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Robust Speaker’s Location Detection in a Vehicle
Environment Using GMM Models
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Abstract—Human–computer interaction (HCI) using speech
communication is becoming increasingly important, especially
in driving where safety is the primary concern. Knowing the
speaker’s location (i.e., speaker localization) not only improves
the enhancement results of a corrupted signal, but also provides
assistance to speaker identification. Since conventional speech
localization algorithms suffer from the uncertainties of environ-
mental complexity and noise, as well as from the microphone
mismatch problem, they are frequently not robust in practice.
Without a high reliability, the acceptance of speech-based HCI
would never be realized. This work presents a novel speaker’s
location detection method and demonstrates high accuracy within
a vehicle cabinet using a single linear microphone array. The
proposed approach utilize Gaussian mixture models (GMM) to
model the distributions of the phase differences among the mi-
crophones caused by the complex characteristic of room acoustic
and microphone mismatch. The model can be applied both in
near-field and far-field situations in a noisy environment. The in-
dividual Gaussian component of a GMM represents some general
location-dependent but content and speaker-independent phase
difference distributions. Moreover, the scheme performs well not
only in nonline-of-sight cases, but also when the speakers are
aligned toward the microphone array but at difference distances
from it. This strong performance can be achieved by exploiting the
fact that the phase difference distributions at different locations
are distinguishable in the environment of a car. The experimental
results also show that the proposed method outperforms the con-
ventional multiple signal classification method (MUSIC) technique
at various SNRs.

Index Terms—Gaussian mixture models (GMM), human–com-
puter interaction (HCI), microphone array, sound localization.

I. INTRODUCTION

E LECTRONIC devices for home, car, and personal ap-
plications are becoming more intelligent. One of the

demands for intelligence is to enhance the convenience of
operation, e.g., human–computer interaction (HCI) interfaces
using speech communication [1]–[3]. Speech-based HCI is
particularly important when the use of hands and eyes puts
the user in danger. For example, the hands-free operation
of in-car electronics is necessary during high-speed driving
to avoid accidents. However, speech communication, unlike
push-button operation, suffers from problems of unreliability
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because of environmental noise. Therefore, many speech en-
hancement techniques that use microphone arrays [4]–[7] have
been introduced to enhance speech signals for a robust speech
recognition system.

Speech communication involves the speakers’ locations
as well as speech recognition. Knowing the speaker’s loca-
tion is useful in determining who is talking (e.g., speaker
identification). For example, in vehicle applications, a driver
may wish to exert a particular authority in manipulating the
in-car electronic systems. Additionally, for speech signal pu-
rification, a better receiving beam using a microphone array
can be formed to suppress the environmental noises if the
speaker’s location is known. In a highly reflective or scattering
environment, conventional delay estimation methods such as
GCC-based algorithms [8]–[10] or previous works [11], [12]
do not yield satisfactory results. Although Brandstein et al.
[13] proposed Tukey’s Biweight to redefine the weighting
function to deal with the reflection effect; it is not suitable for
a noisy environment. To overcome this limitation, Nikias et al.
[14] adopted the alpha-stable distribution, instead of a single
Gaussian model, to model ambient noise and to obtain a robust
speaker’s location detection in advance. In recent years, several
works have introduced probability-based methods to eliminate
the measurement errors caused by uncertainties, such as those
associated with reverberation or low energy segments. His-
togram-based time-delay of arrival (TDOA) estimators such as
time histograms [15] and weighted time-frequency histograms
[16], [17] have been proposed to reduce direction-of-arrival
root-mean square errors. The algorithm in [17] performs well
especially under low signal-to-noise ratio (SNR) conditions.
Moreover, Potamitis et al. [18] proposed the probabilistic
data association (PDA) technique with the interacting mul-
tiple model (IMM) estimator to conquer these measurement
errors. Ward et al. [19] developed a particle filter beamforming
in which the weights and particles can be updated using a
likelihood function to solve the reverberation problem. These
statistical-based methods [16]–[19] can improve the estimation
accuracy further.

Another approach, proposed by Balan et al. [20], explores
the eigenstructure of the correlation matrix of the microphone
array by separating speech signals and noise signals into two or-
thogonal subspaces. The direction-of-arrival (DOA) is then es-
timated by projecting the manifold vectors onto the noise sub-
space. MUSIC [21], [22] combined with spatial smoothing [23]
is one of the most popular methods for eliminating the coher-
ence problem. However, as the experiment in this work indi-
cates, its robustness is still poor in a real environment when the
SNR is low. Furthermore, the near-field effect [24]–[26] should
also be considered in applications in real environments.
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In some environments, especially in vehicle environments,
the line-of-sight condition may not be available because,
for example, barriers may exist between the speaker and the
microphone array. Consequently, when a single linear array
is employed, the aforementioned methods cannot distinguish
speakers under nonline-of-sight conditions. Hence, multiple
microphone arrays must be considered [27], [28]. Further,
the microphone mismatch problem often arises when such
methods as GCC or eigenstructure-based algorithms are used
since these methods require the microphones to be calibrated
in advance. Accurate calibration is not easy to obtain since
the characteristics of microphones vary from the sound source
directions.

The relationship between a sound source and a receiver (mi-
crophone) in a complicated enclosure is almost impossible to
characterize with a finite-length data in real-time applications
(such as in frame-based calculations). According to the investi-
gation of room acoustics [29], the number of eigen-frequencies
with an upper limit of can be obtained by the fol-
lowing equation:

(1)

where denotes the sampling frequency, represents the
sound velocity , and is the geometrical
volume. This equation indicates that the number of poles is too
high when the frequency is high, and that the transient response
occurs in almost any processing duration when the input signal
is a speech signal. For example, the number of poles is about
96 435 when the sampling frequency is 8 kHz and the volume
is 14.1385 . Hence, the nonstationary characteristics of
speech signals make the phase differences between the signals
received by two elements of a microphone array from a fixed
sound source vary among data sets. Moreover, the stochastic
nature of the phase difference is more prominent when the
source is moving slightly and environmental noise is present.
Therefore, this work proposes the use of the distributions of
phase differences, rather than their actual values, to locate
the source, because the phase difference distributions vary
among locations and can be distinguished by pattern matching
methods. Previous research [30], [31] also showed that common
acoustic measures vary significantly with small spatial dis-
placements of the source or the microphone. The experimental
results indicate that the Gaussian mixture model (GMM) [32]
is very suitable for modeling these distributions. Furthermore,
the model training uses the distributions of phase differences
among microphones as a location-dependent but content and
speaker-independent feature. In this case, the geometry of
the microphone array should be considered to cope with the
aliasing problem and maximize the phase difference of each
frequency band to detect the speakers’ locations accurately.
Consequently, the microphone array can be decoupled into
several pairs with various distances between the microphones
to deal with different frequency bands. The location detector
integrates the overall probability information from different
frequency bands to detect the speakers’ locations.

The environment of a vehicle raises all of the aforementioned
issues of nonideality and speech-based HCI for in-car electronic

systems such as mobile phones, navigation devices and stereos
is necessary to enhance driving safety. Therefore, the experi-
mental verification of this paper was performed in a vehicle.
The remainder of this work is organized as follows. The fol-
lowing section discusses the system architecture and the rela-
tionship between the selected frequency and geometry of the
microphone array. Section III presents the procedure for training
of the Gaussian mixture location model using the EM algorithm
and the location detection method. Section IV experimentally
compares the proposed approach to the conventional MUSIC
method. Conclusions are drawn in Section V.

II. SYSTEM ARCHITECTURE AND MICROPHONE

ARRAY SIGNAL PROCESSING

A. System Architecture

Fig. 1 illustrates the overall system architecture. A voice
activity detector separates the system into two stages, the silent
stage and the speech stage, where the voice activity detection
algorithms could be found in [33], [34]. The first stage is called
the silent stage in which speakers are silent. In this stage, online
environmental noise without speech was recorded. Noise is
assumed to be additive, so the signal received when a speaker is
talking in a car can be expressed as a linear combination of the
speech signal and the environmental noise. Therefore, in this
stage, the system combines the online recorded environmental
noise, , with the pre-recorded speech
database, , to construct training signals,

, and to derive the GM location models,
where denotes the number of microphones. Consequently,
a set of pre-recorded speech data at different location was
required to obtain a priori information between the speaker and
the microphone array. The pre-recorded speech database was
collected at each location when the environment was quiet and
can represent the acoustical characteristic of each location. The
distributions of phase differences, which include information
on mismatches among microphones, can be modeled based on
the a priori information. Since the environmental noise alters,
the GM location models that contain the characteristics of
environmental noise are updated in this stage for robustness.
The second stage is the speech stage, in which the parameters of
GM location models derived from the first stage are duplicated
into the location detector to detect the speaker’s location.

B. Frequency Band Divisions Based on a Uniform Microphone
Array

The phase difference of the received signal becomes more
significant as the distance between microphones increases.
However, the aliasing problem occurs when this distance ex-
ceeds half of the maximum wavelength of the received signal
[35]. The distance between pairs of microphones should be
chosen based on the selected frequency band to obtain clear
phase difference data to enhance the accuracy of location
detection and prevent aliasing. Accordingly, Fig. 2 illustrates
a uniform microphone array with microphones and the
distance of .
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Fig. 1. Overall system architecture.

Fig. 2. Microphone array geometry.

Based on this geometry, the processed frequencies can be di-
vided into at most bands. Table I lists the different fre-
quency bands and the corresponding microphone pairs, where

denotes the th microphone; represents the band number
and is the number of microphone pairs in the band . Each
frequency component belonging to a specific frequency band of
any location joints the phase differences measured by the mi-
crophone pairs to generate a self-GMM.

III. THE GAUSSIAN MIXTURE LOCATION MODEL

A. Location Model Description

A Gaussian mixture density in the band is a weighted sum
of Gaussian component densities, and is denoted as

(2)

where is a -dimen-
sional phase difference vector combined with pre-recorded data-
base and environmental noise. The phase difference can be ob-
tained as follows:

(3)

where is the th mixture weight, and represents
the complete Gaussian mixture density which is parameterized
by the mean vector, covariance matrices and mixture weights
from component densities

(4)

where denotes the mixture
weight vector in the band ,
denotes the mean matrix in the band , and

denotes the covariance matrix in the
band . The corresponding vector and matrix of the parameters
defined above are

. . .

denotes the Gaussian component density

(5)

The mixture weight must satisfy the constraint that

(6)

Each band associated with each location is represented by a
GMM and is referred to by its parameter matrix, . The
covariance matrix, , is selected as a diagonal matrix.
Even though the phase differences of the microphone pairs may
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TABLE I
FREQUENCY BANDS CORRESPOND TO THE MICROPHONE PAIRS

not be statistically independent of each other, GM models with
diagonal covariance matrices have been observed to be capable
of modeling the correlations within the data by utilizing larger
mixture numbers [36].

B. Parameters Estimation via EM Algorithm

The purpose is to determine the parameters of the GMM,
, from the measured phase differences between each mi-

crophone pair in band . Several techniques are available for
estimating , of which the most popular is the EM al-
gorithm [32] that estimates the parameters by using an itera-
tive scheme to maximum the log-likelihood function. The EM
algorithm can guarantee a monotonic increase in the model’s
log-likelihood value, and its iteration equations corresponding
to frequency band selection can be arranged as follows.

Expectation step:

(7)

where is an a
posteriori probability and

is a sequence of
input phase difference vectors.

Maximization step:
i) Estimate the mixture weights

(8)

ii) Estimate the mean vector

(9)

iii) Estimate the variances

(10)

where .
However, the EM algorithm only guarantees to find a local

maximum log-likelihood model. A different choice of initial
model leads to various local maximum models. This
work considered two initialization methods to find out the initial
model. K-means [37] is by far the most widely used method.
Charles [38] proposed an accelerated K-means algorithm
which utilizes the triangle inequality to decrease significantly
the computational power requirement. Charles’ method is also
suitable for finding a good initial model to lower the iteration
number of the EM algorithm. The first method utilizes the
accelerated K-means clustering method. The second method
separates phase difference range into segments to
obtain a fixed initial mean model since the phase difference
range is small enough. Consequently, the initial mean model is

. The location
detection performances of the two initial approaches have
slightly different performance and no one is always the best.
Fig. 3 shows the location model training procedure with the
total location number .

C. Location Detection

Assume a group of locations, , which are rep-
resented by the parameters with

. The location is determined by
finding the GM location model which has the maximum poste-
riori probability for a given observation sequences

(11)

where is a phase dif-
ference testing sequence derived from , and

denotes the length of the testing sequence. If the probability
densities at all locations are equally likely, then could
be chosen as . The probability is the same for
all location models and the detection rule can be rewritten as

(12)
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Fig. 3. Location model training procedure.

Fig. 4. Position number and microphone array position.

IV. EXPERIMENTAL RESULTS

The experiment was performed in a mini-van vehicle with six
separated seats [39]. Fig. 4 presents the locations of the seats.
During the experiment, the speakers at these locations moved
their bodies or heads to mimic real usage scenarios. A uni-
form linear array of six microphones with 5-cm spacing was
mounted in front of location no. 2. Fig. 5 displays the phys-
ical configuration inside the vehicle. The environmental noise
signals were varied as the car drove at various speeds. During
the experiment, all windows were closed to prevent the micro-
phones from saturating and the cabinet temperature was set to be
24 using the in-car air conditioner. Off-the-shelf, low-cost,
and noncalibrated microphones were used for the array. The am-
plified microphone signals were digitized by 16-bit AD con-
verters. Table II lists the SNR ranges at various speeds, corre-

Fig. 5. Physical configuration in the vehicle.

TABLE II
SNR RANGES AT VARIOUS SPEEDS

sponding to the six locations. Table III presents the frequency
bands that correspond to the pairs of microphones. The voice
activity detection algorithm provided in [33] was utilized in this
experiment. The received signals were sampled at 8 kHz, and
the window for the short-time Fourier transform (STFT) con-
tained 256 zero padding samples and 32 ms speech signals, to-
taling 512 samples. Fig. 6 illustrates the processed frame and the
overlapping condition. The experiment was performed in both
quiet and noisy environments. Fig. 7 shows the testing signal
in driver’s seat in a quiet environment, and Fig. 8 depicts the
testing signals at two different speeds, 40 and 100 km/h.

A. MUSIC Algorithm

A wideband incoherent MUSIC algorithm [22] with arith-
metic mean was implemented and the results were compared
with those of the proposed approach. Ten major frequencies,
ranging from 0.1 to 3.4 kHz, were adopted for the MUSIC al-
gorithm. Outliers were removed from the estimated angles by
utilizing the method provided in [40]. Moreover, the angle errors
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TABLE III
FREQUENCY BANDS CORRESPOND TO THE MICROPHONE PAIRS

Fig. 6. Processed frame and overlapping condition.

Fig. 7. Testing signal received at the driver’s seat in a quiet environment.

needed for outlier rejection was derived from the estimated an-
gles and real angles. Table IV lists the real angles and the statis-
tical results after the outlier have been rejected. It demonstrates
that even in a quiet environment, the MUSIC method might not
be sufficiently accurate. The standard deviations in Table IV at
various speeds were too large to distinguish among them, espe-
cially at locations no. 3 and 5. In particular, the standard devia-
tions at locations no. 4 and 6 exceeded those at other locations
at almost all noise levels. This phenomenon could be caused by
nonline-of-sight effect.

Locations no. 2, 4, and 6 had the same DOA to the micro-
phone array. Therefore, only locations no. 1, 2, 3, and 5 were
considered for online testing. A frequently used classification
method, K-nearest-neighbor classification rule (KNN [41]) was
used to construct a flexible boundary to improve the accuracy of
detection to cope with the slight movement of the source, micro-
phone mismatch, transient response, and environmental noise.
The estimated angles following outlier rejection were used as
reference data in online location detection to illustrate further
the performance of the MUSIC algorithm in the car cabinet.

Fig. 8. Testing signal received at driver’s seat in speed 40 and 100 km/h. (a)
Speed is 40 km/h. (b) Speed is 100 km/h.

Suppose that the th location contains estimated angles and
that is the reference data set. Assume that the th
location contains points in the -nearest results of a new
estimate derived from MUSIC with outlier rejection. The a
posteriori probability is then given as

(13)

To minimize the probability of a false classification of , the
estimated location, denoted as , was decided by using
the following equation:

(14)

Notably, the new estimate was not classified if it is an outlier
according to the results in Table IV. The parameters were set
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TABLE IV
MEAN, STANDARD DEVIATION, AND AVERAGE OUTLIER PROBABILITY OF ESTIMATED ANGLES

TABLE V
CORRECT RATE OF MUSIC METHOD UTILIZING KNN WITH OUTLIER REJECTION

to , , , and and
the number of trials was 100. Table V presents the correct rate
after KNN classification. The correct rates at locations no. 3
and 5 were too low to be useful. The reason was the estimated
means of angles were so close and the standard deviations were
so large at locations no. 3 and 5 that they cannot be distinguished
to each other (see Table IV). In summary, these experimental
results demonstrate that the MUSIC algorithm is not sufficiently
reliable in a vehicle environment, even a classification method is
applied and outliers are rejected to cope with the uncertainties.

B. The Proposed Method

The proposed method was applied under the same experi-
mental conditions as part A to detect the speaker’s location.
The second initial approach mentioned in Section III was uti-
lized to initialize the mean values. The covariance update may
lead to numerical difficulties, as the covariance matrices become
nearly singular. Consequently, the practical solution is to limit
the minimum variance . In this experiment, the value of

was set to 0.02. The lengths of the training sequence
and the testing sequence were set to 200 and 50; in other
words, a two-second length input datum was set for training, and
a half-second length input datum was set for testing. The mix-
ture number of GMM model has ten choices, from one to ten.
Fig. 9 plots the experimental result of the correct rate versus the
mixture numbers at 100 km/h. As shown in Fig. 9(a), a single
Gaussian distribution (where the mixture number is one) could
not yield a satisfactory experimental performance. The correct
rates were 100% at all locations when the mixture was ten. This
finding justifies the assumption that GMM is suitable for this
application. Although the experimental performance improved

Fig. 9. Correct rate versus the different mixture numbers in 100 km/h. (a)
Location number is chosen from 1 to 3. (b) Location number is chosen from
4 to 6.
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Fig. 10. The histograms of phase differences at locations no. 2, 4, and 6 between the third and the sixth microphones at a frequency of 0.9375 kHz and between
the fourth and the sixth microphones at a frequency of 1.5 kHz, e.g., in the third and fourth frequency bands (speed = 100 km=h). (a) Histogram of phase
difference at location no. 2 (frequency = 0:9375 kHz). (b). Histogram of phase difference at location no. 4 (frequency = 0:9375 kHz). (c) Histogram of
phase difference at location no. 6 (frequency = 0:9375 kHz). (d) Histogram of phase difference at location no. 2 (frequency = 1:5 kHz). (e) Histogram of
phase difference at location no. 4 (frequency = 1:5 kHz). (f) Histogram of phase difference at location no. 6 (frequency = 1:5 kHz).

as the mixture number increased, the improvement in perfor-
mance was not significant when the mixture number exceeded
five. Table VI lists the experimental results with a mixture
number of five. Clearly, the proposed method outperforms the
MUSIC algorithm. Even at locations no. 4 and 6, the proposed
method could distinguish them with significant accuracy.

Fig. 10 shows the histograms of phase differences at locations
no. 2, 4, and 6 between the third and the sixth microphones
at a frequency of 0.9375 kHz and between the fourth and the
sixth microphones at a frequency of 1.5 kHz, e.g., in the third
and fourth frequency bands. The speed that corresponds to this
figure is 100 km/h. Although the locations had the same angle
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TABLE VI
EXPERIMENTAL RESULT OF THE PROPOSED METHOD WITH A MIXTURE NUMBER OF FIVE

to the microphone array, their phase difference distributions
were quite different, as indicated by several research reports
[30], [31]. Additionally, the proposed method combined five
frequency bands, each of which contained different phase dif-
ference distributions. As a result, the proposed method was able
to distinguish all of the locations by exploiting their implicit
diversities. Moreover, under low SNR conditions, the proposed
approach still yielded a high correct rate and was robust against
in-vehicle noise.

V. CONCLUSION

This paper proposes a robust speaker location detection
method. The proposed method can overcome practical issues,
such as the microphone mismatch, near-field effect, local
scattering, and coherence problems. Additionally, the proposed
method was found out to work even under nonline-of-sight
conditions and when speakers are in the same direction but dif-
ferent distances from the microphone array. This investigation
also presents a systematic procedure to improve the ability of
environmental adaptation. The experimental results show the
robustness and accuracy of the proposed method even under a
low SNR. The proposed localization method has potential to be
applied to other wave media, as their behaviors are similar to
that of an acoustic wave in an enclosure.
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