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Abstract

Despite their diverse applications in many domains, the variable precision rough sets (VPRS) model lacks a feasible method
to determine a precision parameter(�) value to control the choice of�-reducts. In this study we propose an effective method
to find the�-reducts. First, we calculate a precision parameter value to find the subsets of information system that are based on
the least upper bound of the data misclassification error. Next, we measure the quality of classification and remove redundant
attributes from each subset. We use a simple example to explain this method and even a real-world example is analyzed.
Comparing the implementation results from the proposed method with the neural network approach, our proposed method
demonstrates a better performance.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Knowledge bases have been successfully applied in many
real-world applications, where intelligent decisions have to
be made. Knowledge bases can usually be represented as
a set of decision rules that generally follow the form of:
“if..., then...”. These rules can be extracted from human ex-
perts or collected data. Most of the time the collected data
is so huge that it is beyond the ability of a human expert
to analyze it without using feasible analysis techniques.
The analysis and extraction of useful information from col-
lected data has been the subject of active research in data
mining [1].
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Rough sets as a mathematical methodology for data anal-
ysis were introduced by Pawlak[2]. They provide a powerful
tool for data analysis and knowledge discovery from impre-
cise and ambiguous data. The theory of rough sets has been
successfully applied to diverse areas, such as knowledge ac-
quisition, forecasting and predictive modeling, knowledge
base systems, and data mining[3,4].
The rough sets methodology is based on the premise that

lowering the degree of precision in the data makes the data
pattern more visible. The central premise of the rough sets
philosophy is that knowledge exists in the ability to classify.
In other words, the rough sets approach can be considered as
a formal framework for discovering patterns from imperfect
data. The results of the rough sets approach are presented
in the form of classification or decision rules derived from
given data sets.
The rough sets approach is inspired by the notion of inad-

equacy of the available information to perform a complete
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classification of objects; that is, performing a complete clas-
sification requires that the collected data must be fully cor-
rect or certain. The classification with a controlled degree of
uncertainty, or a misclassification error, is outside the realm
of this approach[5].
The variable precision rough sets (VPRS) model was in-

troduced by Ziarko[5] and is an extension of the original
Rough Set Theory (RST) as a tool for classification of ob-
jects. This is an important extension, since as noted by Kat-
tan et al.[6], ‘In real-world decision making, the patterns
of classes often overlap, suggesting that predictor informa-
tion may be incomplete... This lack of information results
in probabilistic decision making, where perfect prediction
accuracy is not expected’.
VPRS deals with partial classification by introducing a

precision parameter� (in the rough set the� value is zero).
The � value represents a bound on the conditional proba-
bility of a proportion of objects in a condition class, which
are classified to the same decision class. Ziarko[5] consid-
ered� as a classification error and it is defined to be in the
domain [0.0, 0.5).
Because the VPRS model has no formal historical back-

ground of having empirical evidence to support any particu-
lar method of�-reduct selection[11], VPRS-related research
studies do not focus in detail on the choice of the preci-
sion parameter(�) value. Ziarko[5] proposed the� value
to be specified by the decision maker. Beynon[8] proposed
two methods of selecting a�-reduct without such a known
� value. Beynon[9] proposed the allowable� value range
to be an interval, where the quality of classification may be
known prior to determining the� value range.
The extended VPRS was introduced by Katzberg et al.

[10], which allowed asymmetric boundsl andu to be used.
The VPRS models the restrictionl <0.5 andu=1− l must
hold. Beynon[7] introduced the(l, u)-quality graph, which
elucidates the associated level of quality of classification,
based on the selectedl andu values. The results in this paper,
within a criteria for the effective choice ofl andu values
is still required. However, without a� value to control the
choice of�-reducts, this may lead to the full set of�-reducts
becoming too large, such that an addition to a search scope
is needed to find a suitable�-reduct.
In this study we propose a method to determine

the precision parameter value based on the least upper
bound of data misclassification error. In addition we will
use a simple example to explain our proposed method
and a medical examination example to demonstrate the
method.

2. Variable precision rough sets model

The VPRS model is an extension of the original rough
set model[12], which was proposed to analyze and identify
data patterns that represent statistical trends rather than being
functional.

VPRS deals with a partial classification by introducing a
precision parameter�. The � value represents a bound on
the conditional probability of a proportion of objects in a
condition class that are classified to the same decision class.
Ziarko [5] defined the� value as a classification error and
the range in the domain[0.0,0.5). However, An et al.[13]
and Beynon[9] considered� to denote the proportion of
correct classifications, in which case the appropriate range
is (0.5,1.0]. In this study we use the Ziarko notion. The
procedure of the VPRS model has five steps and they are as
follows:
Step1: Choosing the precision parameter(�) value.
Step2: Find the full set of�-reduct.
Step3: Elimination of duplicate objects.
Step4: Elimination of superfluous values of attributes.
Step5: Rules extraction.
VPRS operates on what may be described as a knowledge

representation system or information system. An informa-
tion system(S) consisting of four parts is shown as

S = (U,A, V, f ),
whereU is a non-empty set of objects;A is the collection
of objects; we haveA = C ∪ D andC ∩ D = �, whereC
is a non-empty set of condition attributes, andD is a non-
empty set of decision attributes;V is the union of attribute
domains, i.e.,V = ⋃

a∈AVa , whereVa is a finite attribute
domain and the elements ofVa are called values of attribute
a; F is an information function such thatf (ui, a) ∈ Va for
everya ∈ A andui ∈ U .
Every object that belongs toU is associated with a set

of values corresponding to the condition attributesC and
decision attributesD.

2.1. �-lower and�-upper approximations

Suppose that information systemS = (U,A, V, f ), with
each subsetZ ⊆ U and an equivalence relationR, re-
ferred to as an indiscernibility relation, corresponds to a
partitioning ofU into a collection of equivalence classes
R∗ = {E1, E2, . . . , En}. We will assume that all sets un-
der consideration are finite and non-empty[14]. The vari-
able precision rough sets approach to data analysis hinges
on two basic concepts, namely, the�-lower and the�-upper
approximations of a set. The�-lower and the�-upper ap-
proximations can also be presented in an equivalent form as
shown below. The�-lower approximation of the setZ ⊆ U
andP ⊆ C:
C�(D)=

⋃
1−Pr (Z|xi )��

{xi ∈ E(P )},

the�-upper approximation of the setZ ⊆ U andP ⊆ C:

C̄�(D)=
⋃

1−Pr (Z | xi )<1−�

{xi ∈ E(P )},



C.-T. Su, J.-H. Hsu / Omega 34 (2006) 149–157 151

whereE(•) denotes a set of equivalence classes (in the above
definitions, they are condition classes based on a subset of
attributesP).

Z ⊂ E(D), Pr (Z | xi)= Card(Z ∩ xi)
Card(xi)

.

2.2. Quality of classification

Based on Ziarko[5], the measure of quality of classifica-
tion for the VPRS model is defined as

�(P,D, �)=
card

(⋃
1−Pr (Z|xi )�� {xi ∈ E(P )}

)
card(U)

, (2.1)

whereZ ⊂ E(D) andP ⊆ C, for a specified value of�. The
value�(P,D, �) measures the proportion of objects in the
universe(U) for which a classification (based on decision
attributesD) is possible at the specified value of�.

2.3. Core and�-reducts

If the set of attributes is dependent, then we are interested
in finding all possible minimal subsets of the attribute, which
leads to the same number of elementary sets as the whole
attributes (�-reduct), and in finding the set of all indispens-
able attributes (core). The concepts of core and�-reduct are
two fundamental concepts of the VPRS. The�-reduct is the
essential part of the information system, which can discern
all discernable objects by the original information system.
The core is the common part of all�-reducts.
We will call a �-reduct for an information system any

subsetB,B ⊆ C such that[1]

(1) ∀DI ∈ D∗, B(C�DI )= C�DI ,
(2) ∀A ⊂ B, ∃DI ∈ D∗, A(C�DI ) �= C�DI ,

whereD∗ denotes a set of equivalence classes;DI denotes
the ith category ofD∗.
A �-reduct of the set of condition attributesP (P ⊆

C) with respect to a set of decision attributesD is a sub-
setRED(P,D, �) of P which satisfies the following two
criteria [5]:

(1) �(P,D, �)= �(RED(P,D, �),D, �);
(2) no attributes can be eliminated fromRED(P,D, �)

without affecting the requirement (1).

To compute reducts and core, the discernibility matrix
is used. Let the information systemS = (U,A) with U =
{x1, xx, . . . , xn}. We use a discernibility matrix ofS, de-
noted asM(S), which has the dimensionn × n, wheren
denotes the number of elementary sets, defined as

(cij )= {a ∈ A | a(xi) �= a(xj ) for i, j = 1,2, . . . , n}.
Thus, entrycij is the set of all attributes which discern
objectsxi andxj .

The core can be defined as the set of all single element
entries of the discernibility matrix[2], i.e.,

core(A)= {a ∈ A | cij = (a) for somei, j}.
The discernibility matrix can be used to find the minimal

subset(s) of attributes, which leads to the same partition of
the data as the whole set of attributesA. To do this, we
have to construct the discernibility functionf (A). This is
a Boolean function constructed in the following way: to
each attribute from the set of attributes, which discern two
elementary sets, (e.g.,{a1, a2, a3, a4}), we assign a Boolean
variable ‘a’, and the resulting Boolean function attains the
form (a1 + a2 + a3 + a4), or it can be presented as(a1 ∧
a2∧a3∧a4). If the set of attributes is empty, then we assign
to it the Boolean constant 1[15].

2.4. Rules extraction

Procedures for generating decision rules from an infor-
mation system has two main steps as follows:
Step1: Selection of the best minimal set of attributes (i.e.,

�-reduct selection).
Step2: Simplification of the information system can be

achieved by dropping certain values of attributes that are
unnecessary for the information system.
Ziarko [5] indicated that every minimal set of attributes

may be perceived as an alternative group of attributes, which
could be used instead of all the available attributes in the
decision making based on cases. The main difficulty is how
to select an optimal�-reduct. Two approaches can be used
in this case. In the first one, the�-reduct with the minimal
number of attributes is selected. In the second approach, the
�-reduct that has the least number of combinations of values
of its attributes is selected.

3. Determination of the precision parameter

When performing a VPRS analysis, how the�-reducts
are selected is a key point of the process. The precision pa-
rameter value can control the choice of�-reducts. Previous
related research studies lacked an effective method to de-
termine a precision parameter value. Ziarko[5] defined the
measure of the relative degree of misclassification of the set
X with respect toY as

c(X, Y )=
{
1− card(X ∩ Y )

card(X)
if card(X)>0,

0 if card(X)= 0,

where card denotes set cardinality.
Let X andY be non-empty subsets ofU. We say thatX is

included inY, if for every element that belongs toX, then
that also belongs toY. The measure of relative misclassifi-
cation can define the inclusion relationship betweenX and
Ywithout explicitly using a general quantifier

Y ⊇ X ⇔ c(X, Y )= 0.



152 C.-T. Su, J.-H. Hsu / Omega 34 (2006) 149–157

According to the specified majority requirement, the admis-
sible� must be within the range 0��<0.5. Based on this
assumption the majority inclusion relation is defined as

Y
�⊇X ⇔ c(X, Y )��.

The above definition covers the entire family of�-majority
relations.
In this study we propose an effective method to find the

�-reducts, which involves two steps:
Step1: Find the candidates of�-reducts using precision

parameter(�).
In this study we propose an effective method to determine

the� value in the VPRS model, which is based on the least
upper bound�(C,D) of the data set, whereC is the condition
attributes set,D is the decision attributes set, andC∗ =
{E1, E2, . . . , En} is the equivalence classes. The following
equation is used for calculating the least upper bound of
data set.

�(C,D)=max(m1,m2), (3.1)

where

m1 = 1−min{c(E,D)|E ∈ C∗ and�<c(E,D)},
m2 =max{c(E,D)|E ∈ C∗ andc(E,D)< �},
c(E,D)= 1− card(E ∩D)

card(E)

denotes the relative degree of misclassification of the setE
with respect toD.

� denotes the threshold, which is determined by the de-
cision maker based on the relative degree. Usually,� is set
at 0.5.
Step2: Find the�-reducts:

(1) For each candidate of�-reducts (subsetP), calculate
the quality of classification based on (2.1).

(2) Remove redundant attributes.
Let subsetX ⊆ P . For each subset(�(C,D, �) =
�(P,D, �)), if �(X,D, �) = �(C,D, �), then remove
the attributesP \X. Otherwise, do not remove any at-
tribute from subsetP.

(3) Find the�-reducts.
Any subsetX, which has�(X,D, �) = �(C,D, �) is a
�-reduct.

4. Rules extraction in the neural networks

Neural networks possess the unique capability of learning
arbitrary non-linear mappings between noisy sets of input

and output patterns. A neural network approach can usu-
ally be constructed without requiring any information con-
cerning the functional form of the relationship between the
predictors and the response[16]. It learns and extracts the
process behavior from the past operating information. Once
trained, a neural network can be evaluated very quickly, and
the knowledge pertaining to the relationships between the
input and output is stored in the network weights.
The extraction of symbolic rules from trained neural net-

works can alleviate the knowledge acquisition problem and
refine the initial domain knowledge. Using extracted rules,
neural network users can understand what the neural net-
works have learned and how the neural network makes
predictions.
Su et al.[17] presented that the rules for the extraction

procedure in the neural networks contains three steps as
follows:
Step1: Select important input features.
Step2: Delete unnecessary connections.
Step3: Extract rules.
For rules extraction, the back-propagation network is the

most popular neural network model. Funahashi[18] proved
that any continuous mapping can be approximately real-
ized by multilayer neural networks with one hidden layer
whose output functions are sigmoid functions. Thus, a mul-
tilayer neural network with one hidden layer using a back-
propagation algorithm network is used in this study.

5. A simple example

The data sets taken from literature[9] are given inTable 1.
There exists a set of objectsU(1,2, . . . ,7) contained in the
rows of the table, with the columns denoting the condition
attributesC(a, b, c, d, e, f ) of these objects, and a related
decision attributeD.
In this information system the objects have been classi-

fied into one of two categories, M and F. In the information
system, objects 1, 3, 4, and 6 are unambiguously classified,
in the sense that all objects with a given set of attribute val-
ues are assigned to the same category. Objects 2, 5, and 7
are ambiguously classified since they have the same combi-
nation of condition attributes, but they are not all classified
to the same decision category. Subsequently, the condition
classes of objects as groupings of indiscernible objects are

C∗ = {C1, C2, C3, C4, C5}, whereC1 = {1},
C2 = {2,5,7}, C3 = {3}, C4 = {4}, C5 = {6}.

Similarly, the decision classes of the categories are

D∗ = {M,F },
whereDM = {1,2,3} and DF = {4,5,6,7}.
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Table 1
Information system

Objects a b c d e f D

1 1 1 1 1 1 1 M
2 1 0 1 0 1 1 M
3 0 0 1 1 0 0 M
4 1 1 1 0 0 1 F
5 1 0 1 0 1 1 F
6 0 0 0 1 1 0 F
7 1 0 1 0 1 1 F

5.1. Choose the precision parameter value of the
information system

Based on (3.1),�(C,D)=max(m1,m2), where

m1 = 1−min[0.5<c(C,D)], m2 =max[c(C,D)<0.5],
c(C1,DM)= 1− 1

1 = 0, c(C1,DF )= 1− 0
1 = 1,

c(C2,DM)= 1− 1
3 = 2

3, c(C2,DF )= 1− 2
3 = 1

3,

c(C3,DM)= 1− 1
1 = 0, c(C3,DF )= 1− 0

1 = 1,

c(C4,DM)= 1− 0
1 = 1, c(C4,DF )= 1− 1

1 = 0,

c(C5,DM)= 1− 0
1 = 1, c(C5,DF )= 1− 1

1 = 0,

m1 = 1−min
(
2
3,1

)
= 1

3,

m2 =max
(
0, 13

)
= 1

3 .

Thus,�(C,D)=max
(
1
3,

1
3

)
= 1

3.

Therefore, the precision parameter value is equal to1
3.

5.2. Find the full set of�-reducts

Since the� value is equal to13, thenC�(DM) = C1 ∪
C3={1,3} andC�(DF )=C2∪C4∪C5={2,4,5,6,7}. The
discernibility matrix,M(S), for the seven elementary sets
presented, is shown inTable 2. The relative discernibility
functions are

��(1)= (d + e)(b + d)(a + b + c + f )
= be + ad + bd + cd + df ,

��(2)= (b + e)(a + c + d + f )
= ab + bc + bd + bf + ae + ce + de + ef ,

��(3)= (a + b + d + f )(c + e)(a + d + e + f )
= ac + ae + cd + de + be + cf + ef ,

��(4)= (d + e)(b + e)(a + b + d + f )
= ae + bd + be + ed + ef ,

��(5)= (b + d)(a + d + e + f )
= d + ab + be + bf ,

��(6)= (c + e)(a + b + c + f )(a + c + d + f )
= c + ae + ef + bed,

��(7)= (b + d)(a + d + e + f )
= ��(5),

��(DM)= ��(1)
∗��(3)

= (be + ad + bd + cd + df )
× (ac + ae + cd + de + be + cf + ef )

= cd + be + ade + def ,
��(DF )= ��(2)

∗��(4)
∗��(5)

∗��(6)
∗��(7)

= (ab + bc + bd + bf + ae + cd + de + ef )
× (ae + bd + be + ed + ef )
× (d + ab + be + bf )(c + ae + ef + bde)
× (d + ab + be + bf )

= abe + bce + cde + abe + def + bde
+ bcd + bcf + bef ,

��(D)= ��(DM)
∗��(DF )

= (cd + be + ade + def )(abe + bce + cde + abe
+ def + bde + bcd + bcf + bef )

= abe+bce+cde+ade+def+bde+bcd+bef .
By step 1, we have eight subsets, which are

{a, b, e}, {b, c, e}, {c, d, e}, {a, d, e}, {d, e, f }, {b, d, e},
{b, c, d}, and {b, e, f }.
Since{c, d} has the least number of attributes, it is se-

lected. InTable 3, theM(S)-information system for�-reduct
{c, d} is presented. By step 2, we have four�-reducts, which
are: {c, d}, {b, e}, {d, e, f }, and {a, d, e}. Since�-reducts
{c, d} has the least number of combinations of values of
its attributes, it is selected for further study. InTable 3, the
M(S)-information system for�-reducts{c, d} is presented.
We also are interested in the elimination of superfluous

values of condition attributes in theM(S)-information sys-
tem. To do this, we must compute the relative attributes
values of subset{c, d}, based on theM(S)-discernibility
matrix constructed for theM(S)-information system.Table
4 presents theM(S)-discernibility matrix for the�-reducts
{c, d}. The relative discernibility functions are

f1(A)= cd,
f2(A)= cd,
f3(A)= cd,
f4(A)= d,
f5(A)= d,
f6(A)= c,
f7(A)= d.
Table 5shows the information system’s final version in

the subspace{c, d}.
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Table 2
Discernibility matrix

1 2 3 4 5 6 7

1 — — d, e b, d a, b, c, f b, d

2 — — b, e — a, c, d, f —
3 — — a, b, d, f a, d, e, f c, e a, d, e, f

4 d, e b, e a, b, d, f — — —
5 b, d — a, d, e, f — — —
6 a, b, c, f a, c, d, f c, e — — —
7 b, d — a, d, e, f — — —

Table 3
M(S)-information system

Objects c d D

1 1 1 M
2 1 0 M
3 1 1 M
4 1 0 F
5 1 0 F
6 0 1 F
7 1 0 F

Table 4
M(S)-discernibility matrix

1 2 3 4 5 6 7

1 — — d d c d
2 — — — — c, d —
3 — — d d c d
4 d — d — — —
5 d — d — — —
6 c c, d c — — —
7 d — d — — —

Table 5
Final version of information system (literature data)

Objects c d D

1 1 1 M
2 1 0 M
3 1 1 M
4 * 0 F
5 * 0 F
6 0 * F
7 * 0 F

Note: “*” indicates: do not care.

Table 6
Decision rules (by the proposed approach)

Rules Accuracy

1. If c = 1 andd = 1 thenD =M 100% (2/2)
2. If d = 0 thenD = F 75% (3/4)
3. If c = 0 thenD = F 100% (1/1)

Note: ( / ) indicates (number of correct instances/number of total
instances).

Table 7
Decision rules (by the Beynon approach)

Rules Accuracy

1. If b = 1 ande = 1 thenD =M 100% (1/1)
2. If b = 0 ande = 1 thenD = F 75% (3/4)
3. If b = 0 ande = 0 thenD =M 100% (1/1)
4. If b = 1 ande = 0 thenD = F 100% (1/1)

Note: ( / ) indicates (number of correct instances/number of total
instances).

5.3. Rules extraction

According toTable 5, the generalized rules are listed in
Table 6. Comparing the implementation results from the
proposed method with the literature approach (the extracted
rules and results are listed inTable 7), the extracted rules’
numbers generated by our method are less than those of the
literature’s approach, though the classification accuracy in
the literature’s approach is as good as our proposed method.

6. A case study

6.1. The problem

This case utilizes medical data to diagnose liver malfunc-
tions. The data are from the general medical examination
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Table 8
Condition attributes ranges for MES discretization

Examination items Range ‘1’ Range ‘2’ Range ‘3’

Age (a1) 23–34 35–55 56–63
Neutrophil (a2) 0.0–36.9 37.0–75.0 75.1–
Lymphovyte(a3) 0.0–19.9 20.0–55.0 55.1–
Moncyte (a4) 0.0–2.4 2.5–10.0 10.1–
Basophil(a5) — 0.0–2.0 2.1–
GLUAC (a6) 0–69 70–110 111–
ALK-P (a7) 0–59 60–205 206–
GOT (a8) 0–7 8–35 36–
GPT (a9) — 0–35 36–
�-GT (a10) — 0–45 46–
D-Bil. (a11) 0 0.1–0.5 0.6–
T-Protein(a12) 0.0–6.2 6.3–8.5 8.6–
TG (a13) 0–59 60–105 106–
BUN (a14) 0–7 8–25 26–
Uric Acid (a15) 0.0–2.4 2.5–8.0 8.1–

items at a hospital located in Taipei, Taiwan. The examina-
tion data has fifteen items. They are Age, Neutrophil, Lym-
phocyte, Moncyte, Basophil, GLUAC, ALK-P, GOT, GPT,
�-GT, D-Bil., T-Protein, TG, BUN, and Uric Acid. These
items are characterized by multi-dimensional information
about the current health status of patients, which makes it
difficult to diagnose other diseases based on such a large
amount of information. Until now, the relationship between
the medical examination data and liver malfunction symp-
tom is still ambiguous.
In this case 168 instances are collected. These instances

are separated into a training set that includes 101 instances
(54 instances that are normal; 47 instances of liver malfunc-
tions) and a test set that includes 67 instances (35 instances
that are normal; 32 instances of liver malfunctions). Label-
ing “liver malfunction patients” is based on the medical his-
tory of the patients as judged by medical doctors.

6.2. Using the proposed approach

Since VPRS needs the data in a categorical form, the
continuous attributes must be discretized before the VPRS
analysis is performed. In this case the items of the medical
examination standard (MES) are utilized to discretize the
continuous attributes. The results are listed inTable 8. From
Table 8, we know that each condition attribute is classified
into two or three ranges.
In this information system the objects have been clas-

sified into one of two categories, 0 (normal) and 1 (mal-
function). The condition classes of objects can distinguish
40 groups, and the precision parameter value is equal to
1
6. Following the method of analysis given previously,
four subsets and a�-reducts can be obtained. The sub-
sets are{a2, a7, a8, a9, a10, a13}, {a3, a7, a8, a9, a10, a13},

Table 9
Final version of the information system (liver data)

Objects a7 a8 a9 a10 a13 D

1 2 2 2 2 2 0
2 3 * 2 * 3 0
3 * * 3 * * 1
4 2 * * * 3 1
5 * 3 * * * 1
6 * * 3 * * 1
7 * * 3 * * 1
8 * 3 * * * 1
9 * * * 3 * 1
10 * * * 3 * 1
11 * * * 3 * 1
12 3 * * * 2 1
13 * 3 * * * 1
14 * * * 3 * 1
15 * * 3 * * 1
16 * * 3 * * 1
17 1 * * * * 1

Note: “*” indicates: do not care.

{a7, a8, a9, a10, a13, a15}, and {a7, a8, a9, a10, a12, a13};
the�-reduct is{a7, a8, a9, a10, a13}. The final version of the
information system in the subspace{a7, a8, a9, a10, a13} is
shown inTable 9.
According toTable 9, the extracted rules are listed in

Table 10. FromTable 10, we know that the instances of the
test set at rule 2 and rule 7 are null, while rule 8 shows
only one instance in the test set. Since these rules are not a
matter for the judgment of liver diseases, they are deleted.
The final extraction rules are listed inTable 11.

6.3. Using the neural network approach

In this section theProfessional II Plussoftware package
(Neural Ware, Inc., 1992) is used to perform the computa-
tion in order to obtain the structure with a maximum classi-
fication rate. After trial and error, we choose 0.25 and 0.30
as the learning rates in the hidden layer and the output layer,
respectively. The momentum is set at 0.95, and the number
of iterations is set at 20,000. Structure 15-10-1 is the op-
timal structure through the trained back-propagation neural
network.
After the features selection, eight features are deleted and

seven features are retained. They are Lymphocyte, Mono-
cyte, GOT, GPT,�-GT, D-Bil, and TG. These seven features
are used to retrain a new network. Structure 7-5-1 is chosen
for further analysis.
After pruning the unnecessary connections from network

7-5-1, only three attributes, GOT, GPT, and�-GT could
affect the result. The simplified 7-5-1 structure is used to
extract the rules, and the results are listed inTable 12.
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Table 10
Results of rule extraction (VPRS)

Rules Accuracy (%)

Training set Test set

1. If 60�ALK-P�205, 8�GOT�35, 0�GPT�35, 0��-GT�45 and 100% (52/52) 94.59% (35/37)
60�TG�105, then one is normal.
2. If 206�ALK-P, 0�GPT�35 and 106�TG, then one is normal. 100% (1/1) —
3. If 36�GPT, then one has a malfunction. 96.43% (27/28) 100% (13/13)
4. If 60�ALK-P�205 and 106�TG, then one has a malfunction. 100% (4/4) 100% (2/2)
5. If 36�GOT, then one has a malfunction. 100% (8/8) 100% (8/8)
6. If 46��-GT, then one has a malfuncion. 100% (6/6) 100% (6/6)
7. If 206�ALK-P and 60�TG�105, then one has a malfunction. 100% (1/1) —
8. If ALK-P�59, then one has a malfunction. 100% (1/1) 100% (1/1)

Note: “—” indicates the instance in the set is null. (/) indicates (number of correct instances/number of total instances).

Table 11
Final results of rule extraction (VPRS)

Rules Accuracy (%)

Training set Test set

1. If 60�ALK-P�205, 8�GOT�35, 0�GPT�35, 0��-GT�45 and 100% (52/52) 94.59% (35/37)
60�TG�105, then one is normal.
2. If 36�GPT, then one has a malfunction. 96.43% (27/28) 100% (13/13)
3. If 60�ALK-P�205 and 106�TG, then one has a malfunction. 100% (4/4) 100% (2/2)
4. If 36�GOT, then one has a malfunction. 100% (8/8) 100% (8/8)
5. If 46��-GT, then one has a malfunction. 100% (6/6) 100% (6/6)

Note: (/) indicates (number of correct instances/number of total instances).

Table 12
Results of rule extraction (neural networks)

Rules Accuracy (%)

Training set Test set

1. If GOT�35, GPT�35 and�-GT�45, then one is normal. 88.14% (52/57) 90% (36/40)
2. If 36�GOP, then one has a malfunction. 100% (12/12) 100% (9/9)
3. If 36�GPT, then one has a malfunction. 97.56% (40/41) 100% (23/23)
4. If 46��-GT, then one has a malfunction. 100% (6/6) 100% (11/11)

Note: (/) indicates (number of correct instances/number of total instances).

7. Conclusion

Despite its diverse applications in many domains, the
VPRS model lacks a feasible method to determine a pre-
cision parameter value to control the choice of�-reducts.
The primary motivation of this study is to develop a method
to select a precision parameter to control the choice of�-
reducts.
The proposed method is based on the least upper bound

of the data misclassification error. A simple example has
been provided to illustrate the effectiveness and speed in
obtaining a suitable�-reduct with our proposed method.

Furthermore, a medical examination case has also been
analyzed.
In this study we propose an effective method to find

the �-reducts. The notion of the approach being effec-
tive is a subjective opinion. First, we calculate a preci-
sion parameter value to find the subsets of an informa-
tion system that is based on the least upper bound of
the data misclassification error. Next, we measure the
quality of classification and remove redundant attributes
from each subset. Two numerical examples have been
conducted to demonstrate the feasibility of the proposed
method.
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Future work should consider if the information system
has any missing data and should develop a continuous at-
tributes’ discretization method without the domain knowl-
edge of experts.
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