𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑖−1
, 𝑏
𝑖+1
, . . . , 𝑏

𝑛

←

Algorithm 1: Round 1 of the first conference key protocol.

Round 2
𝑈
𝑖

𝑈
1
, 𝑈

2
, . . . , 𝑈

𝑖−1
, 𝑈

𝑖+1
, . . . , 𝑈

𝑛

Pick 𝑘
𝑖
∈
𝑅
Z∗

𝑞

Compute
𝑘
𝑖
𝑏
𝑗
= 𝑘

𝑖
𝑟
−1

𝑗
𝑃 (1 ≤ 𝑗 ≤ 𝑛, 𝑗 ̸= 𝑖)

𝐵
𝑖
= (𝑘

𝑖
𝑏
1
, 𝑘

𝑖
𝑏
2
, . . . , 𝑘

𝑖
𝑏
𝑖−1
, ⊥, 𝑘

𝑖
𝑏
𝑖+1
, . . . , 𝑘

𝑖
𝑏
𝑛
),

Broadcast 𝐵
𝑖

→

𝐵
1
, 𝐵

2
, . . . , 𝐵

𝑖−1
, 𝐵

𝑖+1
, . . . , 𝐵

𝑛

←

Algorithm 2: Round 2 of the first conference key protocol.

𝑚, 1 ≤ V ≤ 𝑛
𝑢
, 𝑢 ̸= 𝑖, and V ̸= 𝑗). Then 𝑈

𝑖,𝑗
computes every

domain’s key 𝐾
ℎ
as follows:

𝐾
ℎ
= 𝑟

𝑖,𝑗

𝑛
ℎ

∑

𝑡=1

𝑘
ℎ,𝑡
𝑏
𝑖,𝑗

= 𝑟
𝑖,𝑗
(𝑘

ℎ,1
𝑟
−1

𝑖,𝑗
+ 𝑘

ℎ,2
𝑟
−1

𝑖,𝑗
+ ⋅ ⋅ ⋅ + 𝑘

ℎ,𝑛
ℎ

𝑟
−1

𝑖,𝑗
) 𝑃

= (𝑘
ℎ,1
+ 𝑘

ℎ,2
+ ⋅ ⋅ ⋅ + 𝑘

ℎ,𝑛
ℎ

) 𝑃.

(8)

𝑈
𝑖,𝑗
computes 𝐾 = ∑

𝑚

ℎ=1
𝐾
ℎ
, 𝛼 = 𝐻

1
(𝐾), 𝑇

𝑖,𝑗
= 𝛼𝑠

𝑖
𝑄
𝑖,𝑗
+

𝑟
−1

𝑖,𝑗
𝑠
𝑖
𝑃, and 𝛽

𝑖,𝑗
= 𝐻

2
(𝑇

𝑖,𝑗
, 𝛼), and then she/he broadcasts

(𝑇
𝑖,𝑗
, 𝛽

𝑖,𝑗
). When𝑈

𝑖,𝑗
receives all messages,𝑈

𝑖,𝑗
first verifies all

𝛽
ℎ,𝑙
’s by examining if 𝐻

2
(𝑇

ℎ,𝑙
, 𝛼) = 𝛽

ℎ,𝑙
for each ℎ and 𝑙 (1 ≤

ℎ ≤ 𝑚, 1 ≤ 𝑙 ≤ 𝑛
ℎ
, ℎ ̸= 𝑖, and 𝑙 ̸= 𝑗). If all 𝛽

ℎ,𝑙
’s are correct,

𝑈
𝑖,𝑗
randomly chooses𝑁 integers 𝑎

ℎ,𝑙
’s, where each 𝑎

ℎ,𝑙
∈ Z∗

𝑞
,

computes 𝑉
ℎ,𝑙

= ∏
𝑚

ℎ=1
𝑒(∑

𝑛
ℎ

𝑙=1
𝑎
ℎ,𝑙
𝑏
ℎ,𝑙
+ 𝛼∑

𝑛
ℎ

𝑙=1
𝑎
ℎ,𝑙
𝑄
ℎ,𝑙
, 𝑠
ℎ
𝑃

),

and checks if 𝑉
ℎ,𝑙
= 𝑒(∑

𝑚

ℎ=1
∑
𝑛
ℎ

𝑙=1
𝑎
ℎ,𝑙
𝑇
ℎ,𝑙
, 𝑃


). If it is true, 𝑈

𝑖,𝑗

accepts 𝐾 and computes the session conference key SCK =

𝐻
3
(𝐾).

6. Security Proof

Bellare-Rogaway random oracle model [12, 33], which was
extended by Blake-Wilson et al. [34], is suitably modified and
adapted in analyzing the security of key agreement protocols
like those in the literatures [9, 13]. In this section, we modify
Bellare-Rogaway random oracle model and adopt the similar
concepts and definitions in [8] to set our security game.

Definition 5 (game environment). Let adversaryA be a prob-
abilistic polynomial time Turing machine andB a simulator
to simulate this game for A. Let I = {𝑈

1
, 𝑈

2
, . . . , 𝑈

𝑞
} be all

users and U the group users who follow our first identity-
based conference key (IDCK) scheme, where 𝑞 is the order
of G

1
and U ⊆ {𝑈

1
, 𝑈

2
, . . . , 𝑈

𝑞
}. In the game, we allow A to

make the following types of queries.

(1) Execute(Π𝑠

U): when A makes the Execute query, B
simulates U to run the first IDCK protocol Π
(Section 5.1) and responds with all public messages
(i.e., (𝑏

𝑖
, 𝐵

𝑖
, 𝑇

𝑖
, 𝛽

𝑖
)’s for all 𝑈

𝑖
’s ∈ U) in the 𝑠th session.

(2) Send(Π𝑠

Ũ
, 𝑚): when A makes the Send query with a

set of users ̃U ⊂ U and a message 𝑚 which is the
set of (𝑏

𝑗
, 𝐵

𝑗
, 𝑇

𝑗
, 𝛽

𝑗
)’s broadcast by the users in ̃U, B

simulates all 𝑈
𝑖
’s ∈ U −

̃U to interact with A by
broadcasting themessages (𝑏

𝑖
, 𝐵

𝑖
, 𝑇

𝑖
, 𝛽

𝑖
)’s of𝑈

𝑖
’s in the

𝑠th session.

(3) Reveal(Π𝑠

U): B reveals the session conference key
SCK which was held byU in the 𝑠th session.

(4) Corrupt(𝑈
𝑖
): B responds with the long-term private

key of 𝑈
𝑖
.

(5) Test(Π𝑠

U): when A makes the Test query, B returns
the broadcastmessages of the 𝑠th session and gives the
adversary either the session key of the 𝑠th session or a
random string.A then outputs a bit to decidewhether
the string is the session key or not.
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Round 3
𝑈
𝑖

𝑈
1
, 𝑈

2
, . . . , 𝑈

𝑖−1
, 𝑈

𝑖+1
, . . . , 𝑈

𝑛

Compute

𝐾 = 𝑟
𝑖

𝑛

∑

𝑗=1

𝑘
𝑗
𝑏
𝑖
= (𝑘

1
+ 𝑘

2
+ ⋅ ⋅ ⋅ + 𝑘

𝑖
+ ⋅ ⋅ ⋅ + 𝑘

𝑛
) 𝑃

𝛼 = 𝐻
1
(𝐾)

𝑇
𝑖
= 𝛼𝑠𝑄

𝑖
+ 𝑟

−1

𝑖
𝑠𝑃

𝛽
𝑖
= 𝐻

2
(𝑇

𝑖
, 𝛼)

Broadcast (𝑇
𝑖
, 𝛽

𝑖
)

→

(𝑇
1
, 𝛽

1
), (𝑇

2
, 𝛽

2
), . . . , (𝑇

𝑖−1
, 𝛽

𝑖−1
), (𝑇

𝑖+1
, 𝛽

𝑖+1
), . . . , (𝑇

𝑛
, 𝛽

𝑛
)

←

Verify:
𝛽
1
, 𝛽

2
, . . . , 𝛽

𝑖−1
, 𝛽

𝑖+1
, . . . , 𝛽

𝑛

𝑉
𝑖
= 𝑒(

𝑛

∑

𝑖=1

𝑎
𝑗
𝑏
𝑖
+ 𝛼

𝑛

∑

𝑖=1

𝑎
𝑖
𝑄
𝑖
, 𝑠𝑃


)? = 𝑒(

𝑛

∑

𝑖=1

𝑎
𝑖
𝑇
𝑖
, 𝑃


)

Compute session conference key SCK =𝐻
3
(𝐾)

Algorithm 3: Round 3 of the first conference key protocol.

(6) 𝐻(⋅): when a participant inputs a string to 𝐻, it
responds with the hashed value of the string and the
hashed value will be recorded.

(7) 𝐻
1
(⋅): when a participant inputs a message 𝑚 ∈ G

1

to𝐻
1
, it responds with the hashed value of𝑚 and the

hashed value will be recorded, too.

(8) 𝐻
2
(⋅): when a participant inputs (𝑚

1
, 𝑚

2
), where

𝑚
1
∈ G

1
and𝑚

2
∈ {0, 1}

∗, to𝐻
2
, it responds with the

hashed value of (𝑚
1
, 𝑚

2
) and the hashed value will be

recorded, too.

6.1. Correctness

Theorem 6 (correctness). In the presence of a benign adver-
sary A, all the parties always accept holding the same session
conference key, which is distributed randomly and uniformly in
{0, 1}

𝜅, where 𝜅 is the security parameter.

Proof. Every user 𝑈
𝑖

can generate a valid message
(𝑏
𝑖
, 𝐵

𝑖
, 𝑇

𝑖
, 𝛽

𝑖
) by following our proposed single domain

scheme (Section 5.1), verify the correctness of the message
𝑉
𝑖
= 𝑒(∑

𝑛

𝑖=1
𝑎
𝑖
𝑏
𝑖
+ 𝛼∑

𝑛

𝑖=1
𝑎
𝑖
𝑄
𝑖
, 𝑠𝑃


) = 𝑒((𝑎

1
𝑟
−1

1
+ 𝑎

2
𝑟
−1

2
+

⋅ ⋅ ⋅ + 𝑎
𝑛
𝑟
−1

𝑛
)𝑃 + (𝛼𝑎

1
𝑄
1
+ 𝛼𝑎

2
𝑄
2
+ ⋅ ⋅ ⋅ + 𝛼𝑎

𝑛
𝑄
𝑛
), 𝑠𝑃


)

= 𝑒(𝑎
1
(𝛼𝑠𝑄

1
+ 𝑟

−1

1
𝑠𝑃) + 𝑎

2
(𝛼𝑠𝑄

2
+ 𝑟

−1

2
𝑠𝑃) + ⋅ ⋅ ⋅ +

𝑎
𝑛
(𝛼𝑠𝑄

𝑛
+ 𝑟

−1

𝑛
𝑠𝑃), 𝑃


) = 𝑒(∑

𝑛

𝑖=1
𝑎
𝑖
(𝛼𝑠𝑄

𝑖
+ 𝑟

−1

𝑖
𝑠𝑃), 𝑃


) =

𝑒(∑
𝑛

𝑖=1
𝑎
𝑖
𝑇
𝑖
, 𝑃


), and negotiate a common session conference

key SCK = 𝐻
3
(𝐾).

In our proposed interdomain scheme (Section 5.2), 𝑈
𝑖𝑗

can generate a valid message (𝑏
𝑖𝑗
, 𝐵

𝑖𝑗
, 𝑇

𝑖𝑗
, 𝛽

𝑖𝑗
) and verify the

correctness of the message because

𝑉
ℎ,𝑙
=

𝑚

∏

ℎ=1

𝑒(

𝑛
ℎ

∑

𝑙=1

𝑎
ℎ,𝑙
𝑏
ℎ,𝑙
+ 𝛼

𝑛
ℎ

∑

𝑙=1

𝑎
ℎ,𝑙
𝑄
ℎ,𝑙
, 𝑠
ℎ
𝑃

)

= 𝑒 ((𝑎
1,1
𝑟
−1

1,1
+ 𝑎

1,2
𝑟
−1

1,2
+ ⋅ ⋅ ⋅ + 𝑎

1,𝑛
1

𝑟
−1

1,𝑛
1

) 𝑃

+ (𝛼𝑎
1,1
𝑄
1,1
+ 𝛼𝑎

1,2
𝑄
1,2
+ ⋅ ⋅ ⋅ + 𝛼𝑎

1,𝑛
1

𝑄
1,𝑛
1

) , 𝑠
1
𝑃

)

⋅ 𝑒 ((𝑎
2,1
𝑟
−1

2,1
+ 𝑎

2,2
𝑟
−1

2,2
+ ⋅ ⋅ ⋅ + 𝑎

2,𝑛
2

𝑟
−1

2,𝑛
2

) 𝑃

+ (𝛼𝑎
2,1
𝑄
2,1
+ 𝛼𝑎

2,2
𝑄
2,2
+ ⋅ ⋅ ⋅ + 𝛼𝑎

2,𝑛
2

𝑄
2,𝑛
2

) ,

𝑠
2
𝑃

)

⋅ 𝑒 ((𝑎
𝑚,1
𝑟
−1

𝑚,1
+ 𝑎

𝑚,2
𝑟
−1

𝑚,2
+ ⋅ ⋅ ⋅ + 𝑎

𝑚,𝑛
𝑚

𝑟
−1

𝑚,𝑛
𝑚

) 𝑃

+ (𝛼𝑎
𝑚,1
𝑄
𝑚,1
+ 𝛼𝑎

𝑚,2
𝑄
𝑚,2
+ ⋅ ⋅ ⋅ + 𝛼𝑎

𝑚,𝑛
𝑚

𝑄
𝑚,𝑛
𝑚

) ,

𝑠
𝑚
𝑃

)

= 𝑒 (𝑎
1,1
(𝛼𝑠

1
𝑄
1,1
+ 𝑟

−1

1,1
𝑠
1
𝑃)

+ 𝑎
1,2
(𝛼𝑠

1
𝑄
1,2
+ 𝑟

−1

1,2
𝑠
1
𝑃) + ⋅ ⋅ ⋅

+𝑎
1,𝑛
1

(𝛼𝑠
1
𝑄
1,𝑛
1

+ 𝑟
−1

1,𝑛
1

𝑠
1
𝑃) , 𝑃


)

⋅ 𝑒 (𝑎
2,1
(𝛼𝑠

2
𝑄
2,1
+ 𝑟

−1

2,1
𝑠
2
𝑃) + 𝑎

2,2
(𝛼𝑠

2
𝑄
2,2
+ 𝑟

−1

2,2
𝑠
2
𝑃)

+ 𝑎
2,𝑛
2

(𝛼𝑠
2
𝑄
2,𝑛
2

+ 𝑟
−1

2,𝑛
2

𝑠
2
𝑃) , 𝑃


)

.

.

.

⋅ 𝑒 (𝑎
𝑚,1
(𝛼𝑠

𝑚
𝑄
𝑚,1
+ 𝑟

−1

𝑚,1
𝑠
𝑚
𝑃)

+ 𝑎
𝑚,2
(𝛼𝑠

𝑚
𝑄
𝑚,2
+ 𝑟

−1

𝑚,2
𝑠
𝑚
𝑃)



Mathematical Problems in Engineering 9

+ ⋅ ⋅ ⋅ + 𝑎
𝑚,𝑛
𝑚

(𝛼𝑠
𝑚
𝑄
𝑚,𝑛
𝑚

+ 𝑟
−1

𝑚,𝑛
𝑚

𝑠
𝑚
𝑃) , 𝑃


)

= 𝑒(

𝑚

∑

ℎ=1

𝑛
ℎ

∑

𝑙=1

𝑎
ℎ,𝑙
(𝛼𝑠

ℎ
𝑄
ℎ,𝑙
+ 𝑟

−1

ℎ,𝑙
𝑠
ℎ
𝑃) , 𝑃


)

= 𝑒(

𝑚

∑

ℎ=1

𝑛
ℎ

∑

𝑙=1

𝑎
ℎ,𝑙
𝑇
ℎ,𝑙
, 𝑃


) .

(9)

6.2. Known Session Key Security. After given broadcast mes-
sages and previous session keys according to the IDCK
scheme, an adversary makes a Test query and then receives
a random string or a current session key. The adversary can
continue asking for broadcast messages and other session
keys. If no polynomial-time adversary can decide whether
the received string is the current session key or not with
nonnegligible advantage, we say that the IDCK scheme
satisfies known session key security.

Definition 7 (known session key security). An IDCK
scheme is with known session key security if no polynomial-
time adversary can decide if a challenge string is a current
session key or a random string under the knowledge of
previous session keys with the probability at least (𝜀 + 1/2)
where 𝜀, called the advantage, is nonnegligible.

Theorem 8. If an adversary A can (𝑡, 𝑞
𝐸
, 𝑞

𝑆
, 𝑞

𝐶
, 𝑞

𝑅
, 𝑞

𝐻
1

𝜀)-
decide whether the string received from a Test query is the
session key SCK held by Πℓ

U or not with advantage at least
𝜀, where 𝑡 is the running time and 𝑞

𝐸
, 𝑞

𝑆
, 𝑞

𝐶
, 𝑞

𝑅
, and 𝑞

𝐻
1

are
the numbers of making Execute queries, Send queries, Corrupt
queries, Reveal queries, and 𝐻

1
queries, respectively, there

exists an algorithm which can solve the 𝑛-DLDH problem with
advantage at least 𝜀 in time 𝑡, where

𝜀

≥

𝜀

𝑞
0

,

𝑡

≈ 𝑡 + 𝑞

𝐸
O (𝑡

𝐸
) + +𝑞

𝑆
O (𝑡

𝑆
) + 𝑞

𝐶
O (𝑡

𝐶
)

+ 𝑞
𝑅
O (𝑡

𝑅
) + 𝑞

𝐻
1

O (𝑡
𝐻
1

) + O (𝑛
2
) ,

(10)

𝑞
0
= 𝑞

𝐸
+ 𝑞

𝑆
+ 𝑞

𝐶
+ 𝑞

𝑅
+ 𝑞

𝐻
, 𝑡

𝐸
, 𝑡
𝑆
, 𝑡
𝐶
, 𝑡
𝑅
, and 𝑡

𝐻
1

are
the computing time of the Execute oracle, the Send oracle, the
Corrupt oracle, the Reveal oracle, and𝐻

1
oracle, respectively.

Proof. Initially, we construct a simulator B which prepares
the pairing parameters and simulates the system as follows.
B randomly picks 𝑠 ∈ Z∗

𝑞
as the system master private

key and computes (𝑠𝑃, 𝑠𝑃) as the system master public key.
B computes each user’s long-term public/private key pair
(𝑄

𝑖
, 𝑠𝑄

𝑖
).B allowsA to make the following queries

(i) Execute(Π𝑡

U): A can request U that is a set of users
who are chosen by itself to run the key agreement
protocol in session 𝑡. B follows the protocol (Sec-
tion 5.1) to produce every (𝑟

𝑖
, 𝑏
𝑖
, 𝐵

𝑖
, 𝑇

𝑖
, 𝛽

𝑖
, 𝑘

𝑖
), and

𝐾 = ∑
𝑈
𝑖
∈U 𝑘𝑖𝑃, and then records them. Finally, B

responds every (𝑏
𝑖
, 𝐵

𝑖
, 𝑇

𝑖
, 𝛽

𝑖
) toA, where 𝑈

𝑖
∈ U.

(ii) Send(Π𝑡

Ũ
, 𝑚): if A actively broadcasts the messages

of users ̃U ⊂ U to run the key agreement protocol
in session 𝑡, B follows the protocol (Section 5.1)
to produce every (𝑟

𝑖
, 𝑏
𝑖
, 𝐵

𝑖
, 𝑇

𝑖
, 𝛽

𝑖
, 𝑘

𝑖
) and generate the

session conference key in the end of the protocol and
then records them. Finally, B responds (𝑏

𝑖
, 𝐵

𝑖
, 𝑇

𝑖
, 𝛽

𝑖
)

toA for each 𝑈
𝑖
∈ U −

̃U.
(iii) Reveal(Π𝑡

U): if Π
𝑡

U does not exist, B creates Π𝑡

U. B
returns the session conference key SCK = 𝐻

3
(𝐾).

(iv) Corrupt(𝑈
𝑖
):B returns (𝑄

𝑖
, 𝑠𝑄

𝑖
) toA.

(v) 𝐻
1
(𝑚): after given𝑚 ∈ G

1
,B randomly chooses 𝛼 ∈

{0, 1}
𝜆, returns𝐻

1
(𝑚) = 𝛼, and stores (𝑚, 𝛼) in a list,

called𝐻
1
-list.

(vi) Test(Πℓ

U∗): B guesses that A will send a Test query
at the ℎth session in advance. If A makes a Test
query at the ℓth session, where ℓ ̸= ℎ, B randomly
answers “YES” or “NO” to the 𝑛-DLDH problem.
WhenAmakes a Test query at the ℓth session, where
ℓ = ℎ, B checks whether there exists 𝑈

𝑖
which has

been corrupted or not, where 𝑈
𝑖
∈ U∗ and |U∗

| =

𝑛. If one of them has been corrupted, B returns
⊥ and aborts the game. Otherwise, B is given the
parameters of an instance of the 𝑛-DLDH problem,
𝑍, 𝑃, and (𝑥

𝑖
𝑃, 𝑥

𝑖
𝑥
𝑛+𝑗
𝑃)’s for all 𝑖, 𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 𝑛,

and 𝑖 ̸= 𝑗, and takes the advantage of A to decide
whether 𝑍 = (𝑥

𝑛+1
+ 𝑥

𝑛+2
+ ⋅ ⋅ ⋅ + 𝑥

2𝑛
)𝑃 or not. B

sets the public messages (𝑏∗
𝑖
, 𝐵

∗

𝑖
, 𝑇

∗

𝑖
, 𝛽

∗

𝑖
) of every user

inU∗ in the ℓth session as follows.
First, B forms 𝑏∗

1
= 𝑥

1
𝑃, 𝑏∗

2
= 𝑥

2
𝑃, . . . , 𝑏

∗

𝑛
= 𝑥

𝑛
𝑃,

𝐾
∗
= 𝑍, 𝛼∗ = 𝐻

1
(𝐾

∗
), and prepares 𝐵∗

𝑖
= (𝑥

1
𝑥
𝑛+𝑖
𝑃,

𝑥
2
𝑥
𝑛+𝑖
𝑃, . . . , 𝑥

𝑖−1
𝑥
𝑛+𝑖
𝑃,⊥, 𝑥

𝑖+1
𝑥
𝑛+𝑖
𝑃, . . . , 𝑥

𝑛
𝑥
𝑛+𝑖
𝑃), for

each 𝑈∗

𝑖
∈ U∗; that is,

𝑈
∗

1
𝑈
∗

2
. . . 𝑈

∗

𝑖
. . . 𝑈

∗

𝑛

𝐵
∗

1
⊥ 𝑥

2
𝑥
𝑛+1
𝑃 . . . 𝑥

𝑖
𝑥
𝑛+1
𝑃 . . . 𝑥

𝑛
𝑥
𝑛+1
𝑃

𝐵
∗

2
𝑥
1
𝑥
𝑛+2
𝑃 ⊥ . . . 𝑥

𝑖
𝑥
𝑛+2
𝑃 . . . 𝑥

𝑛
𝑥
𝑛+2
𝑃

.

.

.

.

.

.

.

.

. d
.
.
.

.

.

.

.

.

.

𝐵
∗

𝑖
𝑥
1
𝑥
𝑛+𝑖
𝑃 𝑥

2
𝑥
𝑛+𝑖
𝑃 . . . ⊥ . . . 𝑥

𝑛
𝑥
𝑛+𝑖
𝑃

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. d
.
.
.

𝐵
∗

𝑛
𝑥
1
𝑥
2𝑛
𝑃 𝑥

2
𝑥
2𝑛
𝑃 . . . 𝑥

𝑖
𝑥
2𝑛
𝑃 . . . ⊥

(11)

B sets 𝑇∗
𝑖
= 𝑠𝛼

∗
𝑄
𝑖
+ 𝑠𝑥

𝑖
𝑃 and computes 𝛽∗

𝑖
=

𝐻
2
(𝑇

∗

𝑖
, 𝛼

∗
) and SCK∗

= 𝐻
3
(𝐾

∗
), where 1 ≤ 𝑖 ≤ 𝑛.

B responds every (𝑏∗
𝑖
, 𝐵

∗

𝑖
, 𝑇

∗

𝑖
, 𝛽

∗

𝑖
) and SCK∗ toA.

A can continue making the queries of Execute(Π𝑡

U),
Send(Π𝑡

U), Reveal(Π
𝑡

U), and Corrupt(𝑈
𝑖
), where 𝑡 ̸= ℓ and

𝑈
𝑖
∉ U∗, untilA outputs a bit 𝑏. If SCK∗ is the key in session ℓ

fromA’s point of view,A will output 𝑏 = 1; otherwise, 𝑏 = 0.
If 𝑏 = 1,B outputs “YES”; that is,𝑍 = (𝑥

𝑛+1
+𝑥

𝑛+2
+⋅ ⋅ ⋅+𝑥

2𝑛
)𝑃;

otherwise,B outputs “NO”.
If the adversary can compromise known session key

security of the scheme with advantage at least 𝜀, B can
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solve the 𝑛-DLDH problem with the advantage at least 𝜀 ≥
(1/𝑞

0
) (1/2 + 𝜀) + (1/2)((𝑞

0
− 1)/𝑞

0
) − 1/2 = 𝜀/𝑞

0
.

By Theorem 8, we can solve the 𝑛-DLDH problem in
polynomial time with nonnegligible advantage if there exists
a polynomial-time adversary that can break the known
session key security with nonnegligible advantage of the
proposed single domain key agreement scheme.

As for the proof of the interdomain case, we can let 𝑛 be
the number of the total users from all domains; that is, 𝑛 = 𝑁.
Then, by the proof of Theorem 8, the 𝑛-DLDH problem can
be solved if the adversary can distinguish the session key from
a random string in the proposed interdomain key agreement
scheme.

6.3. Key-Compromise Impersonation. An adversary is given
all users’ long-term keys by making Corrupt queries except
the one that he claims to impersonate. If no adversary can
output the correct messages of the user with nonnegligi-
ble probability, the IDCK scheme can withstand key-
compromise impersonation.

Definition 9 (key-compromise impersonation). AnIDCK
scheme can withstand key-compromise impersonation if no
adversary can have nonnegligible probability to impersonate
a user without the long-term private key of the user.

Lemma 10 (the forking lemma [35]). Let 𝑇
𝑖
= 𝛼𝑠𝑄

𝑖
+ 𝑟

−1

𝑖
𝑠𝑃

be a valid authentic parameter of user 𝑈
𝑖
, where 𝑠𝑄

𝑖
is 𝑈

𝑖
’s

private key, 𝑠𝑃 is TA’s public key, 𝑟−1
𝑖

is randomly chosen by 𝑈
𝑖
,

and 𝛼 is a hashed value of 𝐾 shared by all users. Let A be a
probabilistic polynomial time Turing machine. Given only the
public data of the key agreement scheme as input, ifA can find,
with nonnegligible probability, a valid authentic parameter 𝑇

𝑖

with 𝛼, then, with nonnegligible probability, a replay of this
machine, with the same random tape and a different value
returned by the random oracle, can output two valid authentic
parameters 𝑇

𝑖
with 𝛼 and 𝑇

𝑖
with 𝛼, such that 𝛼 ̸= 𝛼

.

Lemma 11 (the splitting lemma [36]). Let𝐴 ⊂ 𝑋×𝑌 such that
Pr [(𝑥, 𝑦) ∈ 𝐴] = |𝐴|/(|𝑋| × |𝑌|) ≥ 𝛿. For any 𝜌 < 𝛿, define
𝐵 = {𝑥 ∈ 𝑋 | Pr [(𝑥, 𝑦) ∈ 𝐴] ≥ 𝛿 − 𝜌} and 𝐵 = 𝑋 \ 𝐵. Then
the following statements hold:

(1) Pr [𝑥 ∈ 𝐵] = |𝐵|/|𝑋| ≥ 𝜌,
(2) ∀𝑥 ∈ 𝐵,Pr [(𝑥, 𝑦) ∈ 𝐴] ≥ 𝛿 − 𝜌,
(3) Pr [𝑥 ∈ 𝐵 | (𝑥, 𝑦) ∈ 𝐴] ≥ 𝜌/𝛿.

Lemma 12. Assume that 𝑒(∑𝑛

𝑖=1
𝑎
𝑖
𝑏
𝑖
+ 𝛼∑

𝑛

𝑖=1
𝑎
𝑖
𝑄
𝑖
, 𝑠𝑃


) =

𝑒(∑
𝑛

𝑖=1
𝑎
𝑖
𝑇
𝑖
, 𝑃


). Let 𝐸 be an event that occurs if there is at least

one 𝑇
𝑖
such that 𝑒(𝑎

𝑖
𝑏
𝑖
+ 𝛼𝑎

𝑖
𝑄
𝑖
, 𝑠𝑃


) ̸= 𝑒(𝑎

𝑖
𝑇
𝑖
, 𝑃


). Then, the

probability Pr [𝐸] ≤ 1/2𝑞, where 𝑞 is a security parameter.

Proof. Theproof is using the technique of the small exponents
test in [37]. If 𝑒(𝑎

𝑖
𝑏
𝑖
+𝛼𝑎

𝑖
𝑄
𝑖
, 𝑠𝑃


) ̸= 𝑒(𝑎

𝑖
𝑇
𝑖
, 𝑃


) for some 𝑖, then

𝑇
𝑖
̸= 𝑠𝑏

𝑖
+ 𝑠𝛼𝑄

𝑖
. That is, there exists 𝑐

𝑖
̸= 0 (mod 𝑞) such that

𝑇
𝑖
= 𝑠𝑏

𝑖
+ 𝑠𝛼𝑄

𝑖
+ 𝑐

𝑖
𝑃.

Let 𝑇
𝑗
= 𝑠𝑏

𝑗
+ 𝑠𝛼𝑄

𝑗
+ 𝑐

𝑗
𝑃 where ∀𝑗 ∈ {1, . . . , 𝑛} − {𝑖}

and 𝑐
𝑗
∈ {0, . . . , 𝑞 − 1}. As 𝑒(∑𝑛

𝑖=1
𝑎
𝑖
𝑏
𝑖
+ 𝛼∑

𝑛

𝑖=1
𝑎
𝑖
𝑄
𝑖
, 𝑠𝑃


) =

𝑒(∑
𝑛

𝑖=1
𝑎
𝑖
𝑇
𝑖
, 𝑃


),∑𝑛

𝑖=1
𝑐
𝑖
𝑎
𝑖
≡ 0 (mod 𝑞). Hence, 𝑎

𝑖
≡ −𝑐

−1

𝑖
(𝑐
1
𝑎
1
+

𝑐
2
𝑎
2
+ ⋅ ⋅ ⋅ + 𝑐

𝑖−1
𝑎
𝑖−1
+ 𝑐

𝑖+1
𝑎
𝑖+1
+ ⋅ ⋅ ⋅ + 𝑐

𝑛
𝑎
𝑛
) (mod 𝑞). Since 𝑎

𝑖
is

randomly chosen from Z∗

𝑞
, Pr [𝐸] ≤ 1/2𝑞.

Theorem 13. If an adversary A can (𝑡, 𝑞
𝑆
, 𝑞

𝐶
, 𝑞

𝑅
, 𝑞

𝐻
, 𝑞

𝐻
1

, 𝜀)-
impersonate a user 𝑈∗

𝑖
without the long-term private key of

𝑈
∗

𝑖
with probability at least 𝜀, where 𝑡 is the running time, 𝑞

𝑆
,

𝑞
𝐶
, 𝑞

𝑅
, 𝑞

𝐻
, and 𝑞

𝐻
1

are the numbers of making Send queries,
Corrupt queries, Reveal queries, 𝐻 queries, and 𝐻

1
queries,

respectively, there exists an algorithm to solve the variant-CDH
problem with probability at least 𝜀 in time 𝑡, where

𝜀

≥ (

(1/|U|) (1 − 1/ |U|) (1 − 1/2
ℎ
) (𝜀 − 1/2

𝑞
)

2

)

2

,

𝑡

≈ 2 (𝑡 + 𝑞

𝑆
O (𝑡

𝑆
) + 𝑞

𝐶
O (𝑡

𝐶
) + 𝑞

𝑅
O (𝑡

𝑅
)

+ 𝑞
𝐻
O (𝑡

𝐻
) + 𝑞

𝐻
1

O (𝑡
𝐻
1

)) + O (𝑛
2
) ,

(12)

ℎ is the length of𝐻
1
’s output,U is a set of users, and 𝑡

𝐻
is the

computing time of𝐻 oracle.

Proof. At first, B inputs 𝜅 to generate pairing parameters
and a variant-CDH tuple (𝑃, 𝑎𝑃, 𝑏𝑃, 𝑃, 𝑎𝑃) ∈ G

1
, where

𝑎, 𝑏∈
𝑅
Z∗

𝑞
. We will show that B can solve the variant-CDH

problem with the assistance of an adversaryA.B’s task is to
compute and output the value 𝑐𝑃 = 𝑎𝑏𝑃.

B simulates the system as follows. We define (𝑎𝑃, 𝑎𝑃) as
the systemmaster public key andBdoes not know themaster
private key 𝑎. 𝐻 and 𝐻

1
are two random oracles simulated

by B to respond the queries to 𝐻 and 𝐻
1
, respectively. B

randomly chooses one user 𝑈∗

𝑖
and let 𝑏𝑃 be 𝑈∗

𝑖
’s long-

term public key. Except 𝑈∗

𝑖
, B computes other users’ long-

term public/private key pairs by𝐻.B allowsA to make the
following queries.

(i) 𝐻(⋅): after given 𝑚 ∈ {(TA’s ID‖𝑈
𝑖
’s ID) | 1 ≤ 𝑖 ≤ 𝑞},

B responds the query, 𝐻(𝑚), and maintains the 𝐻-
list as follows.
If 𝑚 = (TA’s ID‖𝑈∗

𝑖
’s ID), B returns 𝐻(𝑚) = 𝑏𝑃 and

stores a record (𝑈∗

𝑖
, 𝑏𝑃, ⊥, ⊥) in the𝐻-list. Otherwise,

B randomly chooses 𝑢
𝑖
∈ Z∗

𝑞
, returns 𝐻(𝑚) = 𝑢

𝑖
𝑃,

and stores a record (𝑈
𝑖
, 𝑢

𝑖
𝑃, 𝑢

𝑖
𝑎𝑃, 𝑢

𝑖
) in the 𝐻-list,

where 𝑢
𝑖
𝑃 and 𝑢

𝑖
𝑎𝑃 are the long-term public and

private keys, respectively, of 𝑈
𝑖
.

(ii) 𝐻
1
(⋅): after given 𝑚 ∈ G

1
, B randomly chooses 𝛼 ∈

{0, 1}
ℓ, returns𝐻

1
(𝑚) = 𝛼, and stores a record (𝑚, 𝛼)

in the𝐻
1
-list.

(iii) Execute(Π𝑡

U): A can choose U and ask B to run
the key agreement protocol. B returns the public
messages (𝑏

𝑖
, 𝐵

𝑖
, 𝑇

𝑖
, 𝛽

𝑖
)’s of all 𝑈

𝑖
’s in U to A. B

produces the messages as follows.
If 𝑈∗

𝑖
∈ U, B picks 𝑘

𝑖
, 𝑧, 𝛼∈

𝑅
Z∗

𝑞
and computes 𝑏

𝑖
=

𝑧𝑃 − 𝛼𝑏𝑃 = (𝑧 − 𝛼𝑏)𝑃, 𝑇
𝑖
= 𝑧𝑎𝑃, and 𝛽

𝑖
= 𝐻

2
(𝑇

𝑖
, 𝛼).

For each of the other 𝑈
𝑗
’s ∈ U, B randomly picks

𝑟
𝑗
, 𝑘

𝑗
∈ Z∗

𝑞
and computes 𝑏

𝑗
= 𝑟

−1

𝑗
𝑃, 𝑇

𝑗
= 𝛼𝑢

𝑗
𝑎𝑃 +

𝑟
−1

𝑗
𝑎𝑃, and 𝛽

𝑗
= 𝐻

2
(𝑇

𝑗
, 𝛼). Thus, B can follow the
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protocol to compute 𝐵
𝑖
for each 𝑈

𝑗
∈ U and sets

𝛼 = 𝐻
1
(𝐾) where𝐾 = ∑

𝑈
𝑗
∈U 𝑘𝑗𝑃.

(iv) Send(Π𝑡

Ũ
, 𝑚): ifA actively broadcasts the message of

users ̃U ⊂ U to run the key agreement protocol in
session 𝑡, B can produce each (𝑏

𝑖
, 𝐵

𝑖
, 𝑇

𝑖
, 𝛽

𝑖
) of the

other 𝑈
𝑖
∈ U −

̃U as that in the Execute query. Once
ifU −

̃U = {𝑈
∗

𝑖
},B can obtain 𝐾 from𝐻

1
-list while

A is making the𝐻
1
query for 𝛼.

(v) Reveal(Π𝑡

U): B looks up the 𝐻
1
-list to obtain 𝐾 by

checking if 𝐻
2
(𝑇

𝑖
, 𝛼) = 𝛽

𝑖
and returns the session

conference key SCK = 𝐻
3
(𝐾).

(vi) Corrupt(𝑈
𝑖
): if 𝑈

𝑖
= 𝑈

∗

𝑖
, B returns ⊥ and aborts the

game. Otherwise, B searches 𝑈
𝑖
in the 𝐻-list. If 𝑈

𝑖

is not in the 𝐻-list, B calls 𝐻 to produce and store
(𝑈

𝑖
, 𝑢

𝑖
𝑃, 𝑢

𝑖
𝑎𝑃, 𝑢

𝑖
) in the𝐻-list.Then,B returns 𝑢

𝑖
𝑎𝑃.

If A impersonates 𝑈∗

𝑖
at some point, according to

Lemma 12, it must send out 𝑇
𝑖
= 𝛼𝑎𝑄

∗

𝑖
+ 𝑟

−1

𝑖
𝑎𝑃 with the

probability at least 𝜀 − 1/2𝑞, where 𝐻
1
(𝐾) = 𝛼. Once A

produces a correct 𝑇
𝑖
, B replays A with the same random

tape by forking lemma. At this time, A gets two different
hashed values 𝛼 and 𝛼 and generates two valid 𝑇

𝑖
= 𝛼𝑎𝑏𝑃 +

𝑟
−1

𝑖
𝑎𝑃 and 𝑇

𝑖
= 𝛼


𝑎𝑏𝑃 + 𝑟

−1

𝑖
𝑎𝑃. B can compute 𝑐𝑃 = (𝛼 −

𝛼

)
−1
(𝑇

𝑖
− 𝑇



𝑖
) = 𝑎𝑏𝑃. Finally,B outputs 𝑎𝑏𝑃.

Let 𝑋 and 𝑌 be the set of any possible input messages
of the random tape and 𝐻

1
, respectively. A fails in making

Corrupt queries with probability 1/|U|. A guesses the value
𝛼 = 𝐻

1
(𝐾) without making𝐻

1
queries with probability 2−ℎ,

where ℎ is the length of𝐻
1
’s output.Therefore, the probability

is 𝛿 = (1/|U|)(1 − 1/|U|)(1 − 1/2ℎ)(𝜀 − 1/2𝑞). By splitting
lemma, we set 𝜌 = 𝛿/2 such that 𝛿 − 𝜌 = 𝛿 − (𝛿/2) = 𝛿/2.
Overall,B performs two executions ofA, so that we have

𝜀

≥ (

𝛿

2

)

2

= (

(1/|U| ) (1 − 1/|U| ) (1 − 1/2ℎ) (𝜀 − 1/2𝑞)

2

)

2

,

𝑡

≈ 2 (𝑡 + 𝑞

𝑆
O (𝑡

𝑆
) + 𝑞

𝐶
O (𝑡

𝐶
) + 𝑞

𝑅
O (𝑡

𝑅
)

+𝑞
𝐻
O (𝑡

𝐻
) + 𝑞

𝐻
1

O (𝑡
𝐻
1

)) + O (𝑛
2
) .

(13)

As for the proof of the interdomain case, (𝑎𝑃, 𝑎𝑃, 𝑏𝑃),
the parameters of the variant-CDH problem are the pub-
lic keys of some TA and some user who belongs to the
CA, respectively. The private keys of the other TAs and
users are randomly generated by B. Likewise, the proposed
interdomain key agreement scheme can also withstand key-
compromise impersonation.

6.4. Forward Secrecy. After given broadcastmessages, session
keys, and all users’ long-term keys according to an IDCK
scheme, an adversary makes a Test query and then receives a

random string or a session key. The adversary can continue
making queries. If no adversary can decide whether the
received string is a session key or not with nonnegligible
advantage, we say that theIDCK scheme satisfies forward
secrecy.

Definition 14 (forward secrecy). AnIDCK scheme has for-
ward secrecy if any adversary who obtains the other session
keys and all users’ long term keys can distinguish a previous
session key from a random string with the probability at least
(𝜀 + 1/2) where 𝜀, called the advantage, is negligible.

After running time at most 𝑡, making at most 𝑞
𝐻
1

queries
to 𝐻

1
, 𝑞

𝐸
Execute queries, 𝑞

𝑆
Send queries, 𝑞

𝐶
Corrupt

queries, and 𝑞
𝑅
Reveal queries, an adversaryA can obtain all

users’ long-term private keys and receives a string through a
Test query.A(𝑡, 𝑞

𝐸
, 𝑞

𝑆
, 𝑞

𝐶
, 𝑞

𝑅
, 𝑞

𝐻
1

, 𝜀)-FS-breaks ourIDCK
scheme if he can determine whether the received string is a
previous session key negotiated by users with nonnegligible
advantage at least 𝜀.

Theorem 15. If an adversary A can (𝑡, 𝑞
𝐸
, 𝑞

𝑆
, 𝑞

𝐶
, 𝑞

𝑅
, 𝑞

𝐻
1

, 𝜀)-
FS-determine whether SCK is a previous session key or not,
where 𝑡 is the running time, 𝑞

𝐸
, 𝑞

𝑆
, 𝑞

𝐶
, 𝑞

𝑅
, and 𝑞

𝐻
1

are
the numbers of making Send queries, Corrupt queries, Reveal
queries, and hash queries to 𝐻

1
, respectively, there exists an

algorithm to solve the 𝑛-DLDH problem with nonnegligible
advantage at least 𝜀 in time 𝑡, where

𝜀

≥

𝜀

𝑞
0

,

𝑡

≈ 𝑡 + 𝑞

𝐸
O (𝑡

𝐸
) + 𝑞

𝑆
O (𝑡

𝑆
) + 𝑞

𝐶
O (𝑡

𝐶
)

+ 𝑞
𝑅
O (𝑡

𝑅
) + 𝑞

𝐻
1

O (𝑡
𝐻
1

) + O (𝑛
2
) ,

(14)

and 𝑞
0
= 𝑞

𝐸
+ 𝑞

𝑆
+ 𝑞

𝐶
+ 𝑞

𝑅
+ 𝑞

𝐻
1

.

Proof. The simulation and the queries answered byB are the
same as those in the proof of Theorem 8 except that A is
allowed to make 𝐶𝑜𝑟𝑟𝑢𝑝𝑡(𝑈

𝑖
) query, where 𝑈

𝑖
∈ U∗, after

making Test(Πℓ

U∗). That is, A has to activate the ℓth session
first before any 𝑈

𝑖
∈ U∗ is corrupted. In the end, B can

decide whether𝑍 = (𝑥
𝑛+1
+𝑥

𝑛+2
+⋅ ⋅ ⋅+𝑥

2𝑛
)𝑃 or not according

to the value of 𝑏 output byA, where

𝜀

≥

𝜀

𝑞
0

𝑡

≈ 𝑡 + 𝑞

𝐸
O (𝑡

𝐸
) + 𝑞

𝑆
O (𝑡

𝑆
) + 𝑞

𝐶
O (𝑡

𝐶
)

+ 𝑞
𝑅
O (𝑡

𝑅
) + 𝑞

𝐻
1

O (𝑡
𝐻
1

) + O (𝑛
2
) .

(15)

Similarly, the proposed interdomain key agreement
scheme can also achieve forward secrecy.

6.5. Key Control. An adversary who is one of the users can
obtain broadcast messages, session keys, and the other users’
long-term keys. Then, the adversary is given a preselected
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value. If the adversary cannot make the given preselected
value become a new session key with nonnegligible probabil-
ity, theIDCK scheme can withstand key control attacks.

Definition 16 (key control). An IDCK scheme can with-
stand key control attacks if no adversary can predict a session
key or preselect a session key with nonnegligible probability.

Theorem 17. If an adversary A can (𝑡, 𝑞
𝐸
, 𝑞

𝑆
, 𝑞

𝐶
, 𝑞

𝑅
, 𝑞

𝐻
, 𝜀)-

predict a session key or preselect a session key with probability
at least 𝜀, where 𝑡 is the running time, 𝑞

𝐸
, 𝑞

𝑆
, 𝑞

𝐶
, 𝑞

𝑅
, and 𝑞

𝐻

are the numbers of making Send queries, Corrupt queries,
Reveal queries, and hash queries to𝐻, respectively, there exists
an algorithm to solve the CDH problem with nonnegligible
probability at least 𝜀 in time 𝑡, where

𝜀

≥

𝜀

𝑞
0

,

𝑡

≈ 𝑡 + 𝑞

𝐸
O (𝑡

𝐸
) + 𝑞

𝑆
O (𝑡

𝑆
) + 𝑞

𝐶
O (𝑡

𝐶
)

+ 𝑞
𝑅
O (𝑡

𝑅
) + 𝑞

𝐻
O (𝑡

𝐻
) + O (𝑛

2
) ,

(16)

and 𝑞
0
= 𝑞

𝐸
+ 𝑞

𝑆
+ 𝑞

𝐶
+ 𝑞

𝑅
+ 𝑞

𝐻
.

Proof. At first,B inputs 𝜅 to generate pairing parameters and
a CDH triple (𝑃, 𝑎𝑃, 𝑏𝑃) ∈ G

1
, where 𝑎, 𝑏∈

𝑅
Z∗

𝑞
. We show that

an algorithmB can solve the CDH problem with the help of
an adversaryA.B’s task is to compute and output the value
𝑐𝑃 = 𝑎𝑏𝑃.

B simulates the system as follows.Wedefine that (𝑠𝑃, 𝑠𝑃)
is the system master public key by randomly choosing the
master private key 𝑠. B allows A to make the following
queries.

(i) 𝐻(⋅): after given 𝑚 ∈ {(TA’s ID‖𝑈
𝑖
’s ID) | 1 ≤ 𝑖 ≤ 𝑞},

B responds the query 𝐻(𝑚) and maintains the 𝐻-
list as follows:B randomly chooses 𝑢

𝑖
∈ Z∗

𝑞
, returns

𝐻(𝑚) = 𝑢
𝑖
𝑃, and stores a record (𝑈

𝑖
, 𝑢

𝑖
𝑃, 𝑢

𝑖
𝑠𝑃, 𝑢

𝑖
) in

the𝐻-list.
(ii) Execute(Π𝑡

U): A can choose a set U of users to run
the key agreement protocol in session 𝑡. B follows
the protocol to produce every (𝑏

𝑖
, 𝐵

𝑖
, 𝑇

𝑖
, 𝛽

𝑖
, 𝑘

𝑖
) and

computes 𝐾 = ∑
𝑈
𝑖
∈U 𝑘𝑖𝑃. Finally, B responds every

(𝑏
𝑖
, 𝐵

𝑖
, 𝑇

𝑖
, 𝛽

𝑖
) toA.

(iii) Send(Π𝑡

Ũ
, 𝑚): if A can actively send the message of

users ̃U ⊂ U to run the key agreement protocol in
session 𝑡, B can produce (𝑏

𝑖
, 𝐵

𝑖
, 𝑇

𝑖
, 𝛽

𝑖
) of each 𝑈

𝑖
∈

U −
̃U as that in the Execute query.

(iv) Reveal(Π𝑡

U): B returns the session conference key
SCK = 𝐻

3
(𝐾).

(v) Corrupt(𝑈
𝑖
):B searches𝑈

𝑖
in𝐻-list and returns 𝑢

𝑖
𝑠𝑃.

If 𝑈
𝑖
is not in 𝐻-list, B calls 𝐻 oracle to produce

(𝑈
𝑖
, 𝑢

𝑖
𝑃, 𝑢

𝑖
𝑠𝑃, 𝑢

𝑖
) and returns 𝑢

𝑖
𝑠𝑃.

When A finishes making the above queries, B
sets 𝐾 = 𝑥𝑃 + 𝑏𝑃, where 𝑥∈

𝑅
Z∗

𝑞
, and returns it

to A. Suppose that A is user 𝑈
𝑖
and B simulates

other users 𝑈
1
, 𝑈

2
, . . . , . . . , 𝑈

𝑖−1
, 𝑈

𝑖+1
, . . . , 𝑈

𝑛
to negoti-

ate a session conference key with A. B returns
{(𝑏

1
, 𝐵

1
, 𝑇

1
, 𝛽

1
), . . . , (𝑏

𝑖−1
, 𝐵

𝑖−1
, 𝑇

𝑖−1
, 𝛽

𝑖−1
), (𝑏

𝑖+1
, 𝐵

𝑖+1
, 𝑇

𝑖+1
,

𝛽
𝑖+1
), . . . , (𝑏

𝑛
, 𝐵

𝑛
, 𝑇

𝑛
, 𝛽

𝑛
)} to A, where 𝑥 = 𝑘

1
+ ⋅ ⋅ ⋅ +

𝑘
𝑖−1

+ 𝑘
𝑖+1

+ ⋅ ⋅ ⋅ + 𝑘
𝑛
and 𝑏

1
= 𝑎𝑃. A must broadcast

𝐵
𝑖
= (𝑘

𝑖
𝑏
1
, . . . , 𝑘

𝑖
𝑏
𝑖−1
, 𝑘

𝑖
𝑏
𝑖+1
, . . . , 𝑘

𝑖
𝑏
𝑛
) in round 2 such that

(𝑘
1
+ 𝑘

2
+ ⋅ ⋅ ⋅ + 𝑘

𝑛
)𝑃 = (𝑥 + 𝑏)𝑃. Therefore, 𝑘

𝑖
𝑃 = 𝑏𝑃 and

𝑘
𝑖
𝑏
1
= 𝑎𝑏𝑃.
Overall, we have that

𝜀

≥

𝜀

𝑞
0

,

𝑡

≈ 𝑡 + 𝑞

𝐸
O (𝑡

𝐸
) + 𝑞

𝑆
O (𝑡

𝑆
) + 𝑞

𝐶
O (𝑡

𝐶
)

+ 𝑞
𝑅
O (𝑡

𝑅
) + 𝑞

𝐻
O (𝑡

𝐻
) + O (𝑛

2
) .

(17)

Following a proof similar to that for the above theorem,
we can show that the proposed interdomain key agreement
scheme withstands key control attacks.

7. Discussions

In this section, we compare our schemes with the schemes of
[15–19, 24–27] according to the properties shown in Table 1
and performance factors in Table 2. We prove that our
scheme in single domain satisfies all security attributes in
Section 6 and it can be easily extended to an interdomain
version. Besides, we do our best to extend each scheme in
[15–19, 24–27] to an interdomain one, but only the schemes
[17, 18, 24, 25] can achieve this goal with little modification.
Therefore, we use the straightforward way [38] to extend the
remaining schemes [15, 16, 19, 26, 27] to interdomain versions
for performance comparisons.The result is shown in Table 3.

In the design of a conference key agreement scheme,
the other researchers always divide the protocol into two
main parts: the authentication stage and the stage of the
construction of a common secret value. These proposed
schemes [15–19, 24–26] all perform the authentication stage
first and then make a session conference key, so that they
have some problems in security. We have showed that [15–
19, 24–26] are insecure in Section 3 because an adversary A
can get the valid parameters in the authentication stage and
replay them in different sessions. In particular, we design our
protocol in inverse order such that users share a common
secret value first and then run the authentication stage. If we
only consider a single TA, some schemes are more efficient
than our proposed scheme. However, none of them are
secure.

8. Conclusion

Many researchers proposed two- or three-party identity-
based authenticated key agreement schemes, but general
multiparty authenticated key agreement schemes are rare.
When the number of the members is more than three, the
multiparty scheme is difficult to achieve both security and
efficiency at the same time. In this paper, we proposed a novel
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Table 1: Properties.

[24] [18] [15, 16] [17] [19] [25] [27] [26] Ours
Know session key security YES YES YES NO YES YES YES YES YES
(Perfect) forward secrecy YES YES Δ NO Δ YES YES Δ YES
No key-compromise
impersonation NO NO NO YES NO NO YES NO YES

No key control YES YES YES YES YES YES YES YES YES
Δ: partial forward secrecy.

Table 2: Performance comparisons in single domain.

Communication cost [24] [18] [15, 16] [17] [19] [25] [27] [26] (1) [26] (2) Ours
Round 2 2 2 1 1 3 3 1 2 3
Bandwidth 3 3 3 3 (𝑛 − 1) 4 (𝑛 − 1) (𝑛 + 1) 3 (𝑛 + 1)

Computation cost [24] [18] [15, 16] [17] [19] [25] [27] [26] (1) [26] (2) Ours
Point addition 9 6 3𝑛 − 3 2𝑛 − 3 𝑛 − 1 2𝑛 + 3 𝑛 + 1 — 𝑛 − 2 4𝑛 − 2

Scalar multiplication
(G

1
,G

2
) 8 4 𝑛 + 5 𝑛 + 3 𝑛 2𝑛 + 6 3𝑛 − 1 — 2 4𝑛 + 3

Scalar multiplication (G
𝑇
) 2𝑛 — 𝑛 − 1 2𝑛 − 2 — — — 2𝑛 − 2 2 —

Pairing 4 4 4 2𝑛 + 1 1 𝑛 + 5 4𝑛 − 4 2𝑛 − 2 4 2

Exponentiation — — 𝑛 − 2 — — — — — — —
Increment/decrement of
computation time
𝑛 = 100

↓22% ↓19% ↓78% ↓98% ↑48% ↓97% ↓196% ↓98% ↓19% —

Bandwidth: the total number of messages (points) sent by a user.
𝑛: the number of users.
From [28], 1 exponentiation ≈ 240 scalar multiplications, 1 point addition ≈ 0.12 scalar multiplication, 1 scalar multiplication inG1 ≈ 29 scalar multiplications,
1 scalar multiplication in G2 ≈ 1 scalar multiplication, and 1 pairing ≈ 10 exponentiations.

efficient identity-based conference key agreement scheme
and proved its security via formal method. Furthermore, our
scheme can be extended to an interdomain one.

Consider the application of key agreement among the
employees in a company. The focus of the past papers is
that how users interact under a single TA. It means that the
employees of a company can negotiate a common session key
when they want to organize a private conference. But now,
our schemes provide more flexibility for the users. Even if
the users register with different TAs, they can also negotiate
a common session key easily. In other words, when two or
more companies want to hold a conference, the employees
fromdifferent companies can still compute a common session
key by our interdomain key agreement scheme.

Our conference key agreement can be applied to the
ad hoc networks, too. In the wireless environment, reliable
communication and authentication is desired. By performing
our method, it is unnecessary for ad hoc sensors to store a
large amount of data in advance and they can still negotiate a
session key under mutual authentication. We can ensure that
the transmitted messages are reliable and also secure against
malicious sensors in wireless networks.

Appendices

A. Shi et al.’s Scheme [19]

In [19], KGC gives each user, 𝑈
𝑖
, 𝑄

𝑖
= (𝐼

𝑖
𝑠
1
+ 𝑠

2
)𝑃 as a public

key and 𝑆
𝑖
= (𝐼

𝑖
𝑠
1
+ 𝑠

2
)
−1
𝑃 as a private key, where 𝐼

𝑖
= 𝐻(ID

𝑖
)

is the hashed value of the identity information ID
𝑖
; 𝑠
1
and 𝑠

2

are randomly chosen by KGC. Each 𝑈
𝑖
(1 ≤ 𝑖 ≤ 𝑛) computes

the key 𝐾 as follows.

Step 1. 𝑈
𝑖
randomly chooses 𝑎

𝑖
, computes 𝑇

𝑖,𝑗
= 𝑎

𝑖
𝑄
𝑗
(1 ≤

𝑗 ≤ 𝑛, 𝑗 ̸= 𝑖), and then sends 𝑇
𝑖,𝑗
to 𝑈

𝑗
for each 𝑗.

Step 2. After receiving 𝑇
1,𝑖
, 𝑇

2,𝑖
, . . . , 𝑇

𝑖−1,𝑖
, 𝑇

𝑖+1,𝑖
, . . . , 𝑇

𝑛,𝑖
from

the other users, 𝑈
𝑖
computes

𝐾 = 𝑒 (𝑇
1,𝑖
+ 𝑇

2,𝑖
+ ⋅ ⋅ ⋅ + 𝑇

𝑖−1,𝑖
+ 𝑎

𝑖
𝑄
𝑖
+ 𝑇

𝑖+1,𝑖
+ ⋅ ⋅ ⋅ + 𝑇

𝑛,𝑖
, 𝑆

𝑖
)

= 𝑒 (𝑄
𝑖
, 𝑆

𝑖
)
𝑎
1
+𝑎
2
+⋅⋅⋅+𝑎

𝑛

= 𝑒 (𝑃, 𝑃)
𝑎
1
+𝑎
2
+⋅⋅⋅+𝑎

𝑛
.

(A.1)
There are two security problems shown as follows.
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A.1. Key-Compromise Impersonation

Case 1. Let 𝑈
1
, 𝑈

2
, . . . , 𝑈

𝑖
, . . . , 𝑈

𝑡
, . . ., and 𝑈

𝑛
be legal users

who are going to negotiate a session conference key. Assume
that the private key 𝑆

𝑖
of 𝑈

𝑖
is compromised. Thus, an

adversary can act as𝑈
𝑖
and impersonate another user𝑈

𝑡
. The

attack holds even if𝑈
𝑖
has no𝑈

𝑡
’s long-term private key 𝑆

𝑡
.𝑈

𝑖

picks two random integers 𝑎
𝑖
, 𝑎

𝑡
∈ Z∗

𝑞
as her/his ephemeral

private keys and then computes 𝑇
𝑖,𝑗
= 𝑎

𝑖
𝑄
𝑗
(1 ≤ 𝑗 ≤ 𝑛, 𝑗 ̸= 𝑖)

and 𝑇
𝑡,𝑗
= 𝑎

𝑡
𝑄
𝑗
(1 ≤ 𝑗 ≤ 𝑛, 𝑗 ̸= 𝑡). The session conference key

𝐾 = 𝑒(𝑃, 𝑃)
(𝑎
1
+𝑎
2
+⋅⋅⋅+𝑎

𝑖
+⋅⋅⋅+𝑎

𝑡
+⋅⋅⋅+𝑎

𝑛
) and𝑈

𝑡
is impersonated by𝑈

𝑖

in this session [26] and even showed that𝑈
𝑖
can impersonate

𝑈
𝑡
without participating in session key negotiation.

Case 2. Suppose that an adversary A obtains 𝑈
𝑖
’s and 𝑈

𝑡
’s

long-term private keys 𝑆
𝑖
and 𝑆

𝑡
, where 𝑖 < 𝑡. A can

impersonate the other users 𝑈
1
, 𝑈

2
, . . . , 𝑈

𝑖−1
, 𝑈

𝑖+1
, . . . , 𝑈

𝑡
, . . .,

and𝑈
𝑛
to beguile𝑈

𝑖
into negotiating a session conference key.

A randomly picks integers 𝑎
1
, 𝑎

2
, . . . , 𝑎

𝑖−1
, 𝑎

𝑖+1
, . . . , 𝑎

𝑛
∈ Z∗

𝑞

and computes 𝑇
𝑗,𝑖
= 𝑎

𝑗
𝑄
𝑖
(1 ≤ 𝑗 ≤ 𝑛, 𝑗 ̸= 𝑖). 𝑈

𝑖
randomly

picks an integer 𝑎
𝑖
∈ Z∗

𝑞
and computes 𝑇

𝑖,𝑗
= 𝑎

𝑖
𝑄
𝑗
(1 ≤ 𝑗 ≤

𝑛, 𝑗 ̸= 𝑖). Following the protocol, 𝑈
𝑖
can compute the session

conference key𝐾
𝑖
= 𝑒(𝑎

𝑖
𝑄
𝑖
+∑

𝑛

𝑗=1,𝑗 ̸=𝑖
𝑇
𝑗,𝑖
, 𝑆

𝑖
) = 𝑒(𝑃, 𝑃)

𝑧, where
𝑧 = 𝑎

1
+𝑎

2
+ ⋅ ⋅ ⋅ +𝑎

𝑖
+ ⋅ ⋅ ⋅ +𝑎

𝑛
. According to the message 𝑇

𝑖,𝑡
=

𝑎
𝑖
𝑄
𝑡
,A computes 𝑒(𝑇

𝑖,𝑡
, 𝑆

𝑡
) = 𝑒(𝑎

𝑖
(𝐼
𝑡
𝑠
1
+𝑠

2
)𝑃, (𝐼

𝑡
𝑠
1
+𝑠

2
)
−1
𝑃) =

𝑒(𝑃, 𝑃)
𝑎
𝑖 . Hence, A can compute the session conference key

𝐾 = 𝐾
𝐸
= 𝑒(𝑃, 𝑃)

𝑎
𝑖
⋅ 𝑒(𝑃, 𝑃)

𝑎
1
+𝑎
2
+⋅⋅⋅+𝑎

𝑖−1
+𝑎
𝑖+1
+⋅⋅⋅+𝑎

𝑛
= 𝐾

𝑖
.

A.2. Forward Secrecy. Suppose that an adversary
A gets user 𝑈

𝑖
’s long-term private key 𝑆

𝑖
. A can

compute 𝑒(∑𝑛

𝑗=1,𝑗 ̸=𝑖
𝑇
𝑗,𝑖
, 𝑆

𝑖
) = 𝑒(𝑃, 𝑃)

∑
𝑛

𝑗=1,𝑗 ̸=𝑖
𝑎
𝑗 but cannot

compute 𝑒(𝑃, 𝑃)
𝑎
𝑖 . If two or more users’ long-term

private keys are compromised, A can compute the
previous session keys. Assume that user 𝑈

𝑡
’s long-term

private key 𝑆
𝑡
is also obtained by A. A can compute

𝑒(𝑇
𝑖,𝑡
, 𝑆

𝑡
) = 𝑒(𝑎

𝑖
(𝐼
𝑡
𝑠
1
+ 𝑠

2
)𝑃, (𝐼

𝑡
𝑠
1
+ 𝑠

2
)
−1
𝑃) = 𝑒(𝑃, 𝑃)

𝑎
𝑖

and derive the session key 𝑒(𝑃, 𝑃)𝑎1+𝑎2+⋅⋅⋅+𝑎𝑛 . Therefore, this
scheme offers partial forward secrecy only.

B. Du et al.’s Scheme [15, 16]

Let ID
1
, ID

2
, . . . , ID

𝑛
be the identifiers of the users

𝑈
1
, 𝑈

2
, . . . , 𝑈

𝑛
. Each 𝑈

𝑖
(1 ≤ 𝑖 ≤ 𝑛) has the public key

𝑄
𝑖
= 𝐻

1
(ID

𝑖
) and the private key 𝑆

𝑖
= 𝑠𝑄

𝑖
, where 𝑠 is the

master key of KGC. The protocol is described below.

Step 1. 𝑈
𝑖
randomly chooses 𝑁

𝑖
, computes 𝑧

𝑖
= 𝑁

𝑖
𝑃 and

𝑇
𝑖
= 𝐻(𝑧

𝑖
)𝑆
𝑖
+ 𝑁

𝑖
𝑃pub, where 𝑃pub = 𝑠𝑃, and then broadcasts

(𝑧
𝑖
, 𝑇

𝑖
).

Step2. If 𝑒(∑𝑛

𝑗=1,𝑗 ̸=𝑖
𝑇
𝑗
, 𝑃) = 𝑒(∑

𝑛

𝑗=1,𝑗 ̸=𝑖
(𝐻(𝑧

𝑗
)𝑄

𝑗
+ 𝑧

𝑗
), 𝑃pub), 𝑈𝑖

broadcasts𝑋
𝑖
= 𝑒(𝑃pub, 𝑁𝑖

(𝑧
𝑖+1
− 𝑧

𝑖−1
)). Besides, let 𝑧

𝑛+1
= 𝑧

1

and 𝑧
0
= 𝑧

𝑛
.

Step 3. Finally, 𝑈
𝑖
computes the session key 𝐾 =

𝑒(𝑃pub, 𝑛𝑁𝑖
𝑧
𝑖−1
) ⋅ 𝑋

𝑛−1

𝑖
⋅ 𝑋

𝑛−2

𝑖+1
⋅ ⋅ ⋅ 𝑋

𝑖−1

𝑛
⋅ 𝑋

𝑖−2

1
⋅ 𝑋

𝑖−3

2
⋅ ⋅ ⋅ 𝑋

𝑖−2
=

𝑒(𝑃, 𝑃)
(𝑁
1
𝑁
2
+𝑁
2
𝑁
3
+⋅⋅⋅+𝑁

𝑛−1
𝑁
𝑛
+𝑁
𝑛
𝑁
1
)𝑠.

The following two attacks are valid.

B.1. Key-Compromise Impersonation [29]. When 𝑈
𝑖
wants to

negotiate a session conference key with others, she/he must
compute the authenticated factor (𝑧

𝑖
, 𝑇

𝑖
) and broadcast it.

Two adversaries A
1
and A

2
can get (𝑧

𝑖
, 𝑇

𝑖
) in a previous

session. Suppose that A
1
is 𝑈

𝑖−1
and A

2
is 𝑈

𝑖+1
. Thus, A

1

and A
2
can impersonate 𝑈

𝑖
by rebroadcasting (𝑧

𝑖
, 𝑇

𝑖
) that

satisfies the verification formula in Step 2. WhenA
1
andA

2

collude, they can compute 𝑋
𝑖
= 𝑒(𝑧

𝑖
, (𝑁

𝑖+1
− 𝑁

𝑖−1
)𝑃pub) =

𝑒(𝑁
𝑖
𝑃, 𝑠(𝑧

𝑖+1
− 𝑧

𝑖−1
)) = 𝑒(𝑃pub, 𝑁𝑖

(𝑧
𝑖+1
− 𝑧

𝑖−1
)).

Now,A
1
andA

2
have a valid message (𝑧

𝑖
, 𝑇

𝑖
, 𝑋

𝑖
), so that

they can impersonate𝑈
𝑖
to construct a session conference key

without being detected by other users.

B.2. Forward Secrecy. Assume that an adversary A gets TA’s
long-term private key 𝑠. 𝑈

1
, 𝑈

2
, . . ., and 𝑈

𝑛
negotiated a key

𝐾 in a previous session and A got all transmitted messages
(𝑧
1
, 𝑇

1
, 𝑋

1
), (𝑧

2
, 𝑇

2
, 𝑋

2
), . . ., and (𝑧

𝑛
, 𝑇

𝑛
, 𝑋

𝑛
). Then A can

compute the previous session key 𝐾 as follows:

𝐾 = 𝑒 (𝑧
𝑖
, 𝑠𝑛𝑧

𝑖−1
) ⋅ 𝑋

𝑛−1

𝑖
⋅ 𝑋

𝑛−2

𝑖+1
⋅ ⋅ ⋅ 𝑋

𝑖−2

= 𝑒 (𝑃pub, 𝑛𝑁𝑖
𝑧
𝑖−1
) ⋅ 𝑋

𝑛−1

𝑖
⋅ 𝑋

𝑛−2

𝑖+1
⋅ ⋅ ⋅ 𝑋

𝑖−2
.

(B.1)

Du et al. improved their scheme in [16]. They added
a synchronous counter 𝑐 which was held by all users. The
initial value of 𝑐 is 1 and 𝑐 is increased by 1 after a successful
session. In the improved scheme, they modified 𝑇

𝑖
= 𝐻(𝑧

𝑖
)

𝑐𝑆
𝑖
+ 𝑁

𝑖
𝑃pub in Step 1 and 𝑈

𝑖
verified if 𝑒(∑𝑁

𝑗=1,𝑗 ̸=𝑖
𝑇
𝑗
, 𝑃) =

𝑒(∑
𝑁

𝑗=1,𝑗 ̸=𝑖
(𝐻(𝑧

𝑗
)𝑐𝑄

𝑗
+ 𝑧

𝑗
), 𝑃pub) in Step 2. However, [16] still

has the same vulnerability as [15] to the key-compromise
impersonation attack (becauseA

1
andA

2
who act as𝑈

𝑖−1
and

𝑈
𝑖+1

, resp., know 𝑐, which is public among users) and lacks
forward secrecy as shown above.

C. Zhang et al.’s Scheme [18]

Each 𝑈
𝑖
(1 ≤ 𝑖 ≤ 𝑛) has the public key 𝑄

𝑖
= 𝐻

1
(ID

𝑖
) and the

private key 𝑆
𝑖
= 𝑠𝑄

𝑖
, which are the same as those of Du et al.’s

scheme. The protocol is shown below.

Step 1. 𝑈
𝑖
randomly chooses 𝑁

𝑖
and computes 𝑧

𝑖
= 𝑁

𝑖
𝑃 and

𝑇
𝑖
= 𝐻(𝑧

𝑖
)𝑆
𝑖
+𝑁

𝑖
𝑃pub and then sends 𝑧

𝑖
with the signature 𝑇

𝑖

to 𝑈
𝑖−2
, 𝑈

𝑖−1
, 𝑈

𝑖+1
, and 𝑈

𝑖+2
.

Step 2. After verifying each received 𝑧
𝑖
by checking that

𝑒(𝑇
𝑖
, 𝑃) = 𝑒((𝐻(𝑧

𝑖
)𝑄

𝑖
+ 𝑧

𝑖
), 𝑃pub), 𝑈1 and 𝑈

𝑛
compute

𝑌
1𝑅

= 𝑒(𝑧
2
, 𝑧

3
)
𝑁
1 , 𝑌

1𝐿
= 𝑒(𝑧

𝑛
, 𝑧

2
)
𝑁
1
= 𝑒(𝑧

1
, 𝑧

2
)
𝑁
𝑛
= 𝑌

𝑛𝑅
,

𝑌
𝑛𝐿

= 𝑒(𝑧
𝑛−2
, 𝑧

𝑛−1
)
𝑁
𝑛 if 𝑛 is odd; otherwise 𝑈

1
and 𝑈

𝑛−1

compute 𝑌
1𝑅

= 𝑒(𝑧
2
, 𝑧

3
)
𝑁
1 , 𝑌

1𝐿
= 𝑒(𝑧

𝑛−1
, 𝑧

𝑛
)
𝑁
1
= 𝑒(𝑧

𝑛
,

𝑧
1
)
𝑁
𝑛−1

= 𝑌
(𝑛−1)𝑅

, 𝑌
(𝑛−1)𝐿

= 𝑒(𝑧
𝑛−3
, 𝑧

𝑛−2
)
𝑁
𝑛−1 . The other 𝑈

𝑖
’s

compute 𝑌
𝑖𝐿
= 𝑒(𝑧

𝑖−2
, 𝑧

𝑖−1
)
𝑁
𝑖 and 𝑌

𝑖𝑅
= 𝑒(𝑧

𝑖+1
, 𝑧

𝑖+2
)
𝑁
𝑖 if 𝑖 is

odd; otherwise they do nothing. Finally, each𝑈
𝑖
, with an odd

𝑖, broadcasts𝑋
𝑖
= 𝐻(𝑌

𝑖𝐿
) ⊕ 𝐻(𝑌

𝑖𝑅
) with the signature.

Step 3. Each user 𝑈
𝑖
(𝑖 is odd) and 𝑈

𝑖+1
can compute the

session conference key 𝐾 = 𝐻(𝑌
1𝐿
) + 𝐻(𝑌

3𝐿
) + ⋅ ⋅ ⋅ + 𝐻(𝑌

𝑛𝐿
)

if 𝑛 is odd where 𝐻(𝑌
𝑗𝐿
) = 𝐻(𝑌

𝑖𝑅
) ⊕ 𝑋

𝑖
⊕ 𝑋

𝑖−2
⊕ ⋅ ⋅ ⋅ ⊕ 𝑋

𝑗
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(when 𝑖 ≥ 𝑗) or 𝐻(𝑌
𝑗𝐿
) = 𝐻(𝑌

𝑖𝑅
) ⊕ 𝑋

𝑖
⊕ 𝑋

𝑖−2
⊕ ⋅ ⋅ ⋅ ⊕ 𝑋

1
⊕

𝑋
𝑛
⊕ 𝑋

𝑛−2
⊕ ⋅ ⋅ ⋅ ⊕ 𝑋

𝑗
(when 𝑖 < 𝑗) for each odd 𝑗. Otherwise,

𝐾 = 𝐻(𝑌
1𝐿
) + 𝐻(𝑌

3𝐿
) + ⋅ ⋅ ⋅ + 𝐻(𝑌

(𝑛−1)𝐿
) if 𝑛 is even where

𝐻(𝑌
𝑗𝐿
) = 𝐻(𝑌

𝑖𝑅
) ⊕ 𝑋

𝑖
⊕ 𝑋

𝑖−2
⊕ ⋅ ⋅ ⋅ ⊕ 𝑋

𝑗
(when 𝑖 ≥ 𝑗) or

𝐻(𝑌
𝑗𝐿
) = 𝐻(𝑌

𝑖𝑅
)⊕𝑋

𝑖
⊕𝑋

𝑖−2
⊕⋅ ⋅ ⋅⊕𝑋

1
⊕𝑋

𝑛−1
⊕𝑋

𝑛−3
⊕⋅ ⋅ ⋅⊕𝑋

𝑗

(when 𝑖 < 𝑗) for each odd 𝑗.
It is easy to impersonate a user whose index is even in

the scheme since the users only sends the message (𝑧
𝑖
, 𝑇

𝑖
).

We show an example as follows. Suppose that there are six
users 𝑈

1
, 𝑈

2
, 𝑈

3
, 𝑈

4
, 𝑈

5
, and 𝑈

6
who want to negotiate a

conference key. By this scheme, we can know that 𝑈
4
only

submits (𝑧
4
, 𝑇

4
) to 𝑈

2
, 𝑈

3
, 𝑈

5
, and 𝑈

6
in Step 1. If 𝑈

2
, 𝑈

3
, 𝑈

5
,

and𝑈
6
collude, they can negotiate a randomly-chosen pair of

(𝑧


4
, 𝑇



4
) to cheat 𝑈

1
without𝑈

4
joining in the session because

𝑈
1
does not need to verify (𝑧

4
, 𝑇



4
). Besides, even though 𝑈

𝑖

broadcasts the message (𝑧
𝑖
, 𝑇

𝑖
) and every user can check the

correctness of the message, the scheme still suffers from key-
compromise impersonation by resending (𝑧

𝑖
, 𝑇

𝑖
) as that of Du

et al.’s scheme [29].

D. Kim et al.’s Scheme [17]

First, KGC sets up 𝑠 as the master key and (𝑃pub, 𝑃) as public
parameters, where 𝑃pub = 𝑠𝑃. Then, KGC generates a key
pair for each user. Let ID

1
, ID

2
, . . . , ID

𝑛
be the identifiers of

users 𝑈
1
, 𝑈

2
, . . . , 𝑈

𝑛
, respectively. Each 𝑈

𝑖
(1 ≤ 𝑖 ≤ 𝑛) has the

public key 𝑄
𝑖
= 𝐻

1
(ID

𝑖
) and the private key 𝑆

𝑖
= 𝑠𝑄

𝑖
.

Step 1. 𝑈
𝑖
broadcasts 𝑎

𝑖
𝑃pub with the signature (𝑃

𝑖
, 𝑇

𝑖
), where

𝑃
𝑖
= 𝑎𝑃, 𝑇

𝑖
= 𝐻(𝑃

𝑖
, 𝑎

𝑖
𝑃pub)𝑆𝑖 + 𝑎𝑎𝑖𝑃pub, 𝑎𝑖 and 𝑎 are randomly

chosen by 𝑈
𝑖
.

Step 2. After verifying the signature by checking that
𝑒(𝑇

𝑗
, 𝑃) = 𝑒(𝐻(𝑃

𝑗
, 𝑎

𝑗
𝑃pub)𝑄𝑗

, 𝑃pub) ⋅ 𝑒(𝑎𝑗𝑃pub, 𝑃𝑗), the con-
ference key 𝐾

𝑠
is computed as follows: 𝐾

𝑠
= 𝐻

2
(𝐾) where

𝐾 = ∏
𝑁

𝑖=1
𝑒(𝑄

𝑖
, 𝑎

𝑖
𝑃pub).

This scheme has a serious problem. In the protocol, since
every user 𝑈

𝑖
broadcasts the message (𝑎

𝑖
𝑃pub, 𝑃𝑖, 𝑇𝑖), one

can collect all 𝑎
𝑖
𝑃pub’s and compute all 𝑄

𝑖
’s to derive 𝐾 =

∏
𝑁

𝑖=1
𝑒(𝑄

𝑖
, 𝑎

𝑖
𝑃pub) even if she/he does not join the session.

E. Choi et al.’s Scheme [24]

First, KGC sets up 𝑠 as the master key and (𝑃pub, 𝑃) as public
parameters, where 𝑃pub = 𝑠𝑃. Then, KGC generates a key
pair for each user. Let ID

1
, ID

2
, . . . , ID

𝑛
be the identifiers of

users 𝑈
1
, 𝑈

2
, . . . , 𝑈

𝑛
, respectively. Each 𝑈

𝑖
(1 ≤ 𝑖 ≤ 𝑛) has the

public key 𝑄
𝑖
= 𝐻

1
(ID

𝑖
) and the private key 𝑆

𝑖
= 𝑠𝑄

𝑖
.

Step 1. 𝑈
𝑖
broadcasts the signature (𝑃

𝑖
, 𝑇

𝑖
), where 𝑃

𝑖
= 𝑎

𝑖
𝑃,

𝑇
𝑖
= 𝐻(𝑃

𝑖
)𝑆
𝑖
+ 𝑎

𝑖
𝑃pub, 𝑎𝑖 is randomly chosen by 𝑈

𝑖
.

Step 2.After receiving (𝑃
𝑖−1
, 𝑇

𝑖−1
), (𝑃

𝑖+1
, 𝑇

𝑖+1
), and (𝑃

𝑖+2
, 𝑇

𝑖+2
),

𝑈
𝑖
verifies the messages by checking whether 𝑒(𝑇

𝑖−1
+ 𝑇

𝑖+1
+

𝑇
𝑖+2
, 𝑃) = 𝑒(𝑃

𝑖−1
+ 𝑃

𝑖+1
+ 𝑃

𝑖+2
+ 𝐻(𝑃

𝑖−1
)𝑄

𝑖−1
+ 𝐻(𝑃

𝑖+1
)𝑄

𝑖+1
+

𝐻(𝑃
𝑖+2
)𝑄

𝑖+2
, 𝑃pub). 𝑈𝑖 then broadcasts 𝐷

𝑖
= 𝑒(𝑎

𝑖
(𝑃

𝑖+2
−

𝑃
𝑖−1
), 𝑃

𝑖+1
).

Step 3. 𝑈
𝑖
can compute the session key 𝐾

𝑖
= 𝑒(𝑎

𝑖
𝑃
𝑖−1
, 𝑃

𝑖+1
)
𝑛

𝐷
𝑛−1

𝑖
𝐷
𝑛−2

𝑖+1
⋅ ⋅ ⋅ 𝐷

𝑖−1

𝑛
𝐷
𝑖−2

1
𝐷
𝑖−3

2
⋅ ⋅ ⋅ 𝐷

𝑖−2
.

Reference [30] has shown that [24] is vulnerable to key-
compromise impersonation as follows.

Suppose that attacker A
1
is 𝑈

𝑖−1
and attacker A

2
is 𝑈

𝑖+2
.

Thus,A
1
andA

2
can rebroadcast (𝑃

𝑖
, 𝑇

𝑖
) and then broadcast

𝐷
𝑖
= 𝑒(𝑃

𝑖
, 𝑃

𝑖+1
)
−𝑎
𝑖−1
+𝑎
𝑖+2 = 𝑒(𝑎

𝑖
(𝑃

𝑖+2
−𝑃

𝑖−1
), 𝑃

𝑖+1
) to impersonate

𝑈
𝑖
.

F. Zhou et al.’s Schemes [26]

Zhou et al. proposed two group key agreement schemes.
One is a one-round scheme with security proofs. The other
based on the former is a two-round scheme with lower
communication cost. These schemes are depicted as below:

KGC sets up 𝑠 as the master key and (𝑃pub, 𝑃) as public
parameters, where 𝑃pub = 𝑠𝑃. Then, KGC generates a key pair
for each user. Let ID

1
, ID

2
, . . . , ID

𝑛
be the identifiers of users

𝑈
1
, 𝑈

2
, . . . , 𝑈

𝑛
, respectively. Each𝑈

𝑖
(1 ≤ 𝑖 ≤ 𝑛)has the public

key 𝑄
𝑖
= 𝐻

1
(ID

𝑖
) and the private key 𝑆

𝑖
= 𝑠𝑄

𝑖
.

In the former scheme, each user 𝑈
𝑖
randomly picks 𝛿

𝑖
,

𝑟
𝑖
, and 𝑘

𝑖
, computes 𝑃𝑗

𝑖
= 𝐻

2
(𝑒(𝑆

𝑖
, 𝑄

𝑗
) ⋅ 𝛿

𝑖
) ⊕ 𝑟

𝑖
for

each 1 ≤ 𝑗 ≤ 𝑛 and 𝑗 ̸= 𝑖, and broadcasts 𝐷
𝑖
=

(𝛿
𝑖
, 𝑃

1

𝑖
, . . . , 𝑃

𝑖−1

𝑖
, 𝑃

𝑖+1

𝑖
, . . . , 𝑃

𝑛

𝑖
, 𝐻

3
(𝑟
𝑖
) ⊕ 𝑘

𝑖
). After receiving all

𝐷
𝑗
= (𝑅

𝑗
, 𝑃

1

𝑗
, . . . , 𝑃

𝑗−1

𝑗
, 𝑃

𝑗+1

𝑗
, . . . , 𝑃

𝑛

𝑗
, 𝑉

𝑗
)’s, 𝑈

𝑖
computes 𝑘

𝑗
=

𝐻
3
(𝐻

2
(𝑒(𝑄

𝑗
, 𝑆

𝑖
) ⋅ 𝑅

𝑗
) ⊕ 𝑃

𝑖

𝑗
) ⊕ 𝑉

𝑗
for each 1 ≤ 𝑗 ≤ 𝑛 and 𝑗 ̸= 𝑖.

Thus, the session key𝐾
𝑖
= 𝑘



1
⊕𝑘



2
⊕⋅ ⋅ ⋅⊕𝑘



𝑖−1
⊕𝑘

𝑖
⊕𝑘



𝑖+1
⊕⋅ ⋅ ⋅⊕𝑘



𝑛
.

In the latter scheme, only 𝑈
1
randomly picks 𝛿, 𝑟, and

𝑘
1
and broadcasts 𝐷

1
= (𝑅, 𝑃

2
, . . . 𝑃

𝑛
, 𝑉,𝑊) such that

𝐷
1
= (𝛿, 𝑟 ⊕ 𝐻

4
(𝑒(𝑆

1
, 𝑄

2
) ⋅ 𝛿), . . . , 𝑟 ⊕ 𝐻

4
(𝑒(𝑆

1
, 𝑄

𝑛
) ⋅ 𝛿),

𝐻
5
(𝑟)𝑘

1
𝑃, 𝑘

1
𝑃pub). When each 𝑈

𝑖
(2 ≤ 𝑖 ≤ 𝑛) receives 𝐷

1
, he

computes 𝑟 = 𝐻
4
(𝑒(𝑄

1
, 𝑆

𝑖
) ⋅ 𝑅) ⊕ 𝑃

𝑖
= 𝑟 and broadcasts𝐷

𝑖
=

(𝑋
𝑖
, 𝑌

𝑖
) = (𝐻

5
(𝑟)𝑘

𝑖
𝑃, 𝑘

𝑖
𝑃pub), where 𝑘𝑖 is randomly chosen by

𝑈
𝑖
. Finally, all 𝑈

𝑖
’s (1 ≤ 𝑖 ≤ 𝑛) compute 𝑧

1
= 𝐻

5
(𝑟)

−1
𝑉 and

𝑧
𝑗
= 𝐻

5
(𝑟)

−1
𝑋
𝑗
, 2 ≤ 𝑗 ≤ 𝑛, and verify 𝑧

1
, . . . , 𝑧

𝑛
by checking

𝑒(𝑃,∑
𝑛

𝑗=2
𝑌
𝑗
+ 𝑊) = 𝑒(𝑃pub, ∑

𝑛

𝑗=1
𝑧
𝑗
). Finally, all users can

compute the session key 𝐾
𝑖
= 𝐻

6
(𝑧
1
) ⊕ ⋅ ⋅ ⋅ ⊕ 𝐻

6
(𝑧
𝑛
).

Both of the schemes only achieve partial forward secrecy.
Once all of the private keys 𝑆

𝑖
’s of the users are revealed

or KGC’s secret key 𝑠 is corrupted, an attacker is able to
compute previous session keys by intercepting the previous
broadcastmessages.Moreover, the schemes cannotwithstand
key-compromise impersonation. In the first scheme, if the
private keys 𝑆

1
, . . . , 𝑆

𝑖−1
, 𝑆

𝑖+1
, . . . 𝑆

𝑛
are revealed, an attacker

A can impersonate 𝑈
𝑖
by broadcasting the message 𝐷

𝑖
with

random strings {𝛿
𝑖
, 𝑟
𝑖
, 𝑘

𝑖
} and𝑃𝑗

𝑖
= 𝐻

2
(𝑒(𝑆

𝑗
, 𝑄

𝑖
)⋅𝛿

𝑖
)⊕𝑟

𝑖
. In the

second scheme, if𝑈
1
’s private key 𝑆

1
is revealed, an attackerA

can impersonate any other𝑈
𝑖
by computing and broadcasting

𝐷
𝑖
= (𝐻

5
(𝑟)𝑘

𝑖
𝑃, 𝑘

𝑖
𝑃pub), 2 ≤ 𝑖 ≤ 𝑛, where 𝛿, 𝑟, 𝑘1, and 𝑘𝑖 are

randomly chosen.

G. Yao et al.’s Scheme [25]

KGC sets up 𝑠 as the master key and (𝑅, 𝑃) as public
parameters, where 𝑅 = 𝑠𝑃. Then, KGC generates a key pair
for each user. Let ID

1
, ID

2
, . . . , ID

𝑛
be the identifiers of users
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𝑈
1
, 𝑈

2
, . . . , 𝑈

𝑛
, respectively. Each 𝑈

𝑖
(1 ≤ 𝑖 ≤ 𝑛) has the

public key 𝑄
𝑖
= 𝐻

0
(ID

𝑖
) and the private key 𝑆

𝑖
= 𝑠𝑄

𝑖
.

Step 1. Each 𝑈
𝑖
generates a random string 𝑟

𝑖
, computes

𝐸
𝑖

= 𝑟
𝑖
𝑃 and 𝐹

𝑖
= 𝐻(𝑈, 𝑒(𝐸

𝑖
, 𝑅))𝑆

𝑖
+ 𝑟

𝑖
𝑅, where

𝑈 = ID
1
‖ID

2
‖ ⋅ ⋅ ⋅ ‖ID

𝑛
, and broadcasts (𝐸

𝑖
, 𝐹

𝑖
).

Step 2. Each 𝑈
𝑖
verifies the received (𝐸

𝑗
, 𝐹

𝑗
), 1 ≤ 𝑗 ≤ 𝑛 and

𝑗 ̸= 𝑖, by checking whether 𝑒(∑
𝑗 ̸=𝑖
𝐹
𝑗
, 𝑃) = 𝑒(∑

𝑗 ̸=𝑖
𝐻(𝑈, 𝑒(𝐸

𝑗
,

𝑅))𝑄
𝑗
+ 𝐸

𝑗
, 𝑅). If true, 𝑈

𝑖
computes and broadcasts

𝑌
𝑖

= 𝑟
𝑖
𝑇 and 𝑋

𝑖
= 𝑟

𝑖
(𝐸

𝑖+1
− 𝐸

𝑖−1
+ 𝑇), where

𝑇 = 𝐻
0
(ID

1
‖𝐸

1
‖ ⋅ ⋅ ⋅ ‖ID

𝑛
‖𝐸

𝑛
).

Step 3. After receiving (𝑋
𝑗
, 𝑌

𝑗
)’s, 𝑈

𝑖
checks if

𝑒(∑
𝑗 ̸=𝑖
𝑌
𝑗
, 𝑃) = 𝑒(∑

𝑗 ̸=𝑖
𝐸
𝑗
, 𝑇). Then, 𝑈

𝑖
computes

𝑍
𝑖
= 𝑒(𝑛𝑟

𝑖
𝐸
𝑖−1
+∑

𝑛−1

𝑗=0
(𝑛−1−𝑗)(𝑋

𝑖+𝑗
−𝑌

𝑖+𝑗
), 𝑅) and broadcasts

𝐶
𝑖
= 𝐻(𝑖‖𝑈‖𝐸

1
‖ ⋅ ⋅ ⋅ ‖𝐸

𝑛
‖𝑋

1
‖ ⋅ ⋅ ⋅ ‖𝑋

𝑛
‖𝑌

1
‖ ⋅ ⋅ ⋅ ‖𝑌

𝑛
‖𝑍

𝑖
).

Step 4. 𝑈
𝑖

checks whether each received 𝐶
𝑗

equals
𝐻(𝑗‖𝑈‖𝐸

1
‖ ⋅ ⋅ ⋅ ‖𝐸

𝑛
‖𝑋

1
‖ ⋅ ⋅ ⋅ ‖𝑋

𝑛
‖𝑌

1
‖ ⋅ ⋅ ⋅ ‖𝑌

𝑛
‖𝑍

𝑖
), where

𝑍
𝑖
= 𝑍

𝑗
. If the condition holds, the session key 𝐾

𝑖
=

𝐻(𝑈‖𝐸
1
‖ ⋅ ⋅ ⋅ ‖𝐸

𝑛
‖𝑋

1
‖ ⋅ ⋅ ⋅ ‖𝑋

𝑛
‖𝑌

1
‖ ⋅ ⋅ ⋅ ‖𝑌

𝑛
‖𝑍

𝑖
‖𝐶

1
‖ ⋅ ⋅ ⋅ ‖𝐶

𝑛
).

The scheme is not immune to key-compromise imper-
sonation, either. Suppose that an adversary A who obtains
𝑈
𝑖
’s private key 𝑆

𝑖
attempts to impersonate 𝑈

𝑡
. A can

rebroadcast previous messages (𝐸
𝑡
, 𝐹



𝑡
) and (𝑋

𝑡
, 𝑌



𝑡
) in Step

1 and Step 2, respectively. Then, A broadcasts 𝐶
𝑡

=

𝐻(𝑡‖𝑈‖𝐸
1
‖ ⋅ ⋅ ⋅ ‖𝐸

𝑛
‖𝑋

1
‖ ⋅ ⋅ ⋅ ‖𝑋

𝑛
‖𝑌

1
‖ ⋅ ⋅ ⋅ ‖𝑌

𝑛
‖𝑍

𝑖
) in Step 3.
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