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Abstract
We investigate theoretically the quantumphase transition (QPT)between theone-channelKondo (1CK)
and two-channelKondo (2CK)fixedpoints in a quantumdot coupled tohelical edge states of interacting
2D topological insulators (2DTI)withLuttinger parameter < <K0 1. Themodelwas studiedbyLaw et al
(2010Phys. Rev.B81041305(R)), andwasmappedonto an anisotropic two-channelKondomodel via
bosonization. For <K 1, the strong coupling 2CKfixedpointwas argued tobe stable for infinitesimally
weak tunnelings between thedot and the 2DTIbasedona simple scalingdimensional analysis (Law et al
2010Phys. Rev.B81041305(R).We re-examine thismodel beyond thebare scalingdimension analysis via
a one-loop renormalizationgroup (RG) approach combinedwithbosonization and re-fermionization
techniques nearweak-coupling and strong-coupling (2CK)fixedpoints.Wefind for afixedvalue of <K 1
that the 2CKfixedpoint canbeunstable towards the 1CKfixedpoint and the system is expected to
undergo aquantumphase transitionbetween1CKand2CKfixedpointswith changingKondocouplings.
OurRGapproach is controllednearK=1. In general, thisQPTcan alsooccurupon tuning theLuttinger
parameterK to a critical valueKc smaller thanunity ( < <K0 1c ) forfixedKonodo couplings. TheQPT
inourmodel comes as a result of the combinedKondoand thehelical Luttinger physics in 2DTI, and it
serves as thefirst exampleof the 1CK-2CKQPTthat is accessible by the controlledRGapproach.We
extract quantumcritical and crossover behaviors fromvarious thermodynamical quantities near the tran-

sition.Our results are robust against particle-hole asymmetry for < <K 11

2
.

1. Introduction

Quantumphase transitions (QPTs) [1], the phase transitions at zero temperature due to competing quantum
ground states or quantum fluctuations, in correlated electron systems are of great fundamental importance and
have been intensively studied over recent decades. Of particular interest are continuousQPTswhere universal
scaling behaviors in observables are expected near criticality. Very recently, nanosystems (such as quantumdots
[2]) have provided an excellent playground inwhich to studyQPTs due to high tunability [3, 4, 6–11]. Thewell-
knownKondo effect [12, 13] plays a crucial role in understanding low energy properties in quantumdot devices.
Potential newQPTs in these systemsmay be realized in connection to exotic Kondo ground states. An
outstanding example of an exotic Kondo state is the two-channel Kondo (2CK) system [14–19], which has
attractedmuch attention as it shows non-Fermi liquid behaviors at low temperatures. Experimentally, the 2CK
behaviors have been realized in various quantum impurity systems such as a quantumdot independently
coupled to an infinite and afinite reservoir of non-interacting conduction electrons [20],magnetically doped
metal junctions [21], and ametal point contact [22].

More interestingly, the 2CKphysics has also been found theoretically in aKondoquantumdot coupled to two

strongly interacting Luttinger liquid leadswithLuttinger parameter <K 1

2
(see [23, 25]). In this case, electron-

electron interactions in the leads strongly suppress the cross-channelKondo correlations responsible for charge
transport through the quantumdotwhile theKondo correlations involving electrons on the same lead are
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unaffected, leading to a two-channelKondoground statewhere two independentKondo screenings occur between
the spins on the dot and in each lead separately.However, forweaker electron interactions, >K 1

2
, both kinds of

Kondo scattering involving conduction electrons on the same anddifferent leads become relevant at low energies,
giving rise to a 1CKground statewhere only a single channel of the conduction electrons in the two leads (the even
combinationof the electrons in the two leads) effectively couples to theKondodot. Anexotic quantumphase
transition at =K 1

2
between the 1CKphase for >K 1

2
and the 2CKbehaviors for <K 1

2
is therefore expected [23].

However, the critical properties of this 1CK-2CKQPThavenot yet been properly addressed in these systemsdue to
the lack of controlled theoretical approachesnear the strong coupling 2CKfixedpoint (though this issuewas
recently studied in theKondo-polaronmodel [24]).

However, recently a new type ofmaterials—topological insulators (TIs)—with a gapped bulk and gapless
edge states has been proposed theoretically [26] and realized experimentally [27]. In 2DTIs, the gapless edge
states have a ‘helical’nature, i.e. the directions of spin andmomentum are locked together [28]. Based on
bosonization and a simple scaling dimension analysis, the 2CKbehaviors were argued to be stabilized in aKondo
quantumdot coupled to two interacting helical edge states of 2DTIs as long as aweak electron-electron
interaction exists in the helical electrons ( <K 1) [29]. However, on a general ground, similar competition
between the cross-channel Kondo correlation and suppression of tunneling due to electron-electron
interactionsmentioned above is also expected here for the helical Luttinger liquid, a special type of Luttinger
liquidwith broken SU(2) symmetry. The exotic 1CK-2CKQPT is therefore expected to occur in this new setup.

In this paper, we re-examine the system in [29] near a 2CKfixed point to explore the possibility of the exotic
1CK-2CKQPT via the controlled one-loop renormalization group (RG) approach combinedwith
bosonization, which goes beyond the bare scaling dimension analysis in [29]. For aweak but finite lead-dot
tunneling, wefind that for → −K 1 where our RG approach is well controlled the 2CKfixed point can be unstable
towards the (anisotropic) 1CKfixed point and the system is expected to undergo a quantumphase transition
between 1CK and 2CKfixed points. TheQPT in ourmodel comes as a result of the combinedKondo and the
helical Luttinger physics in 2DTIs. It serves as thefirst example of the 1CK-2CKQPT that is accessible by the
controlled perturbative RG approach. The stability analysis on these twofixed points shows that they are stable
against small particle-hole asymmetry for < <K 11

2
.We extract the non-Fermi liquid behaviors from various

thermodynamical quantities at the 1CK-2CKquantum critical point.
This paper is organized as follows. In section 2, we introduce themodelHamiltonian and its bosonized form

as shown in [29]. In section 3.1we present the RG analysis of themodel in theweak coupling limit via the
bosonization approach (see appendix A). In section 3.2we furthermap our bosonizedmodel onto an effective
Kondomodel via re-fermionization near the strong-coupling 2CKfixed point.We then perform theRG analysis
via both poor-manʼs scaling (see appendix B) and the field-theoretical ϵ-expansion technique (see appendix C).
We also check our RG analysis near the strong-coupling 2CKfixed point obtained from re-fermionization via an
alternative way based directly on the RG analysis of the bosonizedHamiltonian near the 2CKfixed point (see
appendixD). OurRG analysis in both limits predicts a quantumphase transition between 1CK and 2CKfixed
points. In section 4we perform stability analysis on the 1CK and 2CKfixed points.Wefind that bothfixed points
are stable for < <K 11

2
, which substantiates ourmain finding that there exists unstable quantum critical points

separating two stable 1CK and 2CKfixed points nearK=1. In section 5, we calculate via thefield-theoretical ϵ-
expansion approach the critical properties and crossover functions of various thermodynamic observables. In
section 6, we emphasize the clear physical picture of ourmainfindings and draw conclusions.

2.ModelHamiltonian

In our setup, the KondoHamiltonian has the same form as in [29], given by

∫

∫
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Here,H0 describes the two conduction electron baths (labeled as lead 1 and lead 2)made of helical edge states in
2D topological insulators,HK is the Kondo interaction, and the electron-electron interactions with forward
scattering >g 02,4 terms are given byHint with i=1,2 the lead index, andα = R, L being the label of the right

(R) and left (L)moving electrons in the helical edge state. The conduction electron spin operator is given by:

⃗ = ∑ γ δ
γ σ δ

′
⃗

′
γδ

s c c· ·i j k k ki k j, , , ,
†

2
with γ δ = ↑ ↓, , , i, j=1, 2. The local impurity spin operator on the quantumdot

can be expressed in terms of pseudo-fermion operator σf [30]: ⃗ = ∑γ δ γ
σ

δ
γ⃗δ

S f f· ·,
†

2
. In theKondo limit of our

interest, the impurity (quantumdot) is singly-occupied:∑ =σ σ σ=↑ ↓ f f 1,
† . Here, the coupling J1 and J2 inHK

stand for the strength of theKondo correlations between the dot and electrons on the same and different leads,
respectively. Note that in the presence of spin-orbit coupling, the spins↑ ↓ of the helical edge state electrons are
lockedwith their right-moving (R)/left-moving (L)momentum.Note also that the small spin-orbit coupling
will break the SU(2) spin-rotational symmetry in the above isotropic Kondomodel, leading to the anisotropic
Kondomodel with ≠J Ji

xy
i
z (see [29]).

TheHamiltonian equation (1) can be bosonized through the standardAbelian bosonization [31] for the

electron operator [29, 32]: =
π

π ϕ± +c F ei a i
x k x

,R L
1

2 ,R L
i( 4 ( ) )i FR L ; the bosonicfieldsϕ ϕ ϕ= +x x x( ) ( ) ( )i i iL R ,

θ ϕ ϕ= −x x x( ) ( ) ( )i i iL R . The dualfieldsϕ x( )i andθ x( )i obey the commutation relations:

ϕ θ δ′ = − ′−x x sgn x x[ ( ), ( )] ( )i j
i

ij2
with = =sgn x( 0) 0. The symmetric and antisymmetric combinations of

ϕi,θi are defined as:ϕ ϕ ϕ= ±( )s a
1

2 1 2 andθ θ θ= ±( )s a
1

2 1 2 . Here, Fi,R L are theKlein factors to preserve

the anti-commutation relations between fermions (electrons) in the bosonized form, and a is the lattice constant
(lower bound in length scale); we have also dropped the spin indices of the edge state electrons due to their

helical nature. The bosonizedHamiltonian after rescaling the boson fields,ϕ ϕ→
σ

a s K a s,
1

, ,θ θ→
ρ

a s
K

a s,
1

, , is

given by [29]:
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being the Luttinger parameter, π π′ = + −v v v v(1 ) ( )F F
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g

F2
2

2
24 2 .

Here, we consider repulsive electron-electron interactions ( >g g, 02 4 ), giving < <K0 1, and ρ σK ( ) refers to
the interaction strength in the charge (spin) sector. Note that the electron-electron interactionsHint term in
equation (1) has been absorbed into theHK term in equation (2) by re-scaling the bosonfieldsmentioned above.
Note also that = <σ ρK K1, 1corresponds to a standard spinful Luttinger liquidwith SU(2) spin symmetry;
while ≠σK 1when this symmetry is broken. The helical Luttinger leadwe consider here corresponds to a spinful
Luttinger liquid leadwith broken SU(2) symmetry due to spin-orbit couplingwith = <ρK K 1and

= >σK K1 1 (see [32]). Note that we have dropped theKlein factors in equation (2) as they can be included
straightforwardly in the samemanner as shown in [33, 34].

3. RG analysis of themodel

3.1. RG analysis inweak couplingfixed point: =J 0i
xy z,

3.1.1. RG scaling equations
In the vicinity of the fixed point =J 0i

xy z, , it has been shown in [29] that the scaling dimensions of these Kondo
couplings based on the bosonizedHamiltonian equation (1) of [29] are: = <J K[ ] 1xy

1 , =J[ ] 1z
1 ,

= = + >J J K[ ] [ ] ( ) 1xy z
K2 2

1

2

1 where <K 1 for repulsive electron interactions.Here, in our convention for

scaling dimensions, relevant (irrelevant) operators carry the scaling dimensions of less (greater) than 1, while the

3
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marginal operators carry scaling dimensions of exactly 1. The authors of [29] argued that for <K 1, under
renormalization group (RG) transformations, the 2CKfixed point is reached as the relevant J1 couplingsflow to
large valueswith decreasing temperatures; while the irrelevant J2 couplings decrease to zero.However, forK
being slightly less than 1, → −K 1 , via one-loopRG, beyond the bare scaling dimension analysis, wefind it is
possible that all fourKondo couplings flow to large values, depending on the values ofK and the values of the
bare Kondo couplings. This strongly indicates the existence of the 1CKfixed point in the parameter space of the
model for <K 1. Following [33] and [31] via the renormalization group analysis of the bosonizedKondomodel
equation (2), the one-loopRG scaling equations in the limit of → −K 1 read (see appendix A):
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where μ is the running cutoff energy scale, and the dimensionless Kondo couplings are defined as:

ρ μ≡ −j Jxy K xy
1 0

1
1 , ρ=j Jz z

1 0 1 , ρ μ= + −j Jxy K xy
2 0

( ) 1
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1
2

1
, and ρ μ= + −j Jz K z

2 0
( ) 1
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1
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1
with μ being a cutoff energy scale,

and ρ = ≡
π μ′v0
1 1

2F 0
being the constant density of states for non-interacting leads (K=1) and μ = 10 being the

bandwidth of the conduction electrons in the leads. Note that the linear term in the above RG scaling equations
comes from the nontrivial scaling dimensions of the correspondingKondo couplings, while the quadratic terms
inKondo couplings are the corrections at one-loop order. For → −K 1 , both J xy z

2
, terms aremarginally irrelevant,

→ −J[ ] 1xy z
2

, .Therefore, within the validity of perturbative RG, both J xy z
2

, terms can stillflow to a large value if
bare Kondo couplings Ji

xy z, are large enough (but they are still small, = − ≪J K(1 ) 1i
xy z, ) or the electron

interactions in the leads are weak enough, leading to (possibly) a 1CKfixed point (i.e. the quadratic terms
overcome the linear term inRG equations).However, for small enough bare Kondo couplings (or strong enough
interactions in the leads, ≪K 1), J xy z

2
, terms are irrelevant and hence the systemmoves towards the 2CKfixed

point. As shown infigure 1, in the relatively higher temperature (energy) regime μ μ< <−10 13
0 , with

decreasingK the system tends toflow to the 2CKfixed point where j xy z
1

,
flow to large values while j xy z

2
, decreases

with decreasing temperature (energy). However, for weak enough interactions in the leads, → −K 1 , all four
Kondo couplings tend toflow to the 1CKfixed point with large values (see figure 1). A similar trend is found for a
fixed →K 1and different bare Kondo couplings as shown in figure 2. It is therefore reasonable to expect a 1CK-
2CKquantumphase transition in the parameter space of J K,xy z

1,2
, . However, theweak coupling RG analysis is

valid only at relatively higher energies where all Kondo couplings remain small, ≪j 1i
xy z, , and it breaks down as

the system gets closer to the ground state where someKondo couplings grow to the order of 1. As shown in
figures 1 and 2, the energy rangewhere j xy z

2
, increases rapidly with a lowering energy scale already goes beyond

theweak-coupling perturbative regime as j1
xy already exceeds the perturbative regime at these scales, > j (1)xy

1
.

In fact, the low energy behaviors are determined by the physics in the strong coupling regime. Therefore, to

Figure 1.RGflows of various Kondo couplings in theweak-coupling regimewithfixed bare Kondo couplings: μ=J 0.01i
xy z,

0 and
μ = 10 . Curves with different colors indicate the RGflowswith different Luttinger parametersK. The solid, dashed, dotted, and dot-
dashed lines represent the RGflows for j1

xy, j1
z, j2

xy, and j2
z, respectively.
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address the possible quantumphase transition between the 1CK and 2CKfixed points, it is necessary to be able
to access the neighborhood of the strong-coupling 2CKfixed point, as we shall discuss below.

3.1.2. 2-channel Kondo temperatureTK
2CK

Toprobe the crossover between 1CK and 2CKfixed points, it is instructive to investigate how theKondo
temperatureTK changes with increasing electron-electron interaction in the leads (orwith the decreasing value
ofK from1). Since J1

xy becomesmore relevant with decreasingK in theweak-coupling regime ( = <J K[ ] 1xy
1 ), it

is expected that under RG the systemfirstflows very quickly to the vicinity of the 2CKfixed point. As shown in

figure 3, wefind theKondo temperatureTK
2CK associatedwith the 2CKfixed point, defined as the energy scale

μ = TK
2CK under RGwhere ≈ j j, (1)xy z

1 1
, increases rapidly with increasing electron interactions in the leads,

and its value ismuch larger than theKondo temperature of the same setup in the non-interacting limit (K=1)

TK
0 , ≫T TK K

2CK 0 . By contrast, in the case of a Kondo dot coupled to ordinary spinful Luttinger liquid leads in [25]
and [23], J1

xy is amarginal operator at tree level ( =J[ ] 1xy
1 ) in theweak-coupling limit; therefore, the 2CK energy

scaleTK
2CK ismuch smaller than theKondo scale for the corresponding non-interacting leadsTK

0 , ≪T TK K
2CK 0 .

Though the system in theweak coupling regime quickly approaches the strong-coupling 2CKfixed point as

μ → TK
2CK, the ultimate fate of the ground state depends on the RG flows of various Kondo couplings in the

strong coupling regime, as discussed below.

3.2. RG analysis near the strong coupling (2CK)fixed point
3.2.1. RG scaling equations and the phase (RG flow) diagram
The authors of [29] performed scaling dimension analysis near a strong coupling regimewhere

= = =j j j(1), 0z xy z xy
1 2

,
1

. They performed the Emery–Kivelson unitary transformation [35] = π ϕU e Si 2 s z on

the bosonizedHamiltonian (equation (1) of [29]), and arrived at equation (2) of [29].

Figure 2.RGflows of various Kondo couplings in theweak-coupling regimewithfixedK=0.8 for various bare Kondo couplings (in
units of μ = 10 ). The solid, dashed, dotted, and dot-dashed lines represent the RGflows for j1

xy, j1
z, j2

xy, and j2
z , respectively.

Figure 3.The 2CKKondo temperatureTK
2CK (in units ofTK

0, the Kondo temperature of the corresponding non-interacting leads,
K=1) as a function of 1−K for various bare Kondo couplings (in units of μ = 10 ) via theweak-coupling RG analysis.
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They found the scaling dimensions for theKondo couplings to be =J[ ]xy K
1 2

, δ =J[ ] 1z
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1

2
,
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1

2

1 . The J1
xy term is relevant for <K 2, and the J2

xy term is relevant for < <K 11

2
. For <K 1, this

analysis shows that the J1
xy term is themost relevant coupling, and itflowsmuch faster than the J1

z term to the
strong-coupling 2CKfixed point where ≫ ∼ j j (1)xy z

1 1
(orδ ≪j 1z

1
). However, as → −K 1 , the J2

z term can

flow to a large value towards the 1CKfixed point under one-loopRG if the bare Kondo couplings are large
enough. This implies the existence of a stable 1CKnear the strong coupling regime as all of the four Kondo
couplings can either flow to or stay at large values (of order 1).

To gainmore insight into the stability of the 1CK/2CK fixed point, we apply the RG approach at one-loop
order together with bosonization and re-fermionization near the 2CKfixed point. First, we shallmap the
bosonizedHamiltonian equation (2) above (see [29]) onto an effective Kondomodel via re-fermionization. It

has been shown in [29] that near the strong coupling 2CKfixed point → ∞ → →j j j, (1), 0xy z z xy
1 1 2 , the

effectiveHamiltonian reads: π ϕ= +
π

H H S Kcos ( 2 (0))
J

a
x

a2CK 0
2 xy

1 . Note that the 2CK ground state in our

system is a strong couplingfixed point ( → ∞j xy
1

), driven by electron-electron interactions (or Luttinger liquid

physics) in the leads, similar to the 2CKfixed point in aKondo dot coupled to two Luttinger liquid leads [23, 29]
or to twometallic leads subject to an electromagnetic noise [34]. By contrast, the earlier version of the 2CK
ground state in amagnetic impurity imbedded in non-interactingmetals with twoKondo screening channels is
an intermediate quantum critical fixed point, as suggested in [5, 14].

Near the 2CKfixed point, the dominating ‘backscattering’ J1
xy term effectively cuts the Luttinger wire into

two separate pieces [29, 31] at x=0, leading to thewell-known open boundary condition for an impurity in a
Luttinger liquid at x=0: = −c c(0) (0)i i,R ,L (orϕ ϕ= −(0) (0)i iR L ). Note that there are in total two such 2CK
open boundary conditions in our two-lead setup as this condition holds for each lead separately. Note also that
in general these conditions can be extended to ≠x 0:ϕ ϕ= − −x x( ) ( )i iR L [31]. The boson fieldϕ (0)a is

approximately pinned to a constant value [29], and so is the fieldϕ (0)s . In fact, from the above 2CKopen

boundary conditions, we haveϕ ϕ ϕ= + =(0) (0) (0) 0i i iL R , and thereforeϕ =(0) 0a s, . Also, since Sx

commutes withH2CK, wemay therefore set Sx to its eigenvalue± 1

2
inH2CK. As a result, the J1

xy term in

equation (4) can be regarded as a largefixed constant J fix
xy

1, at the 2CKfixed point: π ϕ ∼J S K Jcos ( 2 (0))xy
x a fix

xy
1 1,

with ≫J| | 1fix
xy

1, , , which effectively decouples the J1
xy term from the rest of the terms in equation (4).

The stability of the 2CKfixed point should be analyzed via the deviation δH2CK from thefixed-point
HamiltonianH2CK, described by the three remaining Kondo couplings ( δJ J J, ,xy z z

2 1 2 ) near the 2CKfixed point
(i.e.ϕ = 0a ) in equation (4):δ ≡ −H H H( )|2CK 2CK 2CK (see [12]). The scaling dimensions of Kondo couplings

near this 2CKfixed point at → ∞ → →j j j, (1), 0xy z z xy
1 1 2 are [29, 31, 36] =J[ ]xy

K2
1 , δ = +J[ ] 1z

K1
1

2
,

= +J[ ]z
K

K
2

1

2
. Note that all the above three couplings are irrelevant for <K 1. This strongly indicates that the

system favors the 2CKfixed point at ground state for <K 1.Meanwhile, by a stability analysis in section 4, we

will show that the 2CKfixed point is also a stable fixed point for >K 1

2
once the system approaches there (i.e. in

the limit of →J 0xy
2 ). Therefore, the 2CKfixed point is really a strong-coupling fixed point, not an intermediate

couplingfixed point since the latter case requires the existence of at least one relevant operatorwhich drives the
system from the intermediate 2CKfixed point to the ‘true’ strong coupling fixed point. But such relevant
operators do not exist from the above scaling dimension analysis and that in section 4; all operators at the 2CK
fixed point are irrelevant operators.

However, as shown in ourweak-coupling RG analysis, the 2CKfixed point is unstable for → −K 1 and/or
large enough bare Kondo couplings such that J xy z

2
, termsmay become relevant again, and the system can

undergo a 1CK-2CKquantumphase transition. To address this possibility, we shall focus below on the one-loop
RGflows of the leading two irrelevant operators inδH2CK near the 2CKfixed point, given by (see equation (4)):
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δ
π

π θ π δ θ≈ − ∂
⎛
⎝⎜

⎞
⎠⎟H

J

a
S

K K
J Scos

2
(0)

2
(0). (5)

xy
x

a
z

z x s2CK
2

1

Note that wemay consider themost relevant J1
xy term to be the largest constant energy scale ( → ∞j xy

1
) we set at

the stable 2CKfixed point.We estimate the small deviation in energy away from this fixed point for the other
three Kondo couplings in equation (4). The bare scaling dimensions of these three remaining Kondo couplings
are calculated based on the pinning of the J1

xy term (or by setting π ϕ = ±Kcos ( 2 ) 1a ) in equation (4). Therefore,
we can estimate how irrelevant these three operators are relative to the 2CKfixed point with J1

xy beingfixed at
infinity. Thenwe single out the two dominating irrelevant operatorsδJ z

1 and J2
xy terms inδH2CK in equation (5).

Finally, we study the stability of the 2CKfixed point due to these two terms.
Tomore effectively access the possible 1CK-2CKquantum critical point, wemap theHamiltonian near 2CK

δ+H H0 2CK onto an effective Kondomodel via re-fermionization subject to a bosonic environment [34] 3:

δ δ+ → + ′ +
= + +

H H H H H

H H H˜ ˜ , (6)b

0 2CK 0 0 2CK

0 2CK

where

∫
∫

∑

θ

θ θ

ϕ ϕ

ϵ

′ =
′

∂ ′

=
′

∂ + ∂

+ ∂ + ∂

=
σ

σ σ

=

⎡
⎣⎢

⎤
⎦⎥

( )

( ) ( )

( ) ( )

H
v

x

H
v

x

k c c

2
d

˜
2

d 2

( ) ˜ ˜ , (7)

F
x a

F
x a x s

x s x a

k i

k i k i

0
2

0 0,
2

0,
2

2 2

, , 1(L̃),2(R̃)

,
†

,

∫ θ=
′

∂( )H
v

x
2

d 2 ˜ , (8)b
F

x a
2

and

π δ

= + +

+ +

π θ π θ− + − + − −
⎡
⎣⎢

⎤
⎦⎥

( )

( ) ( )H J S s s

K
J s s S

˜ e e h.c.

. (9)

xy
K K

z z z
z

2CK 2 L̃R̃
i 4 1 1 ˜ (0)

R̃L̃
i 4 1 1 ˜ (0)

1 L̃L̃ R̃R̃

a a

Here, the bosonfieldθ′a in ′H0 is decoupled fromH0 and is added here for the purpose of themapping: it helps to
map aKondo dot coupled to interacting Luttinger liquid leads onto aKondo dot coupled to non-interacting
Fermi liquid leads subject to anOhmic noisy boson environment. Similarmappings have been performed in
earlier works (see, for example [3] and [34]) where inKondo dot systems the equivalence between interactions
in the Luttinger liquid leads and the bosonic (Ohmic) noisy environment has been established. Also, the effective
non-interacting electron operator σc̃k i, is defined as:

π
= π ϕ

=
↑ ↓ ↑ ↓ ± +↑ ↓( )c

a
F˜

1

2
e . (10)i i

x k x
1(L̃),2(R̃)
( ) ( ) i 4 ( )i F0,

( )

with =i 1(L̃), 2(R̃)being the index for effective non-interacting left and leads, respectively,
σ= ∑γβ α δ γ

α
αδ β

δ±
′

±
′s c c˜ ˜z

k k k
z

k
( )

, , ,
1

2
† ( ) being the spin-flip (z-component of the spin) operators between the effective

leads γ and β. Note that since the scaling dimension of θπcos ( )
K

a
2 at the 2CKfixed point in equation (9) is

K

1

due to the open boundary condition [29], we havemade the following decomposition for the bosonfield θ
K

a
1 :

θ θ θ= +
K

1
2 2 ¯ , (11)a a a0,

θ θ θ′ = − −
−

⎜ ⎟⎛
⎝

⎞
⎠K K

1
2

1
1

2

1
¯ , (12)a a

K

a0, 1

3
Here, we drop theKlein factors in equation (5). Nevertheless, when including them in equation (5) (see appendixD), it is a straightforward

task to arrive at equation (9) via re-fermionization equation (15).
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where

θ θ= −
K

¯ 1
1 ˜ . (13)a a

Meanwhile, we set

θ θ= . (14)s s0,

The re-fermionization ofH0 is done through the following identifications:

θ ϕ ϕ ϕ ϕ

θ ϕ ϕ ϕ ϕ

= + = − +

= − − + −

↑ ↓ ↑ ↓

↑ ↓ ↑ ↓

( ) ( )
( )

2 2 2 ,

2 , (15)

a

s

0, 0,1 0,2 0,2 0,1

0, 0,1 0,1 0,2 0,2

wherewe have decomposed the bosonfield θ
K

a
1 into two independent sets of boson fields: the ‘free’ (θ a0, ) and

‘interacting’ (θ̃a) parts. The ‘free’ part of the bosonfieldsθ a0, (defined in the sameway as in section 2) can be re-

fermionized into two effective non-interacting fermion leads described by H̃0 where the electron destruction
operator of the effective non-interacting leads σc̃i is defined in equation (10).Note that in equation (15) the

boundary conditions (ϕ ϕ= −↑ ↓(0) (0)i i0, 0, ) for each lead are imposed and implied; therefore the effective non-

interacting leads σc̃i also respect the 2CKopen boundary condition ( = −↑ ↓c c˜ (0) ˜ (0)i i ). Note also that due to the
two 2CKboundary conditions, the fermionic degrees of freedomat x= 0 is reduced from four (c c,i i,R ,L) to two,
which is respected in both equation (5) and in the re-fermionized form, equation (6) via equation (15) and
equation (10), as it should be.Meanwhile, the fields c̃i also exhibit a helical nature: namely, the spin up/down
(σ = ↑↓) electrons are tied to the right (R)/left (L)moving particles, respectively. The ‘free’ part of the boson
fieldθ a0, follows the correlations of the free fermions in 1D:

∝π θ π θ−
t

e e
1

. (16)ti 2 ( ) i 2 (0)a a0, 0,

Meanwhile, the ‘interacting’ part of the boson field θ̃a acts as an effective dissipative ohmic boson
environment (bath), represented byHb. These bosons couple to theKondo dot through the additional
exponential ‘phase’ factors in the effective Kondo terms H̃2CK, leading to all the combinedKondo–Luttinger
physics [34]. In particular, since these dissipative ohmic bosons obey the following correlations via equation (9):

∝π θ π θ− − −
−

( ) ( )
( )t

e e
1

; (17)K
t

K
i 4 1 1 ˜ ( ) i 4 1 1 ˜ (0)

2 1

a a

K
1

while the impurity spin operator Sz exhibits the following correlation [29]:

∝S S t
t

(0) ( )
1

. (18)z z
K
1

These correlations lead to the non-trivial bare scaling dimensions of theKondo couplings and therefore to the
first term (linear in theKondo coupling) of the RG scaling equations.With the help of equation (11) to
equation (15), wefinally arrive at H̃0 and H̃2CK in equation (9).

Next, we shall obtain the one-loopRG scaling equations for J2
xy andδJ z

1 in equation (9). To this aim, we

define the dimensionless couplings ρ μ μ≡ ϵ⊥j c J˜ ( )xy xy
2 0 2 2 and δ ρ μ δ μ≡ ϵ π′j c J˜ ( )z z

K
z

1 0 1 1 andϵ ≡ − 1
K

1 ,ϵ′ ≡
K

1

2

with c̃ z
1 ,

⊥c̃2 being defined in appendix B and appendix C.
We derive the one-loopRG scaling equations via the poor-manʼs scaling approach in [34] (see appendix B)

and via the field-theoretical ϵ-expansion technique (see appendix C):

μ
ϵ δ

δ
μ

ϵ δ

∂
∂

= −

∂
∂

= ′ − ( )

j
j j j

j
j j

ln
,

ln
. (19)

xy
xy xy z

z
z xy

2
2 2 1

1
1 2

2

Note that our RG analysis near the 2CKfixed point is performed for theHamiltonian δH2CK, the deviations
from the 2CKfixed point where the J1

xy term is not involved (see equations (4) and (5)). Therefore, unlike the RG
equations in theweak-coupling limit shown in equation (3), here the− j( )xy

1
2 term is absent near the strong-

coupling 2CKfixed point in the RG equation forδj z
1
in equation (19) as the J1

xy term is pinned to a large constant
value at the 2CKfixed point (see the paragraphs below equation (4)). Since the 2CKfixed point is shown to be a
stablefixed point (see section 4 below), any small perturbations in j1 xy

1
will not lead to the runawayflow from

the 2CKfixed point.
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Also, since bothδj z
1
and j2

xy terms fall into the perturbative regime, δ ≪j j, 1z xy
1 2

, our perturbative RG

approach is therefore controlled. Upon solving for the RG equations in equation (19), for → −K 1 wefind an
intermediate quantum criticalfixed point (QCP) at δ ϵ ϵϵ≡ = ′j j j( , ) ( , )c c

z
c

xy
1, 2, accessible by the perturbative

RG approach, separating the 1CKfixed point (for δ≡ >J J J J( , )z xy
c1 2 ) and the 2CKfixed point (for <J Jc) with

j2
xy andδj z

1
flowing towards a large ( >J Jc) and vanishingly small ( <J Jc) value, respectively (see figure 4).Here,

Jc refers to the dimensionful bare critical Kondo coupling associatedwith jc above.Note that thoughϵ′
approaches afinite non-vanishing value1 2 for →K 1, our double-ϵ-expansion is still a controlled approach

since all the critical properties are determined by the location of theQCP at ϵ ϵϵ= ′j ( , )c , which converges to 0

asϵ → 0. This furthermore justifies the validity of our perturbative RG approach and the existence of the 1CK-
2CKQCP in ourmodel. To the best of our knowledge, thisQCPmay be regarded as the first realization of 1CK-
2CKQPT that is accessible by a controlled theoretical approach.Wewould like tomake a remark here regarding
the quantum critical point in ourmodel. Thoughwe pointed out above that the 1CK-2CKQCP can be accessed
via a controlled ϵ-expansion technique in the limit of → −K 1 , it exists in general in themulti-dmensional
parameter space of J J K( , , )xy z xy z

1
,

2
, with <K 1 (see equation (1)). Here, within the validity of the ϵ-expansion

technique, wefix the Luttinger parameter → −K 1 and investigate theQCP in the two-dimensional parameter
space of δJ J( , )z xy

1 2 near 2CKfixed point.
The RG flows near theQCP are determined by linearizing the RG scaling equations as shown infigure 4. The

typical RG flows corresponding to the 1CK and 2CKfixed points are shown infigures 5(a) and (b), respectively.

Figure 4. Schematic diagramof the RGflownear the 2CKfixed point. The 1CK-2CKquantum critical point (QCP) is represented by
the filled black square located at δ ϵ ϵϵ= = ′j j j( , ) ( , )c c

z
c
xy

1 2
.

Figure 5.RGflows of various Kondo couplings in the strong-coupling regime near the 2CK fixed point with the bare couplings at
μ = TK

2CKbeing indicated in thefigure for (a)K=0.8 and (b)K=0.7. The RGflows starting from μ = TK
2CK to μ → 0 in (a) are

towards the 1CKfixed point, while as theflows in (b) aremoving towards the 2CKfixed point. The solid, dashed, and dot-dashed lines
represent the RGflows for δj z

1
, j2
xy, and j2

z, respectively. Here, we set μ = 10 .
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Note thatδ →j 0z
1

near the 2CKfixed point is equivalent to the original Kondo coupling j1
z (see equation (4))

being at a large value (order of 1): ≈ j (1)z
1

, consistent with the familiar 2CKfixed point with both J xy z
1

, terms
being large. However, we find the ‘1CK’ fixed point here in the strong-coupling analysis at one-loop order is
somewhat different from the familiar (conventional) 1CKfixed point we obtained in theweak coupling regime
where all the fourKondo couplingswillflow to (or stay at) large values. Instead, our RG analysis based on re-

fermionization for the coupling ρ μ= + −j c J˜z z z
2 0 2

1
2K K

1 2
in equation (4) near the 2CKfixed point shows that it stays

irrelevant up to one-loop order with the RG scaling equation:

μ
∂

∂
= + −

⎡
⎣⎢

⎤
⎦⎥

j

K

K
j

ln

1

2
1 (20)

z
z2

2

wherewefind no corrections at one-loop order. Note that unlike in theweak coupling RGwhere j jxy xy
1 2

will

contribute to the one-loop renormalization of j2
z (see equation (3)), the j jxy xy

1 2
term is absent here in

equation (20) as j1
xy has already been fixed at a very large value near the 2CKfixed point,

≈ → ≫j T T j( ) 1xy
K fix

xy
1

2CK
1, .

It is clear from equation (20) that [29] μ μ∝ + −j ( )z
2

1K
K1
2 , vanishing as μ ≪ TK

2CK even for >J Jc where the
system eventually flows to the 1CKfixed point (see figure 5). By combining the one-loopRG analysis in theweak
and strong coupling limits, wemay obtain the full crossover of j2

z for the systemwhichwill eventually flow to the
1CKfixed point. For μ< <T TK

2CK
0, j2

z
first grows to the order of 1 (see figure 1), then it vanishes in a power-law

fashion at lower temperatures ≪T TK
2CK (see figure 5).However, the above qualitative feature for j2

z based on the

one-loopRG analysis will getmodified at the 2-loop order, where the relevant term− j j( )xy z
2

2
2 will be generated

in equation (20) and drive j2
z to a strong coupling fixed point, → ∞j z

2
. In this case, the system flows to the

conventional 1CKfixed point where all fourKondo couplingsflow to the strong coupling fixed point. Therefore,
we expect the linear conductance ⊥G T( ) contributed from J2

xy at the 1CKfixed point here to show the same
temperature dependence as those in the isotropic one-channel Kondo system.

Here, wewould like tomake three remarks. Firstly, as a consistency check, via scaling dimension analysis we

found the correlation functions for the leading two irrelevant operators near the 2CKfixed point, (defined asδĴ z
1

and Ĵ
xy

2 associatedwith theδJ z
1 and J2

xy terms, respectively), in the bosonizedHamiltonian (see equation (5)) are
kept the same, respectively, as that in the re-fermionized form (see equation (9)). To bemore precise, in
equation (5) =J K[ ] 1xy

2 , δ = +J[ ] 1z
K1
1

2
[29]; therefore it follows τ〈 〉 ∝

τ
J Jˆ ( ) ˆ (0)

xy xy
2 2

1
K2
, and

δ τ δ〈 〉 ∝
τ +J Jˆ ( ) ˆ (0)

z z
1 1

1
K2 1
. Similarly, wefind from equation (9) that

= + = + − =π θ+ −J s K K[ ] [ ] [e ] 1 (1 1)) 1xy
2 L̃R̃

i 4 ( 1) ˜ (0)K a
1

and δ = + = +ααJ s S[ ] [ ] [ ] 1z z
z K1

1

2
, the same as

those obtained from equation (5), respectively. Therefore, the correlation functions for the J2
xy andδJ z

1 terms are
kept in the same formbefore (equation (5)) and after (equation (9)) the re-fermionizationmapping is
performed, as expected.

Secondly, we have checked that the RG scaling equations near the 2CK equation (19) via re-fermionization
are reproducible via the similar RG approach based directly on the bosonizedHamiltonian equation (5) without
going through re-fermionization (see appendixD). Nevertheless, let us emphasize here again that it is technically
more advantageous and physicallymore transparent to address the quantum critical properties near 1CK-2CK
QPTwithin the fermionic effective Kondomodel as there are well-establishedfield-theoretical approaches, such
as perturbative RG combinedwith the field-theoretical ϵ-expansion technique. Though one can access the
quantum criticality in our system via the bosonized version in equation (5), the controlled theoretical
approaches to access the quantum criticality of ourmodel system via equation (5) are either absent or obscure.
The derivation of the RG scaling equations, equation (19), shown in appendixDoffers an independent check of
our re-fermionizationmapping and the quantum critical properties obtained via the effective Kondomodel in
equation (9).

Finally, within the perturbative RG approach, the one-loop corrections can in general be added to the scaling
dimension analysis in theRG scaling equations. This has been demonstrated in theweak-coupling limit of our
model (see appendix A and references [33] and [31]). In fact, this approach has also beenwidely used in various
relatedmodels, such as in theKondo–Luttinger system in [9], in pseudogapKondo problems in [39–41, 43], and
[45], and in the dissipative Kondo quantumdot system in [34].Near the strong-coupling 2CKfixed point of our
model, we argue that one-loop perturbative RG contributions can still be added to our scaling dimension
analysis at the 2CKfixed point as (1) the j1

xy term is absent in RG equation, equation (19), (2) near 2CK the bare
and renormalized leading irrelevant Kondo couplings j2

xy andδj z
1
are bothwithin the perturbative (weak-

coupling) regime, δ ≪j j, 1xy z
2 1

, and (3) the location of ourQCP jc separating the 1CK and 2CKfixed points is
still in theweak-coupling regimewhere the perturbative RG approach is valid. Therefore, our perturbative one-
loopRGapproach is controlled and is applicable for analyzing the stability of the 2CKfixed point.
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However, the Emery–Kivelson unitary transformation that we applied in section 3.2, taking our
Hamiltonian from theweak-coupling limit equation (2) to the strong coupling regime in equation (19) (see
[29]), is a non-perturbative approach. Nevertheless, oncewe arrive near the strong-coupling 2CKdescribed by
δH2CK, the rest of the RG analysis is perturbative and controlled.

3.2.2. 1-channel Kondo temperatureTK
1CK

Asmentioned above, for >J Jc with decreasing temperature the system crosses over from the 2CK to the 1CK

fixed point at amuch lower energy scale μ ≈ ≪T TK K
1CK 2CK whereTK

1CK refers to theKondo temperature
associatedwith the 1CKfixed point. As shown in figure 6, the 1CKfixed point persists to be the ground state at a
finite but weak electron-electron interaction strength, < <K K 1c withKc being the critical interaction below
which the ground state switches from the 1CK to the 2CKfixed point.Meanwhile, the crossover scale to the 1CK

fixed pointTK
1CK (with respect toTK

2CK) for >J Jc gets reduced significantly as interaction gets stronger. Also, for

afixed value ofK, the ratioT TK K
1CK 2CK is larger for larger bare Kondo couplings J, as expected.

4. Stability analysis of the 1CKand 2CKfixed points for <K 1

Having found the possibleQPT between the 1CK and 2CKfixed points, it is important to perform a stability
analysis and study how robust the quantum critical point of our system is against small perturbations.
Equivalently, we need to knowhow stable the 1CK and 2CKfixed points are for <K 1.

Wefirst examine the stability of the helical Luttinger liquid lead itself. In general there exists the single
particle backscattering termdue to the interaction of c (0)i,R L and the quantumdot [29]: ′ +t c c h.c.i i,R

†
,L .

However, this term is forbidden here as it breaks time-reversal symmetry.Meanwhile, for the 1DHubbard

model in general there exists the ‘spin-flip’ backscattering term inHu of the form ∝ +↑ ↓ ↓ ↑H c c c c h.c.sf i i i i,L
†

,L ,R
†

,R .

However, due to the helical nature of our leads (or the right/leftmoving electrons are tied to their spins, i.e. only
↑ ↓cR(L)

( ) electrons exist), thisHsf term is therefore absent. Nevertheless, at half-full, theUmklapp term that exists on

a single bond is allowed by the time-reversal symmetry [28]:

= +↑ ↑ ↓ ↓H g c c c c(0) (0) (0) (0) h.c. (21)um u R
†

R
†

L L

The scaling dimension of this termhas been shown to be =H K[ ] 4um , indicating that the helical edge state is

unstable towards an insulating phase for <K 1

4
. Note that for the band away fromhalf-full, theUmklapp term

vanishes [31].
We now focus on the effects of the particle-hole (p-h) asymmetry on the stability of these twofixed points as

indicated in [23, 34] and [25] that it is themost relevant perturbation for aKondo dot coupled to Luttinger
liquid leads. Let usfirst address this issue at the 2CKfixed point where the two leads are effectively disconnected.
The particle-hole asymmetry in ourKondomodel generates potential scattering terms of the following form
[23]:

Figure 6.The ratio of 1CK to 2CKKondo temperatureT TK K
1CK 2CK as a function of 1−K for various bare Kondo couplings

μ μ=J ( )i
xy z,

0 (in units of μ = 10 ) via the weak-coupling RG analysis.
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∑

∑

= +

=

= +
σ α

σα σα

σ

σα σα
=

≠

H H H

H t c c

H t c c

,

,

h.c. (22)

ps t t

t

k i

k i k i

t e

k i j

k i k j

1

, , , L,R

,
†

,

, ,

,
†

,

e

e

with =i j, 1(L̃), 2(R̃)being the lead index,σ = ↑ ↓(R), (L)being spin index, andR(L)being the right (left)
moving particles. Here, t and te terms represent a chemical potential of each lead and aweak tunneling between
the disconnected Luttinger leads [32].Meanwhile, two additional two-particle scattering termsH2p involving
tunneling of spin ( σt ) and of charge ( ρt ) can be generated by theweak tunneling te via 2nd-order perturbation
(see figures 2(d)–(f) of [32]), given by:

∑

∑

= +

= +

=

σ

ρ

↑ ↑ ↓ ↓

↑ ↑ ↓ ↓

σ ρ

σ

ρ

H H H

H t c c c c

H t c c c c

,

h.c.

. (23)

ps t t

t

k

k k k k

t

k

k k k k

2

,1
† R

,2
R

,2
† L

,1
L

,1
† R

,2
R

,1
† L

,2
L

The bosonized formof equation (23) reads [32]:

π
ϕ

π
π ϕ π θ

π
π ϕ

π
π θ

+ = ∂ +

+ +
ρ σ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

( )

H H t
K

a

t

a
K

K

t

a
K

t

a K

2 2
cos 2 (0) cos

2
(0)

2
cos 2 2

2
cos 2

2
. (24)

ps ps x s
e

a a

a a

1 2

Near 2CK,ϕ (0)a is a constant, therefore the scaling dimensions of these term gives: =t[ ] 1, =t[ ]e K

1

2
, =σt[ ]

K

2

( ≈ρt const.) [32]. It is clear that all operators are irrelevant for < <K 21

2
; the te termbecomes relevant for

<K 1

2
, and σt is relevant for >K 2.

Next, we consider the stability of the 1CKfixed point. Since the cross-channel Kondo coupling J2
xy termflows

under RG alongwith J1
xy to large valueswhile as J1

z stays at order of 1, the two semi-infinite Luttinger wires are
joined into one single infinite Luttinger wire [25]. In contrast to the ‘weak tunneling’ processesmentioned above
at the 2CKfixed point, the potential scattering term generates the ‘weak backscattering’ processes between the
electrons in the upper and lower edges, including the single-particle backscattering term ve, and the two-particle
backscattering terms ρv , and σv (see figures 2(a)–(c) in [32]):

∑

∑

= + +

= +

= +

ρ

σ

↑ ↑ ↓ ↓

↑ ↑ ↓ ↓

↑ ↑ ↓ ↓

ρ

σ

H v c c c c

H v c c c c

H v c c c c

h.c.,

h.c.,

h.c. (25)

v e

k

k k k k

v

k

k k k k

v k k k k

,1
† R

,2
L

,1
† L

,2
R

,1
† R

,2
L

,1
† L

,2
R

,1
† R

,2
L

,2
† R

,1
L

e

In fact, there exists a dualitymapping between the ‘weak tunneling’ and ‘weak backscattering’ limits [32]:
→ →↑ ↑ ↓ ↓c c c c,k k k k,2

R
,2
L

,2
L

,2
R , → → → →ρ σ σ ρt v t v t t K, , ,e e K

1 . Note that at the 1CKfixed point,ϕa is not pinned to a

constant as opposed to that in the 2CK case. The scaling dimensions of these terms can be read off
straightforwardly [32]: = +v K[ ] ( )e K

1

2

1 , =ρv K[ ] 2 , and =σv[ ]
K

2 . The ve term is always irrelevant for <K 1,

while the σv and ρv terms are irrelevant for < <K 21

2
and relevant otherwise.

Based on the above analysis, wefind that both the 1CK and 2CKfixed points are stable for < <K 11

2
, and

unstable for <K 1

2
.We have checked that our analysis reproduces thewell-known results for aKondo dot

coupled to conventional Luttinger liquid leads in [23], [25] and [34] where =t[ ]e K

1

2
at the 2CKfixed point and

= +v K[ ] (1 )e
1

2
at the 1CKfixed point.

As a final remark, we consider here the parity (left-right) symmetricmodel where = =J J J1 LL RR with JLL(RR)

being referred to as theKondo couplings involving only the left (right) lead.Nevertheless, parity asymmetry is a
relevant perturbation near the 2CKfixed point. In the presence of parity asymmetry ( ≠J JLL RR), the systemwill
flow to the 1CKfixed point with the large bare Kondo couplings [34].
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5. Critical properties near the 1CK-2CKquantumphase transition

The critical properties and crossovers of various thermodynamical quantities near this newly found 1CK-2CK
QCP can be obtained via the above RG approach combinedwith thefield-theoretical ϵ-expansion technique
[37–41].We employ here a double-ϵ-expansionwith two small expansion parameters ϵ andϵ′. Our approach
leads tomore accurate results for the Luttinger parameter → −K 1 . Note that thoughϵ′ approaches afinite non-
vanishing value1 2 for →K 1 instead of zero, our double-ϵ-expansion is still a controlled approach since all the
critical properties are determined by the location of theQCP ϵ ϵϵ= ′j ( , )c , which converges to 0 as ϵ → 0.

Following references [39–41], we define the renormalized pseudo-fermion fields σf̃ and the renormalized

dimensionless Kondo couplings j as: =σ σf Z f̃f , and =
μ ϵ− ⊥

⊥J jxy Z

c Z

xy
2 ˜ 2

j

f2

, δ δ=
μ

π

ϵ− ′

J jz Z

c Z

K z
1 ˜ 1

jz

z
f1

withZf and ⊥Z j z

being the renormalization factors for the impurity field andKondo couplings, respectively and μ is a
renormalization energy scale. The renormalization factors are obtained viaminimal subtractions of poles
[39, 40], given by (see appendix C):

δ
ϵ

δ

ϵ

ϵ

δ

ϵ

= +
′

= +

= + +
′

⊥

( )

( ) ( )

Z
j

Z
j j

Z
j j

1 ,

1
2

,

1
8 16

. (26)

j

z

j

xy z

f

xy z

1

2

2

1

2

2

1

2

z

Within thefield-theoretical RG approach, we have checked that the RG scaling equations in equation (19) can be

reproduced via calculating the β− functions: β μ≡
μ

∂
∂j( ) |i

j
J

i

i,0
with μ being an energy scale, δ=j j j,i

xy z
2 1

being the

renormalized Kondo couplings and δ= =J J J J,z xy
1,0 1 2,0 2 being the bare Kondo couplings (see appendix C).

Belowwe discuss various critical properties and crossover functions based on the field-theoretical ϵ-expansion
approach.

5.1.Observables at criticality
Wefirst calculate various observables at criticality, including correlation length exponent, impurity entropy,
dynamical properties of the T-matrix and local spin susceptibility.

5.1.1. Correlation length exponent ν
The correlation length exponent ν describes how the correlation length ξ diverges when the system is tuned to

the transition:ξ ∝ ν−t| | with ≡ −
t

J J

J
c

c
being the dimensionless distance to theQCP. It also gives the power-law

vanish of the characteristic crossover energy scaleT* close to the transition: μ∝ νT t* | | . To calculate ν, we first
linearize the RG scaling equations equation (19) nearQCP. The correlation length exponent ν is determined by
the largest eigenvalue of the coupled linearized equations, found to be:

ν
ϵ ϵ

ϵ ϵ=
+ −

= + + ′ ( )K

K

4

1 16 1

1

2
(1) , (27)2 2

where the leading order behaviorν ≈
ϵ

1

2
is obtained by expanding the square-root in equation (27) in the limit

ofϵ ϵ≪ ′.

5.1.2. Impurity entropy
The impurity contribution to the low-temperature entropy nearQCP is obtained by a perturbative calculation of
the impurity thermodynamic potentialΩimp with respect to the 2CKfixed point and taking the temperature

derivative [40]: =
Ω∂
∂S

Timp
imp
. AtQCP andT=0 it can bewritten as:

Δ= +S S S . (28)imp
QCP

imp
2CK

imp

where = =S K Kln 2 ln 2imp
2CK 1

2
is the zero-temperature residual impurity entropy at 2CKfixed point which

shows the existence of fractionally degenerate ground state [15, 16, 29], and ΔSimp is the correction toSimp
2CK at

QCP. Following similar renormalized perturbative calculations in [40], wefind
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Δ π
ϵ ϵ δ ϵ π= +

′
=

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

( ) ( )
S

j j

K
ln 2

4 8

3 ln 2

32
. (29)

c
xy

c
z

imp
2 2

2

1

2
2 2

Therefore, we have:

ϵ π= +S K
K

1

2
ln 2

3 ln 2

32
. (30)imp

QCP
2 2

5.1.3. The T-matrix
The conduction electronT-matrix, ωαα′T ( ), in theKondomodel carries important information on the scattering
of the conduction electrons from lead α to leadα′ via the impurity. In particular, ωαα′T ( )withα α≠ ′describes
the transport across the dot, detectable in transportmeasurements. TheT-matrix is determined from the
conduction electronGreen functions [42]: = 〈 〉αα α α′ ′G t c c t( ) (0) ( )† through

δ ω ω ω= +αα αα αα αα αα α α′ ′ ′ ′ ′ ′G G G T G( ) ( ) ( )0 0 0 . Near the 2CKfixed point, ωαα′T ( )withα α≠ ′ is defined through
the propagator,GT, of the composite operator =σα

π θ
σ σ α

σ−
′

′T J f f ce ˜xy
2

i 4 ( 1) ˜ (0) †
K a
1

(see equation (9)):
ω=αα ω′T G ( )T( ) [40].

Following the similar calculations in [40] and appendix C, we analyze the propagator ωG ( )T near the 2CK

fixed point andfind at zero temperature ω ∝αα
ω

′ η−
TIm ( ( ))2CK 1

T
2CK

with the anomalous exponent at the tree level

with respect to the 2CKfixed point given by η ϵ= 2T
2CK (i.e. ω ω∝αα

ϵ
′TIm ( ( ))2CK 2 ). Near 1CK-2CKQCP,

however, ωαα′TIm ( ( )) acquires an additional anomalous power-law behavior:

ω
ω

∝αα
η η

′
− −

( )TIm ( )
1

(31)
T T
2CK

where the additional anomalous exponent ηT is obtained via the renormalization factorZT for theT-matrix

propagator ωαα′T ( ) [39, 40]:η β β δ= +
δ

∂
∂

∂
∂j j( ) | ( ) | .T

xy Z

j j
z Z

j j2
ln

1
lnT

xy c

T
z c

2 1

Here, the renormalization factorZT is

obtained byminimal subtraction of poles [39, 40]: =
⊥

ZT
Z

Z

f

j

2

2
withZf, ⊥Z j given by equation (26).Wefind

therefore

η δ
δ ϵ ϵ ϵ= − + = − +

( ) ( )j
j

j

K2
2

4 4
2

4
, (32)T

c
xy

c
z c

z
2

2

1

1

2
2

and ωαα′TIm ( ( )) atQCP behaves as:

ω ω∝αα′
+ϵ ϵ( )TIm ( ) . (33)K4

2
4

5.1.4. Local spin susceptibility χ ω( )zz
The local dynamical spin susceptibility χ ωIm ( ( ))zz at the impurity (quantumdot) is defined as the time Fourier
transformof the spin-spin correlator:〈 〉S S t(0) ( )z z . At zero temperature, the imaginary part of the local
susceptibility, χ ωIm ( ( ))zz , shows a power-law behavior atQCP:

χ ω
ω

∝
η η− −χ χ

( )Im ( )
1

. (34)QCP 2CK

Here, η ϵ=χ
2CK is the anomalous exponent of χ ωIm ( ( ))zz at the tree level with respect to the 2CKfixed point via

the correlator〈 〉 ∝S S t(0) ( )z z
t

1

K
1
evaluated at the 2CKfixed point [29] (i.e. χ ω ω∝ ϵIm ( ( ))zz

2CK ), and ηχ is the

correction to the anomalous exponent ηχ
2CK when the system is atQCP. Via ϵ-expansionwithin the field-

theoretical RG framework [39, 40],ηχ reads: η β β δ= +χ δ δ δ
∂

∂
∂

∂
χ χ

j j( ) | ( ) |xy Z

j j j
z Z

j j j2

ln
, 1

ln
,xy c

xy
c
z

z c
xy

c
z

2
2 1

1
2 1

with =χZ Z f
2 being

the renormalization factor for the impurity susceptibility [39, 40] andZf defined in equation (26). Carrying out
the above calculations, we arrive at

η
δ ϵ ϵ= + = +χ

( ) ( )j j

K2 4 4 4
, (35)

c
xy

c
z

2

2

1

2
2
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andfinally χ ωIm ( ( ))zz
2CK atQCP shows the following power-law behaviors:

χ ω ω∝ ϵ+ +ϵ ϵ( )Im ( ) . (36)zz
K4

2
4

5.2.Hyperscaling
The impurity correlations atQCP are expected to obey certain hyperscaling properties. For example, the local
dynamic spin susceptibility at criticality obeys ω

T
scaling in the following form [39–41, 43]:

χ ω
ω

Φ ω=
η η− −χ χ

 ⎜ ⎟
⎛
⎝

⎞
⎠( )T

T
Im ( , ) (37)loc 2CK

withΦ ω( )
T

being a universal crossover function for theQCPhere and being a non-universal pre-factor.

Similar scaling form can be found in the T-matrix. Hyperscaling can be used to determine relations between
various critical exponents. It has been known [39–41, 43] that the correlation length exponent ν and the
anomalous exponent ηχ are sufficient to determine all critical exponents associatedwith a localfield h. In

particular, the exponents γ and γ′ via the →T 0 limit of the local susceptibility near criticality are defined as
[41, 43]:

χ γ ν η

χ γ νη

< = ∝ − = −

> = ∝ ′ =

γ
χ

γ
χ

−

′

( )t T t

T t T t

( 0; 0) ( ) , 1 ,

( 0; 0) , . (38)

loc

loc

Meanwhile, the critical exponents β and δ associatedwith the localmagnetizationmloc can be determined by
[41, 43]:

β νη

δ
η

> = ∝ =

= = ∝ = −

β
χ

χ

δ

m t T t

m t T h

( 0; 0) ,
1

2
,

( 0, 0) ,
2

1. (39)

loc

loc
1

With the values for critical exponents ν (equation (27)) and ηχ (equation (35)) at hand, the other critical

exponents are therefore given by:

γ
ϵ

ϵ ϵ ϵ γ ϵ ϵ ϵ

β ϵ ϵ ϵ δ
ϵ ϵ

ϵ ϵ

= − + + ′ ′ = + + ′

= + + =
+

− + ′′

 

 
( ) ( )

( ) ( )

K

K

K

K
K

K

K

K

1

2

1

8
, ,

1

8
, ,

1

16
, ,

8
1 , . (40)

2 2 2 2

2 2

2
2 2

5.3. Crossover near critical point
Next, we focus on calculating the crossover functions close to the 1CK-2CKquantum critical point. In general,
the crossover functions of observables near criticality depend on the RGflows of bothδj z

1
and j2

xy (see figure 7);
therefore theymay not be expressed analytically in terms of universal crossover functions of a single variable.
Nevertheless, great progress can bemadewhen onemakes a special choice of bare (initial) values of Kondo

Figure 7. Schematic finite temperature phase diagramof ourmodel near the 1CK-2CKquantum critical point (QCP) located at =t 0
( =J Jc). As →T 0, the 1CK ground state is reachedwhen >t 0 or >J Jc , while the 2CK ground state is reached for <t 0 or <J Jc .
Here, > <J J( ) c refers to the upper right (lower left) region in the phase diagram shown infigure 4where the RGflows are towards
the 1CK (2CK) fixed point. The dashed vertical arrow at <t 0 refers to thefinite temperature crossover between the quantum critical
region (blue shaded area bounded by the crossover temperatureT*) and the 2CKground state, which is our interest. Here, J and Jc are
defined in the text.
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couplings such thatϵ δ′ =J J( )z xy
1 2

2. Note that this set of bare couplings can in general be tuned through adjusting
variousmicroscopic parameters, such as spin-orbit coupling in 2DTIs, and the lead-dot hopping . For this
particular choice of bare couplings, we found and checked that the RG flows ofδ μj ( )z

1
and μj ( )xy

2
follow the

well-approximated trajectory: ϵ δ′ ≈j j( )z xy
1 2

2, (i.e. β δ ≈j( ) 0z
1

). Under this constraint, only oneRG β-function

(β j( )xy
2

) effectively remains:

β ϵ= −( ) ( )j j K j2 . (41)xy xy xy
2 2 2

3

One can therefore easily solve equation (41) analytically, and its solution for the range betweenQCP at
ϵϵ= = ′ϵj c

xy

K2 2
and the 2CKfixed point ( <j jxy

c
xy

2 2
where our RG and ϵ-expansion approach is controlled)

is found to be:

μ =
+ μ ϵ−

( )
j

j
( )

1

(42)

*

xy c
xy

T

2
2

2

where μ= −
ϵT* ( )

J J

J

( ) ( )

( )

c
xy xy

xy

2
2

2,0
2

2,0
2

1
2 is the crossover energy scale. It is clear that the power-law vanish ofT* follows:

μ μ∝ ≡ νϵT t t* | | | |
1
2 with the correlation length exponent ν beingν =

ϵ
1

2
, which agrees with our earlier result in

equation (27). The crossover function in equation (42) can be used to compute various crossovers in
thermodynamic functions near 1CK-2CKQCP as discussed below.

5.3.1. The impurity susceptibility χT T( )imp

The impurity susceptibility is defined as [40, 41]: χ χ χ= +T( ) 2 uimp imp,imp ,imp + χ χ−( )u u u u
bulk

, , where χu u, is the

bulk response to the localfield applied to the bulk only, χimp,imp is the impurity response to the localfield applied

to the impurity only, χu,imp is the crossed response of the bulk to an impurity field, χu u
bulk
, is the susceptibility of the

bulk in the absence of the impurity.We can calculate χ T( )imp via renormalized perturbative approaches in

references [40, 41, 45].Wefind (up to thefirst order in j2
xy) χ T( )imp , contributed from χu,imp (see the Feynmann

diagram infigure 3 and equation (24) of reference [45] and equation (9) above), reads:

∫χ μ ω ω= − ϵ ϵ
ω

−
− ( )

j
T

1

4
d

cosh

4
. (43)u

xy

D

D
T

,imp 2 2

2
2

0

0

Note that the above formula has the same functional form as that shown in equation (24) of reference [45] in the
pseudogapKondo problem at criticality. The exponent r of the pseudogap conduction bathwith power-law
vanishing density of states (DOS) ρ ω ω∝( ) | |r in reference [45] is now replaced by ϵ in our case as the boson

operator π θ−ei 4 ( 1) ˜ (0)K a
1

in equation (9) leads to an effective power-law energy dependenceωϵ by the Fourier
transform in equation (43). Evaluating the above equation in the limit of infiniteUV cutoff and up tofirst order
in ϵ, χimp has the following crossover form (see equation (42) and figure 8):

Figure 8. χ χimp imp
2CKversusT T* (see equation (44)) atfixedK=0.8 for various bare Kondo couplings (in units of μ = 10 ) where

=j K j2 ( )z xy
1 2

2 is satisfied and = ≈ϵj 0.39c
xy

K2 2
.
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χ

χ
μ≈ − → ≈ −

+
ϵ−

( )
T

T
j T

j( )

( )
1 ( ) 1

1

(44)

*

xy c
xy

T

T

imp

imp
2CK 2

2

2

where χimp
2CK is the impurity susceptibility at the 2CKfixed point, given by [31] χ ∝ ∝

∂
∂ η χ−T( )

C

T T
imp
2CK 1imp

2CK

1
imp
2CK

with

impurity specific heat at the 2CKfixed point given by: ∝ −C Timp
2CK 2K

2
(for < <K 12

3
) and ∝C Timp

2CK (for

<K 2

3
) [29, 44].We have therefore η = −χ 2

K
2CK 2

imp
(for < <K 12

3
) and η =χ 12CK

imp
(for <K 2

3
).

5.3.2. Impurity entropyS T( )imp

At the 2CKfixed point, the impurity residual entropy has been calculated in [29]: =S Kln 2imp
2CK . Following

[40], the correction toSimp
2CK nearQCP is obtainedwithin the perturbative RG approach by calculating the

thermodynamic potential and taking the temperature derivative. The crossover function for the impurity
entropy nearQCP is found to be (see figure 3 and equation (40) of [40]):

π ϵ μ π ϵ≈ + → ≈ +
+

ϵ−
⎡⎣ ⎤⎦

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥( )
S T

S K
j T

K

j( )
1

4

ln 2

ln 2
( ) 1

4

ln 2

ln 2
1

. (45)

*

xy c
xy

T

T

imp

imp
2CK

2

2

2 2
2

2

2

Note that the prefactor 1

4
here comes from the j2

xy termonly, in contrast to 3

8
in [40] for the SU(2) symmetric

Kondomodel.

5.3.3. Equilibrium conductance G(T)
The equilibrium conductanceG(T) has the following crossover formbetween the 2CKfixed point and theQCP
(see figure 9):

μ∝ → ≈
+

ϵ

ϵ
ϵ

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( )
G T j T

j T

T T

( ) ( )
*

. (46)xy c
xy

2

2 2

2 2

2
2

Note that in equilibrium the linear conductance at the 2CKfixed pointG T( )2CK is determined by the bare scaling

dimension of the leading irrelevant operator j2
xy, =j[ ]xy

K2
1 . This gives ∝ = ϵ−G T T T( )2CK

2( 1) 2K
1

. For ≪T T*

where the system reaches the 2CKfixed point, the temperature dependence ofG(T) in equation (46) reduces to

that at 2CK, ≪ ∝G T T G T( *) ( )2CK , as expected.

6.Discussions and conclusions

Beforewe conclude, wewould like to emphasize again the clear physical picture we provided in the introduction
tomake ourmain resultsmore transparent. First, it is well known that the stable one-channel and two-channel
Kondofixed points are expected in the case of a Kondo quantumdot coupled to two conventional spinful

Figure 9.Crossover of the linear conductanceG(T) versusT T* (see equation (46)) atfixedK=0.8 for various bare Kondo couplings
(same as infigure 8).
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Luttinger liquid leads [23, 25]. The ground state of this system changes from1CK to 2CKwhen Luttinger

parameterK reduces from the non-interacting limit (K=1) to the strongly interacting limit ( <K 1

2
). The

electron-electron interactions in the Luttinger liquids act equivalently as if an additional dissipativeOhmic
boson bath is coupled to the quantumdot [3, 34], leading to suppression in electron transport fromone lead to
the other through the dot. A quantumphase transition between the 1CK and 2CKfixed points was argued to

exist at =K 1

2
as a direct consequence of the competition between the cross-channel Kondo coupling JLR and the

suppression of tunneling due to electron-electron interaction [23, 25].However, up until now there has been no
analytic and controlled approach to access this transition.Note that the one-loopRG approach does notwork
here to reach to the 1CK-2CKquantum critical point since near the 2CKfixed point theKondo couplings JLL RR,
involved in the renormalization of the cross-channel Kondo coupling JLR, both go to infinity under RG.

When a quantumdot couples to helical Luttinger liquids (a special type of Luttinger liquid), we expect the
1CK and 2CK ground states are also the two possible stable phases for the same reason asmentioned above.
However, due to the helical nature of the Luttinger liquid leads, the underling two-channel Kondomodel
becomes anisotropic ( ≠J Ji

xy
i
z) as theSU (2) symmetry of themodel is broken; while the Kondomodel is

isotropic ( =J Ji
xy

i
z) for a quantumdot coupled to conventional Luttinger liquid leads. This crucial difference

enables us to access theQPTbetween the 1CK and 2CKfixed points of our system via the controlled RG
approach.

In the limit of aweakly interacting helical liquid → −K 1 , wefind the similar competition between these two
possible ground states. The 1CKphase is reachedwhen J2

xy is large enough, while the 2CKphase is reachedwhen
the electron-electron interaction becomes strong enough. Via a controlled perturbative RG approach of one-
loop order, we find that the 1CK-2CKquantumphase transition occurs near = −K 1 . To reach the 1CK-2CK
phase transition in our setup, we believe it is necessary to go beyond the tree-level bare scaling dimension
analysis, which predicts a stable 2CKphase for as long as <K 1 [29]. The one-loopRG is the leading correction
to the above-mentioned bare scaling dimension analysis. Note that themain difference between the case for
conventional Luttinger liquid and that for helical liquid is that the resulting two-channel Kondomodel is
isotropic in the former case, while it is anisotropic in the latter case. This difference affects details of the critical

properties, such as the critical points occurring at = =K Kc
1

2
for theKondo dot coupled to Luttinger liquid,

while wefind the existence of <K 1c by theRG analysis near the strong coupling 2CKfixed point for the case of
helical Luttinger liquid. At a general level, however, we should expect a 1CK-2CKquantumphase transition to
exist in both cases.

Meanwhile, within our one-loopRG analysis, the twoKondo couplings j2
xy andδj z

1
terms scale with different

powers of ϵ at critical point. Therefore, the loop orders in general canmix (i.e. the two-loop results for critical
Kondo couplingsmay lead to the same order in ϵas that at one-loop order). To estimate the corrections at higher

loop orders to our results at one-loop order, we include the two-loop order terms j( )xy1

4 2
3 and j j( )xy z1

2 2
2

2
in RG

scaling equations for j2
xy andδj z

1
terms in equation (19), respectively [39].Wefind that thismodificationwill lead

to a small correction (shift) to the locations of the critical Kondo couplings: δ ϵ ϵϵ→ ′j j a b( , ) ( , )c
z

c
xy

1, 2,
with

= ≈
ϵ− ′a 1

1 4

8

7
, = ≈

ϵ− ′
b 1

1 4

8

7
. Therefore, this correctionwill not spoil ourmain results as it only slightly

modifies the critical exponents of observables for those depending on the location of the critical Kondo
couplings.

In summary, we have re-examined [29] on the two-channel Kondo physics in theKondo quantumdot
coupled to two helical edge states of two-dimensional topological insulators. Via the one-loop renormalization
group approachwhich goes beyond the scaling dimension analysis in [29], we found the quantumphase
transition between the one-channel (1CK) and two-channel (2CK)Kondo ground states for weakly interacting
leads ( → −K 1 ).Wemade definite predictions on the critical properties when the system is close to the

transition.Our results are robust for < <K 11

2
, and they refine the statement in [29] that the two-channel

Kondo ground state is stable for as long as <K 1. Our results also provide the first theoretical realization of the
quantumphase transition between 1CK and 2CKphysics inKondo impuritymodels. Further investigations via
field-theoretical and numerical renormalization group (NRG) [12] approaches are needed in order to clarify the
critical properties, including the critical exponents and finite-temperature dynamics in crossover functions
associatedwith the transition [45].Our resultsmotivates the search for these critical properties near the 1CK-
2CKquantumphase transition in future experiments on aKondo quantumdot coupled to 2D topological
insulators.
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AppendixA. TheRG scaling equation in theweak-coupling regime via bosonization

In this appendix, we provide some details on deriving the RG scaling equations of equation (3) for → −K 1 from
the bosonizedHamiltonian equation (2). Following [33] and [31], we decompose the boson fieldsΦ θ ϕ≡ν ν ν,

withν = s a, into the ‘fast’ (Φν
>) and ‘slow’ (Φν

<) components:

∑

∑

Φ τ Φ τ Φ τ

Φ τ
β

Φ ω

Φ τ
β

Φ ω

= +

=

=

ν ν ν

ν
ω μ

ν
μ ω μ

< >

<

< ′

>

′< <

( ) ( ) ( ),

( )
1

( ),

( )
1

( ) (A.1)

n

n

n

n

with μ μ μ′ = + d . The partition function can be decomposed in the following form:

∫
∫

Φ Φ

Φ

=

=

μ
Φ Φ Φ Φ

Φ Φ Φ

< > − − − +

< − − +

< > > <

< < >

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

Z D D

Z D

e ,

e e (A.2)

S S S

S S

f
0

0 0 int

0 int

where

∫
∫

Φ

Φ Φ

≡

≡

Φ

Φ

> −

> − >

>

> ⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

Z D

D

e ,

e . (A.3)

S

f
S

0
0

0

The partition function μZ can be re-expressed by exponentiating〈…〉f in the integrand in terms of the effective

action ∫Φ τ Φ≡< <S [ ] d ( )Keff withK being the Lagrangian of theKondomodel (see equation (2)), involving
only the slow component of thefields with the following form via the cummulant expansion:

Φ Φ

Φ Φ Φ

Φ Φ Φ Φ

= −

= + +

− + − + + ⋯

Φ Φ
< <

− +

< < >

< > < >

< >⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎛
⎝⎜

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎞
⎠⎟

⎡⎣ ⎤⎦
S S

S S

S S

ln ,

1

2
. (A.4)

S

f

f

eff 0

0 int

int
2

int

2

int

TheRGprocedure is carried out by integrating out the fastmodes of bosons and expressing the effective low-
energy theory in the original formwith the renormalized couplings. The following two-point correlation
functions of boson fields prove to be useful in theRG analysis [33]:

∫ ∫τ Φ τ Φ
π

ω
π

π
ω

τ τ π
μ τ μ τ

π
μ
μ

μ τ

= =

′
+ ′

≡ =
′ ′ ≫

′
′ ≪

ωτ−

⎧
⎨
⎪⎪

⎩
⎪⎪

G x x
k

v
v k

G G

K

( , ) ( , ) (0, 0)
d

2

d

2
e e ,

( ) (0, )

1

2
( ) for 1

1

2
ln for 1,

(A.5)

f
kx

F
F

i i
2

2

0

whereK0 is the Bessel function of the second kind. It is clear from equation (A.5) that τG ( ) can be considered a
short-ranged function of τ.

First, we focus on thefirst order cummulant Φ Φ〈 + 〉> <S [ ]int , which leads to the bare scaling dimensions of
various Kondo couplings in [29]. The renormalization of the forward longitudinal term J1

z term,δJ z
1 , gives:
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∫ ∫τ θ τ τ θ τ θ τ∂ = ∂ + ∂< >⎡⎣ ⎤⎦J Jd (0, ) d (0, ) (0, ) . (A.6)z
x s f

z
x s x s f1 1

Sinceθs is an odd function in spin space, its average vanishes, θ τ〈∂ 〉 =>(0, ) 0x s f ,δ =J 0z
1 . This gives the first-

order RG scaling equation:

μ
=

jd

d ln
0 (A.7)

z
1

with the renormalized dimensionless coupling j1
z defined as: ρ=j Jz z

1 0 1 where ρ =
π ′v0
1

F
is the density of states.

The rescaling of the backward longitudinal term J2
z term leads to:

∫

∫

τ π θ τ π ϕ τ μ
μ

τ π θ τ π ϕ τ

= ′

×

+

< <

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

( )

J
K

K

J
K

K

d sin
2

(0, ) sin 2 (0, )

d sin
2

(0, ) sin 2 (0, ) (A.8)

z
a

f

a
f

z
s s

2

2

K
K2
1

2

where equation (A.5) and〈 〉 = 〈 〉 e e
1
2

2
are used [31]. This relation is justified for any operatorA that is linear in

terms of boson fields whoseHamiltonian is quadratic in those boson fields, which is precisely the case for theA
operatorwe apply here. Upon rescaling τ, τ τ→ μ

μ ′
, wemay define the newdimensionless renormalized coupling

μj ( )z
2

in terms of the bare coupling μ μ= =J ( 1)z
2 0 as:

μ ρ μ= + −j J( ) , (A.9)z z
2 0

1
2

K
K2
1

2

we arrive at the RG scaling equation at the level of bare scaling dimension:

μ
= + −⎜ ⎟⎛

⎝
⎞
⎠

j K K
j

d

d ln

1

2
1 . (A.10)

z
z2

2

Thefirst-order RG scaling equations for the remaining couplings are obtained similarly:

μ μ
= − = + −⎜ ⎟⎛

⎝
⎞
⎠

j
K j

j K K
j

d

d ln
( 1) ,

d

dln

1

2
1 (A.11)

xy
xy

xy
xy1

1
2

2

with the renormalized dimensionless couplings defined in the text.
Next, we consider the second order cummulant terms generated from

Φ Φ Φ Φ− 〈 + 〉 − 〈 + 〉< > < >S S( [ ] [ ] )f
1

2 int
2

int
2 . In general, the second-order contributions to the renormalization

of various couplings have the following form:

μ μ

μ μ

= − − = − −

= − − = −

( ) ( )
j

a j j a j j
j

b j b j

j
c j j c j j

j
d j j

d

d ln
,

d

d ln
,

d

d ln
,

d

d ln
2 , (A.12)

xy
xy z xy z

z
xy xy

xy
xy z xy z

z
xy xy

1
1 1 1 2 2 2

1
1 1

2
2 2

2

2
1 1 2 2 2 1

2
1 1 2

with ai, bi, ci, and di being the pre-factors to be determined.
Wefirst focus on the terms in J Jxy z

2 2 whichwill contribute to the renormalization of j1
xy:

∫ ∫
π

τ τ

π θ τ

π θ τ π ϕ τ

π θ τ

π θ τ π ϕ τ

′

×

× ′ ′

−

× ′ ′

π ϕ τ

π ϕ τ

+

−

−

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥⎥

( )

( )

J J

a
S S

K

K
K

K

K
K

2
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d d

2 e cos
2

(0, )
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2

(0, ) sin 2 (0, )

e cos
2

(0, )

sin
2

(0, ) sin 2 (0, ) . (A.13)

xy z

z

K
a

a a

f

K
a

f

a a

f

2 2

2

i 2 (0, )

i 2 (0, )

s

s
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After averaging over the fastmodes and rescaling τ τ′, , we arrive at:

∫ ∫
π

τ τ μ
μ

μ
μ

π ϕ τ

′ ′

× ′ − ′π ϕ τ

+
+ −

− <
−

<

⎛
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⎞
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⎠
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J J

a
S

K

( )
d d

1 e cos 2 (0, ) . (A.14)

xy z K

K
a

2 2

2

2

i 2 (0, )

K

K

s

1

1

In deriving the above equation, we have decomposed the terms π ϕ τ′Ksin ( 2 ( ( ))a and

θ τ θ τ′π πcos ( ( ( )) sin ( ( ( ))
K

a
K

a
2 2 into the fast and the slowmodes, and kept only the leading (more relevant)

terms. In the limit of τ τ′ ≪ ≈
μ

a, 1 , wemay get rid off one of the double time-integrals in the above equation by

introducing a short-time cutoff τ ≈ ′
a

v0
F
. The logarithmic correction of equation (A.14) is obtained by expanding

−μ
μ
′ −

( ) 1K
1

to the leading order: μ− ≈ − +μ
μ

μ
μ

′ −
g( ) 1 ( )

K

1 d
K

1
where μg ( ) contains sub-leading (less singular)

terms of μwhichwe neglect here at one-loopRG. In the limit of → −K 1 , equation (A.14) becomes:

∫π
τ μ

μ
π ϕ τ− π ϕ τ+ − << ( )

j j

a
S Kd

d
e cos 2 (0, ) . (A.15)

xy z
K

a
2 2 i 2 (0, )s

Therefore, the pre-factor a2 in equation (A.12) is found to be =a 12 . Similarly, wefind the pre-factors
= = = =c b b d 11 1 2 1 in equation (A.12).
Next, we consider a different type of renormalization involving J1

z terms.Wemay focus on a typical term
J Jxy z
1 1 , which renormalizes J1

xy:
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Wemay use the following identities [33] to simplify equation (A.16):
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With the above relations, equation (A.17) becomes:
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The leading logarithmic correction comes from the term θ τ ϕ τ∂ 〈 ′ 〉> >x( , ) (0, )x s s f , which can be evaluated via the
following relations [33]:
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After collecting all the terms and performing re-scaling, equation (A.16) becomes:

∫π π
τ μ

μ
μ
μ

π ϕ τ

−
′

′

× ′′π ϕ τ

−
−

− <<

⎛
⎝⎜

⎞
⎠⎟

( )( )
v

J J

a
S

K

1
d

d

e cos 2 (0, ) . (A.22)

F

xy z K

K
a

1 1
1

i 2 (0, )s

Finally, the correction to j1
xy contributed from J Jxy z

1 1 , δj j j
xy

1, xy z
1 1

, reads:
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where ρ μ≡ −j Jxy K xy
1 0

1
1 , ≡ ρ

π ′j Jz
v

z
1 1

F

0 .We therefore find =a 11 . Similarly, wefind =c 12 . Combining thefirst and

second order corrections to the renormalization of various Kondo couplings, equation (3) follows.

Appendix B. The one-loopRG scaling equations near the 2CKfixed point via poor-man's
scaling

In this appendix, we derive the RG equations in equation (19) from the effective KondoHamiltonian
equation (9) via poor-manʼs scaling, as shown in [34]. Based on the scaling dimensions of various Kondo
couplings in the strong couping 2CK regime, we take the logarithmic derivative of the proposed new
dimensionless Kondo couplings ρ μ≡ ϵ⊥j c J˜xy xy

2 0 2 2 ,δ ρ μ δ≡ ϵ π′j c J˜z z
K

z
1 0 1 1 (see text) with respect to the cutoff

energy μ.
First, we focus on theRG equation for j2

xy:

μ
ϵ μ ρ

μ
∂

∂
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∂
∂
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The derivative of J2
xyw.r.t. μln is given by:

∫μ μ
ω δ

ρ ω

ω
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⎤
⎦
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d
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. (B.2)

xy
xy z xy z2
2 1

2 ,1

0

Here, ρ ω( )xy z2 ,1 is the effective electron density of states due to the additional phase correlations associatedwith

the product of J2
xy andδJ z

1 terms in equation (9). Following [34], this is equivalent to replacing the free electron

Greenʼs function of the effective leads: ≡ 〈 〉α
σ

α
σ

α
σG t c t c( ) ˜ ( ) ˜ (0),0

† by a ‘mixed’ one:

22

New J. Phys. 17 (2015) 013005 C-HChung and S Silotri



≡ ×

≈ ×

π θ

π θ

↑ ↓ ↑ ↓ ↑↓ ± − ±

↑ ↓ ± − ±

( )

( )

G t c t c S S t

G t S S t

˜ ( ) ˜ ( ) ˜ (0) e (0) ( )

( ) e (0) ( ) . (B.3)

L L L
i

K
t

z

L
i

K
t

z

˜
( )

˜
† ( )

˜
4 1 1 ˜ ( )

˜,0
( ) 4 1 1 ˜ ( )

a

a

(
σ

G t˜ ( )R̃ can be defined similarly.) Therefore, ρ ω ω≡ ∑
π σ α

σ− G( ) Im ( ˜ ( ))xy z2 ,1
1 reads [34]:

∫
∫

ρ ω ρ

π

=

=

ω
⊥

⊥ ⊥

EP E

P E t O t

( ) d ( ),

( )
1

2
d ˆ ( ) e (B.4)

xy z z

z z
iEt

2 ,1 0
0

2 1

2 1 2 1

where ρ ω= ∑
π σ α

σ− GIm ( ( ))0
1

,0 is the constant density of states of the non-interacting leads, and〈 〉⊥O tˆ ( )z2 1 has

the following typical form:
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Since the exponential factors in ⊥O tˆ ( )z2 1 are unpaired, it gives a trivial result:〈 〉 =π θ± −e 1ti 4 ( 1) ˜ ( )K a
1

, and hence it
does not affect the renormalization of the couplings [34]. Nevertheless,〈 〉±S S t(0) ( )z shows non-trivial
correlations [29]:

ω
≈

ϵ
±

′( )
S S t

t
(0) ( )

1

i
(B.6)z

c

withωc being a high-energy cutoff.We have therefore
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with ϵ πϵ Γ ϵ= ′ = ′ + ′
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2
andΓ being theGamma function.

The integral in equation (B.2) gives:
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Similarly, we find theRG scaling equation forδj z
1
is given by:
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where the effective density of states is used [34]:
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Wemay determine the pre-factors ⊥c c˜ , ˜z
2 by the following identifications: ϵ ϵ= ′⊥c A A˜ ( ) ( )2 , ϵ= ′c A˜ ( )z

1 .With
the above results, we finally arrive at the RG scaling equations shown in equation (19).

AppendixC. The one-loopRG equations near the 2CKfixed point via the ϵ-expansion
technique

In this appendix, we offer an alternative route to equation (19) via the ϵ-expansion technique [37–41].
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Wefirst derive the renormalization factors ⊥Z j z andZf shown in equation (26).We focus on the one-loop

renormalization of the dimensionless couplings ρ μ≡ ϵ⊥J c J˜ ˜xy xy
2 0 2 2 , and δ ρ μ δ≡ ϵ π′J c J˜ ˜z z

K

z
1 0 1 1 . Let us look at

vertex renormalization of j̃
z

1 , defined as the dimensionless renormalized couplingδj z
1
. first [39, 40]:

∫δ δ δ
δ

ω
ρ ω

ω
≡ = +

−
μ− ⊥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

( )
j Z J J

J

J
˜ ˜ 1

˜
d

( )
(C.1)z

j
z z

xy

z1
1

1 1

2
2

1

z

where the effective density of states reads [34]:

∫ ∫ρ ω ρ

ω

= =

= ≈

ω

π θ π θ
ϵ

⊥ ⊥ ⊥

−

( )

EP E P E t A t

A t
t

( ) d ( ), ( ) d ˆ ( ) e ,

ˆ ( ) e e
1

i
. (C.2)

Et

t

c

0
0

i

i 4 ˜ ( ) i 4 ˜ (0)
2

a a

From above, wefind = ϵ
⊥

−P E c E( ) 1̃
2 1with ϵ=c A˜ (2 )1 and the constant ϵA ( )being defined in appendix B.

Therefore, we have

ρ ω ρ ω= ϵ
⊥ c( ) ˜ . (C.3)0 1

2

Plugging these results into equation (C.1) and via the proper identification: ϵ≡ =⊥c c A˜ ˜ (2 )2 1 , at the leading

order in δj j( )xy z
2

2
1 , Zj

z reads:

δ

ϵ
= +

( )
Z

j j
1

2
. (C.4)j

xy z
2

2

1
z

Similarly, we can show that

ϵ
= +

′
⊥Z

j
1 (C.5)j

z
1

where the following relations are used:

∫
∫

ρ ω
ρ
π

ρ ω

ω

= =

= =

≡ ≈

ω
ϵ

ϵ

ϵ

′

′−

±
′( )

EP E c

P E t B t c E

B t S S t
t

( )
2

d ( ) ˜ ,

( ) d ˆ ( ) e ˜ ,

ˆ ( ) (0) ( )
1

i
(C.6)

z z

z
Et

z

c

0

0
0 2

2

i
2

1

with ϵ= ′c A˜ ( )2 , and =c c c˜ ˜ ˜z
1 1 2.

Next, we provide the derivation forZf. Following [39], the self energy at one-loop order (see figure 5(a) of
[39]) leads to the following renormalization factorZf for the impurity fermion:

∫ ∫ω
ρ ω

ω

δ
ω

ρ ω
ω

= + +
μ μ⊥( ) ( )

Z
J J

1
4

d
( )

8
d

( )
. (C.7)f

xy z
z2

2
1

2

Plugging equations (C.3) and (C.6) into equation (C.7) and expressing the results in terms of the dimensionless
renormalized couplings j2

xy andδj z
1
, we arrive at:

ϵ

δ

ϵ
= + +

′
( ) ( )

Z
j j

1
8 16

. (C.8)f

xy z
2

2

1

2

WithZf, ⊥Z j , Zj
z to hand, we now can reproduce the RG scaling equations, equation (19), via the β-function

within thefield-theoretical ϵ-expansion approach :

β δ μ
δ
μ

β μ
μ

≡
∂
∂

≡
∂
∂

δ δ
( ) ( )j

j
j

j
, (C.9)z

z

J J

xy
xy

J J
1

1

,
2

2

,xy z xy z
2 1 2 1

with the relations between the bare Kondo couplings δJ z
1 , J2

xy and the renormalized onesδj z
1
, j2
xy being

=
μ ϵ− ⊥

J jxy Z

Z
xy

2 2

j

f
, and δ δ=

μ
π

ϵ− ′

J jz Z

Z

K z
1 1

jz

f
.
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AppendixD. TheRG scaling equations in the strong-coupling 2CK limit via bosonization

In this appendix, we offer an alternative route to the RG scaling equations, equation (19), at the 2CKfixed point
via bosonization. TheHamiltonian at 2CK equation (5) can be expressedmore rigorously by including theKlein
factors [34], which proves to be important in deriving the RG scaling equation:

δ
π

π δ θ

= + +

− ∂

π θ π θ+ −⎡
⎣⎢

⎤
⎦⎥H

J

a
S F F F

K
J S

2
e e h.c.

2
(0). (D.1)

xy

s f K f K

z
z x s

2CK
2 i 2 (0) † i 2 (0)

1

a a

where F F F, ,s f sf are Klein factors satisfying the following relations [34]:

=

=

=

=

↓ ↑

↓ ↑

↑ ↓

↑ ↑

F F F F

F F F F

F F F F

F F F F

,

,

,

. (D.2)

s f

s f
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2
†

1

†
1
†

2

†
2
†

2

† †
1
†

2

Following the approach in appendix A, wefirst focus on the term δJ Jxy z
2 1 , whichwill contribute to the

renormalization of j2
xy. One of its contributions is given by:

∫ ∫

∫ ∫

δ π δ
π

τ τ τ τ

θ τ

θ τ

π δ
π

τ τ τ τ

θ τ

∝ − ′ ′
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− ∂
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′

π θ τ

π θ τ
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+
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⎡
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2 1
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i 2 (0, )
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a

a

Following similar steps to those shown in equation (A.17), wemay rewrite equation (D.3) as:

∫ ∫δ
δ

π
τ τ τ τ

η

∝ − ′ ′

× ∂

×

×

×

′ ′

′ ′

′ ′ ′ ′
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η π θ τ π ϕ τ
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→
−

′→

−

> >
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F F S S
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e e , (D.4)

xy
xy z

s f z

x K
x K x

K x

f
x x

K x K x

K

f

K

2
2 1

0

i 2 ( , ) i 2 ( , )

i 2 ( , )

, 0

i 2 ( , ) i 2 ( , )

i 2 (0, ) i 2 (0, )

s s

s

s s

a a

wherewe have inserted the identity operator ′ ′ ′ ′π ϕ τ π ϕ τ−e eK x K xi 2 ( , ) i 2 ( , )s s in equation (D.4). The leading
contribution in the bracket ⋯[ ]of equation (D.4) is given by:

π θ τ ϕ τ⋯ = − ∂ ′ ′

× ′ ′π θ τ π θ τ

> >

′→

> <

x x[ ] 2 i ( , ) ( , )

e e . (D.5)

x s s f
x x

K

f

K

, 0

i 2 (0, ) i 2 (0, )a a

With the help of equation (A.20), carrying out the integral over the fastmodes and performing rescaling, we
arrive at:
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∫δ π δ
π

τ μ
μ

μ
μ

= −
′

′

× +θ τ θ τ

+
− +

−< <

⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦

j
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F F F
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e e , (D.6)
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2
2 1

1

i (0, ) † i (0, )

K K

a a

1 1
2

where the scaling dimension for Sz: =S[ ]z K

1

2
is used. Therefore, we have reproduced the RG scaling equation

for j2
xy at the 2CKfixed point in equation (19)with the proper definitions for the renormalized Kondo couplings:

ρ μ≡ −j Jxy xy
2 0

1
2K

1
,δ μ δ≡ πρ

′j Jz
v

z
1 1

F

K
0 1

2 .

Next, we compute the renormalization ofδj z
1
contributed from the J( )xy

2
2 term:

∫ ∫
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Carrying out averaging over the fastmodes, we have:

∫ ∫δ
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τ τ τ μ
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1

UponTaylor expanding the exponential θ τπ <
ei (0, )

K a
2

, we arrive at :

π θ τ θ τ≈ + − ′′π θ τ π θ τ− < << < ⎡⎣ ⎤⎦
K

e e 1 i
2

(0, ) (0, ) (D.9)K K a
i 2 (0, ) i 2 (0, )a a

Near the 2CKfixed point, the termθ τ θ τ− ′< <(0, ) (0, )a can be re-expressed via the open boundary conditions
at 2CK in the limit of ≈ →x a 0 with a being the lattice constant as:

θ τ ϕ τ ϕ τ ϕ τ ϕ τ

ϕ τ ϕ τ

= − = + −

≈ + ∂ +→ ⎡⎣ ⎤⎦ ( )
x x x x x
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a a x L R x

a a x R L x

2
2

1 2 0
3

2
2

1 2 0
3

wherewe have used the 2CKboundary condition:ϕ ϕ= − −x x( ) ( )L R
i i , andwe ignore here the higher order

terms x( )3 and beyond. In the limit of τ τ→ ′, we have, therefore

∫ ∫ ∫ ∫

∫ ∫

τ τ θ τ θ τ τ τ θ τ θ τ

ϕ τ τ τ τ θ τ ϕ τ
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With the help of the identity equation (A.20), equation (D.12) can be re-written as:

∫ ∫ ∫τ τ τ θ τ θ τ τ τ τ ϕ τ θ τ′ − ′ ≈ ′ ∂ +
′
∂⎡⎣ ⎤⎦

⎡
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v
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F
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2
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Thefirst term in equation (D.13) can be simplified in the limit of ≈ →x a 0 as:

∫
∫

τ τ τ ϕ τ

τ τ τ ϕ τ ϕ τ

′ ∂ =

≈ ′ ∂ + ∂⎡⎣ ⎤⎦

v S x a

v S a

i d ( ) ( , )

i d ( ) (0, ) (0, ) (D.14)

F z x a

F z x a x a

0

0
2

where ϕ τ ρ τ ρ τ∂ ∝ − =(0, ) (0, ) (0, ) 0x a 1 2 with ρ τ(0, )i being the charge density of the lead i at x=0, which
vanishes for x= 0 (ρ τ =(0, ) 0i ) due to the open boundary condition at the 2CKfixed point (the electronwave
function and therefore its charge density vanishes at x=0). Therefore, the remaining part in equation (D.14)
becomes

∫τ τ τ′ vi d ˜ ( ) (D.15)F 0

where the operator τ̃ ( ) is defined as:

τ τ ϕ τ= ∂ S˜ ( ) ( ) (0, ). (D.16)z x a
2

It is straightforward to see that̃ is a highly irrelevant operator with a scaling dimension = + >[ ˜ ] 2 1
K

1

2
for

any >K 0; we therefore ignore it here.
The second term in equation (D.13) (proportional to θ τ∂ (0, )x s ) will contribute to the renormalization of

the j̃
z

1 term. Combining everything from equation (D.7) to equation (D.16), the one-loopRG scaling equation

forδj z
1
becomes:

δ
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ϵ δ
π

= ′ −
′

( )j
j

J

v

d

d ln 8
. (D.17)

z
z

xy

F

1
1

2
2

With the proper rescaling of J2
xy: →

π ′
J Jxy

v

xy
2

1

8 2
F

, wefinally reproduce theRG scaling equation for j1
z in

equation (19).
In fact, the above results can be understood alternatively in terms of non-vanishing correlator

τ τ δ τ〈 〉 ≡ 〈 ′ 〉 j j j xˆ ˆ (0, ) ˆ (0, ) ˆ ( , ˜)
xy xy z

2 2 1
, whichmeasures the cross-correlations between theδj z

1
and j2

xy terms at

the 2CKfixed point under one-loopRG.Here,δĵ
z

1
, ĵ

xy

2
refer to the bosonic operators associatedwith theδj z

1
and

j2
xy terms, respectively. A typical term in ̂ reads:

θ τ∼ ∂ →′θ τ θ τ− ( )xˆ e e 0, ¯ . (D.18)x s
i (0, ) i (0, )a a

Via equation (D.12) and the 2CKopen boundary condition, in the limit of τ →x, 0 and τ′ = 0, we have
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where⋯ refers to the higher order contributions. Note that the term ϕ τ∂ →a x( , )|x s x
2 2

0 in equation (D.19) is
related to θ τ∂ (0, )x s via equation (A.20):

ϕ τ θ τ− ∂ =
′

∂ ∂τ
→

a
x

a

v2
( , )

i
(0, ). (D.20)x s
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With the above relations, equation (D.18) becomes:
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θ τ θ τ
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wherewe have dropped the term τ θ τ ϕ τ∂ = ∂τ
τ
′x x( , ) ( , )a v x a

i

F
in equation (D.19) as ϕ τ θ τ〈∂ ∂ 〉x x( , ) ( , )x a x s

vanishes. It is clear from equation (D.21) that the correlator gets afinite expectation value as
θ τ θ τ〈∂ ∂ 〉(0, ) (0, ¯)x s x s does not vanish:

θ τ θ τ
η

∂ ∂ = ∂ ∂ ≠
η

ηθ τ ηθ τ
→

−( ) ( )(0, ) 0, ¯ lim
1

e e 0 (D.22)x s x s x x
x x

0 2 ¯
i ( , ) i ¯, ¯s s

as the correlator θ τ θ τ〈 〉x x( , ) (¯, ¯)s s is a non-trivial function of −x x̄ and τ τ− ¯.
Note that althoughθ τ(0, )a decouples fromθ τ(0, )s , due to the 2CKopen boundary condition, the

correlator τ τ τ〈 ′ 〉j j jˆ (0, ) ˆ (0, ) ˆ (0, ¯)
xy xy z

2 2 1
does not vanish. This alternative route provides uswith a justification of

our previous derivations for the RG scaling equations equation (19) via re-fermionization.
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