
Chiral Hall effect and chiral electric waves

Shi Pu,1,2,3,* Shang-Yu Wu,4,5,6,† and Di-Lun Yang7,8,‡
1Department of Physics, National Center for Theoretical Sciences, and Leung Center for Cosmology

and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan
2Interdisciplinary Center for Theoretical Study and Department of Modern Physics, University of Science

and Technology of China, Hefei 230026, China
3Institute for Theoretical Physics, Goethe University,

Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
4Institute of physics, National Chiao Tung University, Hsinchu 300, Taiwan

5National Center for Theoretical Science, Hsinchu 300, Taiwan
6Yau Shing Tung Center, National Chiao Tung University, Hsinchu 300, Taiwan
7Department of Physics, Duke University, Durham, North Carolina 27708, USA

8Department of Physics, Chung-Yuan Christian University (CYCU), Chung-Li 32023, Taiwan
(Received 19 July 2014; published 14 January 2015)

We investigate the vector and axial currents induced by external electromagnetic fields and chemical
potentials in chiral systems at finite temperature. Similar to the normal Hall effect, we find that an axial Hall
current is generated in the presence of the electromagnetic fields along with an axial chemical potential,
which may be dubbed as the “chiral Hall effect” (CHE). The CHE is related to the interactions of chiral
fermions and exists with a nonzero axial chemical potential. We argue that the CHE could lead to nontrivial
charge distributions at different rapidity in asymmetric heavy ion collisions. Moreover, we study the
chiral electric waves led by the fluctuations of the vector and axial chemical potentials along with the chiral
electric separation effect, where a density wave propagates along the applied electric field. Combining with
the normal/chiral Hall effects, the fluctuations of chemical potentials thus result in Hall density waves. The
Hall density waves may survive even at zero chemical potentials and become nondissipative. We further
study the transport coefficients including the Hall conductivities, damping times, wave velocities, and
diffusion constants of chiral electric waves in a strongly coupled plasma via the AdS/CFT correspondence.
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I. INTRODUCTION

The anomalous transport inducedbyelectromagnetic fields
has been widely studied recently. In the presence of an axial
chemical potential, a vector current will propagate parallel to
an applied magnetic field led by triangle anomalies, which is
the renowned chiral magnetic effect (CME) [1–4]. Although
this effect was initially found in the deconfined phase, it may
exist in the hadronic phase as well [5]. Analogous to CME, a
vector chemical potential can generate an axial current along
the magnetic field, which is the so-called chiral separation
effect (CSE) [6]. These effects have been further derived from
varieties of different approaches, including relativistic hydro-
dynamics [7–11], kinetic theory [12–22], and lattice simu-
lations [23–27]. Also they were analyzed in the strongly
coupled plasmas through the AdS/CFT correspondences
[28–34]. However, in the Sakai-Sugimoto (SS) model as a
commonly used model for AdS/QCD [35,36], CME may
disappear when requiring both gauge invariance and con-
servation of the vector current [28,29,31,37]. For a recent
review of CME/CSE and related topics, see, e.g., [38,39] and

the references therein. The effects areparticularly important in
the heavy ion experiments, where the charge separation could
arise from the strong magnetic field produced from the
colliding nuclei and nonvanishing chemical potentials in
the quark gluon plasma (QGP). In light of CME/CSE, it
was proposed that the thermal fluctuations of the vector and
axial chemical potentials in thermal plasmas can further result
in density waves propagating along the magnetic field as the
chiral magnetic waves (CMWs) [3]. In [3], the dispersion
relation of CMWs was investigated in the framework of the
SSmodelwith zero chemical potentials.As shown in [40], the
CMWscould generate a chiral dipole anda charge quadrapole
in QGP, which may contribute to the charge asymmetry of
elliptic flow v2 measured in the relativistic heavy ion collider
(RHIC) [41,42]. Further study of CMWs in an expanding
QGP can be found in [43]. In addition to the anomalous
effects, the strong magnetic field also gives rise to profound
phenomena such as the enhanced photon production [44–49],
which could be crucial for the large elliptic flow observed in
RHIC [50] and in the large hadron collider (LHC) [51], the
production of heavy quarkonia [52–54], and the modified
shear viscosity of QGP [55,56].
In addition to the strong magnetic field, a strong electric

field could be produced in heavy ion collisions as well.
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The strong electric field, having the magnitude of m2
π with

mπ being the mass of pions, could exist in the asymmetric
collisions such as the Au nucleus to the Cu nucleus in early
times [57]. Furthermore, the electric field can be compar-
ative to that of the magnetic field on the basis of event-by-
event fluctuations even in the symmetric collisions [58,59].
A novel phenomenon called chiral electric effect (CESE)
has been proposed in [60], where an axial current can be
produced parallel to the electric field in the presence of both
vector and axial chemical potentials. The direct-current (dc)
conductivity of the axial charge was found to be propor-
tional to the product of the axial chemical potential and the
vector chemical potential in the weakly coupled QED with
small chemical potentials compared to the temperature of
the medium. Such a relation was later verified in the
strongly coupled scenario in the SS model [61]. Moreover,
the relation is approximately held even for large chemical
potentials. Unlike CME/CSE, since CESE is not contrib-
uted by the Chern-Simons (CS) term related to the axial
anomaly but only by the nonzero vector and axial chemical
potentials, the axial current from CESE in the SS model is
well defined. Besides, in Ref. [62], the studies of electric
conductivities of nonsinglet currents in a weakly coupled
QCD system with multiflavors implies that the similar
behavior of axial conductivities in small chemical poten-
tials could also observed in QCD. Similar to CMWs, the
density fluctuations may induce the propagating waves
along the electric field as the chiral electric waves (CEWs)
[60]. In phenomenology, the combination of CME and
CESE could possibly generate quadrapole distribution of
charge particles when the electric field and magnetic field
are perpendicular to each other as in the asymmetric
collisions. It is thus imperative to further investigate
CESE and CEWs.
We will continue our study in [61] to further explore the

CESE and CEWs with arbitrary chemical potentials. From
the classical electrodynamics, the presence of both an
electric field and a magnetic field perpendicular to each
other should yield a Hall current perpendicular to both

applied fields. Since the CESE is analogous to the normal
transport process which is governed by the interaction
between the chiral particles, we will find an axial Hall
current similar to the axial current parallel to the electric
field in the absence of the axial anomaly.
In general, we analyze the CESE, classical Hall effect,

and chiral Hall effect (CHE) in chiral systems in the
presence of external electromagnetic fields and also inves-
tigate the propagating waves caused by the density fluc-
tuations with arbitrary chemical potentials. Nevertheless,
we will assume that the interaction between the chiral
particles dominates the topological effect and thus neglect
the CME/CSE. In addition, we will implement the SS
model to compute the transport coefficients including the
damping times, wave velocities, and diffusion constants
of CEWs.
For convenience, we briefly summarize CME, CSE,

CESE, CHE, CMWs, and CEWs in Table I.
This paper is organized in the following order. In Sec. II,

we review the classical Hall effect and derive the axial Hall
current. In Sec. III, we will discuss the phenomenological
implications of the CESE and CHE. In Sec. IV, we then
generalize both the CMWs and CEWs to the cases with
arbitrary chemical potentials. Also, we analyze the CEWs
on the basis of the CESE and CHE. In Sec. V, we review the
setup of the SS model in a chiral symmetric phase at finite
temperature with chemical potentials and a constant electric
field perpendicular to a constant magnetic field, where we
further derive the axial Hall current. In Sec. VI, we will
analyze the CESE and CHE in different limits and present
the numerical results in the framework of the SS model. In
Sec. VII, we numerically solve for CEWs in the SS model.
In addition, we briefly compare the CEWs at small
chemical potentials in the strongly coupled QCD with that
in the weakly coupled QED. Finally, we make a brief
summary and outlook in Sec. VIII. Throughout the paper,
we will set B ¼ Bxx̂, E ¼ Eyŷ when we discuss the Hall
and chiral Hall effects, where E and B denote the external
electric and magnetic fields in our systems.

TABLE I. A brief summary of CME, CSE, CESE, CHE, CMWs, and CEWs. Here μV , μA are vector and axial vector chemical
potentials, respectively. jv and ja are vector and axial vector currents. σa; ðσvÞzy, ðσaÞzy are transport coefficients.

Currents Possible phenomena

Chiral magnetic effect jv ¼ e
2π2

μAB, Charge separation along B field
Chiral separation effect ja ¼ e

2π2
μVB, Chirality separation along B field

Chiral electric separation ja ¼ σaE, Charge and chirality separation
Effect along E field
Chiral hall effect jv;z ¼ ðσvÞzyEy, Charge and chirality separation

ja;z ¼ ðσaÞzyEy, in rapidity direction
Chiral magnetic wave Evolution equations for currents

with CME, CSE
Density wave induced by magnetic
field and charge separation along B field

Chiral electric wave Evolution equations
for currents with CESE, CHE

Density wave induced by electric field, charge
separation along E field and rapidity direction
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II. HALL EFFECT AND CHIRAL HALL EFFECT

In classical physics, the Hall current is coming from the
balance of two forces in a conductor, i.e., the electric and
magnetic forces,

eE ¼ −ev ×B; ð1Þ

where v is the velocity of a single electron or positron and e
is the charge of particles. In a many body system,
multiplying the number density of particle n to the both
sides of above equations yields

neE ¼ −nev ×B: ð2Þ

Recalling the charge currents in an equilibrium state,
jeq0 ¼ n, jeqðxÞ ¼ nv̄, with v̄ the average of the particles’
velocities at point x. Without external fields, the system will
be homogenous and jeqðxÞ ¼ nv̄ → 0 in the local rest
frame. In the presence of external fields, most of the
particles will be accelerated by the E field and become
the normal electric conducting flow, while a few particles,
which move orthogonal to E, B fields and satisfy Eq. (1),
will not feel the external fields and cause a new current j.
Neglecting high order terms of E, B, this new current will
satisfy

j0E ¼ −j ×B: ð3Þ

Since the current is proportional to the absolute value of the
E field, one can consider it as another conducting flow and
introduce the conductivity tensor as

ji ¼ σijeEj: ð4Þ

If E ¼ Eŷ, B ¼ Bx̂, then we find

σzy ¼ −
n
eB

; ð5Þ

which is Hall conductivity. Note that the above discussion
cannot be applied to a small B field case, otherwise, the
balance of two forces will never be reached, if jEj > cjBj,
with c the speed of light. Since, if B ¼ 0, there will be no
Hall effect, therefore, we expect that in the smallB case, the
Hall conductivity will be

σzy ¼ −nτ2HeB; ð6Þ

where τH is the parameter with dimension MeV−2.
Physically, τH is related to the interaction between particles.
Since when B is too weak, the interaction from particles
will give an effective force to each particle and the force
will help to satisfy Eq. (1). As shown in Eq. (A4) in the
Appendix, the τH can be solved in the weakly magnetic
field limit in the Langevin equations (A1), i.e., τH ¼ ξM,

with ξ the drag coefficient related to the interactions andM
the mass of particles. A systematic discussion in both the
strong and weak B limit via the Langevin equation and
Boltzmann equation with relaxation time approaches is
shown in the Appendix.
Although it seems that the normal electric conductivities

σii vanish in this discussion, for fixing E and B fields, as
we mentioned, only a few particles could satisfy Eq. (1) and
others will still be accelerated by the E field. Therefore, the
normal electric conducting flow is still there. This can be
understood in the language of the Lagevin equations or
Boltzmann equations, as shown in the Appendix.
Now let us extend our discussion to a chiral fermion

system. In this case, the single charge current will become
the right- and left-handed currents, jR and jL. In the
presence of axial chemical potential μA, the Hall conduc-
tivities in Eqs. (5) and (6) for jR=L will be different because
of nR ≠ nL,

ðjR=LÞi ¼ ðσR=LÞijEj: ð7Þ

Therefore, the vector and axial vector currents are defined
as

jv ¼
1

2
ðjR þ jLÞ; ja ¼

1

2
ðjR − jLÞ:

There will be a CHE caused by the differences of Hall
conductivities of right- and left-handed fermions. If
E ¼ Eyŷ, B ¼ Bxx̂, we can define the normal Hall
conductivity,

ðσvÞzy ¼ −ðσvÞyz ¼
1

2
ðσR þ σLÞzy; ð8Þ

and the chiral Hall conductivity,

ðσaÞzy ¼ −ðσaÞyz ¼
1

2
ðσR − σLÞzy: ð9Þ

Now we can discuss the property of the normal and
chiral Hall conductivity. The parity transformation,
x → −x, will lead to

ðσaÞzyðxÞ ¼ −ðσaÞzyð−xÞ; ðσvÞzyðxÞ ¼ ðσvÞzyð−xÞ;
ð10Þ

which implies that σ5H ∝ μA, since in the macroscopic
scaling, there is only a pseudoscalar in our system, μA. In a
small μV and μA limit, from Eqs. (5) and (6), we find, in a
weak B field case,

ðσvÞzy ¼ χeeBxμV;

ðσaÞzy ¼ χ5eeBxμA; ð11Þ
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and in a strong B field case,

ðσvÞzy ¼ χ0eT2μV=ðeBxÞ;
ðσaÞzy ¼ χ05eT

2μA=ðeBxÞ; ð12Þ

with χe;5e, χ0e;5e a dimensionless function of T and E.
A similar effect can be observed in an anisotropic fluid

with the Berry phase. When neglecting the interactions
between particles, at external electric and magnetic fields,
the effective velocity of single right-handed Weyl fermions
reads [14–16]

_x ¼ p
jpj þ E ×Ωþ B

�
p
jpj ·Ω

�
; ð13Þ

where p is the momentum of that particle and Ω ¼
p=ð2jpj3Þ is the Berry curvature. The right-handed current
is defined by

jR ¼
Z

d3p
ð2πÞ3 _xfðx; pÞ

¼ nRv þ E ×
Z

d3p
ð2πÞ3Ωfðx; pÞ þ

λ

2
μAB; ð14Þ

where fðx; pÞ is the distribution function. The third term
gives the CME. Once fðx; pÞ is anisotropic in momentum
space, the second term will induce a current perpendicular
to the electric field. However, this current can survive even
if B ¼ 0. In a 2þ 1 dimensional noninteracting fermion
system, similar effects from Chern-Simions term in an
effective action of 2þ 1 dimensional QED are also appear
[63]. Quite different with above effects, the Hall and chiral
Hall effects depend on interactions and can survive without
topological effects and the Berry phase.

III. PHENOMENOLOGICAL IMPLICATIONS

The CESE and CHE may have important implications
for the phenomenology of heavy ion collisions. For
simplicity, we consider a system with only u and ū quarks
in the following discussion. If μV > 0 or μV < 0, there will
be more particles or antiparticles, respectively. On the
contrary, if μA > 0 or μA < 0, there are more right- or left-
handed fermions.
In the following discussion, we will assume there is a

small net positive μV after the two nuclei collide with each
other since, in total, there are more particles than anti-
particles. For CME and CSE, a finite μA is not necessary,
since the CSE will induce a finite μA with the evolution.
Nevertheless, to simplify the condition in the presence of
both electric and magnetic fields, we ignore the detail of the
axial charge distribution from CSE and just assume there
exists a net positive μA as an initial condition when we
discuss CESE and CHE. One can consider the net μA to be

induced by CSE or by fluctuations or topological transi-
tions of QCD vacuum in each events.
First, we will give a brief review of the scenario caused

by the CME and CSE. In the relativistic noncentral heavy
ion collisions, two nuclei collide with each other through
the z direction as the beam direction shown in Fig. 1 and a
very strong magnetic field B appears perpendicular to the
reaction plane, which is at the x direction in Fig. 1(a).
According to the CSE, because of the nonzero net baryon
chemical potential, the strong magnetic field will induce an
axial current and a local axial chemical potential μA. For
example, assuming the reaction plane is on the y-z plane in
Fig. 1, in the x > 0 or x < 0 region, the CSE will lead
μA > 0 or μA < 0. When there exists a local axial chemical
potential, the CME will give rise to the charge separation,
where the positive-charged particles will be pushed away
from the reaction plane as illustrated in the right panel of
Fig. 1(a). These dynamical and reaction-plane-dependent
fluctuations of electric charge are expected not to vanish
when averaged over lots of events. A possible result from
these effects is the charge asymmetry encoded by the v2
difference of π� [40].
In [60], the authors considered a small global axial

chemical potential induced by fluctuations or topological
transitions of QCD vacuum in each event. For example, as
shown in Fig. 1(b), we assume there is a global μA > 0 in a
certain event. In the Cuþ Au collisions, because of geo-
metric asymmetry of the nuclei, there will be a large electric
field from Au to Cu in the early stage [57]; e.g., as shown in
Fig. 1(b), theE field is along the y direction. Because of the
normal electric conduction jv ∝ E, the positive- and
negative-charged particles will be dragged to the y > 0

and y < 0 regions, respectively. However, since the CESE
yields ja ∝ μVμAE, the right- and left-handed quarks will
also be pushed to the y > 0 and y < 0 regions, respectively.
Therefore, the electric field enhances the charge and
chirality separation. Now in the y > 0 region, there are
more positive-charged particles and more right-handed
particles, i.e., locally μV > 0, μA > 0. While in the y < 0

region, there are more negative-charged particles and more
left-handed particles, i.e., locally μV < 0, μA < 0.
Now we can add the CME and CSE to the system. As

shown in the right panel of Fig. 1(b), in the y > 0 region,
since jv ∝ μAB and ja ∝ μVB with μV , μA > 0, the
positive-charged and right-handed (or negative-charged
and left- handed) quarks will move along (or along
the opposite direction of) the B field and accumulate in
the x > 0 (or x < 0) side. Similarly, in the y < 0 region, the
opposite processes will occur because of μV , μA < 0. In the
x > 0 side of the y < 0 region, the positive-charged and
right-handed particles will move along the opposite direc-
tion of theB field. Note that, initially there is the net μV > 0
after the collisions. Therefore, after the evolution in the
x > 0 side there will still be more positive-charged particles
at the y > 0 region than negative-charged particles at the
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y < 0 region. Eventually, the combinations of magnetic and
electric fields might cause a quadrupole distribution at a
certain angle Ψq with respect to the reaction plane.
The Hall and chiral Hall effects are expected to play a

role in such strong electric and magnetic fields. However,
the dynamics evolution is very complicated and the
quantitative predictions require numerical studies in hydro-
dynamics. Here, we will only discuss some possible
phenomena in a qualitative description. For simplicity,
we neglect all other chiral effects except Hall and chiral
Hall effects. As illustrated in Fig. 1(c), in heavy ion
collisions, the fireball is approximately boost invariant
along the z direction as the beam direction in Fig. 1(c).
Since both magnetic and electric fields are at the transverse
plane (x; y) in Fig. 1(c), according to (5) and (12), the Hall
and chiral Hall effects will only induce currents antiparallel
or parallel to the z direction. For example, we assume there
is a global net μA > 0 and μV > 0 in the QGP. Since
jv;z ∝ −nv ∝ −μV , the positive-charged particles will move
antiparallel to the z direction, while the negative-charged
particles will move parallel to the z direction. From
ja;z ∝ −na ∝ −μA, the chirality separation happens sim-
ilarly. It will further causes the nontrivial charge distribu-
tion with rapidity. Note that an axial Hall current can be
generated by the CHE even at μV ¼ 0. Furthermore, when
combining the CESE, CME, and CHE, we might find the
difference in charge asymmetry of the flow coefficients vn
of charged pions with different rapidity. For example, we

could expect that the quadrupole distribution will be
enhanced in the backward rapidity but reduced in the
forward rapidity.
In the next section, we will study the propagating waves

coming from the density fluctuations and the above effects,
while we only consider the fluctuations of currents and then
solve the linearized desperation relation and discuss all
possible propagating modes. We will leave the numerical
studies based on hydrodynamic simulations in the future.

IV. DENSITY WAVES WITH FINITE CHEMICAL
POTENTIALS

A. Chiral magnetic waves

We first review the derivation of CMWs from the CME
and CSE in the right-handed and left-handed (R=L) bases
in the presence of an external magnetic field. However, we
will consider the presence of nonzero chemical potentials
and electric conductivities of the medium. The CME and
CSE along with the internal electric fields yield

jR ¼ λμRBþ eσREin; jL ¼ −λμLBþ eσLEin; ð15Þ

where λ ¼ Nce=ð2π2Þ and σR=L denote the electric con-
ductivities for right/left-handed fermions and B denotes a
constant strong background magnetic field. Therefore, the
fluctuations of magnetic fields from the charged particles
could be neglected. For simplicity, we further consider a

FIG. 1 (color online). A schematic illustration for (a) CSE and CME, (b) CESE and CME, and (c) Hall and chiral Hall effects. In (b),
(c), for simplicity, we have assumed the system has a μA > 0. In those figures, two nuclei collide through the z direction. The strong
magnetic and electric fields are at x and y directions. The origin of the frame is set to be the center of the fireball. In (c), we find a possible
charge and chirality separation induced by Hall and chiral Hall effects in the z direction.
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decoupled system, where the right-handed fermions do not
interact with the left-handed fermions. The Ein here
represents an “internal” electric field, which may come
from a charged medium. Given that the right-handed
fermions do not interact with left-handed fermions, we
may assume that μRðσRÞ and μLðσLÞ depend on j0R and j0L,
respectively. By implementing the conservation equation
∂μjμ ¼ 0 and ∇ ·B ¼ 0, ∇ · Ein ¼ j0v, we obtain

∂0j0R þ λB ·∇μR þ eσRj0v þ eEin ·∇σR ¼ 0;

∂0j0L − λB ·∇μL þ eσLj0v þ eEin ·∇σL ¼ 0: ð16Þ

We then introduce the fluctuations of the charge densities in
R=L bases,

j0R=L → nR=L þ δj0R=L: ð17Þ

Inserting the static charge densities nR=L or nv=a back to
(16) and assuming σR=L and μR=L are uniform, we can solve
the charge densities directly, i.e., nv ¼ n0;v exp ð−eσvtÞþ
const, with the n0;v constant given by initial conditions.
That implies the nonzero charge density will eventually
damp out with the damping time τc ¼ 1=ðeσvÞ, which was
as well indicated in [60]. Therefore, the time scale of the
fluctuations δjR=L or δjv=a is required to be much smaller
than the damping time τc. Fortunately, we find in the
following model used in Sec. VI, the damping time scale is
about a few fm=c.
By using the results in our previous study of the dc

conductivities in holography in [61], we get eσv ∼ 5Tσ̂v

with σ̂v being a dimensionless constant depending on the
ratios of vector and axial chemical potentials to temper-
ature. When T ¼ 200 MeV as the average temperature in
RHIC, we obtained eσv ∼ 26 MeV for μV ¼ μA ¼ 0 and
eσv ∼ 36 MeV for μV ¼ 4T and μA ¼ 0. The correspond-
ing characteristic times are τc ∼ 7.6 fm=c and
τc ∼ 5.5 fm=c, respectively. These values of the damping
times are sufficiently long to compare with the fluctuations
we assumed here. In this case, we can just simply consider
nR=L or nv=a as constants in our following discussion.
Similarly, according to the lattice calculations [64–66], the
dc conductivity of a static QGP is eσv ∼ 5.8T=Tc MeV
with Tc the critical temperature. The damping time scale is
about τc ¼ 1=ðeσvÞ ∼ 17–34 fm=c for T ∼ Tc − 2Tc as the
temperature of the QGP in RHIC.
From (15), we find

δjR ¼ λαRδj0RBþ eβRδj0REin;

δjL ¼ −λαLδj0LBþ eβLδj0LEin; ð18Þ

where

αR=L ¼
�∂μR=L
∂j0R=L

�
j0R=L→nR=L

; βR=L ¼
�∂σR=L
∂j0R=L

�
j0R=L→nR=L

:

ð19Þ

By assuming a uniform charge distribution, where nR=L are
spacetime independent, (16) becomes

∂0δj0R þ λαRB · ∇δj0R þ eβRnvδj0R þ eσRδj0R þ eβREin · ∇δj0R ¼ 0;

∂0δj0L − λαLB ·∇δj0L þ eβLnvδj0L þ eσLδj0L þ eβLEin ·∇δj0L ¼ 0: ð20Þ

Here we assume that μR=L and σR=L have no spacial dependence, while their fluctuations do. For Ein ≪ B, we may drop the
last terms explicitly depending on the electric field, whereas we could preserve the terms contributed by nonzero βR=L and
σR=L. We may now rewrite (20) in terms of the vector/axial (v=a) bases, which read

∂0δj0v þ λðα−B ·∇δj0v þ αþB ·∇δj0aÞ þ envðβþδj0v þ β−δj0aÞ þ eσvδj0v ¼ 0;

∂0δj0a þ λðα−B · ∇δj0a þ αþB ·∇δj0vÞ þ envðβ−δj0v þ βþδj0aÞ þ eσaδj0v ¼ 0; ð21Þ

where

δjμv=a ¼
1

2
ðδjμR � δjμLÞ; α� ¼ 1

2
ðαR � αLÞ; β� ¼ 1

2
ðβR � βLÞ; σv=a ¼

1

2
ðσR � σLÞ: ð22Þ

By taking δj0v=a ¼ Cv=ae−iwtþik·x with Cv=a being constants, we derive the dispersion relation

ω� ¼ λα−B · k − ienvβþ −
ieσv
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλαþB · k − ienvβ−ÞðλαþB · k − ieðnvβ− þ σaÞÞ −

e2σ2v
4

r
; ð23Þ

where Ca ¼ �Cv. In the hydrodynamic description, we may make a small-momentum expansion of the right-hand side
in (23),
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ω� ¼ −ie
�
nvβþ þ σv

2

�
∓ie

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2vβ2− þ nvβ−σa þ

σ2v
4

r
þ λ

�
α− � αþð2nvβ− þ σaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4n2vβ2− þ 4nvβ−σa þ σ2v
p �

B · k

� iα2þλ2ðσ2v − σ2aÞðB · kÞ2
eð4n2vβ2− þ 4nvβ−σa þ σ2vÞ3=2

þOððB · kÞ3Þ: ð24Þ

The momentum-independent terms above characterize the damping effect and the prefactors of the terms linear to k
correspond to the wave velocity. The last term proportional to k2 is associated with the diffusion.
For a chargeless system (nv ¼ 0), the two modes become

ωþ ¼ −ieσv þ λ

�
α− þ αþ

σa
σv

�
B · kþ iðeσvÞ−1α2þλ2

�
1 −

σ2a
σ2v

�
ðB · kÞ2 þOððB · kÞ3Þ;

ω− ¼ λ

�
α− − αþ

σa
σv

�
B · k − iðeσvÞ−1α2þλ2

�
1 −

σ2a
σ2v

�
ðB · kÞ2 þOððB · kÞ3Þ: ð25Þ

In the limit of nv ¼ 0 and σv=a ¼ 0, the dispersion
relation in (23) further reduces to

ω� ¼ λðB · kÞðα−∓αþÞ ¼ −λðB · kÞαL or λðB · kÞαR:
ð26Þ

It turns out that there exist two wave velocities
vχ ¼ NcjeBjαR=L=ð2π2Þ. For small chemical potentials
(small charge densities), αR ¼ αL, the two velocities
become degenerate. Our result then reduces to what has
been found in [3].

B. Chiral electric waves

Generally, in a QCD plasma, the interaction between
left- and right-handed fermions will play a role to the
propagating modes. However, since we will only inves-
tigate those modes by the SS model, in which there are no
effective interactions between the fermions with different
chiralities, we will neglect this kind of interaction in the
following discussion; i.e., we assume σR (or σL) will only
be functions of T and μR (or μL), respectively.
By following the same strategy, we can derive the CEWs

in the presence of an external electric field. We may start
with

jR ¼ eσRðμRÞE ¼ eσRðj0RÞE;
jL ¼ eσLðμLÞE ¼ eσLðj0LÞE: ð27Þ

In general, we set E ¼ Eex þEin, where Eex and Ein
denote the external and internal electric fields, respectively.

We may assume that the external electric field is a constant
field, whereas ∇ ·Ein ¼ j0v. Similarly, we introduce the
fluctuations of the currents,

δjR=L ¼ eβR=Lδj0R=LE: ð28Þ

The conservation equation ∂μjμ ¼ 0 then leads to

∂0j0R=L þ eE ·∇σR=L þ eσR=L∇ ·E ¼ 0: ð29Þ

By further perturbing the above equation and utilizing ∇ ·
E ¼ j0v and δσR=L ¼ βR=Lδj0R=L, we find

∂0δj0R=L þ eβR=LE ·∇δj0R=L þ eβR=Lnvδj0R=L

þ eσR=Lδj0v ¼ 0: ð30Þ

Here E in the above equation is the total electric field. In a
strong external field case, the contribution from Eex is
dominant, where the one from Ein can be neglected.
However, in the absence of external fields, Ein becomes
dominant. Actually, in this case, this term plays an
important role to guarantee the conservation of the total
charge number. Especially, in the nv ¼ 0 limit, this term
will be proportional to Ein · k and finally appear in (34).
Although it will be subleading in terms of the fluctuations
in the bulk, it will be in the order linear to δj0R=L on the
surface of the medium, which yields the propagation of
density waves outward from the thermal medium. The
argument for the Hall current in (40) is similar.
We may further rewrite (30) in terms of the v=a bases,

∂0δj0v þ eðβþE ·∇δj0v þ β−E ·∇δj0a þ nvβþδj0v þ nvβ−δj0a þ σvδj0vÞ ¼ 0;

∂0δj0a þ eðβ−E ·∇δj0v þ βþE ·∇δj0a þ nvβ−δj0v þ nvβþδj0a þ σaδj0vÞ ¼ 0: ð31Þ

When taking δj0v=a ¼ Cv=ae−iwtþik·x with Cv=a being constants, the dispersion relation reads
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ω� ¼ eβþE · k − ienvβþ −
ieσv
2

� e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβ−E · k − invβ−Þðβ−E · k − iðnvβ− þ σaÞÞ −

σ2v
4

r
: ð32Þ

By expanding (32) with the momentum in the hydrodynamic approximation, we obtain

ω� ¼ −ie
�
nvβþ þ σv

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2vβ2− þ nvβ−σa þ

σ2v
4

r �
þ e

�
βþ � β−ð2nvβ− þ σaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4n2vβ2− þ 4nvβ−σa þ σ2v
p �

E · k

� ieβ2−ðσ2v − σ2aÞðE · kÞ2
ð4n2vβ2− þ 4nvβ−σa þ σ2vÞ3=2

þOððE · kÞ3Þ: ð33Þ

Similar to CMWs, for a chargeless system (nv ¼ 0), we find two modes,

ωþ ¼ −ieσv þ e

�
βþ þ β−

σa
σv

�
E · kþ ieσ−1v β2−

�
1 −

σ2a
σ2v

�
ðE · kÞ2 þOððE · kÞ3Þ;

ω− ¼ e

�
βþ − β−

σa
σv

�
E · k − ieσ−1v β2−

�
1 −

σ2a
σ2v

�
ðE · kÞ2 þOððE · kÞ3Þ: ð34Þ

When considering the chargeless case (nv ¼ 0, σv=a ¼ 0), the dispersion relation in (32) reduces to

ω� ¼ eðE · kÞðβþ∓β−Þ ¼ −eðE · kÞβL or eðE · kÞβR: ð35Þ

This result is very similar to that for CMWs. Although the
wave velocity of CEWs is dictated by the fluctuations of the
conductivities, it implicitly depends on the fluctuations of
the chemical potentials which influence the conductivities.
We may now consider the CEWs in the limit of small

chemical potentials. In light of the assumption in [60] based
on the symmetries, the currents in R=L bases are

jR=L ¼ eðσ0 þ ρμ2R=LÞE; ð36Þ

where ρ is a function of temperature. Note that we drop the
interaction between the R=L sectors, which is interpreted as
the screening in [60]. From (36), the CESE is given by

jv ¼ eðσ0 þ ρðμ2v þ μ2aÞÞE;
ja ¼ eχeμvμaE; ð37Þ

where χe ¼ 2ρ. Given that μR=L ¼ αR=Lj0R=L [67], which
corresponds to the case with small densities, we obtain

βR=L ¼ 2ρα2R=LnR=L: ð38Þ

For small chemical potentials, we have αR ¼ αL ¼ αþ,
which yields

βþ ¼ 2ρα2þnv; β− ¼ 2ρα2þna: ð39Þ

The wave equations in (31) up to Oðnv=aÞ now reduce to

∂0δj0v þ 2eρα2þðnvE ·∇δj0v þ naE · ∇δj0aÞ þ eσ0δj0v ¼ 0;

∂0δj0a þ 2eρα2þðnaE · ∇δj0v þ nvE ·∇δj0aÞ ¼ 0: ð40Þ

We may compare (40) with the result found in [60]. By
definitions, we find

αv ¼
∂μv
∂j0v ¼ 1

2

�∂μR
∂j0R

∂j0R
∂j0v þ

∂μL
∂j0L

∂j0L
∂j0v

�
¼ αþ;

αa ¼
∂μa
∂j0a ¼ 1

2

�∂μR
∂j0R

∂j0R
∂j0a −

∂μL
∂j0L

∂j0L
∂j0a

�
¼ αþ ¼ αv: ð41Þ

When turning off the magnetic field and taking χe ¼ 2ρ and
ρ ¼ σ2 as defined in [60], we find that (40) is consistent
with the result therein in the absence of a magnetic field.
By further including the Hall effect yet excluding CME

and CSE, the fluctuations of the currents become

ðδjR=LÞi ¼ eðβR=LÞijδj0R=LEj; ð42Þ

where

ðβR=LÞij ¼
�∂ðσR=LÞij

∂j0R=L
�

j0R=L→nR=L

: ð43Þ

The wave equations now take the form

∂0δj0R=L þ eðβR=LÞijEj∂iδj0R=L þ eðβR=LÞiinvδj0R=L
þ eðσR=LÞiiδj0v ¼ 0: ð44Þ
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We can subsequently work in the v=a bases and derive the dispersion relations. By taking δj0v=a ¼ Cv=ae−iwtþik·x with Cv=a
being constants, the dispersion relation reads

ω� ¼ eðβþÞijEjki − ienvðβþÞii −
ieðσvÞii

2
� e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððβ−ÞijEjki − invðβ−ÞiiÞððβ−ÞijEjki − iðnvðβ−Þii þ ðσaÞiiÞÞ −

e2ðσvÞ2ii
4

r
:

ð45Þ

In our setup, we have

ðσv=aÞii ¼ ðσv=aÞyy; ðβ�Þii ¼ ðβ�Þyy; ðβ�ÞijEjki ¼ ðβ�ÞzyEykz þ ðβ�ÞyyEyky: ð46Þ

After making the momentum expansion, the dispersion relation in (45) becomes

ω� ¼ −iτ−1� þ ðv�Þiki − iðD�Þijkikj; ð47Þ

where

τ−1� ¼ e

�
nvðβþÞii þ

ðσvÞii
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2vðβ−Þ2ii þ nvðβ−ÞiiðσaÞii þ

ðσvÞ2ii
4

r �
;

ðv�Þk ¼ e

�
ðβþÞkj �

ðβ−Þkjð2nvðβ−Þii þ ðσaÞiiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2vðβ−Þ2ii þ 4nvðβ−ÞiiðσaÞii þ ðσvÞ2ii

p �
Ej;

ðD�Þij ¼ ∓ eðβ−Þikðβ−ÞjlððσvÞ2mm − ðσaÞ2mmÞðEkElÞ
ð4n2vðβ−Þ2mm þ 4nvðβ−ÞmmðσaÞmm þ ðσvÞ2mmÞ3=2

: ð48Þ

Here τ� represent the damping times for two modes of the
density wave and ðv�Þk correspond to the wave velocities.
The diffusion of the density wave is characterized by
ðD�Þij. In the following sections, we will employ the SS
model in holography to investigate the CESE, CHE, and
CEWs in the strongly coupled QGP.

V. SS MODEL

We will follow the approach in [68,69] to investigate the
currents induced by the external electromagnetic fields at
finite chemical potentials. In the SS model at finite temper-
ature, the induced metric of D8=D8 branes in the chiral
symmetric phase is given by

ds2 ¼
�
U
L

�
3=2

ð−fðUÞdt2 þ d~x2Þ

þ
�
L
U

�
3=2 dU2

fðUÞ þ
�
L
U

�
3=2

U2dΩ2
4; ð49Þ

where fðUÞ ¼ 1 −U3
T=U

3 withUT being the position of an
event horizon and L ¼ ðπ3gsNcl3sÞ1=3 is the curvature
radius. The temperature of the background reads

T ¼ 3

4π

�
UT

L3

�
1=2

: ð50Þ

There are also background dilaton and form flux

eϕ ¼ gs

�
U
L

�
3=4

; F4 ¼
2πNc

V4

ϵ4; ð51Þ

where V4 is the volume of the four-sphere and ϵ4 is the
corresponding volume form. The full Dirac Born Infeld
(DBI) action reads

SDBI ¼ SD8 þ SD8; ð52Þ
where

SD8=D8 ¼ −TD8

Z
d9xe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgþ 2πα0FL=RÞ

q
: ð53Þ

Moreover, we have CS terms

SCS
D8=D8

¼∓ Nc

96π2

Z
d4xdUϵMNPQRðAL=RÞMðFL=RÞNPðFL=RÞQR:

ð54Þ

By turning on the world-volume gauge fields [70],
ðAL=RÞtðUÞ, ðAL=RÞxðt; UÞ ¼ ðaL=RÞxðUÞ, ðAL=RÞyðt; UÞ ¼
−Eytþ ðaL=RÞyðUÞ, and ðAL=RÞzðt;UÞ¼BxyþðaL=RÞzðUÞ,
we obtain

SD8=D8 ¼ −C
Z

d4xdUU5=2
ffiffiffiffi
X

p
;
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where

X ¼ 1þ B2
xL3

U3
−
E2
yL3

U3f
− A02

t

�
1þ B2

xL3

U3

�
þ a02x f

�
1 −

E2
yL3a02x
fU3

þ B2
xL3

U3

�
þ fa02y þ 2BxEyL3A0

ta0z
U3

þ a02z f
�
1 −

E2
yL3

fU3

�
;

C ¼ TD8V4L3=2

gs
¼ Nc

96π5l6sL3=2 : ð55Þ

Here the primes denote the derivatives with respect to U. We also set 2πl2s ¼ 1 GeV−2 and drop the L=R subscripts above
for simplicity. In our setup, the CS terms read

SCS
D8=D8

¼ ∓ 8Nc

96π2

Z
d4xdUðBxðAta0x − axA0

tÞ þ Eyðaxa0z − aza0xÞÞ: ð56Þ

The full actions take the form

Sf
D8=D8

¼ −C
�Z

d4xdUU5=2
ffiffiffiffi
X

p
� r

Z
d4xdUðBxðAta0x − axA0

tÞ þ Eyðaxa0z − aza0xÞÞ
�
; ð57Þ

where r ¼ Nc=ð12π2CÞ ¼ ð2πlsÞ3L3=2. We may add the boundary terms according to [69], which lead to
r ¼ 3=2 × ð2πlsÞ3L3=2. The value of r actually depends on the renormalization scheme. The equations of motion are

U5=2ððAL=RÞ0tð1þ B2
xL3

U3 Þ − ðaL=RÞ0z BxEyL3

U3 Þffiffiffiffiffiffiffiffiffiffi
XL=R

p ¼ ðJL=RÞt∓2rBxðaL=RÞx

U5=2fðaL=RÞ0xð1 − E2
yL3

fU3 þ B2
xL3

U3 Þffiffiffiffiffiffiffiffiffiffi
XL=R

p ¼ ðJL=RÞx∓2rðBxðAL=RÞt − EyðaL=RÞzÞ

U5=2fðaL=RÞ0yffiffiffiffiffiffiffiffiffiffi
XL=R

p ¼ ðJL=RÞy;

U5=2ððAL=RÞ0t BxEyL3

U3 þ fðaL=RÞ0zð1 − E2
yL3

fU3 ÞÞffiffiffiffiffiffiffiffiffiffi
XL=R

p ¼ ðJL=RÞz∓2rEyðaL=RÞx; ð58Þ

where ðJL=RÞμ are integration constants. In the AdS/CFT correspondence, the electromagnetic currents correspond to the
boundary currents of the DBI actions. From the definition of boundary currents,

jμ ¼ Jbμ ¼
δSEOM

δAμð∞Þ ¼
�
δLeff

δA0
μ

�
U→∞

; ð59Þ

we have

ðJbL=RÞt ¼ C

�
U5=2ððAL=RÞ0tð1þ B2

xL3

U3 Þ − ðaL=RÞ0z BxEyL3

U3 Þffiffiffiffiffiffiffiffiffiffi
XL=R

p � rBxðaL=RÞx
�

U→∞
;

ðJbL=RÞx ¼ C

�
−
U5=2fðaL=RÞ0xð1 − E2

yL3

fU3 þ B2
xL3

U3 Þffiffiffiffiffiffiffiffiffiffi
XL=R

p ∓rðBxðAL=RÞt − EyðaL=RÞzÞ
�

U→∞
;

ðJbL=RÞy ¼ C

�
−
U5=2fðaL=RÞ0yffiffiffiffiffiffiffiffiffiffi

XL=R
p �

U→∞
;

ðJbL=RÞz ¼ C

�
−
U5=2ððAL=RÞ0t BxEyL3

U3 þ fðaL=RÞ0zð1 − E2
yL3

fU3 ÞÞffiffiffiffiffiffiffiffiffiffi
XL=R

p ∓rEyðaL=RÞx
�

U→∞
; ð60Þ

where Leff is the effective Lagrangian. By comparing (58) and (60), the boundary currents can be rewritten as
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ðJbL=RÞt ¼ CððJL=RÞt∓rBxðaL=RÞxÞU→∞;

ðJbL=RÞx ¼ Cð−ðJL=RÞx � rðBxðAL=RÞt − EyðaL=RÞzÞÞU→∞;

ðJbL=RÞy ¼ −CðJL=RÞy;
ðJbL=RÞz ¼ Cð−ðJL=RÞz � rEyðaL=RÞxÞU→∞: ð61Þ

Following [69], we may define the modified currents,

ð ~JL=RÞt ¼ ðJL=RÞt∓2rBxðaL=RÞx;
ð~JL=RÞx ¼ ðJL=RÞx∓2rðBxðAL=RÞt − EyðaL=RÞzÞ;
ð~JL=RÞy ¼ ðJL=RÞy;
ð~JL=RÞz ¼ ðJL=RÞz∓2rEyðaL=RÞx: ð62Þ

By doing some algebra with (58), we find

ðAL=RÞ0t ¼ �
jð1 − E2

yL3

fU3 Þð ~JL=RÞt þ EyBxL3

fU3 ð ~JL=RÞzjffiffiffiffi
Z

p ;

ðAL=RÞ0x ¼ � jð ~JL=RÞxj
f

ffiffiffiffi
Z

p ;

ðAL=RÞ0y ¼ �
jð1þ B2

xL3

U3 − E2
yL3

fU3 Þð ~JL=RÞyj
f

ffiffiffiffi
Z

p ;

ðAL=RÞ0z ¼ � jð1þ B2
xL3

U3 Þð ~JL=RÞz − EyBxL3

U3 ð ~JL=RÞtj
f

ffiffiffiffi
Z

p ; ð63Þ

where

Z ¼
�
1þ B2

xL3

U3
−
E2
yL3

fU3

��
U5 þ ð ~JL=RÞ2t −

ð~JL=RÞ2y þ ð ~JL=RÞ2z
f

�
−
L3

U3

�
Bxð~JL=RÞt −

Eyð~JL=RÞz
f

�2

−
ð ~JL=RÞ2x

f
: ð64Þ

By requiring that ðAL=RÞ0μ are real andwell defined,wehave to
make both the numerators and denominators on the left-hand
side of (63) vanish at a critical point U ¼ Uc. We thus have

�
1 −

E2
yL3

fU3
c

�
ð~JL=RÞt −

EyBxL3

fU3
c

ð ~JL=RÞz ¼ 0;

ð ~JL=RÞx ¼ 0;�
1þ B2

xL3

U3
c

−
E2
yL3

fU3
c

�
¼ 0;

�
1þ B2

xL3

U3
c

�
ð~JL=RÞz −

EyBxL3

U3
c

ð~JL=RÞt ¼ 0;

ZðUcÞ ¼ 0: ð65Þ

Note that the first equation in (65) is redundant, which can be
obtained from the third and fourth equations therein. In fact,
(65) is equivalent to finding the double zeros of ZðUcÞ from
the expression in (64), where all three terms therein have
double zeroes atUc. From the third equation in (65), we find
the critical point

Uc ¼
UT

21=3

�
1þ L3

U3
T
ðE2

y − B2
xÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2

xL3

U3
T

þ
�
1þ L3

U3
T
ðE2

y − B2
xÞ
�

2
s �

1=3
: ð66Þ

One may now solve the rest of equations in (65) to derive
ðJL=RÞi for i ¼ x; y; z in terms of ðJL=RÞt. We find

ðJL=RÞx ¼ �2rðBxðAL=RÞt − EyðaL=RÞzÞU¼Uc
;

ðJL=RÞy ¼ −
EyL3=2U3=2

c

B2
xL3 þU3

c
ððJL=RÞ2t þ B2

xL3U2 þ U5∓4rBxðJL=RÞtðaL=RÞx þ 4B2
xr2ðaL=RÞ2xÞ1=2U¼Uc

;

ðJL=RÞz ¼
�
BxEyðJL=RÞtL3 � 2rEyU3ðaL=RÞx

B2
xL3 þ U3

�
U¼Uc

: ð67Þ

The boundary currents then become

ðJbL=RÞx ¼ C½∓2rðBxðAL=RÞt − EyðaL=RÞzÞU¼Uc
� rðBxðAL=RÞt − EyðaL=RÞzÞU¼∞�;

ðJbL=RÞy ¼ C

�
EyL3=2U3=2

c

B2
xL3 þ U3

c
ððJL=RÞ2t þ B2

xL3U2 þU5∓4rBxðJL=RÞtðaL=RÞx þ 4B2
xr2ðaL=RÞ2xÞ1=2U¼Uc

�
;

ðJbL=RÞz ¼ C

��
−BxEyðJL=RÞtL3∓2rEyU3ðaL=RÞx

B2
xL3 þ U3

�
U¼Uc

� ðrEyðaL=RÞxÞU¼∞

�
: ð68Þ
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In the presence of CS terms, we find that ðJL=RÞi not
only depend on ðJL=RÞt but also depend on ðaL=RÞx and
ðaL=RÞz at the boundary and Uc. It turns out that the gauge
invariance of theboundary currents is broken by theCS terms.
The nonzero values of ðaR=LÞið∞Þ with i ¼ x; y; z corre-
spond to the pion gradient in the chiral-symmetry-broken
phase [71]. In the chiral-symmetry-restored phase,
ðaR=LÞið∞Þ become free parameters, which are set to zero
in [69]. For simplicity and preciseness, we focus on

the condition that the particle interaction dominates the
topological effect. The axial Hall current should exist without
the axial anomaly, while it could vary in the presence of the
strong axial anomaly and become non-gauge-invariant in the
SS model.
Considering the gauge-invariant currents from inter-

actions, we may turn off ðaL=RÞxðUÞ and neglect the effect
from the CS terms. By rewriting (67) in terms of vector/
axial bases, we find

ðJbv=aÞy ¼
CEyL3=2U3=2

c

2ðB2
xL3 þ U3

cÞ
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððJvÞt þ ðJaÞtÞ2 þ B2

xL3U2
c þU5

c

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððJvÞt − ðJaÞtÞ2 þ B2

xL3U2
c þ U5

c

q
Þ;

ðJbv=aÞz ¼ −C
BxEyðJv=aÞtL3

B2
xL3 þU3

c
;

ðJbv=aÞt ¼ CðJv=aÞt: ð69Þ

Now, both ðJbv=aÞy and ðJbv=aÞz depend on the charge
densities ðJbv=aÞt on the boundary as functions of the
chemical potentials. To find the relations between the
charge densities and the chemical potentials, we have to
solve the field equation of ðAL=RÞt in (63). By utilizing (67),
this field equation can be further written as

ðAL=RÞ0t ¼
jð1 − E2

yL3U3
c

fU3ðB2
xL3þU3

cÞÞðJL=RÞtjffiffiffiffi
Z

p : ð70Þ

We will then render the boundary conditions
ðAL=RÞtðUTÞ ¼ 0 and numerically solve the field equation.
The chemical potentials are given by

μL=R ¼ ðAL=RÞtð∞Þ; ð71Þ

which are varied by the values of ðJL=RÞt.

VI. CESE/CHE IN HOLOGRAPHY

A. Weak and strong electromagnetic fields

Although the boundary currents with different chemical
potentials can be solved numerically, we may approximate
their analytic expressions in the limit of weak electromag-
netic fields. In the presence of weak electromagnetic fields,
the induced currents should follow the linear response
theory. When taking Ey ≈ 0 and Bx ≈ 0, from (70), the
chemical potentials are given by

μL=R
UT

¼ 2

3 ~U5=2
L=R

2F1

�
3

10
;
1

2
;
13

10
;−

1

~U5
L=R

�
;

~UL=R ¼ UT

ðJL=RÞ2=5t

: ð72Þ

In the limit of ~UL=R → 0, which corresponds to high-
density or low-temperature conditions, we find

μL=R
UT

≈
2Γð1

5
ÞΓð13

10
Þ

3
ffiffiffi
π

p
~UL=R

−
10Γð13

10
Þ

3Γð 3
10
Þ þOð ~U5

L=RÞ: ð73Þ

Up to the leading order in the expansion with respect to
~UL=R, we obtain

ðJL=RÞt ¼
�

3
ffiffiffi
π

p
2Γð1

5
ÞΓð13

10
Þ
�

5=2
μ5=2L=R: ð74Þ

By expanding the boundary currents in (69), we derive the
relation between the currents and chemical potentials in the
high-density (low-temperature) limit. The currents now
take the form

ðJbv=aÞy ¼
CEy

2

�
R
UT

�
3=2

ððJRÞt � ðJLÞtÞ

¼ CEy

2a3T3L3

�
3

ffiffiffi
π

p
2Γð1

5
ÞΓð13

10
Þ
�

5=2
ðμ5=2R � μ5=2L Þ;

ðJbv=aÞz ¼ −
CBxEy

a6T6L6

�
3

ffiffiffi
π

p
2Γð1

5
ÞΓð13

10
Þ
�

5=2
ðμ5=2R � μ5=2L Þ; ð75Þ

where a ¼ 4π=3.
On the contrary, in the limit of ~UL=R → ∞, which

corresponds to low-density or high-temperature conditions,
we find

μL=R
UT

≈
2

3
~U−5=2
L=R −

1

13
~U−15=2
L=R þOð ~U−25=2

L=R Þ: ð76Þ

Up to the leading order in the expansion with respect to
~U−1
L=R, we obtain

SHI PU, SHANG-YU WU, AND DI-LUN YANG PHYSICAL REVIEW D 91, 025011 (2015)

025011-12



ðJL=RÞt ¼
3

2
U3=2

T μL=R: ð77Þ

The boundary currents now read

ðJbv=aÞy ¼
CEy

2
ρ2T2L9=2

��
1þ 9μ2R

8ða2T2L3Þ2
�

�
�
1þ 9μ2L

8ða2T2L3Þ2
��

;

ðJbv=aÞz ¼ −
3CBxEy

2a3T3L3=2 ðμR � μLÞ: ð78Þ

One may further rewrite (78) in terms of μV=μA,

ðJbvÞy ¼ CEya2T2L9=2

�
1þ 9

8ða2T2L3Þ2 ðμ
2
V þ μ2AÞ

�
;

ðJbaÞy ¼
9CEy

4a2T2L3=2 μVμA;

ðJbv=aÞz ¼ −
3CBxEy

a3T3L3=2 μV=A; ð79Þ

where μV=A ¼ ðμR � μLÞ=2. The small-chemical-potential
dependence here is consistent with that found in [60,61]
and (11).
In the presence of strong electromagnetic fields, we are

unable to solve (70) analytically with the strong-field
approximation. Nevertheless, it is useful to further inves-
tigate the explicit dependence of the electromagnetic fields
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FIG. 2 (color online). The green, black, blue, and red (from top
to bottom) correspond to μV ¼ 0.002T, T, 1.6T, and 2T,
respectively. The solid and dashed curves correspond to
ðBx; EyÞ ¼ ðm2

π; m2
πÞ ¼ ð0.1352; 0.1352Þ GeV2 and ðBx; EyÞ ¼

ð0.0012; 0.012Þ GeV2, where μ̂V=A ¼ μV=A=T.
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FIG. 3 (color online). The color corresponds to the same cases
in Fig. 2.
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FIG. 4 (color online). The green, black, blue, and red (from top
to bottom) correspond to μA ¼ 0.002T, T, 1.6T, and 2T,
respectively. The solid and dashed curves correspond to
ðBx; EyÞ ¼ ðm2

π; m2
πÞ ¼ ð0.1352; 0.1352Þ GeV2 and ðBx; EyÞ ¼

ð0.0012; 0.012Þ GeV2.
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FIG. 5 (color online). The color corresponds to the same cases
in Fig. 4.
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FIG. 6 (color online). The color corresponds to the same cases
in Fig. 4.
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and charge densities for the boundary currents. When
having large Ey and finite Bx, we find U3

c → L3E2
y. By

doing some algebra with (69), we obtain

ðJbvÞy ≈ CL5=2E5=2
y ;

ðJbaÞy ≈
ðJbvÞtðJbaÞt
CL5=2E8=3

y

;

ðJbv=aÞz ≈ −
BxðJbv=aÞt

Ey
: ð80Þ

On the contrary, when having large Bx and finite Ey, we
find U3

c → U3
T , which gives

ðJbvÞy ≈ C
U5=2

T Ey

Bx
;

ðJbaÞy ≈
EyðJbvÞtðJbaÞt

CL3B3
x

;

ðJbv=aÞz ≈ −
EyðJbv=aÞt

Bx
: ð81Þ0.0 0.2 0.4 0.6 0.8 1.0 V

0.48

0.46

0.44
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0.40
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v z
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FIG. 7 (color online). The color corresponds to the same cases
in Fig. 4.
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FIG. 8 (color online). Boundary currents normalized by C with Bx ¼ m2
π , μV ¼ 0.2T, and μA ¼ 0.1T. (a) vector charge density,

(b) axial charge density, (c) vector current, (d) axial current, (e) vector Hall current, (f) axial Hall current.
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B. Numerical results

We now numerically solve (70) for the boundary
currents. The numerical values of the relevant coefficients
are

2πl2s ¼ 1 GeV−2; λt ¼ g2YMNc ¼ 17;

MKK ¼ 0.94 GeV; ð82Þ

which give

L3 ¼ ð2MKKÞ−1ðg2YMNcl2sÞ ¼ 1.44 GeV−3: ð83Þ

We can further set Nc ¼ 3, which leads to
C ¼ 0.0211 GeV−15=2. We then choose the temperature
as the average temperature in RHIC,

T ¼ 200 MeV ¼ 0.2 GeV; ð84Þ

which yields

UT ¼ 1.02 GeV−1: ð85Þ
We first evaluate the axial currents generated by weak
electromagnetic fields and by the average electromagnetic
fields in RHIC [57,58] with different chemical potentials.
In Fig. 2 and Fig. 3, we fix the vector chemical potentials
and vary the axial chemical potentials by implementing the
shooting method, where the currents are normalized by C.
We find that the axial currents led by the CESE are
approximately proportional to μVμA even with finite
chemical potentials. Our result is consistent with what
has been found by using the Kubo formula in [61].
Moreover, the axial Hall currents are approximately linear
to μA, which match the approximation under weak
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FIG. 9 (color online). Boundary currents normalized by C with Ey ¼ m2
π , μV ¼ 0.2T, and μA ¼ 0.1T. (a) vector charge density,

(b) axial charge density, (c) vector current, (d) axial current, (e) vector Hall current, (f) axial Hall current.
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electromagnetic fields and small chemical potentials.
Analogously, the vector Hall currents are also approxi-
mately linear to μV as shown in Fig. 6. It turns out that the
small-chemical-potential approximation could be applied
to the conditions when the chemical potentials are around
the magnitude of the temperature. Also, the average
electromagnetic fields in RHIC only result in minor
corrections. The similar behaviors of the axial and vector
currents can be found in Fig. 4, Fig. 5, and Fig. 7 when we
fix the axial chemical potentials and vary the vector ones.
Next, we may study the electric and Hall currents varied

by electromagnetic fields. The numerical results are shown
in Figs. 8 and 9, where we fix both the vector and axial
chemical potentials to be small compared with the temper-
ature. In Fig. 8, we fix Bx to the average value in RHIC and
vary Ey. In the regions of the small electric field for
Ey < 20m2

π , the increase of the charge densities led by Ey is
mild, while the currents ðJbv=aÞy=z are linear to the electric
field as expected from (79). In the region with a large Ey,
the charge densities are increased by the electric field when
fixing the chemical potentials, while the currents start to
decrease except for ðJbvÞy. The result could be qualitatively
consistent with the strong-field approximation in (80).
However, the increase of ðJbv=aÞt mitigates the decrease
of ðJbaÞy and ðJbv=aÞz. In Fig. 9, we then fix Ey and vary Bx.
We observe the linear increase of ðJbv=aÞz as expected from
(79). Also, the decrease of ðJbvÞy is mild with small Bx, but
the nonlinear effect quickly takes over for ðJbaÞy. In the
region with large Bx, all currents decrease as anticipated
from (81).

VII. CEWS IN HOLOGRAPHY

A. CEWs in the SS model

In this section, we will investigate the transport coef-
ficients of CEWs in the framework of the SS model. We
may focus on the cases with weak electric fields such that
the boundary currents are linear to the electric fields, while
we may preserve the nonlinear effect from the magnetic
fields encoded in the conductivities. Also, we will neglect
the contributions from the CS terms. From (68), we find

ðβL=RÞyy ¼
L3=2U3=2

T

B2
xL3 þU3

T

ðJL=RÞtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJL=RÞ2t þ B2

xL3U3
T þU5

T

q ;

ðβL=RÞzy ¼
−BxL3

B2
xL3 þU3

T
; ð86Þ

where we take Uc ≈UT for small Ey. Since ðβL=RÞzy are
independent of ðJL=RÞt, we directly obtain ðβ−Þzy ¼ 0 for
arbitrary chemical potentials. We thus obtain

ðδjvÞy ¼ ððβþÞyyδj0v þ ðβ−Þyyδj0aÞEy;

ðδjaÞy ¼ ððβ−Þyyδj0v þ ðβþÞyyδj0aÞEy;

ðδjv=aÞz ¼ ðβþÞzyδj0v=aEy: ð87Þ

The transport coefficients in the dispersion relation read

τ−1� ¼
�
nvðβþÞyy þ

ðσvÞyy
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2vðβ−Þ2yy þ nvðβ−ÞyyðσaÞyy þ

ðσvÞ2yy
4

s �
;

ðv�Þy ¼
�
ðβþÞyy �

ðβ−Þyyð2nvðβ−Þyy þ ðσaÞyyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2vðβ−Þ2yy þ 4nvðβ−ÞyyðσaÞyy þ ðσvÞ2yy

q �
Ey;

ðv�Þz ¼ ðβþÞzyEy;

ðD�Þyy ¼ ∓ ðβ−Þ2yyððσvÞ2yy − ðσaÞ2yyÞðE2
yÞ

ð4n2vðβ−Þ2yy þ 4nvðβ−ÞyyðσaÞyy þ ðσvÞ2yyÞ3=2
;

ðD�Þzz ¼ ðD�Þzy ¼ ðD�Þyz ¼ 0: ð88Þ

Recall that ðσvÞyy > ðσaÞyy in the limit of small chemical
potentials. By further turning off nv, we find that only the
τ−1− vanishes. Therefore, when nv ¼ 0, the dissipation of
the “−” mode of CEWs only comes from the diffusion.
Although the diffusion constant for the “þ” mode here is
negative, the finite damping time should dominate the
dissipation. The same argument can be applied to CMWs
shown in (24) as well. Moreover, the “−” mode of the Hall
CEWs becomes nondissipative when nv ¼ 0 and ky ¼ 0.
This may be somewhat anticipated since the Hall currents

are not influenced by the collisional effect in the “stationary
state” in the absence of the currents along the electric field,
which is equivalent to the condition with zero drag force or
infinite relaxation time as discussed in the Appendix.
We now evaluate the transport coefficients in (88)

numerically. We first consider the cases with fixed electro-
magnetic fields and different magnitudes of the chemical
potentials. The results are shown in Figs. 10(a)–10(f). As
illustrated in Figs. 10(a) and 10(b), the damping is more
prominent for the “þ” mode which mainly stems from the
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nonzero normal conductivity. For both modes, the damping
is increased by the vector chemical potential, while it is less
affected by the axial chemical potential. Similarly, the wave
velocities along the electric field of two modes are
enhanced by the vector chemical potential and degenerate
in the presence of an axial chemical potential as shown in
Fig. 10(c). On the contrary, as expected from (86) and (88),
the Hall velocities of two modes as illustrated in Fig. 10(e)
are degenerate and independent of the chemical potentials.
As shown in Fig. 10(f), the diffusion constant vanishes at
zero axial chemical potentials and increases when the axial
chemical potential is increased. However, the diffusion
constant is reduced by the vector chemical potential due to
the presence of nv in the denominator as shown in (88).
Next, we may fix the chemical and vary the magnitudes

of the constant electromagnetic fields. As shown in
Figs. 11(a)–11(d), we plot the coefficients with μV ¼ T

and μA ¼ 0. Since ðβ−Þyy ¼ 0 when μA ¼ 0, ðvþÞy and
ðv−Þy are degenerate as illustrated in Fig. 11(c). Also,
ðD�Þyy vanish under this condition. In Figs. 12(a)–12(e),
we take μV ¼ 2T and μA ¼ T, where the degeneracy of
ðvþÞy and ðv−Þy is broken and ðD�Þyy are nonzero. Recall
that ðDþÞyy ¼ −ðD−Þyy. In addition, the magnitudes of
ðD�Þyy will saturate to zero at large Bx, which could be
expected from (88) since ðβ−Þyy drop to zero at large Bx

according to (86). In general, when we increase the
chemical potentials, the wave velocities increase, while
the damping and diffusion contributing to the dissipation of
CEWs are enhanced as well. Nonetheless, with zero
chemical potentials, the CEWs may only propagate
perpendicular to the applied fields without dissipation.
Although the damping effect is absent only for the “−”
mode here in the SS model due to presence of nonzero
conductivity for the system at zero chemical potentials,
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FIG. 10 (color online). The transport coefficients for different chemical potentials and fixed electric and magnetic fields. The green,
black, blue, and red [from bottom to top in (a)–(e) and from top to bottom in (f)] correspond to μV ¼ 0.002T, T, 1.6T, and 2T,
respectively. Here we take Ey ¼ Bx ¼ 10m2

π . The unit of τ− is in GeV−1. In (c), the solid and dashed curves represent ðv−Þy and ðvþÞy.

CHIRAL HALL EFFECT AND CHIRAL ELECTRIC WAVES PHYSICAL REVIEW D 91, 025011 (2015)

025011-17



both “�” modes for the Hall CEWs will be nondissipative
in the system with zero conductivity and zero chemical
potentials.

B. CEWs in the weakly/strongly coupled scenarios
at small chemical potentials

In this subsection, we may focus on the CEWs at small
chemical potentials in the absence of a magnetic field,
where the transport coefficients for CEWs can be derived
analytically in both the SS model and weakly coupled QED
through the conductivities obtained from the hard-thermal-
loop approximation in [60]. For the weakly coupled
scenario, we may consider an ideal gas at finite temperature
and chemical potentials. The bookkeeping result (also see,
for example, the number density for massless particles
quarks in QGP in [72]) shows that

j0R=L ¼ QfμR=L
6

�
T2 þ μ2R=L

π2

�
; ð89Þ

which results in

αR=L ¼ 6

QfT2ð1þ 3μ2R=L
π2T2 Þ

≈
6

QfT2

�
1 −

3μ2R=L
π2T2

�
ð90Þ

for small chemical potentials, where Qf denotes the
degrees of freedom of the chiral fermions. By definition,
we find

βR=L ¼ 2ρμR=LαR=L ≈
12~ρμR=L
QfT3

�
1 −

3μ2R=L
π2T2

�
; ð91Þ

where ~ρ ¼ ρT is dimensionless. We thus have

βþ=− ¼ 12~ρ

QfT3
μV=A þOðμ3R=L=T3Þ: ð92Þ

In the limit μR ¼ −μL ¼ μA and σv=a ¼ 0, from (26), the
dispersion relation for CMWs reads

ω� ¼ �λðB · kÞαR=L ¼ � eNcB · k
2π2T2

�
6

Qf

��
1 −

3μ2A
π2T2

�
:

ð93Þ

Analogously, from (35), the dispersion relation for CEWs is
given by

ω� ¼ �λðE · kÞβR=L ¼ �eE · k
2~ρμA
T3

�
6

Qf

��
1 −

3μ2A
π2T2

�
:

ð94Þ

The numerical value of ~ρ depends on the property of the
medium. In the weakly coupled QED, one can read out σ0
and ~ρ defined in (36) from [60] by turning off the
contributions from the interaction between the right-handed
and left-handed sectors [73], where
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FIG. 11 (color online). The transport coefficients for fixed chemical potentials and different electric and magnetic fields. The green
(long-dashed), black (dot-dashed), blue (dashed), and red (solid) correspond to eEy ¼ m2

π , 5m2
π , 10m2

π , and 20m2
π , respectively. Here we

take μV ¼ T and μA ¼ 0. The unit of τ− is in GeV−1.
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σ0 ¼ 15.6952
T

e4 lnð1=eÞ ; ~ρ ¼ 10.2495
1

e4 lnð1=eÞ :

ð95Þ

Here we may consider two particular cases for CEWs.
When nv ¼ 0ðβþ ¼ 0Þ, from (32) and (39), we find

ω� ≈�e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2−E2

yk2y −
σ2v
4

r
−
ieσv
2

≈�e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
6~ρμAEy

T3

�
2

k2y −
σ20
4

s
−
ieσ0
2

; ð96Þ

where the contribution from σA is dropped since
σA ∼Oðn2R=LÞ. Here we take Qf ¼ 2 by summing over

the spins of electrons in QED. The small-momentum
expansions of two modes up to the leading order of ky are

ωþ ¼ −ie
�
6~ρμAEy

T3

�
2 k2y
σ0

¼ −i
240.957ðeEyÞ2μ2A
e5 lnð1=eÞT7

k2y;

ω− ¼ −ieσ0 þ ie

�
6~ρμAEy

T3

�
2 k2y
σ0

¼ −
iT

e3 lnð1=eÞ
�
15.6952 −

240.957ðeEyÞ2μ2A
e2T8

k2y

�
;

ð97Þ

where both modes do not propagate. On the other hand,
when na ¼ 0ðβ− ¼ 0Þ, we have
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FIG. 12 (color online). The transport coefficients for fixed chemical potentials and different electric and magnetic fields. The green
(long-dashed), black (dot-dashed), blue (dashed), and red (solid) correspond to eEy ¼ m2

π , 5m2
π , 10m2

π , and 20m2
π , respectively. Here we

take μV ¼ 2T and μA ¼ T. The unit of τ− is in GeV−1. In Fig. 10(c), the solid and dashed curves represent ðv−Þy and ðvþÞy.
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ωþ ¼ e

�
6~ρμVEy

T3

�
ky ¼

61.4969μVðeEyÞ
e4 lnð1=eÞT3

ky;

ω− ¼ e

�
6~ρμVEy

T3

�
ky − ieσ0

¼ 61.4969μVðeEyÞ
e4 lnð1=eÞT3

ky − i
15.9652
e3 lnð1=eÞ ; ð98Þ

where we drop nvβþ ∼Oðn2R=LÞ. In [60], the interaction
between the right-handed and left-handed fermions was
included. When nV ¼ 0, in our convention, the dispersion
relation of the CEWs reads

ω� ¼ �e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvek2yÞ − ðσ0=2Þ2

q
− ieσ0=2;

ve ¼ αAna
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2χeαVαA

p
Ey; ð99Þ

where

σ2 ¼ 7.76052
1

Te4 lnð1=eÞ ;

χe ¼ 20.499
1

Te4 lnð1=eÞ ;

αV=A ¼ ∂μV=A
∂j0V=A

≈
3

T2
: ð100Þ

By making the small-momentum expansion, (99) becomes

ωþ ¼ −ie
v2ek2y
σ0

¼ −i
182.444ðeEyÞ2μ2A
e5 lnð1=eÞT7

k2y;

ω− ¼ −ieσ0 þ ie
v2ek2y
σ0

¼ −
iT

e3 lnð1=eÞ
�
15.6952 −

182.444ðeEyÞ2μ2A
e2T8

k2y

�
;

ð101Þ

where the diffusion is enhanced by the interaction between
the R=L sectors. When na ¼ 0, two modes read

ωþ ¼ evaky ¼
61.4969μVðeEyÞ
e4 lnð1=eÞT3

ky;

ω− ¼ evvky − ieσ0 ¼
46.5631μVðeEyÞ
e4 lnð1=eÞT3

ky − i
15.9652T
e3 lnð1=eÞ ;

ð102Þ

where

va ¼ χeαVαAnvEy; vv ¼ 2σ2α
2
VnvEy: ð103Þ

Similar to (98), the ω− mode will be damped out but the
velocities of these two modes are different in (102) due to the

interactions between the R=L sectors. When turning off
the interactions, two velocities become degenerate. In [60],
the ω− and ωþ modes are called the “vector density wave”
and the “axial density wave,” respectively. Here we find that
only the axial density wave is unaffected by the interaction.
We may compare the results obtained from weakly

coupled QED with that found in strongly coupled QCD
(SS model). From (69) and (77), we find

βþ=− ¼ 3μV=AðeEyÞ
2a5T5L6

ð2πl2sÞ2; σv ¼ Ca2T2L9=2ð2πl2sÞ2;
ð104Þ

where we write out the dependence of 2πl2s explicitly for
dimensional analysis. When nv ¼ 0, we have

ωþ ¼ −i
9ð2πl2sÞ2ðeEyÞ2μ2A
4Ca12L33=2T12

k2y;

ω− ¼ −ið2πl2sÞ2
�
Ca2T2L9=2 þ 9ðeEyÞ2μ2A

4Ca12L33=2T12
k2y

�
:

ð105Þ

When na ¼ 0, we have

ωþ ¼ 3μVð2πl2sÞ2ðeEyÞky
2a5T5L6

;

ω− ¼ ð2πl2sÞ2
�
3μVðeEyÞky
2a5T5L6

− iCa2T2L9=2

�
: ð106Þ

It turns out that the CEWs in weakly coupled and in
strongly coupled systems have different temperature
dependence. In the weakly coupled QED, the hard-
thermal-loop approximation assumes that the temperature
dominates all other scales in the system. However, the SS
model contains MKK corresponding to the mesonic scale,
which should be also involved in CEWs. We may now
focus on the propagating waves for nv ¼ 0. By using
L3 ¼ ð4πMKKÞ−1λt and C ¼ ð12π2L3=2Þ−1Nc from
2πl2s ¼ 1 GeV−2, (106) can be written as

ωþ ¼ 729M2
KK

128π2λ2t T2

ðeEyÞμV
T3

ky;

ω− ¼ 729M2
KK

128π2λ2t T2

ðeEyÞμV
T3

ky − i
2λtNcT2

54πMKK
: ð107Þ

In comparison with (102), the diffusion constants for ω− in
the weakly coupled and strongly coupled scenarios have
distinct dependence of both the temperature and coupling
constants.
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VIII. SUMMARY AND OUTLOOK

In this work, we have proposed the CHE generated by
the applied electromagnetic fields and an axial chemical
potential. In the presence of an electric field and a magnetic
field perpendicular to each other, collective excitations of
thermal plasmas with nonzero vector and axial chemical
potentials will result in density waves as the CEWs
propagating along the directions parallel to the electric
field and perpendicular to both applied fields. Although the
CEWs induced by the CESE only exist with nonzero
chemical potentials, the CEWs led by the CHE should
survive even at zero chemical potentials. Such Hall CEWs
become nondissipative at zero conductivity. In phenom-
enology, we have argued that the CHE could lead to
rapidity-dependent charge asymmetry in asymmetric heavy
ion collisions. Combining with the CME and CESE, we
may find different charge asymmetry of flow harmonics vn
at distinct rapidity.
Nevertheless, we are unable to draw the conclusion upon

the magnitudes of the charge asymmetry of vn since the
axial chemical potential in the QGP is unknown. Moreover,
to describe the practical condition in heavy ion collisions,
numerical simulations based on the wave equations derived
in our work with proper initial charge distributions and
hydrodynamic evolution of the QGP are needed. On the
other hand, the topological effect in the QGP could be
pronounced, we thus have to couple CEWs with CMWs.
Also, in our work, we only consider the density fluctuations
and neglect the fluctuation of the induced electromagnetic
fields. It has been indicated in [74,75] that the induced
electromagnetic fields could further cause chiral-plasma
instabilities in the presence of an external magnetic field.
Such instabilities will reduce the CME. Therefore, it is
tentative to explore the existence of similar instabilities for
CESE and CHE in the future.
In holography, a substantial problem occurs when we try

to compute the all currents generated by CME, CESE, and
CHE, where the currents are not gauge invariant when
incorporating the contributions from the CS terms in the SS
model. Moreover, there exists a persistent debate upon the
presence of the CME in the SS model, where the CME
current cannot be both conserved and gauge invariant.
On the other hand, in [33], the CME is reproduced in
holography via a different definition of the axial chemical
potential in the D3=D7 system, where the axial chemical
potential comes from the rotating D7 branes instead of the
temporal gauge fields in the gravity dual. It is thus
intriguing to investigate the CESE and CHE along with
the CME in the framework of the D3=D7 system.
Furthermore, the Hall and chiral Hall effects can still

survive in nonrelativistic systems, e.g., Weyl semimetal.
Quite different from the spin Hall effect in the Weyl
semimetal induced by axion fields or Berry phase, the
chiral Hall effect in our work is caused by interactions,
which will play a role if there is an effective μA. We will

leave the applications to condensed matter system in the
future.
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APPENDIX: HALL CONDUCTIVITY FROM THE
LANGEVIN EQUATION AND BOLTZMANN

EQUATIONS

In the presence of quasiparticles, we may incorporate the
drag force coming from the medium. The equation of
motion for the quasiparticles with charge þ1 then reads�

dp
dt

�
R=L

¼ Eþ vR=L ×B − ξpR=L; ðA1Þ

where p is the momentum of the quasiparticles and ξ is the
drag coefficient. This is basically the Langevin equation in
the absence of noise terms. We then take v ¼ j=jt and p ¼
Mv with M ¼ ML ¼ MR being the mass of quasiparticles.
We further assumeM ≪ T such that the chiral symmetry is
approximately preserved. Here we also assume that ξ is
same for left/right-handed particles and isotopic. In the
equilibrium state when dp=dt ¼ 0, (A1) can be rewritten as

Ei ¼ −ϵijk
ðjR=LÞj
ðjR=LÞ0

Bk þ ξM
ðjR=LÞi
ðjR=LÞ0

: ðA2Þ

By solving the coupled equations for i ¼ x; y; z, we find

ðjR=LÞx ¼ 0; ðjR=LÞy ¼ ðσR=LÞyyEy;

ðjR=LÞz ¼ ðσR=LÞyzEz; ðA3Þ

where

ðσR=LÞyy ¼
ðjR=LÞ0

ξMð1þ B2
x

ξ2M2Þ
;

ðσR=LÞzy ¼ −
ðjR=LÞ0Bx

ξ2M2ð1þ B2
z

ξ2M2Þ
: ðA4Þ
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One may expect that CME and CSE should lead to
nonvanishing ðjxÞR=L. However, the currents along the
magnetic field should deplete in the presence of the drag
force, while the currents parallel to the electric field and
perpendicular to both the electric and magnetic fields are
steady.
On the other hand, we can express the classical Hall

effects via the Boltzmann equations. In the present of
external E and B fields, the Boltzmann equations can be
written as

df
dt

¼ ∂tf þ v · ∂xf − e½v ·Eþ v ×B� · ∂
∂p f ¼ −

f − f0
τ

;

ðA5Þ

where v is the velocity of a single particle with the
momentum p, fðx; pÞ is the distribution function, and
f0 is f at an equilibrium state. Here we will drop the R=L
signs in the derivations for simplicity. In the right-handed
side, we use the relaxation time τ instead of the collision
terms. We can assume the system is very close to an
equilibrium state, which will lead us to expand the f near
the f0,

f ¼ f0 þ δf; ðA6Þ

with

f0 ¼
1

eðEp−μÞ=T þ 1
; ðA7Þ

where Ep ¼ jpj is the energy of a massless single particle, μ
is the chemical potential, and T is the temperature. Inserting
it back to Eq. (A5) yields

∂
∂t δfþ v · ∂xδf − e½Eþ v ×B� · ∂∂p δf

þ v ·

�
eE−∇μþ Ep − μ

T
∇T

��
−
∂f0
∂Ep

�
¼ −

δf
τ
: ðA8Þ

For simplicity, we assume the δfðx; pÞ, μ and T are
homogenous in space. In a weak E field and a strong B
field case, i.e., E ≪ Oð∂xÞ ≪ B, we can also neglect the
high order correction, −eE · ∂

∂p δf. Finally, we get

∂
∂t δf − ev × B ·

∂
∂p δf þ v · eE

�
−
∂f0
∂Ep

�
¼ −

δf
τ
: ðA9Þ

By using the ansatz, δf ¼ p ·GðEpÞeiωt, EðtÞ ¼ E0e−iωt,
the Boltzmann equation can be further simplified as

ðτ−1 − iωÞp ·G − eðv ×BÞ · ∇pðp ·GÞ ¼ ev ·E0

∂f0
∂Ep

;

ðA10Þ

and the solution is

Gi ¼ Γ−1
ji eE0j

∂f0
∂Ep

; ðA11Þ

with Γ matrix,

Γij ¼ ðτ−1 − iωÞδij − ϵijkeBk:

Then the current induced by the external fields is given by

δJi ¼
Z

d3p
ð2πÞ3 viδf ≡ eσijEjðtÞ;

where

σij ¼
Z

d3p
ð2πÞ3 viplΓ−1

jl ¼ nΓ−1
ji ;

and n is the number density, n ¼ 1
3

R d3p
ð2πÞ3 f0. Note that we

have assumed τ as a constant. In the stationary limit,
ω → 0, if B ¼ Bx̂, we get

σzy ¼
Z

d3p
ð2πÞ3 vipl

∂f0
∂Ep

eBτ2

E2
p þ ðeBÞ2τ2

¼
� − n

eB ; B → ∞;

−eI10τ2B; B → 0;
ðA12Þ

which is consistent with Eqs. (5) and (6), and

I10 ¼
1

6π2

Z
dEpf0ðEpÞ ðA13Þ

is a dimension 1 quantity.
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