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In this paper, a novel method termed the phase coherence
acquisition (PCA) is proposed for pseudorandom (PN) sequence
acquisition. By employing complex phasors, the PCA requires only
complex additions in the order of N , the length of the sequence,
whereas the conventional method using fast Fourier transform (FFT)
requires complex multiplications and additions both in the order of
N log2 N . To combat noise, the input and local sequences are
partitioned and mapped into complex phasors in PCA. The phase
differences between pairs of input and local phasors are used for
acquisition; thus, complex multiplications are avoided. For more
noise-robustness capability, the multilayer PCA is developed to
extract the code phase step-by-step. The significant reduction of
computational loads makes the PCA an attractive method, especially
when the sequence length of N is extremely large, which becomes
intractable for the FFT-based acquisition.
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I. INTRODUCTION

Pseudorandom (PN) sequence matching is widely
used in various applications. For example, in
spread-spectrum communications and global navigation
satellite system (GNSS) receivers, the matching is
implemented to search for the correct code phase so
as to identify the transmitter. The serial search acquisition
for matching the PN sequence by finding the correlation
peak is simple and straightforward, but it is rather
time-consuming with exhaustive searches required
for each code phase [1, 2]. Because the correlation of
the PN sequence in the acquisition can be calculated
by using the convolution theorem and implemented
with the fast Fourier transform (FFT) algorithm, parallel
search acquisition based on the FFT algorithm is
proposed to significantly reduce acquisition time,
but this results in an increase in complexity [3–7].
Specifically, the convolution of two sequences can be
derived from the pointwise product of the corresponding

Fourier transforms (i.e., x[n] ⊗ y[n] F→X(ω) · Y (ω),

where ⊗ denotes the convolution and F represents the
Fourier transform).

The previous works regarding the reduction of
complexity or computation of PN sequence acquisition
using the FFT algorithm mainly focused on reducing the
number of input elements either in the FFT stage (by
summing over a number of chips or superimposing folded
segments of the local code), in the inverse FFT (IFFT)
stage (by performing only on the portion of data with
significant power), or in combination with the Doppler
search [8–14]. The FFT/IFFT structure basically remains
and serves as the intermediate component for facilitating
the search for the code phase. Hence, the computation
load for acquisition is dominated by the computation of
FFT/IFFT that involves a number of complex
multiplications [3–5].

In this paper, we propose an approach, termed phase
coherence acquisition (PCA), which uses a distinct
perspective from the conventional FFT/IFFT structure.
That is, the PCA extracts the desired code phase
information by using phasors in the complex domain.
Owing to the simple phase manipulation of phasors and
the elimination of inverse mapping into the time domain,
the PCA requires much less computation than FFT-based
acquisition to search for the correlation peak of PN
sequences. It is noteworthy that PCA requires no
multiplication as compared with FFT-based acquisition.
This superiority becomes prominent when the applied
sequence length N is very large such that the FFT-based
approach is difficult to be implemented. This paper is
organized as follows. First, we describe the motivation of
our work. Next, we develop our approach in the noiseless
case and provide the essential idea in our development. To
achieve noise robustness, we then incorporate a novel
segmentation scheme in our approach and propose the
PCA method. The simulation results are provided to verify
the analysis and demonstrate the performance of the
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proposed method. Finally, the computation of PCA and
FFT-based method are discussed.

II. MOTIVATION

The convolution theorem states that under general
conditions, the Fourier transform of a convolution between
two sequences is the pointwise product of the Fourier
transforms of these two sequences. The theorem can be
represented by

F {x[n] ⊗ y[n]} = F {x[n]} · F {y[n]} , (1)

where F denotes Fourier transform. By applying the
inverse Fourier transform F−1, we have

x[n] ⊗ y[n] = F−1 {F {x[n]} · F {y[n]}} . (2)

In many applications, the code phase search between
two sequences is usually implemented by FFT and its
inverse due to the efficient computation compared with the
exhaustive direct serial search method. The computation
of FFT of N points involves complex multiplications and
additions of order N log2 N . Due to the diverse need for
applications and the increasing complexity of modern
algorithms, a more computationally efficient method is
needed when the length of processed sequence becomes so
large that implementation using the FFT method becomes
difficult. Our idea for code phase acquisition that attains
much less computation is developed in the following.

III. ACQUISITION BY PHASOR

Let SIN = {x0, x1, · · · , xN−1} and
SLO = {y0, y1, · · · , yN−1} be the input and local PN
sequences of length N , respectively, where
xn, yn ∈ {1, −1}. In noiseless condition, the cross
correlation between {xn} and {yn} is denoted by

C(m) =
N−1∑
k=0

xk+myk, (3)

where m = 0, 1, · · · N − 1.
Let the code phase shift between SIN and SLO be q,

where q ∈ {0, 1, · · · , N − 1}. We first map the input and
local sequences into phasors as given by

X =
N−1∑
n=0

xnγ
−n (4)

Y =
N−1∑
n=0

ynγ
−n, (5)

where γ = ej 2π
N and j = √−1.

We then calculate

� = X∗ · Y

=
(

N−1∑
n=0

xnγ
n

)
·
(

N−1∑
k=0

ykγ
−k

)

=
(

N−1∑
m=0

xk+mγ k+m

)
·
(

N−1∑
k=0

ykγ
−k

)

=
N−1∑
m=0

N−1∑
k=0

xk+mykγ
m

=
N−1∑
m=0

γ mC(m), (6)

where the superscript ∗ denotes the complex conjugation
and C(m) represents the cross correlation between {xn}
and {yn}. To present our concept in a direct and effective
manner, the maximal-length sequence (MLS) is illustrated
for the sequence acquisition. The cross correlation
between {xn} and {yn} is given by

C(m) =
{

N, if m = q,

−1, if m �= q.
(7)

Hence, (6) becomes

� =
N−1∑
m=0

γ mC(m)

= C(q)γ q +
N−1∑

m=0,m�=q

γ mC(m)

= (N + 1)γ q −
N−1∑
m=0

γ m

= (N + 1)γ q

= (N + 1)ej 2π
N

q, (8)

where the equality
N−1∑
m=0

γ m = 0 is applied in the above

derivation.
Let the phase of � be � as denoted by

� = 2π

N
q. (9)

The acquisition of the sequence can then be achieved by

q = N

2π
�. (10)

Because the input sequence consists of +1 and −1, the
complex phasor of (4) is obtained by simply N additions
(subtractions). Note that the computations of the phasor
regarding the local sequence can be omitted by calculating
(5) in advance.

In the above derivation, when the phasor of the input
sequence is obtained by (4), very few computations are
needed to determine the shift q, that is, much fewer than
those required for the FFT-based approach. However, the
phase accuracy of the complex phasor is sensitive to noise.
The phase resolution is 2π/N according to (9). As shown
in Fig. 1, when N is large, the distance between adjacent
phases is rather small, which easily leads to erroneous
phase estimation under the noisy environment. Hence, it
becomes necessary to design an algorithm that permits the
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Fig. 1. Schematic plot of phase resolution for phasors on complex
domain.

distance between adjacent phases to be increased to resist
the effect of noise.

IV. PCA

A. Segmentation

Suppose the input sequence SIN has the length of
N = K · M . In the PCA, SIN is first partitioned into
K-disjointed segments of length M as denoted by

A0 = {x0, xK, x2K, · · · x(M−1)K}
A1 = {x1, xK+1, x2K+1, · · · x(M−1)K+1}
...
AK-1 = {xK−1, x2K−1, x3K−1, · · · xMK−1}

= {xK−1, x2K−1, x3K−1, · · · xN−1}.

(11)

Similarly, the local sequence SLO is also partitioned into
K-disjointed segments as below:

B0 = {y0, yK, y2K, · · · y(M−1)K}
B1 = {y1, yK+1, y2K+1, · · · y(M−1)K+1}
...
BK-1 = {yK−1, y2K−1, y3K−1, · · · yMK−1}

= {yK−1, y2K−1, y3K−1, · · · yN−1}.

(12)

Suppose the code phase shift between the input and the
local sequences is q = cK + d, where 0 ≤ c < M and
0 ≤ d < K . We then have yi = xi+q = xi+cK+d , and the
following relationships

B0 = {y0, yK, y2K, · · · y(M−1)K}
={xcK+d, x(c+1)K+d,· · ·, x(M−1)K+d,xd,· · ·, x(c−1)K+d}
= Ad(c)

B1 = Ad+1(c)
...
BK-d-1 = AK−1(c),

(13)

where Ad(c) denotes the circular shift of Ad with c chips
to left.

The remaining BK-d, BK-d+1, · · · , BK-1 can be
derived by using the same logics but with adjustments, as

given by

BK-d = {yK−d, y2K−d, y3K−d, · · · yMK−d}
= {x(K−d)+cK+d, x(2K−d)+cK+d, · · · , xMK+d+cK+d}
= {x(c+1)K, x(c+2)K, · · · , x0, · · · , xcK}
= A0(c + 1)

BK-d+1 = A1(c + 1)
...
BK-1 = Ad−1(c + 1).

(14)

From (13) and (14), the relationships between Ai and Bi

can be generalized as follows:

Bi = Ad+i(c), 0 ≤ i ≤ K − d − 1

= A(d+i)modK (c + 1), K − d ≤ i ≤ K − 1. (15)

B. Acquisition by Phase

In each segment of (11) and (12), we map the
sequences into the complex phasors by

Xi =
M−1∑
n=0

xnK+iα
−n (16)

Yi =
M−1∑
n=0

ynK+iα
−n, (17)

where α = ej 2π
M and i = 0, 1, 2, · · · K − 1.

Let Ai(m) be the segment Ai with m circular shifts to
left, denoted by

Ai(m) = {xmK+i , x(m+1)K+i , · · · , xi, · · · , x(m−1)K+i}. (18)

Accordingly, the complex phasor pertaining to Ai(m) is
given by

Xi(m) =
M−1∑
n=0

x(m+n)K+iα
−n

=
M−1∑
n=0

x(m+n)K+iα
−(m+n) · αm

= αm

M−1∑
u=0

xuK+iα
−u

= αmXi. (19)

According to (19) and (15), the complex phasors Yi are
derived by

Yi = αc · Xd+i

= ej 2π
M

c · Xd+i , 0 ≤ i ≤ K − d − 1 (20)

Yi = αc+1 · Xd+i

= ej 2π
M

(c+1) · Xd+i , K − d ≤ i ≤ K − 1. (21)

Furthermore, the complex phasors Xi and Yi can be
expressed by

Xi = |Xi |ejθi (22)

Yi = |Yi |ejφi , (23)
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where θi and φi denote the phases of Xi and Yi ,
respectively.

From (20) to (23), we have the following phase
relationship:

φi = θi+d + 2π

M
· c, 0 ≤ i ≤ K − d − 1

= θi+d + 2π

M
· (c + 1), K − d ≤ i ≤ K − 1. (24)

Let Gm be the sum of the K complex phasors, defined as

Gm =
K−m−1∑

i=0

ej (φi−θi+m) +
K−1∑

i=K−m

ej (φi−θi+m− 2π
M

), (25)

where m = 0, 1, 2, · · · K − 1.
According to the relationship of (24), when m = d, we

have

Gd =
K−m−1∑

i=0

ej (φi−θi+d ) +
K−1∑

i=K−m

ej (φi−θi+d− 2π
M

)

= K · ej 2π
M

c. (26)

Apparently,

|Gd | = K. (27)

Note that we have a peak magnitude given by (27) when
the K complex phasors are coherently added for Gd . On
the other hand, when m �= d, Gm is the sum of the K

phasors of noncoherent phases, and the resultant
magnitude is expected to be much smaller than K . Hence,
the value of d can be obtained by finding the peak
magnitude among {|Gm|}. In addition, let 
 be the phase
of Gd . From (26), we have


 = 2π

M
· c. (28)

Thus, c is given by

c = M · 


2π
. (29)

Let the estimates of (c, d) be (ĉ, d̂). Practically, when
d̂ = d and ĉ is equal to c, the shift q = ĉK + d̂ is
correctly determined.

In PCA, the input sequence is one-bit quantized,
partitioned, and transformed into phasors as given by (16).
The phase differences between phasors of the input and
local sequences are then used for the acquisition, as given
by (25). When the phase differences between phasors are
coherently added, we can have a large peak (|Gd |) to
determine the correct segment for code phase acquisition.
These processes simply require complex additions and
eliminate the need for complex multiplications that are the
major advantages of the PCA. The segmentation process
confers noise robustness in the PCA method by the high
correct probability of 1) d̂ = d, because of the coherent
addition of K components, and 2) ĉ = c, because the
noise effect is mitigated in determining phase of Gd with
an enlarged distance between adjacent phases, i.e., from
2π/N to 2π/M by comparing (9) and (28). Hence, the

ultimate accuracy of code phase acquisition is improved
with the correct probability of d̂ and ĉ after the
segmentation process. However, the estimated (ĉ, d̂) could
be erroneous when the signl-to-noise ratio (SNR) is very
low, especially ĉ. In such situations, the multilayer scheme
can be applied to enhance the noise resistance in the PCA
method.

C. Multilayer PCA

In the multilayer PCA, the first-layer process is
identical to the method described above. First, the input
and local sequences of length N are partitioned into K1

segments of length M1, where N = K1M1. Assume the
shift is denoted as q = c1K1 + d1. In the first layer, only
d1 is estimated by finding the peak of |G(1)

m | in (25), and c1

is left undetermined owing to the sensitivity to the effect
of noise. The superscripts (1) and (2) in Gm indicate the
first layer and the second layer, respectively. After the first
layer is completed, we assume d̂1 = d1 and

Bi = Ad̂1+i(c1), 0 ≤ i ≤ K1 − d̂1 − 1

= Ad̂1+i(c1 + 1), K1 − d̂1 ≤ i ≤ K1 − 1, (30)

where c1 is still undetermined.
We rewrite (30) by

Bi = A′
d̂1+i(c1), 0 ≤ i ≤ K1 − 1 (31)

where

A′
d̂1+i(c1) =

{
Ad̂1+i(c1), 0 ≤ i ≤ K1 − d̂1 − 1

Ad̂1+i(c1 + 1), K1 − d̂1 ≤ i ≤ K1 − 1.

From (31), all the pairs of (A′
d̂1+i, Bi) have the same shift

of c1 chips in between, which is the key for the following
derivation in the second layer.

The process of the second layer is introduced next. For
simplicity, we take the pair (A′

d̂1
, B0) as an example,

where each A′
d̂1

and B0 contains M1 elements and their
relative shift is c1, i.e., B0 = A′

d̂1
(c1). Let M1 = K2 · M2

and assume c1 = c2K2 + d2, where 0 ≤ c2 ≤ M2 and
0 ≤ d2 ≤ K2. First, A′

d̂1
and B0 are partitioned into

K2-disjointed segments of length M2 as before. Following
the same calculation as (25), the sum of the K2 complex
phasors is obtained for (A′

d̂1
, B0), given as

Hr,0 =
K2−r−1∑

s=0

ej (φ′
s−θ ′

s+r ) +
K2−1∑

s=K2−r

e
j (φ′

s−θ ′
s+r− 2π

M2
)
, (32)

where r = 0, 1, · · · , K2 − 1 and (φ′
s, θ

′
s) are the

corresponding phases involved in the calculation.

When r = d2, we have Hd2,0 = K2 · e
j 2π

M2
c2 under the

noiseless condition, which has the maximum magnitude
among {Hr,0}.

When the similar calculation is applied to the other
pairs (A′

d̂1+i , Bi), i = 1, 2, · · · , K1 − 1, their associated
Hr,i can then be obtained. Afterwards, all of the Hr,i are
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used to calculate

G(2)
r =

K1−1∑
i=0

Hr,i, (33)

where r = 0, 1, · · · , K2 − 1.
Because all the pairs (A′

d̂1+i , Bi) have the same shift

of c1 chips in between, where c1 = c2K2 + d2, G
(2)
d2

will
have a peak magnitude among {G(2)

r }. Specifically, in a
noiseless condition, we have

G
(2)
d2

=
K1−1∑
i=0

Hd2,i

=
K1−1∑
i=0

K2 · e
j 2π

M2
c2

= K1K2 · e
j 2π

M2
c2, (34)

where the peak magnitude is K1K2.
Similar to the first layer, by finding the peak

magnitude among {|G(2)
r |}, we can estimate d2, which is

denoted by d̂2. Let � be the phase of G
(2)
d̂2

as given by

� = 2π

M2
· c2. (35)

Similar to (29), the estimate of c2, denoted by ĉ2, is
obtained by

ĉ2 = M2 · �

2π
. (36)

According to (35), the separation between adjacent
phases is further enlarged from 2π/M1 to 2π/M2, which
significantly increases the resistance to noise. Note that c2

can also be left undetermined after the second layer and
determined by the third layer, if necessary. Nevertheless,
from our simulation results, two layers appear to be
sufficient for most applications. Finally, the estimate of q,
denoted as q̂, is calculated as

q̂ = ĉ1K1 + d̂1

= (ĉ2K2 + d̂2)K1 + d̂1. (37)

D. Error Detection Capability

When the segment of the first layer is correctly
estimated, i.e., d̂1 = d1, we obtain a much larger peak in
the second layer for d̂2 = d2. Taking the noiseless case, for
example, we have the peak of K1 in |G(1)

d1
|, according to

(26). In contrast, a much larger peak of K1K2 is obtained
from |G(2)

d2
| in (34). As a result, the existence of a

significant peak in |G(2)
r | of the second layer can be used to

verify the correctness of d̂1, which shows the inherent
error detection capability of PCA. Accordingly, correct d̂1

can be obtained with some recursive algorithms using
such an error detection property, and the performance of
the multilayer PCA can be further improved. This special
feature has been verified in our simulations.

V. PERFORMANCE OF PCA

Let the input PN sequence be {xn}. Assume the
sequence is distorted by zero-mean Gaussian noise ζn with
variance σ 2

ζ and is one-bit quantized, as denoted by

wn = sign(xn + ζn), (38)

where n = 0, 1, · · · , N − 1, sign(z) = 1, if z ≥ 0, and
sign(z) = −1, if z < 0.

In the first layer, the input and local sequences, {wn}
and {yn}, are partitioned into K1 segments of length M1, as
denoted by

Ai = {wi, wK1+i , w2K1+i , · · · w(M−1)K1+i} (39)

Bi = {yi, yK1+i , y2K1+i , · · · y(M−1)K1+i}, (40)

where i = 0, 1, · · · , K1 − 1.
Similar to (16) and (17), the complex phasors are

defined by

Wi =
M1−1∑
n=0

wnK1+iα
−i

= |Wi |ejθi (41)

Yi =
M1−1∑
n=0

ynK1+iα
−n

= |Yi |ejφi . (42)

Moreover, according to (25), the sum of complex phasors
is given by

G(1)
m =

K1−m−1∑
i=0

ej (φi−θi+m) +
K1−1∑

i=K1−m

e
j (φi−θi+m− 2π

M1
)

=
K1−1∑
i=0

ejψi,m , (43)

where ψi,m denotes the phase difference between the
complex phasors Wi+m and Yi, −π ≤ ψi,m ≤ π , and
m = 0, 1, · · · , K1.

Let the shift between {wn} and {yn} be q = c1K1 + d1.
As derived in the Appendix, the magnitude of |G(1)

m | with
m �= d1, i.e., the sidelobe, is a random variable with the
Rayleigh distribution given by

f (rs) = rs

K1/2
e−r2

s /K1, (44)

where f (rs) is the probability density function of |G(1)
m |

and rs ≥ 0.
In addition, |G(1)

m | with m = d1, i.e., |G(1)
d1

|, has the
Rice distribution given by

f (rp) = rp

σ 2
p1

e−(r2
p+μ2

Re1)/2σ 2
p1 · I0

(
rpμRe1

σ 2
p1

)
, (45)

where rp ≥ 0.
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For a given rp, the probability of rp > rs is denoted by

Pr(rp > rs) =
∫ rp

0
f (rs)drs

= 1 − exp

(
− r2

p

K1

)
. (46)

Because there are K1 − 1 sidelobes in the G(1)
m , the correct

d1 is obtained when |G(1)
d1

|is greater than all the other
K1 − 1 sidelobes. Hence, for a given rp, the correct
probability of detecting d1 is given by

Pd(rp) =
(

1 − exp

(
− r2

p

K1

))K1−1

. (47)

When the distribution of rp is considered, the correct
probability of d1, i.e. d̂1 = d1, is denoted by

PD1 =
∫ ∞

0
Pd(rp)f (rp)drp. (48)

Furthermore, the probability of correct c1 shall be
considered for the correct acquisition in the one-layer
PCA. According to (29), c1 is obtained from the phase of
G

(1)
d1

; thus, the probability of detecting c1 can be derived in

light of the phase distribution of G
(1)
d1

. Specifically, let the

phase of G
(1)
d1

be ϕ. For simplicity, assume c1 = 0.
According to the schematic concept shown in Fig. 1, c1 is
correct if |ϕ| ≤ π

M1
. Using the joint magnitude and phase

distribution of G
(1)
d1

derived in the Appendix, we have

f (rp, ϕ) = rp

2πσ 2
p1

exp

(
− r2

p + μ2
Re1 − 2rpμRe1 cos ϕ

2σ 2
p1

)
,

(49)

where −π ≤ ϕ < π .
The joint probability of correct d1 and c1 is then

denoted by

PC1 = Pr

(
d̂1 = d1,|ϕ| ≤ π

M1

)

= 2 ·
∫ π

M1

0

∫ ∞

0
Pd(rp)f (rp, ϕ)drpdϕ. (50)

We use the MLS of length N = 220 − 1 to verify the
analysis. Let K1 = 210 + 1 and M1 = 210 − 1. The
mentioned correct probabilities are simulated by the
Monte Carlo method with 10 000 trials. The correct
probabilities of PD1 and PC1 are shown in Figs. 2 and 3,
respectively. In both figures, the analytical and simulated
results are consistent with each other, which justifies the
validity of our analysis. The correct probability of d1

approaches one when SNR > −15 dB and begins to
degrade with decreasing SNR. Note that the probability of
d1 is critical to the performance of PCA. The acquisition
process will fail if d1, i.e., the correct segment, cannot be
correctly detected. On the other hand, the correct
probability of PC1 is worse than PD1, which approaches

Fig. 2. Correct probability of d1 in first layer of PCA.

Fig. 3. Joint correct probability of d1 and c1 in first layer of PCA.

one when SNR > 10 dB but drops to below 0.1 if
SNR < 0 dB.

Besides the correct probability, the standard deviation
(STD) of ĉ1 is also derived to study the deviation of code
phase shift. We consider the STD of ĉ1 with the condition
that d̂1 = d1, which is denoted by

σϕ =
[

1

PD1

∫ π

−π

ϕ2 ·
∫ ∞

0
Pd(rp)f (rp, ϕ)drpdϕ

]1/2

. (51)

In Fig. 4, the STD decreases with SNR. Specifically, the
STD of ĉ1 is about four chips when SNR = 0 dB and
decreases to within one chip for SNR ≥ 6 dB. According
to the STD of ĉ1, the one-layer PCA performs well only in
the case of the high SNR. For applications with low SNR,
the second layer is needed to improve performance in
PCA.

Let M1 = K2M2 and c1 = c2K2 + d2 in the second
layer of PCA. According to (32) and (33), the sum of
complex phasors is given by

G(2)
n =

K1−1∑
i=0

(
K2−n−1∑

t=0

ej (φi,t−θi,t+n) +
K2−1∑

t=K2−n

e
j (φi,t−θi,t+n− 2π

M2
)

)

=
K1−1∑
i=0

K2−1∑
t=0

ejψi,t+n , (52)

where n = 0, 1, · · · , K2.
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Fig. 4. STD of ĉ1 in first layer of PCA, when d̂1 = d1.

For simplicity, we assume d̂1 = d1 for the analysis of
the second layer. According to the Appendix, the
magnitude distribution of the sidelobe of |G(2)

n | with
n �= d2 is given by

f (ls) = ls

K1K2/2
e−l2

s /K1K2, (53)

where ls ≥ 0.
On the other hand, the magnitude distribution of |G(2)

n |
with n = d2 is denoted by

f (lp) = lp

σ 2
p2

e−(l2
p+μ2

Re2)/2σ 2
p2 · I0

(
lpμRe2

σ 2
p2

)
, (54)

where lp ≥ 0.
Similarly, for a given lp, the correct probability of d2 is

the probability that lp is greater than all the other K2 − 1
sidelobes, which is denoted by

Pd(lp) =
(

1 − exp

(
− l2

p

K1K2

))K2−1

. (55)

Considering the distribution of lp, the correct probability
of d2, i.e., d̂2 = d2, is given by

PD2 =
∫ ∞

0
Pd(lp)f (lp)dlp. (56)

Furthermore, the joint distribution of the magnitude and
phase of G

(2)
d2

is given by

f (lp, ϑ) = lp

2πσ 2
p2

exp

(
− l2

p + μ2
Re2 − 2lpμRe2 cos ϑ

2σ 2
p2

)
,

(57)

where −π ≤ ϑ ≤ π .
Hence, the joint probability of the correct d2 and c2 is

denoted by

PC2 = 2 ·
∫ π

M2

0

∫ ∞

0
Pd(lp)f (lp, ϑ)dlpdϕ. (58)

Fig. 5. Correct probability of d2 in second layer of PCA, when d̂1 = d1.

Fig. 6. Joint correct probability of d2 and c2 in second layer of PCA,
when d̂1 = d1.

The correct probabilities of PD2 and PC2 are shown in
Figs. 5 and 6, respectively. We use the same parameters
for the first layer and take K2 = 25 + 1 and M2 = 25 − 1
in the second layer. Still, the analytical results are
consistent with the simulated values in both figures. The
improvement brought by the second layer is significant,
because the correct probability of d2 approaches one for
SNR from −20 to 20 dB in Fig. 5. Moreover, the joint
correct probability of d2 and c2 is greater than 0.9 when
SNR ≥ −20 dB in Fig. 6.

Similarly, the STD of ĉ2 with the condition that
d̂2 = d2 is derived by

σϑ=
[

1

PD2

∫ π

−π

ϑ2 ·
∫ ∞

0
Pd(lp)f (lp, ϑ)dlpdϑ

]1/2

. (59)

In Fig. 7, the STD is much less than one chip for
SNR ≥ −20 dB and approaches zero when SNR ≥ 5 dB.
The noise robustness of the multilayer PCA is thus
verified, especially in the case of low SNR, as comparing
Figs. 4 and 7.

To further explore the acquisition performance of
PCA, we use the P code, which is a category of
long PN sequences used in GNSS applications [15].
Let the code length be N = 216 − 1. Three PCA
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Fig. 7. STD of ĉ2 in second layer of PCA, when d̂1 = d1 and d̂2 = d2.

Fig. 8. Detection probability of P code of length N = 216 − 1 with
PCA schemes: two-layer PCA1 with (K1, M1) = (28 + 1, 28 − 1) and

(K2, M2) = (24 + 1, 24 − 1), two-layer PCA2 with
(K1, M1) = ((28 + 1) · (22 + 1), (24 + 1) · (22 − 1)) and

(K2,M2) = (24 + 1, 22 − 1), and single-layer PCA3 with
(K, M) = ((28 + 1) · (24 + 1), (22 + 1) · (22 − 1)) and N -point

FFT-based acquisition.

schemes are applied to the P code acquisition: the
two-layer PCA1 with (K1, M1) = (28 + 1, 28 − 1) and
(K2, M2) = (24 + 1, 24 − 1), the two-layer PCA2 with
(K1, M1) = ((28 + 1) · (22 + 1), (24 + 1) · (22 − 1)) and
(K2, M2) = (24 + 1, 22 − 1), and the single-layer PCA3
with (K, M) = ((28 + 1) · (24 + 1), (22 + 1) · (22 − 1)).
The performance is shown in Fig. 8. Note that only the
dominant detection probability PD1 of PCA schemes is
provided for simplicity. The performance of the N-point
FFT-based acquisition is also shown in Fig. 8 for
comparison. According to the detection probability in
Fig. 8, FFT-based method outperforms PCA schemes in
low SNR. The PCA, on the other hand, provides flexibility
for applications in different ambient SNR. The reduction
of computation of these PCA schemes over the FFT-based
method will be discussed in the following section.

VI. COMPUTATIONS OF PCA

The computations of PCA are studied and compared
with that of FFT-based acquisition. Here, we assume the

TABLE I
Computations of Three PCA Schemes with Performance Illustrated in

Fig. 8 for P Code of Length N = 216 − 1

Operation
Method Multiplications Additions

PCA1 0 7N

PCA2 0 68N

PCA3 0 585N

FFT-based method 32N 32N

computations regarding the local sequence are omitted,
because it can be calculated in advance. For the first-layer
process of PCA, the derivation of the phasors of the input
sequence, as shown in (16), requires K1 · (M1 − 1)
additions. Also, the calculation of G(1)

m in (25) requires
K1 · K1 additions (subtractions) for the phase difference
and K1(K1 − 1) additions for the sum of phasors.
Regarding the computing of the complex phase in (22),
the coordinate rotation digital computer (CORDIC), for
computing using shifts and additions, can be used [16]. In
CORDIC, let P1 denote the parameter associated with the
required phase resolution in the first layer, i.e.,
tan−1 1

2P1
≤ 2π

M1
for (28). For example, when P1 = 8, the

phase resolution is sufficient for M1 = 210 − 1. As a
result, 3K1P1 additions are needed for computing the
complex phases in (22). Hence, the overall addition in the
first layer is K1 · (M1 + 2K1 − 2 + 3P1). For the
second-layer process, K1K2 · (M2 − 1) additions are
needed for the input phasor and K1 · K2

2 + K1K2(K2 − 1)
additions for computing (32) and (33). In addition, assume
that the required phase resolution in the second layer is
tan−1 1

2P2
≤ 2π

M2
, we then need 3K1K2P2 additions for the

complex phase using the CORDIC computing. Therefore,
K1K2 · (M2 + 2K2 − 2 + 3P2) additions are required in
the second layer. Note that the parameters regarding phase
resolution in CORDIC, i.e., P1 and P2 should be at least
large enough to distinguish between the adjacent phases in
the multilayer PCA. Otherwise, the accuracy of phase
estimation and subsequent estimation of c will be bounded
by the resolution of CORDIC, which would result in a bias
in the ultimate code phase acquisition.

To be more specific, we consider the computations
involved in acquisition schemes PCA1, PCA2, and PCA3,
which have performance illustrated in Fig. 8, for P code of
length N = 216 − 1. Here, we use P1 = 8 and P2 = 4.
According to the summary of computation complexity in
Table I, no multiplication is used in the PCA schemes, but
the number of additions increases with the number of
partitions K . Computations of the FFT-based method are
also provided in Table I for comparison. The FFT-based
method substantially requires 2N log2 N multiplications
and additions because of N log2 N multiplications and
additions on both the FFT for the input sequence and the
IFFT for the conversion of a real sequence from complex
phasors [3–5]. Note that PCA1 uses even fewer additions
than the FFT-based acquisition. In particular, when the
two-layer PCA scheme with K1=2n/2+1, M1=2n/2−1,
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TABLE II
Computations of the Two-Layer PCA with

K1 = 2n/2 + 1, M1 = 2n/2 − 1, K2 = 2n/4 + 1, and M2 = 2n/4 − 1
and the FFT-Based Method for the PN Sequence of an Extremely Large

Length N = 2n − 1

Operation
Method Multiplications Additions

PCA 0 6N

FFT-based method 2N log2 N 2N log2 N

K2=2n/4+1, and M2 = 2n/4 − 1 for a PN sequence
of an extremely large N = 2n − 1 is implemented, the
computations for the phase become relatively
insignificant, and then approximately 3N additions are
required for both the first and the second layer in PCA.
The computational burden is significantly reduced to 6N

additions in the two-layer PCA as compared with
2N log2 N multiplications and additions in the FFT-based
method, as indicated in Table II. Because of its superior
computational efficiency, PCA may be applied to the
unique pattern search in a long sequence. Potential
applications include the long PN code acquisition, such as
P(Y) code and spot beam M code, and revealing an
encrypted PN code in GNSS and the satellite
communication field [8, 17–20].

VII. CONCLUSIONS

In this paper, the PCA method using the phase
difference of complex phasors for the PN sequence
acquisition is proposed. The PCA requires only complex
additions but no complex multiplications. In addition, the
acquisition performance can be improved via the use of
the multilayer scheme that also provides the inherent error
detection capability. Segmentation, phasor acquisition,
and the multilayer scheme for the PCA algorithm are
introduced in Section IV, and the analysis is conducted in
Section V. In the demonstrated case using MLS of length
N = 220 − 1 in the two-layer scheme of PCA, the correct
segment of the first layer is obtained with probability
approaching one when SNR > −15 dB, as shown in
Fig. 2. As we identify the correct segment of the first
layer, the acquisition performance attains the correct
probability greater than 0.9 for SNR ≥ −20 dB after the
second layer, as shown in Fig. 6. It is noteworthy that PCA
requires much less computation than the FFT-based
approach as discussed in Section VI and demonstrated in
Tables I and II. Hence, for applications having high SNR
margins, such as the spot beam signaling [18], the secure
telemetry, tracking and command link [19], or the
processing of denoised signals, the use of PCA will
significantly reduce the computation, namely, the complex
multiplications are eliminated, as compared with the
FFT-based method. Moreover, according to Table I, the
PCA method also has flexibility in selecting the number of
layers and partitions to reduce the computation based on

SNR margins, as shown in Fig. 8, whereas the FFT-based
acquisition requires a fixed number of computations
regardless of SNR. The superior performance on the
computation grants the PCA an effective method when the
length of a sequence is so large that the FFT-based
acquisition is infeasible. Finally, it is worth mentioning
that the SNR performance of PCA regarding the detection
probability can be improved when a one-bit quantized
input sequence in (16) is replaced by a multibit quantized
version. The improvement is obtained by the reduction of
quantization loss. However, the price is the computational
complexity because the multiplications are required in
(16). Further investigations may be interesting but beyond
the scope of this work.

APPENDIX. MAGNITUDE AND PHASE
DISTRIBUTION OF Gm

The distribution of Gm in the first layer, G(1)
m , is

derived first. We rewrite (38) as

wn = xn + βnx̄n (60)

where βn ∈ {0, 2} and x̄n denotes the inverse of xn.
In (60), when βn = 2, we have wn = x̄n, indicating

that an error occurs because of noise ζn. The
corresponding error probability is given by

Pe = Pr(βn = 2)

= Q(1/σn), (61)

where Q(z) = ∫ ∞
z

e−x2/2dx.
We can represent (41) as

Wi =
M1−1∑
n=0

wnK1+iα
−n

= Xi +
M1−1∑
n=0

βnK1+i x̄nK1+iα
−n, (62)

where Xi =
M1−1∑
n=0

xnK1+iα
−n is assumed to be fixed.

Let E{z} denote the expected value of z. The mean
value of Wi is obtained by

E{Wi} = E

{
Xi +

M1−1∑
n=0

βnK1+i x̄nK1+iα
−n

}

= Xi +
M1−1∑
n=0

E{βnK1+i}x̄nK1+iα
−n

= Xi + 2Pe ·
M1−1∑
n=0

x̄nK1+iα
−n

= (1 − 2Pe) · Xi, (63)

where E{βnK1+i} = 2Pe and
M1−1∑
n=0

x̄nK1+iα
−n = −Xi .
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Furthermore, to obtain the variance of Wi , we calculate

E{WiW
∗
i }=E

{(
Xi +

M1−1∑
n=0

βnK1+i x̄nK1+iα
−n

)

·
(

Xi +
M1−1∑
m=0

βmK1+i x̄mK1+iα
−m

)∗ }

= XiX
∗
i + Xi ·

M1−1∑
m=0

E{βmK1+i}x̄mK1+iα
m + X∗

i

·
M1−1∑
n=0

E{βnK1+i}x̄nK1+iα
−n

+E

{ (
M1−1∑
n=0

βnK1+i x̄nK1+iα
−n

)

·
(

M1−1∑
m=0

βmK1+i x̄mK1+iα
m

)}

= |Xi |2 − 2Pe · XiX
∗
i − 2Pe · X∗

i Xi

+
M1−1∑
n=0
m=n

E{βnK1+iβmK1+i}x̄nK1+i x̄mK1+iα
m−n

+E

⎧⎪⎨
⎪⎩

M1−1∑
n=0

βnK1+i x̄nK1+iα
−n

M1−1∑
m=0
m�=n

βmK1+i x̄mK1+iα
m

⎫⎪⎬
⎪⎭

≈ |Xi |2−4Pe|Xi |2+4Pe

M1−1∑
n=0
m=n

x̄nK1+i x̄mK1+iα
m−n

= |Xi |2 − 4Pe|Xi |2 + 4PeM1, (64)

where E

{
M1−1∑
n=0

βnK1+i x̄nK1+iα
−n

M1−1∑
m=0
m�=n

βmK1+i x̄mK1+iα
m

}
≈ 0

and E{βnK1+iβmK1+i} = 4Pe, when m = n.
By using (63) and (64), the variance of Wi is derived by

V ar{Wi} = E{|Wi |2} − (|E{Wi}|)2

= E{WiW
∗
i } − E{Wi} · (E{Wi})∗.

= |Xi |2 − 4Pe|Xi |2 + 4PeM1 − ((1 − 2Pe)Xi)

·((1 − 2Pe)Xi)
∗

= 4PeM1 − 4P 2
e |Xi |2. (65)

It is reasonable to assume that {xnK1+i} involved in Xi is a
PN sequence of length M1. Similar to (8), we have

|Xi |2 ≈ M1 + 1. (66)

Let the code phase shift between input and local MLS
be q = c1K1 + d1. Considering the sidelobe of |G(1)

m |, i.e.,
m �= d1, in (43), the phases ψi,m can be considered to be
uniformly distributed between −π and π . According to
[21], the magnitude distribution of |G(1)

m |, denoted by rs ,
can be modeled using Rayleigh distribution, given as

f (rs) = rs

K1/2
e−r2

s /K1, (67)

where rs ≥ 0.

On the other hand, for the |G(1)
m | with m = d1, (43) is

represented by

G
(1)
d1

=
K1−1∑
i=0

ejψi,m

=
K1−1∑
i=0

e
j 2π

M1
c1+�φi , (68)

where �φi denotes the phase error induced by noise.
Without loss of generality, we assume c1 = 0. Then,

(68) becomes

G
(1)
d1

=
K1−1∑
i=0

ej�φi . (69)

The �φi denotes the phase difference between the input
phasor Wi and local phasor Yi caused by noise. Because
we have the mean and variance of Wi in (63) and (65),
according to [21, Sec. 4.4], the distribution of �φi can be
approximated by

f (�φi)= 1

2π
e−ρ

[
1+G

√
π exp(G2)(1+erf(G))

]
, (70)

where ρ = (E{Wi })2

V ar{Wi } , G = √
ρ cos(�φi), and −π ≤ �

φi ≤ π .
Moreover, to obtain the magnitude distribution of G

(1)
d1

,
(69) is reformulated by

G
(1)
d1

=
K1−1∑
i=0

ej�φi

=
K1−1∑
i=0

cos(�φi) + j

K1−1∑
i=0

sin(�φi)

= �Re + j�Im, (71)

where �Re =
K1−1∑
i=0

cos(�φi) and �Im =
K1−1∑
i=0

sin(�φi).

We assume that each cos(�φi) and sin(�φi) are
independent and identically distributed random variables.
Let N (μ, σ 2) denote the normal distribution function with
mean μ and variance σ 2. By the central limit theorem, �Re

and �Im can be approximated by two normal distributions
N

(
μRe1, σ

2
Re1

)
and N

(
μIm1, σ

2
Im1

)
, respectively, and the

parameters are obtained by

μRe1 = E

{
K1−1∑
i=0

cos(�φi)

}

=
K1−1∑
i=0

E{cos(�φi} (72)

σ 2
Re1 = V ar

{
K1−1∑
i=0

cos(�φi)

}

=
K1−1∑
i=0

V ar{cos(�φi)} (73)
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μIm1 =
K1−1∑
i=0

E{sin(�φi)} (74)

σ 2
Im1 =

K1−1∑
i=0

V ar{sin(�φi)}. (75)

Numerically, we find μRe1 �= 0, μIm1 = 0, and
σ 2

Re1
∼= σ 2

Im1. For simplicity, let σ 2
p1 = (σ 2

Re1 + σ 2
Im1)/2.

According to [21], the magnitude of G
(1)
d1

, denoted by rp,
can be modeled by Rice distribution given as

f (rp) = rp

σ 2
p1

e−(r2
p+μ2

Re1)/2σ 2
p1 · I0

(
rpμRe1

σ 2
p1

)
, (76)

where rp ≥ 0 and I0(·) is the modified Bessel function of
the first kind with order zero.

In addition, the joint magnitude of phase distribution
of G

(1)
d1

is given by

f (rp, ϕ) = rp

2πσ 2
p1

exp

(
− r2

p + μ2
Re1 − 2rpμRe1 cos ϕ

2σ 2
p1

)
,

(77)

where −π ≤ ϕ < π .
The derivation of magnitude and phase distribution of

Gm can be applied to other layers. For example, for the
sidelobe of |G(2)

n | with n �= d2, the phases ψi,t+n in (52)
can be considered to be uniformly distributed between −π

and π . The distribution of sidelobe of |G(2)
n |, denoted by

ls , can then be modeled by

f (ls) = ls

K1K2/2
e−l2

s /K1K2, (78)

where ls ≥ 0.
Moreover, let

μRe2 =
K1−1∑
i=0

K2−1∑
t=0

E{cos(ψi,t+d2 )} (79)

σ 2
Re2 =

K1−1∑
i=0

K2−1∑
t=0

V ar{cos(ψi,t+d2 )} (80)

μIm2 =
K1−1∑
i=0

K2−1∑
t=0

E{sin(ψi,t+d2 )} (81)

σ 2
Im2 =

K1−1∑
i=0

K2−1∑
t=0

V ar{sin(ψi,t+d2 )}. (82)

The magnitude of G(2)
n with n = d2, denoted by lp, is

modeled by

f (lp) = lp

σ 2
p2

e−(l2
p+μ2

Re2)/2σ 2
p2 · I0

(
lpμRe2

σ 2
p2

)
, (83)

where lp ≥ 0 and σ 2
p2 = (σ 2

Re2 + σ 2
Im2)/2.

In addition, the joint magnitude of phase distribution
of G

(2)
d2

is denoted by

f (lp, ϑ) = lp

2πσ 2
p2

exp

(
− l2

p + μ2
Re2 − 2lpμRe2 cos ϑ

2σ 2
p2

)
,

(84)

where −π ≤ ϑ < π .
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