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Abstract

We investigate theoretically the quantum phase transition (QPT) between the one-channel Kondo (1CK)
and two-channel Kondo (2CK) fixed points in a quantum dot coupled to helical edge states of interacting
2D topological insulators (2DTT) with Luttinger parameter0 < K < 1. The model was studied by Law et al
(2010 Phys. Rev. B 81 041305(R)), and was mapped onto an anisotropic two-channel Kondo model via
bosonization. For K < 1, the strong coupling 2CK fixed point was argued to be stable for infinitesimally
weak tunnelings between the dot and the 2DTI based on a simple scaling dimensional analysis (Law et al
2010 Phys. Rev. B 81 041305(R). We re-examine this model beyond the bare scaling dimension analysis via
aone-loop renormalization group (RG) approach combined with bosonization and re-fermionization
techniques near weak-coupling and strong-coupling (2CK) fixed points. We find for a fixed value of K < 1
that the 2CK fixed point can be unstable towards the 1CK fixed point and the system is expected to
undergo a quantum phase transition between 1CK and 2CK fixed points with changing Kondo couplings.
Our RG approach is controlled near K= 1. In general, this QPT can also occur upon tuning the Luttinger
parameter K to a critical value K. smaller than unity (0 < K. < 1) for fixed Konodo couplings. The QPT
in our model comes as a result of the combined Kondo and the helical Luttinger physics in 2DTT, and it
serves as the first example of the ICK-2CK QPT that is accessible by the controlled RG approach. We
extract quantum critical and crossover behaviors from various thermodynamical quantities near the tran-

sition. Our results are robust against particle-hole asymmetry for% <K<l

1. Introduction

Quantum phase transitions (QPTs) [1], the phase transitions at zero temperature due to competing quantum
ground states or quantum fluctuations, in correlated electron systems are of great fundamental importance and
have been intensively studied over recent decades. Of particular interest are continuous QPTs where universal
scaling behaviors in observables are expected near criticality. Very recently, nanosystems (such as quantum dots
[2]) have provided an excellent playground in which to study QPT's due to high tunability 3, 4, 6—-11]. The well-
known Kondo effect [12, 13] plays a crucial role in understanding low energy properties in quantum dot devices.
Potential new QPTs in these systems may be realized in connection to exotic Kondo ground states. An
outstanding example of an exotic Kondo state is the two-channel Kondo (2CK) system [14—19], which has
attracted much attention as it shows non-Fermi liquid behaviors at low temperatures. Experimentally, the 2CK
behaviors have been realized in various quantum impurity systems such as a quantum dot independently
coupled to an infinite and a finite reservoir of non-interacting conduction electrons [20], magnetically doped
metal junctions [21], and a metal point contact [22].

More interestingly, the 2CK physics has also been found theoretically in a Kondo quantum dot coupled to two
strongly interacting Luttinger liquid leads with Luttinger parameter K < % (see [23,25]). In this case, electron-
electron interactions in the leads strongly suppress the cross-channel Kondo correlations responsible for charge
transport through the quantum dot while the Kondo correlations involving electrons on the same lead are
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unaffected, leading to a two-channel Kondo ground state where two independent Kondo screenings occur between
the spins on the dot and in each lead separately. However, for weaker electron interactions, K > %, both kinds of
Kondo scattering involving conduction electrons on the same and different leads become relevant at low energies,
giving rise to a 1CK ground state where only a single channel of the conduction electrons in the two leads (the even
combination of the electrons in the two leads) effectively couples to the Kondo dot. An exotic quantum phase
transitionat K = % between the 1CK phase for K > % and the 2CK behaviors for K < % is therefore expected [23].
However, the critical properties of this ICK-2CK QPT have not yet been properly addressed in these systems due to
thelack of controlled theoretical approaches near the strong coupling 2CK fixed point (though this issue was
recently studied in the Kondo-polaron model [24]).

However, recently a new type of materials—topological insulators (TIs)—with a gapped bulk and gapless
edge states has been proposed theoretically [26] and realized experimentally [27]. In 2D TTs, the gapless edge
states have a ‘helical’ nature, i.e. the directions of spin and momentum are locked together [28]. Based on
bosonization and a simple scaling dimension analysis, the 2CK behaviors were argued to be stabilized in a Kondo
quantum dot coupled to two interacting helical edge states of 2D TIs as long as a weak electron-electron
interaction exists in the helical electrons (K < 1) [29]. However, on a general ground, similar competition
between the cross-channel Kondo correlation and suppression of tunneling due to electron-electron
interactions mentioned above is also expected here for the helical Luttinger liquid, a special type of Luttinger
liquid with broken SU(2) symmetry. The exotic 1CK-2CK QPT is therefore expected to occur in this new setup.

In this paper, we re-examine the system in [29] near a 2CK fixed point to explore the possibility of the exotic
1CK-2CK QPT via the controlled one-loop renormalization group (RG) approach combined with
bosonization, which goes beyond the bare scaling dimension analysis in [29]. For a weak but finite lead-dot
tunneling, we find that for K — 1~ where our RG approach is well controlled the 2CK fixed point can be unstable
towards the (anisotropic) 1CK fixed point and the system is expected to undergo a quantum phase transition
between 1CK and 2CK fixed points. The QPT in our model comes as a result of the combined Kondo and the
helical Luttinger physics in 2DTTs. It serves as the first example of the 1CK-2CK QPT that is accessible by the
controlled perturbative RG approach. The stability analysis on these two fixed points shows that they are stable
against small particle-hole asymmetry for% < K < 1. Weextract the non-Fermi liquid behaviors from various
thermodynamical quantities at the 1 CK-2CK quantum critical point.

This paper is organized as follows. In section 2, we introduce the model Hamiltonian and its bosonized form
asshownin [29]. In section 3.1 we present the RG analysis of the model in the weak coupling limit via the
bosonization approach (see appendix A). In section 3.2 we further map our bosonized model onto an effective
Kondo model via re-fermionization near the strong-coupling 2CK fixed point. We then perform the RG analysis
via both poor-man’s scaling (see appendix B) and the field-theoretical e-expansion technique (see appendix C).
We also check our RG analysis near the strong-coupling 2CK fixed point obtained from re-fermionization via an
alternative way based directly on the RG analysis of the bosonized Hamiltonian near the 2CK fixed point (see
appendix D). Our RG analysis in both limits predicts a quantum phase transition between 1CK and 2CK fixed
points. In section 4 we perform stability analysis on the 1CK and 2CK fixed points. We find that both fixed points
are stable for% < K < 1, which substantiates our main finding that there exists unstable quantum critical points
separating two stable 1CK and 2CK fixed points near K = 1. In section 5, we calculate via the field-theoretical ¢-
expansion approach the critical properties and crossover functions of various thermodynamic observables. In
section 6, we emphasize the clear physical picture of our main findings and draw conclusions.

2. Model Hamiltonian

In our setup, the Kondo Hamiltonian has the same form as in [29], given by
H = Ho + HK + Hint>
= —ivg Z / dx[c (x) axc,»TR (x)
i=1,2

_Cz L (X) dxc, L (x) B

Hg = z hS - Sii+ Zfz * Sij>

i=1,2 i#j
Hiy = Z & / (x)C,a(X)

o=l

8 [ell@eh e ek (dx 1)




I0OP Publishing

NewJ. Phys. 17 (2015) 013005 C-H Chungand S Silotri

Here, Hy describes the two conduction electron baths (labeled aslead 1 and lead 2) made of helical edge states in
2D topological insulators, H is the Kondo interaction, and the electron-electron interactions with forward
scattering g, , > 0 termsare given by Hi, withi= 1,2 thelead index,anda = R, L being the label of the right
(R) and left (L) moving electrons in the helical edge state. The conduction electron spin operator is given by:

§})j = Ek)k,,m c,:r,-y . % . c,fj withy, § = 1, |,4,j=1,2. Thelocal impurity spin operator on the quantum dot

can be expressed in terms of pseudo-fermion operator f_[30]: S= Zy, 5 f; . % * f5- In the Kondo limit of our

interest, the impurity (quantum dot) is singly-occupied: 3, _; | f(;r f, = 1.Here, the coupling J; and J, in Hg
stand for the strength of the Kondo correlations between the dot and electrons on the same and different leads,
respectively. Note that in the presence of spin-orbit coupling, the spins /] of the helical edge state electrons are
locked with their right-moving (R )/left-moving (L) momentum. Note also that the small spin-orbit coupling
will break the SU(2) spin-rotational symmetry in the above isotropic Kondo model, leading to the anisotropic
Kondo model with /7 # J7 (see [29]).

The Hamiltonian equation (1) can be bosonized through the standard Abelian bosonization [31] for the
electron operator [29, 32]:¢; r/L = ﬁ FiriL e (Vardig (k%) the bosonic fields ¢, (x) = ¢ (x) + ;g (%),
0;(x) = ¢, (x) — ;g (x). The dual fields ¢, (x) and ; (x) obey the commutation relations:

[¢;(x), 0;(x")] = ;6,7 sgn (x — x") withsgn (x = 0) = 0. The symmetric and antisymmetric combinations of
¢;,0; aredefinedas: ¢, = % (¢, + ¢,)and by, = % (6, = 6,). Here, F; g, are the Klein factors to preserve
the anti-commutation relations between fermions (electrons) in the bosonized form, and a is the lattice constant
(lower bound in length scale); we have also dropped the spin indices of the edge state electrons due to their

helical nature. The bosonized Hamiltonian after rescaling the boson fields, ¢ ; — | KL D05 — IKL O,,5> 15
o P
given by [29]:
H = Hy + Hg

2 Jf
Hy = — — _Szaxes 0
K a\/ K, ma ©
+ 2”]2 S, sin[ /%Qa(O)] sin( %¢a(0)]
Xy . 2z
+ ]l_lS‘e_l(\/Ki@(o)) + h.c] cos( /2_7z¢a(0)]
7a K,

xy A (27
+ ]L[S_e_l( JKjgfﬁs(O)) + h.c.] cos ( 2 0, (0)] ,
na K,

Ho %;: fdx[(ax¢5)2 + (axgs)z + (ax¢a)2 + (axea)l] (2)

. 1+ 8- 2 . . ,
withK, = 1/K, = K = |27 ™" being the Luttinger parameter, vp = v,/ (1 + Szve)? — (Zave)?.
’ 1+ gim/g + Qm/g 2 2
2 2

Here, we consider repulsive electron-electron interactions (g,, g, > 0), giving0 < K < 1,and K ,(,) refers to
the interaction strength in the charge (spin) sector. Note that the electron-electron interactions Hj,; term in
equation (1) has been absorbed into the Hx term in equation (2) by re-scaling the boson fields mentioned above.
Notealso that K, = 1, K, < 1corresponds to a standard spinful Luttinger liquid with SU(2) spin symmetry;
while K, # 1when this symmetry is broken. The helical Luttinger lead we consider here corresponds to a spinful
Luttinger liquid lead with broken SU(2) symmetry due to spin-orbit coupling with K, = K < land

K, = 1/K > 1(see [32]). Note that we have dropped the Klein factors in equation (2) as they can be included
straightforwardly in the same manner as shown in [33, 34].

3. RG analysis of the model

3.1.RG analysis in weak coupling fixed point: J»>* = 0

3.1.1. RG scaling equations

In the vicinity of the fixed point J/?* = 0, it has been shown in [29] that the scaling dimensions of these Kondo
couplings based on the bosonized Hamiltonian equation (1) of [29] are:[[?] = K < L[J?] = 1,

571 =U5] = LK+ %) > 1whereK < 1forrepulsive electron interactions. Here, in our convention for

2
scaling dimensions, relevant (irrelevant) operators carry the scaling dimensions of less (greater) than 1, while the

3
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Figure 1. RG flows of various Kondo couplings in the weak-coupling regime with fixed bare Kondo couplings: J;** = 0.01p,and
Ho = 1. Curves with different colors indicate the RG flows with different Luttinger parameters K. The solid, dashed, dotted, and dot-
dashed lines represent the RG flows for 1, 3, /5, and f3, respectively.

marginal operators carry scaling dimensions of exactly 1. The authors of [29] argued that for K < 1, under
renormalization group (RG) transformations, the 2CK fixed point is reached as the relevant J; couplings flow to
large values with decreasing temperatures; while the irrelevant J, couplings decrease to zero. However, for K
beingslightly less than 1, K — 17, via one-loop RG, beyond the bare scaling dimension analysis, we find it is
possible that all four Kondo couplings flow to large values, depending on the values of K and the values of the
bare Kondo couplings. This strongly indicates the existence of the 1CK fixed point in the parameter space of the
model for K < 1. Following [33] and [31] via the renormalization group analysis of the bosonized Kondo model
equation (2), the one-loop RG scaling equations in the limit of K — 1~ read (see appendix A):
9,
0ln p
9 2 2
=—(i») = (¥
Tyl VR

9,” 1 1 o even xves
L T

=K -7 =371 = ih

0ln/,t_ 2

0y 1 1

—2 ==K+ =|-1|j7 - 2jVj¥ 3
dlnpu [2( K) ]]2 W) 3

where p is the running cutoff energy scale, and the dimensionless Kondo couplings are defined as:
37 = pon 5 = pJi Y = po,ué(l“é)‘ ') and i = pou 2 (K+)=172 with y being a cutoff energy scale,

1

andp, = P 2%40 being the constant density of states for non-interactingleads (K=1) and y#, = 1being the

bandwidth of the conduction electrons in the leads. Note that the linear term in the above RG scaling equations
comes from the nontrivial scaling dimensions of the corresponding Kondo couplings, while the quadratic terms
in Kondo couplings are the corrections at one-loop order. For K — 17, both J;7** terms are marginally irrelevant,
[57%] — 1 .Therefore, within the validity of perturbative RG, both J;7** terms can still flow to a large value if
bare Kondo couplings J;/7** are large enough (but they are still small, J?* = O (1 — K) < 1) or the electron
interactions in the leads are weak enough, leading to (possibly) a 1CK fixed point (i.e. the quadratic terms
overcome the linear term in RG equations). However, for small enough bare Kondo couplings (or strong enough
interactions in theleads, K < 1), J;7* terms are irrelevant and hence the system moves towards the 2CK fixed
point. As shown in figure 1, in the relatively higher temperature (energy) regime10™> < u/u, < 1, with
decreasing K the system tends to flow to the 2CK fixed point where j** flow to large values while j,”* decreases
with decreasing temperature (energy). However, for weak enough interactions in theleads, K — 17, all four
Kondo couplings tend to flow to the 1CK fixed point with large values (see figure 1). A similar trend is found for a
fixed K — 1and different bare Kondo couplings as shown in figure 2. It is therefore reasonable to expect a 1CK-
2CK quantum phase transition in the parameter space of J/%*, K. However, the weak coupling RG analysis is
valid only at relatively higher energies where all Kondo couplings remain small, j*** < 1, and it breaks down as
the system gets closer to the ground state where some Kondo couplings grow to the order of 1. As shown in
figures 1 and 2, the energy range where j,”** increases rapidly with alowering energy scale already goes beyond
the weak-coupling perturbative regime as j)” already exceeds the perturbative regime at these scales, j > O (1).
In fact, the low energy behaviors are determined by the physics in the strong coupling regime. Therefore, to
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Figure 2. RG flows of various Kondo couplings in the weak-coupling regime with fixed K = 0.8 for various bare Kondo couplings (in
units of 4, = 1). The solid, dashed, dotted, and dot-dashed lines represent the RG flows for /7, fi, 5’, and 5, respectively.
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Figure 3. The 2CK Kondo temperature TZX (in units of T, the Kondo temperature of the corresponding non-interacting leads,
K=1)asafunction of 1-K for various bare Kondo couplings (in units of 4, = 1) via the weak-coupling RG analysis.

address the possible quantum phase transition between the 1CK and 2CK fixed points, it is necessary to be able
to access the neighborhood of the strong-coupling 2CK fixed point, as we shall discuss below.

3.1.2. 2-channel Kondo temperature Tg"~

To probe the crossover between 1CK and 2CK fixed points, it is instructive to investigate how the Kondo
temperature Ty changes with increasing electron-electron interaction in the leads (or with the decreasing value
of K from 1). Since J” becomes more relevant with decreasing K in the weak-coupling regime ([J;7'] = K < 1),it
is expected that under RG the system first flows very quickly to the vicinity of the 2CK fixed point. As shown in
figure 3, we find the Kondo temperature T2“X associated with the 2CK fixed point, defined as the energy scale

u = TZ® under RG where 375 j = O(1),increases rapidly with increasing electron interactions in the leads,
and its value is much larger than the Kondo temperature of the same setup in the non-interacting limit (K= 1)
T, TEX > T2. By contrast, in the case of a Kondo dot coupled to ordinary spinful Luttinger liquid leads in [25]
and [23], J{is a marginal operator at tree level ([J;? ] = 1) in the weak-coupling limit; therefore, the 2CK energy
scale TZ“ is much smaller than the Kondo scale for the corresponding non-interacting leads Tg, T&X < Tp.
Though the system in the weak coupling regime quickly approaches the strong-coupling 2CK fixed point as

u — TEX, the ultimate fate of the ground state depends on the RG flows of various Kondo couplings in the
strong coupling regime, as discussed below.

3.2.RG analysis near the strong coupling (2CK) fixed point

3.2.1. RG scaling equations and the phase (RG flow) diagram

The authors of [29] performed scaling dimension analysis near a strong coupling regime where
jf=0(1),j”" =j2 = 0.Theyperformed the Emery-Kivelson unitary transformation [35] U = e/¥>*%5: on
the bosonized Hamiltonian (equation (1) of [29]), and arrived at equation (2) of [29].
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H=H, - /%" 575, 0:0,(0)

LY g (\/%ea(o)) sin (V27K ¢, (0) )

na

+ (S_ + Sﬂ[i—j cos (\/27[—K¢a(0))

+”i:cos(\/%9a(0))] (4)

They found the scaling dimensions for the Kondo couplings to be[[[”'] = g, (6171 = L] = i,
] = % (K + é). The J term is relevant for K < 2, and the /5 term is relevant for% < K < 1.ForK < 1, this
analysis shows that the JY term is the most relevant coupling, and it flows much faster than the Ji term to the
strong-coupling 2CK fixed point where j* > j* ~ O (1) (or §j;° < 1). However,asK — 17, the J5 term can
flow to alarge value towards the 1CK fixed point under one-loop RG if the bare Kondo couplings are large
enough. This implies the existence of a stable 1 CK near the strong coupling regime as all of the four Kondo
couplings can either flow to or stay at large values (of order 1).

To gain more insight into the stability of the 1 CK/2CK fixed point, we apply the RG approach at one-loop
order together with bosonization and re-fermionization near the 2CK fixed point. First, we shall map the
bosonized Hamiltonian equation (2) above (see [29]) onto an effective Kondo model via re-fermionization. It

has been shown in [29] that near the strong coupling 2CK fixed point j;* — o0, j* — O (1), jZZ/ Y — 0, the
I Gx cos (V27K ¢, (0) ). Note that the 2CK ground state in our

na
system is a strong coupling fixed point (j¥ — o), driven by electron-electron interactions (or Luttinger liquid

physics) in the leads, similar to the 2CK fixed point in a Kondo dot coupled to two Luttinger liquid leads [23, 29]
or to two metallic leads subject to an electromagnetic noise [34]. By contrast, the earlier version of the 2CK
ground state in a magnetic impurity imbedded in non-interacting metals with two Kondo screening channels is
an intermediate quantum critical fixed point, as suggested in [5, 14].

Near the 2CK fixed point, the dominating ‘backscattering’ J;” term effectively cuts the Luttinger wire into
two separate pieces [29, 31] atx = 0, leading to the well-known open boundary condition for an impurityina
Luttinger liquid atx=0:¢; g (0) = —c; 1. (0) (or ¢, (0) = —¢;; (0)). Note that there are in total two such 2CK
open boundary conditions in our two-lead setup as this condition holds for each lead separately. Note also that
in general these conditions can be extended tox # 0: ¢, (x) = —¢; (—x) [31]. The boson field ¢, (0) is
approximately pinned to a constant value [29], and so is the field ¢} (0). In fact, from the above 2CK open
boundary conditions, we have ¢, (0) = ¢;; (0) + ¢; (0) = 0, and therefore g  (0) = 0. Also, since S,

with&)f = & — Kvp < 1.

effective Hamiltonian reads: Hycx = H, +

commutes with H,ck, we may therefore set S, to its eigenvalue i% in Hyck. As aresult, the J¥ term in
equation (4) can be regarded as a large fixed constant ]l’f};x atthe 2CK fixed point: 'S, cos (/22K ¢, (0)) ~ ]ffj%lx
with|Ji%, | > 1,, which effectively decouples the J;” term from the rest of the terms in equation (4).

The stability of the 2CK fixed point should be analyzed via the deviation 6 H,cx from the fixed-point
Hamiltonian H,cx, described by the three remaining Kondo couplings (J57, 6/, J;) near the 2CK fixed point
(i.e.¢h, = 0) inequation (4): SHyck = (H — Hack) hack (see [12]). The scaling dimensions of Kondo couplings
near this 2CK fixed pointat j;¥ — oo, j* = O(1), j7*7 — 0are [29,31,36][J;7] = % 6JF] =1+ %

5] = % + g Note that all the above three couplings are irrelevant for K < 1. This strongly indicates that the
system favors the 2CK fixed point at ground state for K < 1. Meanwhile, by a stability analysis in section 4, we
will show that the 2CK fixed point is also a stable fixed point for K > % once the system approaches there (i.e. in
thelimitof ;7 — 0). Therefore, the 2CK fixed point is really a strong-coupling fixed point, not an intermediate
coupling fixed point since the latter case requires the existence of at least one relevant operator which drives the
system from the intermediate 2CK fixed point to the ‘true’ strong coupling fixed point. But such relevant
operators do not exist from the above scaling dimension analysis and that in section 4; all operators at the 2CK
fixed point are irrelevant operators.

However, as shown in our weak-coupling RG analysis, the 2CK fixed point is unstable for K — 1~ and/or
large enough bare Kondo couplings such that J;7** terms may become relevant again, and the system can
undergo a 1CK-2CK quantum phase transition. To address this possibility, we shall focus below on the one-loop
RG flows of the leading two irrelevant operators in §Hycx near the 2CK fixed point, given by (see equation (4)):
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xy
SHycx ~ 2o cos( /2—”.9a(0)) — 2 575,0,0.0). (5)
za K K

Note that we may consider the most relevant J7” term to be the largest constant energy scale (j — co) we setat
the stable 2CK fixed point. We estimate the small deviation in energy away from this fixed point for the other
three Kondo couplings in equation (4). The bare scaling dimensions of these three remaining Kondo couplings
are calculated based on the pinning of the Ji” term (or by setting cos (~/27K ¢,) = +1) in equation (4). Therefore,
we can estimate how irrelevant these three operators are relative to the 2CK fixed point with J;” being fixed at
infinity. Then we single out the two dominating irrelevant operators §J7 and J3” terms in 6H,cx in equation (5).
Finally, we study the stability of the 2CK fixed point due to these two terms.

To more effectively access the possible 1CK-2CK quantum critical point, we map the Hamiltonian near 2CK
H, + 6H,ck onto an effective Kondo model via re-fermionization subject to a bosonic environment [34] °:

H() + 5H2CK g Ho + H(; + 6H2CK

= Ho + Hy + Hacxo (6)
where
H(;:VZ—Ffdx(axer;)2
Ay = VZ—F / dx[z(axeo,a)z + (9:60:)
+(0) + (ax(puy]
= Y ee (7)
k,o,i=1(L),2(R)
Hy = % /de(dxéa)z, (8)
and

Hoox = ]z)cys—|:sf:+—liei, '4/‘[(%—1) 6(0) | sﬁfie_i '471'(%—1) é,,(o)] + he
+ 20 (s + s - ©)

Here, the boson field 6, in Hj is decoupled from Hy and is added here for the purpose of the mapping: it helps to
map a Kondo dot coupled to interacting Luttinger liquid leads onto a Kondo dot coupled to non-interacting
Fermi liquid leads subject to an Ohmic noisy boson environment. Similar mappings have been performed in
earlier works (see, for example [3] and [34]) where in Kondo dot systems the equivalence between interactions
in the Luttinger liquid leads and the bosonic (Ohmic) noisy environment has been established. Also, the effective
non-interacting electron operator &¢; is defined as:

i=1(L),2(R) oma

withi = 1(L), 2(R) being the index for effective non-interacting left and leads, respectively,
5;—;(2) = D uskk %E,jy”’ ajs(z)éf/ﬂ being the spin-flip (z-component of the spin) operators between the effective

) -1 FiT(l)eii(mz;a(,ﬁ}“(xnkpx)_ (10)

leads y and 8. Note that since the scaling dimension of cos ( 2?” 6,) at the 2CK fixed point in equation (9) is%

due to the open boundary condition [29], we have made the following decomposition for the boson field \/g 0,

%9,,: V200, + 26, (11)

1 1 2
—0 = [2|=-1|6p0a— |[—0,, 12
VK \/(K )0’ Ji-1 (12

Here, we drop the Klein factors in equation (5). Nevertheless, when including them in equation (5) (see appendix D), it is a straightforward
task to arrive at equation (9) via re-fermionization equation (15).

7
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where

_ 1 ~
0, = /E - 16, (13)

6, = 0. (14)

Meanwhile, we set

The re-fermionization of Hy is done through the following identifications:
V2000 =2 (], + bs5) = V2 (B, + bd,);
V200 =~y = by + bdy — b ) (15)

where we have decomposed the boson field \/g 6, into two independent sets of boson fields: the ‘free’ (6,,,) and

‘interacting’ () parts. The ‘free’ part of the boson fields 6, , (defined in the same way as in section 2) can be re-
fermionized into two effective non-interacting fermion leads described by H, where the electron destruction
operator of the effective non-interacting leads ¢;” is defined in equation (10). Note that in equation (15) the
boundary conditions (d)OT,i 0) = —g{)ol,i (0)) for each lead are imposed and implied; therefore the effective non-

interacting leads ¢{ also respect the 2CK open boundary condition (¢ (0) = —¢ (0) ). Note also that due to the
two 2CK boundary conditions, the fermionic degrees of freedom at x = 0 is reduced from four (¢; r, ¢; 1) to two,
which is respected in both equation (5) and in the re-fermionized form, equation (6) via equation (15) and
equation (10), as it should be. Meanwhile, the fields ¢; also exhibit a helical nature: namely, the spin up/down

(6 = 1) electrons are tied to the right (R)/left (L) moving particles, respectively. The ‘free’ part of the boson
field 6y, , follows the correlations of the free fermions in 1D:

<e—i«/ﬂeu,u(f)eim(7'o,a(0)> I 1 (16)
t

Meanwhile, the ‘interacting’ part of the boson field §, acts as an effective dissipative ohmic boson
environment (bath), represented by Hy,. These bosons couple to the Kondo dot through the additional
exponential ‘phase’ factors in the effective Kondo terms H,cx, leading to all the combined Kondo—Luttinger
physics [34]. In particular, since these dissipative ohmic bosons obey the following correlations via equation (9):

<e—i\/4ﬂ(11<—1)éa(t)ei\/4ﬂ(11(—l)gu(o)> o —1 : (17)

2(x-1)

while the impurity spin operator S, exhibits the following correlation [29]:

(- (05 (1)) & +-. (18)
tx
These correlations lead to the non-trivial bare scaling dimensions of the Kondo couplings and therefore to the
first term (linear in the Kondo coupling) of the RG scaling equations. With the help of equation (11) to
equation (15), we finally arrive at Hy and H,ck in equation (9).

Next, we shall obtain the one-loop RG scaling equations for J5” and §J° in equation (9). To this aim, we
define the dimensionless couplings .7 = p,& u¢)s? (u) and &j] = pyé’ /f’%é]ﬁ (u)ande = % -l = %
with ¢7, &;" being defined in appendix B and appendix C.

We derive the one-loop RG scaling equations via the poor-man’s scaling approach in [34] (see appendix B)
and via the field-theoretical e-expansion technique (see appendix C):

aj;y = €]~xy _jxyéjz
o1n p 2 2 %>
93j" B o\2
_ sz [y
0ln,u_€5J1 (]2 ) . (19)

Note that our RG analysis near the 2CK fixed point is performed for the Hamiltonian 6H,cx, the deviations
from the 2CK fixed point where the J;” term is not involved (see equations (4) and (5)). Therefore, unlike the RG
equations in the weak-coupling limit shown in equation (3), here the —(j;* )* term is absent near the strong-
coupling 2CK fixed point in the RG equation for 5" in equation (19) as the J;” term is pinned to a large constant
value at the 2CK fixed point (see the paragraphs below equation (4)). Since the 2CK fixed point is shown to be a
stable fixed point (see section 4 below), any small perturbations in1/j,* will not lead to the runaway flow from
the 2CK fixed point.
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Figure 4. Schematic diagram of the RG flow near the 2CK fixed point. The 1CK-2CK quantum critical point (QCP) is represented by
the filled black squarelocated at j. = (6j%, j,7) = (e, Vee').
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Figure 5. RG flows of various Kondo couplings in the strong-coupling regime near the 2CK fixed point with the bare couplings at
u = TE®being indicated in the figure for (a)K = 0.8 and (b) K= 0.7. The RG flows starting from u = TF* to u — 0in (a) are
towards the 1CK fixed point, while as the flows in (b) are moving towards the 2CK fixed point. The solid, dashed, and dot-dashed lines

represent the RG flows for 6, 75, and 3, respectively. Here, we set sy = 1.

Also, since both 8 and /3" terms fall into the perturbative regime, §j°, j,> << 1, our perturbative RG
approach is therefore controlled. Upon solving for the RG equations in equation (19), for K — 1" we find an
intermediate quantum critical fixed point (QCP) at j. = (5j12,c , ]2"{ ) = (e, Jee' ) accessible by the perturbative
RG approach, separating the 1CK fixed point (for J = (§J, ;7) > J.) and the 2CK fixed point (for J < J.) with
j2 and §j* flowing towards alarge (J > J) and vanishingly small (J < J.) value, respectively (see figure 4). Here,
J. refers to the dimensionful bare critical Kondo coupling associated with j. above. Note that though ¢’
approaches a finite non-vanishing value1/2 for K — 1, our double-e-expansion is still a controlled approach
since all the critical properties are determined by the location of the QCP at j, = (e, Jee'), which converges to 0
ase — 0. This furthermore justifies the validity of our perturbative RG approach and the existence of the 1CK-
2CK QCP in our model. To the best of our knowledge, this QCP may be regarded as the first realization of 1 CK-
2CK QPT thatis accessible by a controlled theoretical approach. We would like to make a remark here regarding
the quantum critical point in our model. Though we pointed out above that the 1CK-2CK QCP can be accessed
via a controlled e-expansion technique in the limit of K — 17, it exists in general in the multi-dmensional
parameter space of (7%, [;7%, K) with K < 1 (see equation (1)). Here, within the validity of the e-expansion
technique, we fix the Luttinger parameter K — 1~ and investigate the QCP in the two-dimensional parameter
space of (§]%, ;7 ) near 2CK fixed point.

The RG flows near the QCP are determined by linearizing the RG scaling equations as shown in figure 4. The
typical RG flows corresponding to the 1CK and 2CK fixed points are shown in figures 5(a) and (b), respectively.
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Notethatdj° — 0 near the 2CK fixed point is equivalent to the original Kondo coupling ji (see equation (4))
being at alarge value (order of 1): jlz ~ O (1), consistent with the familiar 2CK fixed point with both J;** terms
beinglarge. However, we find the ‘1CK’ fixed point here in the strong-coupling analysis at one-loop order is
somewhat different from the familiar (conventional) 1CK fixed point we obtained in the weak coupling regime
where all the four Kondo couplings will flow to (or stay at) large values. Instead, our RG analysis based on re-
fermionization for the coupling j,* = p,¢; pktET1Z in equation (4) near the 2CK fixed point shows that it stays
irrelevant up to one-loop order with the RG scaling equation:

s Z

% _ [l LK 1]]-22 (20)
olnu K 2

where we find no corrections at one-loop order. Note that unlike in the weak coupling RG where ;¥ j,% will

contribute to the one-loop renormalization of f; (see equation (3)), the j;*'j, term is absent here in

equation (20) as ji” has already been fixed at a very large value near the 2CK fixed point,

T TRS) = 7 > 1

Itis clear from equation (20) that [29] j; (1) « y%g‘l, vanishingas y < TI%CK even for J > J. where the

system eventually flows to the 1CK fixed point (see figure 5). By combining the one-loop RG analysis in the weak
and strong coupling limits, we may obtain the full crossover of /5 for the system which will eventually flow to the
1CK fixed point. For Te < T < u, 3 first grows to the order of 1 (see figure 1), then it vanishes in a power-law
fashion at lower temperatures T < T2K (see figure 5). However, the above qualitative feature for /3 based on the
one-loop RG analysis will get modified at the 2-loop order, where the relevant term — (% )%j; will be generated
in equation (20) and drive f; to a strong coupling fixed point, j; — oo.In this case, the system flows to the
conventional 1CK fixed point where all four Kondo couplings flow to the strong coupling fixed point. Therefore,
we expect the linear conductance G, (T) contributed from J5” at the 1CK fixed point here to show the same
temperature dependence as those in the isotropic one-channel Kondo system.

Here, we would like to make three remarks. Firstly, as a consistency check, via scaling dimension analysis we
found the correlation functions for the leading two irrelevant operators near the 2CK fixed point, (defined as § ]Alz
and fzxy associated with the 5] and J5” terms, respectively), in the bosonized Hamiltonian (see equation (5)) are
kept the same, respectively, as that in the re-fermionized form (see equation (9)). To be more precise, in
equation (5)[;7] = UK,[6]f] =1 + % [29]; therefore it follows (fzxy (r)fzxy (0)) L and

T3
(6flz (r)68 flz (0)) ﬁ Similarly, we find from equation (9) that

U] = [sia] + [V & D00 =1 4 (1/K = 1)) = /K and[5J7] = [s5,] + [S.] =1 + i, the same as
those obtained from equation (5), respectively. Therefore, the correlation functions for the 5’ and §J;° terms are
kept in the same form before (equation (5)) and after (equation (9)) the re-fermionization mapping is
performed, as expected.

Secondly, we have checked that the RG scaling equations near the 2CK equation (19) via re-fermionization
are reproducible via the similar RG approach based directly on the bosonized Hamiltonian equation (5) without
going through re-fermionization (see appendix D). Nevertheless, let us emphasize here again that it is technically
more advantageous and physically more transparent to address the quantum critical properties near 1CK-2CK
QPT within the fermionic effective Kondo model as there are well-established field-theoretical approaches, such
as perturbative RG combined with the field-theoretical e-expansion technique. Though one can access the
quantum criticality in our system via the bosonized version in equation (5), the controlled theoretical
approaches to access the quantum criticality of our model system via equation (5) are either absent or obscure.
The derivation of the RG scaling equations, equation (19), shown in appendix D offers an independent check of
our re-fermionization mapping and the quantum critical properties obtained via the effective Kondo model in
equation (9).

Finally, within the perturbative RG approach, the one-loop corrections can in general be added to the scaling
dimension analysis in the RG scaling equations. This has been demonstrated in the weak-coupling limit of our
model (see appendix A and references [33] and [31]). In fact, this approach has also been widely used in various
related models, such as in the Kondo—Luttinger system in [9], in pseudogap Kondo problems in [39-41, 43], and
[45], and in the dissipative Kondo quantum dot system in [34]. Near the strong-coupling 2CK fixed point of our
model, we argue that one-loop perturbative RG contributions can still be added to our scaling dimension
analysis at the 2CK fixed point as (1) the j} term is absent in RG equation, equation (19), (2) near 2CK the bare
and renormalized leading irrelevant Kondo couplings /5" and §j° are both within the perturbative (weak-
coupling) regime, j,%, §j° < 1,and (3) thelocation of our QCP j, separating the 1CK and 2CK fixed points is
still in the weak-coupling regime where the perturbative RG approach is valid. Therefore, our perturbative one-
loop RG approach is controlled and is applicable for analyzing the stability of the 2CK fixed point.

10
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Figure 6. The ratio of 1CK to 2CK Kondo temperature To>%/ TEX as a function of 1-K for various bare Kondo couplings
J* (u = p) (inunits of p, = 1) via the weak-coupling RG analysis.

However, the Emery—Kivelson unitary transformation that we applied in section 3.2, taking our
Hamiltonian from the weak-coupling limit equation (2) to the strong coupling regime in equation (19) (see
[29]), is anon-perturbative approach. Nevertheless, once we arrive near the strong-coupling 2CK described by
O6H,cx, the rest of the RG analysis is perturbative and controlled.

3.2.2. 1-channel Kondo temperature Ty

As mentioned above, for ] > J. with decreasing temperature the system crosses over from the 2CK to the 1CK
fixed point at a much lower energy scale u &~ T~ < TFX where TX refers to the Kondo temperature
associated with the 1CK fixed point. As shown in figure 6, the 1CK fixed point persists to be the ground state ata
finite but weak electron-electron interaction strength, K. < K < 1with K being the critical interaction below
which the ground state switches from the 1CK to the 2CK fixed point. Meanwhile, the crossover scale to the 1CK
fixed point T (with respect to TEX

a fixed value of K, the ratio TX/ T2°X is larger for larger bare Kondo couplings J, as expected.

) for ] > J, gets reduced significantly as interaction gets stronger. Also, for

4. Stability analysis of the 1CK and 2CK fixed points for K < 1

Having found the possible QPT between the 1CK and 2CK fixed points, it is important to perform a stability
analysis and study how robust the quantum critical point of our system is against small perturbations.
Equivalently, we need to know how stable the 1CK and 2CK fixed points are for K < 1.

We first examine the stability of the helical Luttinger liquid lead itself. In general there exists the single
particle backscattering term due to the interaction of ¢; g1, (0) and the quantum dot [29]: t’cl—TR ¢iL + hec.
However, this term is forbidden here as it breaks time-reversal symmetry. Meanwhile, for the 1D Hubbard
model in general there exists the ‘spin-flip” backscattering term in H,, of the form Hy o CJLT c,%L c:l% c,»TR + h.c.
However, due to the helical nature of our leads (or the right/left moving electrons are tied to their spins, i.e. only
cll((fg electrons exist), this Hterm is therefore absent. Nevertheless, at half-full, the Umklapp term that exists on
asingle bond is allowed by the time-reversal symmetry [28]:

Hyp = g, e (0) e (0) ¢ (0)cf (0) + hec. (21)

The scaling dimension of this term has been shown tobe[H,,,,,] = 4K, indicating that the helical edge state is
unstable towards an insulating phase for K < i. Note that for the band away from half-full, the Umklapp term
vanishes [31].

We now focus on the effects of the particle-hole (p-h) asymmetry on the stability of these two fixed points as
indicated in [23, 34] and [25] that it is the most relevant perturbation for a Kondo dot coupled to Luttinger
liquid leads. Let us first address this issue at the 2CK fixed point where the two leads are effectively disconnected.
The particle-hole asymmetry in our Kondo model generates potential scattering terms of the following form
[23]:

11
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Hlps = Ht + Htg,
Hi=t Y e,
k,i,6,a=L,R
H,=t. Y ¢ +hec (22)
k.i#j,o

withi, j = 1(L), 2(R) being the lead index,s = 1 (R), | (L) being spin index, and R (L) being the right (left)
moving particles. Here, tand t, terms represent a chemical potential of each lead and a weak tunneling between
the disconnected Luttinger leads [32]. Meanwhile, two additional two-particle scattering terms H,, involving
tunneling of spin (¢,) and of charge (¢,,) can be generated by the weak tunneling ¢, via 2nd-order perturbation
(see figures 2(d)—(f) of [32]), given by:

H2ps =H;, + Ht,,:

R IR L L
Htﬁ=tazcTT clreisiedy + he.

Hy, =1, Y cil*el5 et el (23)
The bosonized form of equation (23) reads [32]:
2r
H1p5+H2pS_t xqﬁ +—cos(\/27rK¢ (0))cos( /?QQ(O))

+ 2— cos (2\/271K¢ ) + ; cos (2\/%9,,). (24)

2

Near 2CK, ¢, (0) is a constant, therefore the scaling dimensions of these term gives:[t] = 1,[t,] = %, [ts] = =

(t, = const.) [32]. Itis clear that all operators are irrelevant for% < K < 2;thet,term becomes relevant for
K<, L andt, isrelevant for K > 2.

Next we consider the stability of the 1CK fixed point. Since the cross-channel Kondo coupling J5 term flows
under RG along with Ji” to large values while as J1 stays at order of 1, the two semi-infinite Luttinger wires are
joined into one single infinite Luttinger wire [25]. In contrast to the ‘weak tunneling’ processes mentioned above
at the 2CK fixed point, the potential scattering term generates the ‘weak backscattering’ processes between the
electrons in the upper and lower edges, including the single-particle backscattering term v,, and the two-particle
backscattering terms v,, and v, (see figures 2(a)—(c) in [32]):

=, ZCTTR 5+ C”L k“; + h.c,
vp—"ﬂszlRC, cfit et + he,
H, —v(,c;chkT c %Rc,il + h.c. (25)

In fact, there exists a duality mapping between the ‘weak tunneling’ and ‘weak backscattering’ limits [32]:
ckg{ - ckT’%, ckl% - ck{g, te = Vo ty = Yy e = £y, K — % Note that at the 1CK fixed point, ¢, is not pinned to a
constant as opposed to that in the 2CK case. The scaling dimensions of these terms can be read off
straightforwardly [32]:[v,] = % (K + %), [v,] = 2K,and[v,] = % The v, term is always irrelevant for K < 1,
while the v, and v, terms are irrelevant for% < K < 2 andrelevant otherwise.

Based on the above analysis, we find that both the 1CK and 2CK fixed points are stable for% < K < l,and
unstable for K < % We have checked that our analysis reproduces the well-known results for a Kondo dot
coupled to conventional Luttinger liquid leads in [23], [25] and [34] where[t,] = i at the 2CK fixed point and

(v] = %(1 + K) at the 1CK fixed point.

As a final remark, we consider here the parity (left-right) symmetric model where J; = Ji i, = Jrr With Ji1(rr)
being referred to as the Kondo couplings involving only the left (right) lead. Nevertheless, parity asymmetry is a
relevant perturbation near the 2CK fixed point. In the presence of parity asymmetry (Ji;, # Jrr), the system will
flow to the 1CK fixed point with the large bare Kondo couplings [34].

12
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5. Critical properties near the 1CK-2CK quantum phase transition

The critical properties and crossovers of various thermodynamical quantities near this newly found 1CK-2CK
QCP can be obtained via the above RG approach combined with the field-theoretical e-expansion technique
[37-41]. We employ here a double-¢-expansion with two small expansion parameters ¢ and ¢’. Our approach
leads to more accurate results for the Luttinger parameter K — 17. Note that though ¢’ approaches a finite non-
vanishing value1/2 for K — 1instead of zero, our double-¢-expansion is still a controlled approach since all the
critical properties are determined by the location of the QCP j, = (e, Jee'), which converges to 0 ase — 0.
Following references [39—41], we define the renormalized pseudo-fermion fields f; and the renormalized
Wz, ~'Ziz
&Gz Jny’ ' = ”zfzf)
being the renormalization factors for the impurity field and Kondo couplings, respectively and u isa
renormalization energy scale. The renormalization factors are obtained via minimal subtractions of poles
[39,40], given by (see appendix C):

dimensionless Kondo couplingsjas: f, = ./Z; f,,and J;¥ = géjlz with Zrand Z1,

ZjJ. =1+ 5]—.112,
€
o\ iz
ij =1+ m)
2e
2 57
Zp=1+ —(];e) + —(1]616? . (26)

Within the field-theoretical RG approach, we have checked that the RG scaling equations in equation (19) can be
reproduced via calculating the f— functions: f (j;) = yj—ﬁ |1, with u being an energy scale, j; = j,”, j” being the
renormalized Kondo couplingsand [ o = 6%, L0 = J;” being the bare Kondo couplings (see appendix C).
Below we discuss various critical properties and crossover functions based on the field-theoretical e-expansion

approach.

5.1. Observables at criticality
We first calculate various observables at criticality, including correlation length exponent, impurity entropy,
dynamical properties of the T-matrix and local spin susceptibility.

5.1.1. Correlation length exponent v

The correlation length exponent v describes how the correlation length & diverges when the system is tuned to

]; L being the dimensionless distance to the QCP. It also gives the power-law

the transition: & o [¢|™ witht =

vanish of the characteristic crossover energy scale T close to the transition: T* o p |t|. To calculate v, we first
linearize the RG scaling equations equation (19) near QCP. The correlation length exponent v is determined by
the largest eigenvalue of the coupled linearized equations, found to be:

4K 1
v=——oo— = — 4+ O9(1) + O e? 27
V1 +16Ke =1 2 () ( ) (27)
where the leading order behaviorv ~ i is obtained by expanding the square-root in equation (27) in the limit
ofe < €.

5.1.2. Impurity entropy
The impurity contribution to the low-temperature entropy near QCP is obtained by a perturbative calculation of

the impurity thermodynamic potential £2;,,, with respect to the 2CK fixed point and taking the temperature

o 02imp . .
derivative [40]: Simp = a—T‘. At QCP and T'=0 it can be written as:

CP 2CK
SiacF = SEX + ASimp. (28)

where SifnCpK =In+2K = % In 2K is the zero-temperature residual impurity entropy at 2CK fixed point which
shows the existence of fractionally degenerate ground state [15, 16, 29], and AS;y,,, is the correction to S 2CK at

imp
QCP. Following similar renormalized perturbative calculations in [40], we find
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2 2
el e’ dj; 2.2
ASimp=r:21n2 (2) + ( 1) =3€ﬂ' ln2' (29)
4 8 32K

Therefore, we have:

1 3¢2n% In2
SQP — ~Ipok 4 42— 30
1mp 2 32K ( )

5.1.3. The T-matrix

The conduction electron T-matrix, T, (@), in the Kondo model carries important information on the scattering
of the conduction electrons from lead a to lead @’ via the impurity. In particular, T, (w) witha # o’ describes
the transport across the dot, detectable in transport measurements. The T-matrix is determined from the
conduction electron Green functions [42]: G () = (¢, (0) c;f (t)) through

Gaa' = Goydaa + GO (@) Tog (@) G2 (@). Near the 2CK fixed point, Ty, () witha # o is defined through

the propagator, Gy, of the composite operator T, = J;% e!V47 (x =1 u(0) fif.e " (see equation (9)):
Too () = Gr (o) [40].
Following the similar calculations in [40] and appendix C, we analyze the propagator Gy (w) near the 2CK
fixed point and find at zero temperature Im (T25X (w)) % with the anomalous exponent at the tree level
Wt

with respect to the 2CK fixed point given byinZC]< = 2¢ (i.e.Im (T2 (w) ) & @*).Near 1CK-2CK QCP,

however, Im (T, (w)) acquires an additional anomalous power-law behavior:
1

2CK
—Nr —Hr

Im (Taar(w)) o< (31)
®

where the additional anomalous exponent #;. is obtained via the renormalization factor Zr for the T-matrix

propagator Ty, (@) [39, 40]: . = f(j,” a;l;T li +B8) a;j? |; - Here, the renormalization factor Zis

obtained by minimal subtraction of poles [39, 40]: Zy = ZZ—Zf with Zg Z ;1 given by equation (26). We find
]‘J.

therefore
)2 22
(]25)/) (511c) € €?

= =25 4 = — — 26+ —, 32
T 2 he 4 4K 4 (32)

andIm (T, (w)) at QCP behaves as:

€ Cz

Im (mer (w)) x @ikt (33)

5.1.4. Local spin susceptibility y,_(w)

The local dynamical spin susceptibility Im (y,, (@) ) at the impurity (quantum dot) is defined as the time Fourier
transform of the spin-spin correlator: (S, (0) S, (¢) ). At zero temperature, the imaginary part of the local
susceptibility, Im (y,, (w)), shows a power-law behavior at QCP:

1
Im (}((G))QCP) X W (34)
[0} X

x

Here, n;CK
the correlator (S, (0)S, (#)) Ll evaluated at the 2CK fixed point [29] (i.e.Im ()(ZZZCK (w)) x @°),and n,is the
1K

= eistheanomalous exponent ofIm (y,, (@) ) at the tree level with respect to the 2CK fixed point via

correction to the anomalous exponent 2CK

" when the system is at QCP. Via e-expansion within the field-

dlnZ dlnZ,

: . _ - Xy LA -z x

theoretical RG framework [39, 40], 77, reads:n7, = f (j;”) 5 liz.52 + B(3)) o5

the renormalization factor for the impurity susceptibility [39, 40] and Zydefined in equation (26). Carrying out
the above calculations, we arrive at

. 2 .
5z with Z, = Z¢ being

o \2 2 \2
(JZ? (5]:> = i + %2, (35)
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Figure 7. Schematic finite temperature phase diagram of our model near the 1CK-2CK quantum critical point (QCP) located att = 0
(J =J.).AsT — 0, the ICK ground state is reached whent > 0 or J > J, while the 2CK ground state is reached fort < 0 or J < J,.
Here, ] > ( < )], refers to the upper right (lower left) region in the phase diagram shown in figure 4 where the RG flows are towards
the 1CK (2CK) fixed point. The dashed vertical arrow at¢ < 0 refers to the finite temperature crossover between the quantum critical
region (blue shaded area bounded by the crossover temperature T*) and the 2CK ground state, which is our interest. Here, Jand J, are
defined in the text.

and finally Im (;(ZZZCK (w)) at QCP shows the following power-law behaviors:

Im ()(ZZ (a))) o @IS (36)

5.2. Hyperscaling
The impurity correlations at QCP are expected to obey certain hyperscaling properties. For example, the local
dynamic spin susceptibility at criticality obeys$ scaling in the following form [39-41, 43]:
w=(5)
Im 0, T)) = ——&|— 37
(e (0, 1)) —= 07 (37)
with @ ( %) being a universal crossover function for the QCP here and .4 being a non-universal pre-factor.
Similar scaling form can be found in the T-matrix. Hyperscaling can be used to determine relations between
various critical exponents. It has been known [39-41, 43] that the correlation length exponent v and the
anomalous exponentr, are sufficient to determine all critical exponents associated with alocal field 4. In

particular, the exponents y and y’ viathe T — 0 limit of the local susceptibility near criticality are defined as
[41,43]:

Toct <O T=0 (=07, y=v(1-1,),
Thio. (> 0; T =0) tr, Yy = v, (38)
Meanwhile, the critical exponents ff and & associated with the local magnetization 1y, can be determined by
(41,43]:
s !
M (t>0,T=0)xt’, f= 5”7*’
2
Mie(t=0, T=0)x |hf5, 6= —1. (39)
My

With the values for critical exponents v (equation (27)) and n, (equation (35)) at hand, the other critical
exponents are therefore given by:

7= é - 18+—KK€ + (9(62, 6’2), Yy = 1+ Ke ;_KKe + (9(62, €’2>,
ﬂ=%+(9(ez, e'z),5=%—1+0(e2, e?). (40)

5.3. Crossover near critical point

Next, we focus on calculating the crossover functions close to the 1CK-2CK quantum critical point. In general,
the crossover functions of observables near criticality depend on the RG flows of both §j* and /5 (see figure 7);
therefore they may not be expressed analytically in terms of universal crossover functions of a single variable.
Nevertheless, great progress can be made when one makes a special choice of bare (initial) values of Kondo
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Figure8. ., / )(ifn‘;l(versus T/T* (see equation (44)) at fixed K= 0.8 for various bare Kondo couplings (in units of 1, = 1) where
P = 2K (j,”)*is satisfied and j,7 = o ~0.39.

couplings such thate’SJ7 = (J; ). Note that this set of bare couplings can in general be tuned through adjusting
various microscopic parameters, such as spin-orbit coupling in 2DTTs, and the lead-dot hopping . For this
particular choice of bare couplings, we found and checked that the RG flows of 6j° (1) and j,” (u) follow the
well-approximated trajectory: '8 & (j,” )%, (i.e. # (8j%) ~ 0). Under this constraint, only one RG f-function
(B (j,”)) effectively remains:

p(i7) = ey - 2k (7). (41)

One can therefore easily solve equation (41) analytically, and its solution for the range between QCP at
J = /i = vee’ and the 2CK fixed point (1,7 < j,” where our RG and e-expansion approach is controlled)

is found to be:
Jre
R P — (42)
—2e
1+<L)
T*
. U2P = U2 1 . . ) .

where T™ = u (———-"—) is the crossover energy scale. It is clear that the power-law vanish of T" follows:

Ip)?
T*  p|t| = p|t]* with the correlation length exponent v beingy = 2%, which agrees with our earlier result in
equation (27). The crossover function in equation (42) can be used to compute various crossovers in
thermodynamic functions near 1CK-2CK QCP as discussed below.

5.3.1. The impurity susceptibility Dtonp (T)

The impurity susceptibility is defined as [40, 41]: 1, (T) = Kimp,imp + 2uimp + Koy — ;(Mh";lk ) where y,  isthe
bulk response to the local field applied to the bulk only, is the impurity response to the local field applied

is the crossed response of the bulk to an impurity field, )(:Zlk is the susceptibility of the

Ximp,imp
to the impurity only, y, ;..
bulk in the absence of the impurity. We can calculate y,,, (T) via renormalized perturbative approaches in
references [40,41,45]. We find (up to the first order in /5) Jimp (T), contributed from y, ;.. (see the Feynmann
diagram in figure 3 and equation (24) of reference [45] and equation (9) above), reads:
Do cosh™ (% )

T | )
)(u,imp = _]zxyl’l 6E /1;0 dw|w|é

(43)

Note that the above formula has the same functional form as that shown in equation (24) of reference [45] in the
pseudogap Kondo problem at criticality. The exponent r of the pseudogap conduction bath with power-law
vanishing density of states (DOS) p (w) « |w|" in reference [45] is now replaced by € in our case as the boson

operator ¢ 47 (k1) 8:(0) i equation (9) leads to an effective power-law energy dependence @ by the Fourier
transform in equation (43). Evaluating the above equation in the limit of infinite UV cutoff and up to first order
i€, Jy, has the following crossover form (see equation (42) and figure 8):
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Figure 9. Crossover of the linear conductance G(T) versus T/ T* (see equation (46)) at fixed K = 0.8 for various bare Kondo couplings
(same as in figure 8).

Himp (T) xy sy
XZCK(T) —J; u->T)~1- = (44)
(&)
TX'
2CK ”CfnCK 1
where ;( X is the impurity susceptibility at the 2CK fixed point, given by [31] y, Himp (T) " o o With
T ZXimp
2CK -2 2CK
1mpur1tyspec1ﬁc heat at the 2CK fixed p01nt glven by: Cip T« (forf <K<l andClmp « T (for
K < ;) (29, 44]. Wehavethereforen 2(for— <K< l)andn2CK =1 (forK < )
Himp Himp

5.3.2. Impurity entropy S, (T)
At the 2CK fixed point, the impurity residual entropy has been calculated in [29]: SIZH?PK In /2K . Following
[40], the correction to $2°X near QCP is obtained within the perturbative RG approach by calculating the

imp
thermodynamic potential and taking the temperature derivative. The crossover function for the impurity

entropy near QCP is found to be (see figure 3 and equation (40) of [40]):

imp (T) % In2 In 2 Jre
1mp ne n . 71'6‘ n 2
—_—n 1+ ———| ¥ - T ~1+ — . 45
Slzrr?pK 4 In VZK []2 (ﬂ )] 4 In Y, 2K T —2e ( )
1+(—>
TX*

Note that the prefactor i here comes from the 77 term only, in contrast to % in [40] for the SU(2) symmetric
Kondo model.

5.3.3. Equilibrium conductance G(T)
The equilibrium conductance G(T) has the following crossover form between the 2CK fixed point and the QCP

(see figure 9):
[] ] TZe

2¢ °
72+ (1%)

Note that in equilibrium the linear conductance at the 2CK fixed point Gock (T) is determined by the bare scaling

6D [~ D] = (46)

dimension of the leading irrelevant operator /3, [j,% ] = % This gives Gyck (T) T2&=D = T2 ForT < T*
where the system reaches the 2CK fixed point, the temperature dependence of G(T) in equation (46) reduces to
thatat 2CK,G (T <« T*) & Gyck (T), as expected.

6. Discussions and conclusions

Before we conclude, we would like to emphasize again the clear physical picture we provided in the introduction
to make our main results more transparent. First, it is well known that the stable one-channel and two-channel
Kondo fixed points are expected in the case of a Kondo quantum dot coupled to two conventional spinful
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Luttinger liquid leads [23, 25]. The ground state of this system changes from 1CK to 2CK when Luttinger
parameter K reduces from the non-interacting limit (K= 1) to the strongly interacting limit (K < %). The
electron-electron interactions in the Luttinger liquids act equivalently as if an additional dissipative Ohmic
boson bath is coupled to the quantum dot [3, 34], leading to suppression in electron transport from one lead to
the other through the dot. A quantum phase transition between the 1CK and 2CK fixed points was argued to
existatK = % as a direct consequence of the competition between the cross-channel Kondo coupling Ji r and the
suppression of tunneling due to electron-electron interaction [23, 25]. However, up until now there has been no
analytic and controlled approach to access this transition. Note that the one-loop RG approach does not work
here to reach to the 1CK-2CK quantum critical point since near the 2CK fixed point the Kondo couplings Ji1/rr>
involved in the renormalization of the cross-channel Kondo coupling J; x, both go to infinity under RG.

When a quantum dot couples to helical Luttinger liquids (a special type of Luttinger liquid), we expect the
1CK and 2CK ground states are also the two possible stable phases for the same reason as mentioned above.
However, due to the helical nature of the Luttinger liquid leads, the underling two-channel Kondo model
becomes anisotropic (J;” # J7) as the SU (2) symmetry of the model is broken; while the Kondo model is
isotropic (J;¥ = J7) for a quantum dot coupled to conventional Luttinger liquid leads. This crucial difference
enables us to access the QPT between the 1CK and 2CK fixed points of our system via the controlled RG
approach.

In the limit of a weakly interacting helical liquid K — 17, we find the similar competition between these two
possible ground states. The 1CK phase is reached when J7'is large enough, while the 2CK phase is reached when
the electron-electron interaction becomes strong enough. Via a controlled perturbative RG approach of one-
loop order, we find that the 1CK-2CK quantum phase transition occurs near K = 17. To reach the 1ICK-2CK
phase transition in our setup, we believe it is necessary to go beyond the tree-level bare scaling dimension
analysis, which predicts a stable 2CK phase for aslong as K < 1[29]. The one-loop RG is the leading correction
to the above-mentioned bare scaling dimension analysis. Note that the main difference between the case for
conventional Luttinger liquid and that for helical liquid is that the resulting two-channel Kondo model is
isotropic in the former case, while it is anisotropic in the latter case. This difference affects details of the critical
properties, such as the critical points occurringat K = K. = % for the Kondo dot coupled to Luttinger liquid,
while we find the existence of K. < 1by the RG analysis near the strong coupling 2CK fixed point for the case of
helical Luttinger liquid. At a general level, however, we should expect a 1CK-2CK quantum phase transition to
exist in both cases.

Meanwhile, within our one-loop RG analysis, the two Kondo couplings /5" and 8j° terms scale with different
powers of € at critical point. Therefore, the loop orders in general can mix (i.e. the two-loop results for critical
Kondo couplings may lead to the same order in eas that at one-loop order). To estimate the corrections at higher
loop orders to our results at one-loop order, we include the two-loop order terms i G, )3 and% G, )2 j, inRG

scaling equations for /7 and 9j,” terms in equation (19), respectively [39]. We find that this modification will lead

toa small correction (shift) to the locations of the critical Kondo couplings: (5j , j,>) — (ae, bvee") with

a=- l i g, b= Jl—lT/zx R~ \/g . Therefore, this correction will not spoil our main results as it only slightly
modifies the critical exponents of observables for those depending on the location of the critical Kondo
couplings.

In summary, we have re-examined [29] on the two-channel Kondo physics in the Kondo quantum dot
coupled to two helical edge states of two-dimensional topological insulators. Via the one-loop renormalization
group approach which goes beyond the scaling dimension analysis in [29], we found the quantum phase
transition between the one-channel (1CK) and two-channel (2CK) Kondo ground states for weakly interacting
leads (K — 17). We made definite predictions on the critical properties when the system is close to the
transition. Our results are robust for% < K < 1,and theyrefine the statement in [29] that the two-channel
Kondo ground state is stable for aslong as K < 1. Our results also provide the first theoretical realization of the
quantum phase transition between 1CK and 2CK physics in Kondo impurity models. Further investigations via
field-theoretical and numerical renormalization group (NRG) [12] approaches are needed in order to clarify the
critical properties, including the critical exponents and finite-temperature dynamics in crossover functions
associated with the transition [45]. Our results motivates the search for these critical properties near the 1CK-
2CK quantum phase transition in future experiments on a Kondo quantum dot coupled to 2D topological
insulators.
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Appendix A. The RG scaling equation in the weak-coupling regime via bosonization

In this appendix, we provide some details on deriving the RG scaling equations of equation (3) for K — 1~ from
the bosonized Hamiltonian equation (2). Following [33] and [31], we decompose the boson fields @, = 6,, ¢,
withy = s, a into the ‘fast’ (&) and ‘slow’ (®,°) components:

@ (1) =B (1) + B (1),
o=~ Y (o),

<u’

Y () (A1)

H<|on|<p

= |

@n

@) (1) =

| =

o

with g’ = p + du. The partition function can be decomposed in the following form:
Zy — / D¢<D®>e—50[¢<]—50[¢>]—S;m[d5>+¢<]’

=7 / D¢<e—so[¢<]<e—sim[‘1’<+¢’>] >f (A.2)

where
Zo= / DS 27],
(A)f = f po>e 7 ]4[ 2] (A.3)

The partition function Z, can be re-expressed by exponentiating(...)sin the integrand in terms of the effective

action Seg [@<] = / dzL g (&<) with L g being the Lagrangian of the Kondo model (see equation (2)), involving
only the slow component of the fields with the following form via the cummulant expansion:

Seff[(p<:| = SO[@<] —In

=So[ @]+ (Su[ @< + (p>]>f

_ %(<s§ﬁ[¢< + @) - (Sw[ @<+ <p>]>;) + o (A4)

The RG procedure is carried out by integrating out the fast modes of bosons and expressing the effective low-
energy theory in the original form with the renormalized couplings. The following two-point correlation
functions of boson fields prove to be useful in the RG analysis [33]:

>

~Sin| 2+
)

G(x, 1) =(D(x, )P0, 0))f = f% /(;’_:e—ikxeiwr

1
—Ko(u't) forpu'z>1
2
1
—In Ld for u't < 1,
2t uw

G(r)=G(0,7) = (A.5)

where K is the Bessel function of the second kind. It is clear from equation (A.5) that G (z) can be considered a
short-ranged function of 7.

First, we focus on the first order cuammulant(S;, [®~ + @<]), which leads to the bare scaling dimensions of
various Kondo couplings in [29]. The renormalization of the forward longitudinal term J; term, 5%, gives:
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I / de(0,640, 7)), = I / dr[d,ﬂf (0, 7) + (0:02(0, T)>f]. (A.6)

Since 6, is an odd function in spin space, its average vanishes, (0,6, (0, 7))y = 0,65J{ = 0. This gives the first-
order RG scaling equation:

di?
Y (A7)
dlnp

with the renormalized dimensionless coupling j; defined as: j* = p,Ji* where p; = % is the density of states.
F

The rescaling of the backward longitudinal term J5 term leads to:

fdf]zz<sin(\/%9a(0, r)]>f <sin(\/27t_K(/)a (0, T))>f _ (%]ﬁm

x / deJ? sin ( \/% 020, T)) sin (V2K ¢S (0, 7)) (A.8)

where equation (A.5) and {e*) = e are used [31]. This relation is justified for any operator A that is linear in
terms of boson fields whose Hamiltonian is quadratic in those boson fields, which is precisely the case for the A
operator we apply here. Upon rescaling 7,7 — rf, we may define the new dimensionless renormalized coupling

jzz () in terms of the bare coupling J5 (4 = p, = 1) as:
JE() = pout *xV3, (A.9)

we arrive at the RG scaling equation at the level of bare scaling dimension:

dj?
J, :(K+ 1/K B 1)]22 (A.10)
dlnpu 2
The first-order RG scaling equations for the remaining couplings are obtained similarly:
d s Xy d s Xy
Jp = (K - 1)j¥, 7> =(K+ /K l)jzxy (A.11)
dlnpu dlny 2

with the renormalized dimensionless couplings defined in the text.

Next, we consider the second order cuammulant terms generated from
—% (S, (@< + D7]) — (Sinel @< + @] )fz ). In general, the second-order contributions to the renormalization
of various couplings have the following form:

dj1xy Xy ez Xy oz dj1z v \2 xy \2

din = —611]1)‘7/]1 - az]/]z > din s =-b <le) - b (]Zy) >

dij/ _ —Cljxyjz — Czij/]'Z’ djzz — _zdljxijy’ (A.12)
dln/,t 1 72 2 1 dll’lﬂ 1 72

with a;, b;, ¢;, and d; being the pre-factors to be determined.
We first focus on the terms in J;? J; which will contribute to the renormalization of /"

27T « o ,
(o)’ S,S /dT /dT
X 2[ <e‘im¢s(°’7) cos (\/%9,1 (0, T))
X sin( J%Ga (0, /) ]sin( N27xK¢,(0, 7) ) >

B < o=i-/22K ,(0,7) COS( \/%Ha (0, 7) )>
f

x <sin( \/% 0, (0, T’)]sin( 27K ¢, (0, 7)) ) > . (A.13)

f

f
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After averaging over the fast modes and rescaling 7, 7', we arrive at:

L4Kk-2
(7;])228+/d /dr( J

=1

’\K
X (Iu_) — 1 |e V27K (0.0) g («/27I—K¢:(0, T')). (A.14)
u

In deriving the above equation, we have decomposed the terms sin (v/2zK (¢ (z')) and

cos ( 2?” (8, (7)) sin ( 2?” (6, (")) into the fast and the slow modes, and kept only the leading (more relevant)
terms. In thelimitof 7, 7/ < i ~ a, we may get rid off one of the double time-integrals in the above equation by
introducing a short-time cutoff 7y = % Thelogarithmic correction of equation (A.14) is obtained by expanding

ldy

(”7’)7?l — 1totheleadingorder: (”7,)7?l - 1l=- + g (u) where g (1) contains sub-leading (less singular)

terms of u which we neglect here at one-loop RG. In thelimit of K — 17, equation (A.14) becomes:
SXY -2
dp . <
g @200 cos (VIR 450, 7). (A.15)
i
Therefore, the pre-factor a, in equation (A.12) is found to bea, = 1. Similarly, we find the pre-factors

¢, = by = by, = d; = linequation (A.12).
Next, we consider a different type of renormalization involving Ji terms. We may focus on a typical term

7 JZ, which renormalizes J:
Xy
K7 / dr / dr'ss,
(fm)2
X [<axes(o, 7)

xe_iJz”_K(/’S(O’T')cos( V27K ¢, (0, 7') ) >
f
_<ax95(0: T))f

x <d—im¢5(0,r/) cos( m¢a (O, T/))> ]
f

- \/ﬁémglz de/dfs S,

x [ (067 (0, 7)

X e_iJ”_K‘/’S(O’T/)cos(x/Zﬂ—K(l)u(O, T’))> ] (A.16)
f

We may use the following identities [33] to simplify equation (A.16):

<0x 2_”9>(0 T)e—i(«Wzﬁs(O,r’))ei«/ﬁzﬁu(o,f)>
VK °

lim,i()x<ei'7 2?” Hf(x,r)e—i«/ 27[K¢5>(0,‘r')ei«/ 27[K¢ﬂ>((),1') >

f

—01
! g f x=0
x e~i(~ 2K 0,0) ) i 27K 502, (A.17)
and
eA+B = eAeBerlAB], (A.18)
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With the above relations, equation (A.17) becomes:
hml() ei Zﬂ(ﬂJ%Hf(x,‘r)—«/?(ﬁ;(o,r'))
n—0 17’] *

% < ei«/ZﬂK¢ﬂ>(0,T/)>

f
x eIt 2;:1(4; (0,7") 1«/2n1<¢<(01)

1(r ,
= T(E()ng;(x,,) + 2ﬂ6x<95>(x, r)¢s>(0, T )>f)

x=0

% < N2 §7(0,7) > < eiﬂ/an(/);(o,f')>
f

e—i(ﬂlanz/;j(o,r»)eiqlan(p;(o,T'). (A.19)

The leading logarithmic correction comes from the term d,(6”(x, 7)¢5>(0’ 7')) 7, which can be evaluated via the
following relations [33]:

i 9p 00, i 90 _ 9

-4 — , —— = ) (A.20)
Vg 0T 0x Vg Ot 0x
We have therefore
iad
( >(x, 7). (0, T )> = _a_ < (67(x, 1)67(0, 7)) . (A.21)
VF
After collecting all the terms and performing re-scaling, equation (A.16) becomes:
1 JYJ? ’ K—ld
__/]1 I /drS_(‘u—) du
wVE ma u U
x e (A0 ) o (V2rK g5 (0, 7). (A.22)
Finally, the correction to ji” contributed from J;* J* ,5]1 e reads:
. LX) ; ,Lt —i 272K $=(0,7
5]1)31%5 = —]1xy]127 /dre 27K $5(0,7)
X COS (\/ZﬂKqﬁ; (0, 1)), (A.23)

where j¥ = pou*~J7, jF = poﬁ JZ. We therefore finda; = 1. Similarly, we find ¢, = 1. Combining the first and

second order corrections to the renormalization of various Kondo couplings, equation (3) follows.

Appendix B. The one-loop RG scaling equations near the 2CK fixed point via poor-man's
scaling

In this appendix, we derive the RG equations in equation (19) from the effective Kondo Hamiltonian
equation (9) via poor-man’s scaling, as shown in [34]. Based on the scaling dimensions of various Kondo
couplings in the strong couping 2CK regime we take the logarithmic derivative of the proposed new
dimensionless Kondo couplings j,* = p,¢; LY, 9i° = py¢f ue —5 ] (see text) with respect to the cutoff

energy u.
First, we focus on the RG equation for j3:
a5, oJ5”
=¢Y — B.1

0lnpu % # po olnp’ (B.1)

The derivative of ¥ w.r.t. In p is given by:

o5 0 Pz (@)
9 / do| Jpropz 2227 (B.2)
dlnpu " 0ln u -

Here, p,,,, 1, (@) is the effective electron density of states due to the additional phase correlations associated with

the product of 5 and §J; terms in equation (9). Following [34], this is equivalent to replacing the free electron
Green’s function of the effective leads: G, (f) = (¢1° (£)&7 (0) ) by a ‘mixed’ one:
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GV (= <Egm> (1)E]H(0) x ,4”(%'1)‘9““)81(0)82(1&))
~ G (1) x <ei" (1) 0 > (55(0)S. (1)) (B.3)
(GR (t) can be defined similarly.) Therefore, Pry1z (@) = _7120 Im (G, (w)) reads [34]:
pry,lz (CU) = po [) dEB_le (E),

B ()= i [t m)e (B.4)

where p, = _7126 Im (G4 (@) ) is the constant density of states of the non-interacting leads, and (Oz 112 (£)) has

the following typical form:
<02l1z (1) = <eii |47 (%—1) éa(t)> (5%(0)S, (1)). (B.5)

Since the exponential factors in 0,11, (t) are unpaired, it gives a trivial result: (eJ—ri V4 Ge=1) 8a(1) ) = 1,and henceit
does not affect the renormalization of the couplings [34]. Nevertheless, (S*(0) S, (¢) ) shows non-trivial
correlations [29]:

1

(§5(0)S; (1)) ~ (B.6)

(iwc t)6
with @, being a high-energy cutoff. We have therefore
Pz @ = po [ dEBLLL(E) = prae®,

1 A . ,
Bui(B)= - [ at(0nsn ()€ = e B (B.7)

1
awf

The integral in equation (B.2) gives:

withé, = A(e)) =

sin (ze)I' (1 + ¢')withe' = i and I"being the Gamma function.

u Pry1z (@)
Pozfzj_/f]zxyéjlz / do—""—
Ho —w
= —pletA(e)puc P o) In £ (B.8)
Ho
Similarly, we find the RG scaling equation for 8j” is given by:
95j*

dlnu

1Qrz ~Z € 2
= €57 — pRitA Qe (J7) (B.9)

where the effective density of states is used [34]:
P11 (@)= p, ‘/Ow dEB 15, (E),
P (B)= [dt(dm)er,
(A(n)= <em 040 o (i =1) i >
N 1
: (ia)ct)ze‘

We may determine the pre-factors Ezl, &” by the following identifications: Ezl = JA(e)A(€'),&f = A(€). With
the above results, we finally arrive at the RG scaling equations shown in equation (19).

(B.10)

Appendix C. The one-loop RG equations near the 2CK fixed point via the e-expansion
technique

In this appendix, we offer an alternative route to equation (19) via the e-expansion technique [37-41].
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We first derive the renormalization factors Z 1= and Zsshown in equation (26). We focus on the one-loop
renormalization of the dimensionless couplings J;” = p, & ucl?, and 8 = pyefu \/% 8J; . Letuslook at

vertex renormalization of ]712’ defined as the dimensionless renormalized coupling 5jlz. first [39,40]:

SJ -

2
1
Sif=ZF6 =L |1+ ﬂ fﬂdwm @) (C.1)

where the effective density of states reads [34]:

pr@)=p, [ AR, BL(E) = [drd e,

(A(t)) = <e_i\4_”§”(t)eimé“(o)> ~ ! > (C.2)
(iwc t)
From above, we find P, (E) = ¢ E*~!with¢ = A (2¢) and the constant A (¢) being defined in appendix B.
Therefore, we have
pL(@) = poira®. (C3)

Plugging these results into equation (C.1) and via the proper identification: EZL = \/ET = JA(2¢),attheleading
orderin(j;” ) /8j7, Z; reads:
cxy \2 .z
(]2 y) / %

Ziz=1+ C4
j ” (C4)
Similarly, we can show that
i
Zjl =1+ : (C.5)
where the following relations are used:
p(@)=22 [" aER () = pyr,
2r J o
B(E) = /dr(é(t»eiﬂ = 6B,
A 1
B(t)=(§%(0)S, (1)) ~ - (C.6)
it

withé, = A(¢’),and&f = \/E_I/Ez.
Next, we provide the derivation for Z; Following [39], the self energy at one-loop order (see figure 5(a) of
[39]) leads to the following renormalization factor Zfor the impurity fermion:

() [ pL@) (o) [ 2@ (C.7)
4 v 0] 8 ¢ w ’

Plugging equations (C.3) and (C.6) into equation (C.7) and expressing the results in terms of the dimensionless
renormalized couplings /" and §j°, we arrive at:
)2 2\
) (ai)

+ .
8¢ 16¢’

Zf= 1+ (CS)

With Z; Z it Zf to hand, we now can reproduce the RG scaling equations, equation (19), via the f-function
within the field-theoretical e-expansion approach:

Ly 0 oy O
ploir)=n—-| . B(Y)=n—— (C9)
ou ou
12,0]¢ 1 501¢

with the relations between the bare Kondo couplings 6];°, /" and the renormalized ones 4%, /" being

Wz, Wz R
Xy _ i xy z _ FNK ez
L7 = Z 7, ,and8Jf = )

z 717
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Appendix D. The RG scaling equations in the strong-coupling 2CK limit via bosonization

In this appendix, we offer an alternative route to the RG scaling equations, equation (19), at the 2CK fixed point
via bosonization. The Hamiltonian at 2CK equation (5) can be expressed more rigorously by including the Klein

factors [34], which proves to be important in deriving the RG scaling equation:

Xy . 2 . [2
J2 Sﬂi[ﬂe‘ﬁgﬂ(o) + F}Le_‘ﬁg“(o)] + h.c.
a

5H -
2CK =
2
— |==0J{S,0:6:(0).
K ©)

where E, Ff, F are Klein factors satisfying the following relations [34]:

EF;=FJ'F,

EF{=F‘F],
FyF = FJ'F},
FiF}=F"F].

Following the approach in appendix A, we first focus on the term J;” §J;7, which will contribute to the
renormalization of /5. One of its contributions is given by:

x [27 ;" 8)F st
5, o« — 5 22”611 EF¢ /d’l’/d‘[ St(z") S, (z)
x [<ax95(o, D% "u<°’f/>>
f

— (060, 7)), <eiJ¥ 0,0, > }
!

- _ 2 8¢ +
= /K — FFf/dT/dTS(T)s ()
X <0x95>(0, r)eiﬁg“(o”')> .

f

Following similar steps to those shown in equation (A.17), we may rewrite equation (D.3) as:

S
5 o — ] ]lFF [ [arst@s.o

% |:hm—()x < ein J%Gf(x,r) e—iﬂ/Zanﬁ;(x’,T/)

n—011

X ei«/Zﬂqu:(x’,r/)
f

x,x' =0

5 =N P(T) ei(«/ZﬂK(/):(x’,r’))

- 27 p> , - 2@ ,
X <€1J?9”(0’7)> el KH:(O,T):I)
f

where we have inserted the identity operator V27K &(*>7) e=iV27K A7) ip equation (D.4). The leading
contribution in the bracket[---] of equation (D.4) is given by:

-] = —27i0,(07(x, )7 (x', 7))

f

x,x' =0

% < ol Zl’gaj(o,z')> ol 2?”(9;(0,1').
f

With the help of equation (A.20), carrying out the integral over the fast modes and performing rescaling, we

arrive at:

(D.1)

(D.2)

(D.3)

(D.4)

(D.5)
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1_q4.L
5j = ~ 2L oK fdfs+(ﬂ)K T
u

2 Vg 2ma U
x E[Ffeief 09 4 Ffeiaion |, (D.6)

where the scaling dimension for S:[S,] = K s used. Therefore, we have reproduced the RG scaling equation

for7y at the 2CK fixed point in equation (19) with the proper definitions for the renormalized Kondo couplings:

i = pour T8 = TSI

Next, we compute the renormalization of j;° contributed from the (J;” )? term:

Y
2 _ Tt
x [a [ dffs+(f)s-(1')[<eiﬁﬂa<°’f>e-iﬁ*"«<°’”>
f
_ < eiﬁa,(o,r>> <e—iﬁea<o,r'>> ] (D.7)
f f

Carrying out averaging over the fast modes, we have:

57 = (m) /df/dTS(T)( )( .

-
7K .2 < .2 < /
. (u_) ol an] oo
u
Upon Taylor expanding the exponential e' AT ) wearriveat :

ol 2”a<(01 —1r0<01)~1+1/ [9<(0 7) — <0, T')] (D.9)

Near the 2CK fixed point, the term 8 (0, ) — 6<(0, 7’) can be re-expressed via the open boundary conditions
at2CKin thelimitofx ~ a — 0 with a being the lattice constant as:

0i(x, 7) = i (x, 7) — P (x, 7) = @i (x, 7) + Py (=x, 7)
~ 2 (0, ) + x| 03, (5 D)o | + O (), (D.10)

and

2

0 (x, 7) = 6,(0, 7) + %[ai(m (6 ) + o (5, 7)) oo | + O(7),

—0,(x, 7') = =0, (0, ') + = [dz(dJlR(x,r)+¢2L(x,r))|x_>0]+(9( ), (D.11)

where we have used the 2CK boundary condition: ¢i (x) = —qﬁi (—x), and we ignore here the higher order
terms © (x*) and beyond. In the limit of r — 7/, we have, therefore

/d‘[‘/dl’ 6 (0,7) —6,(0,7") =/d‘r/dr’[9a(x, 7) —0,(x,7)
_ %( 25, Damo) + O ] [ far [109 (x, 7) — —ax¢ (x, 1)|M] (D.12)

With the help of the identity equation (A.20), equation (D.12) can be re-written as:

/df/dT’Sz (@[ 6.0, ) - 6,0, )] = i/dTSZ (T)[ngoaxq;u (x, 7) + %2%0&(0, T)]. (D.13)
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The first term in equation (D.13) can be simplified in the limitofx & a — 0 as:
ivho / A28, (1) s, (x = a, 7)
~ ivho f dzS. (1) 0.4, (0, 7) + ad2¢h, 0, 7) | (D.14)

where d,h, (0, 7) x p, (0, 7) — p, (0, ) = 0 with p; (0, 7) being the charge density of thelead iat x =0, which
vanishes for x=0 (p; (0, 7) = 0) due to the open boundary condition at the 2CK fixed point (the electron wave
function and therefore its charge density vanishes at x = 0). Therefore, the remaining part in equation (D.14)
becomes

T fdr.lt (1) (D.15)
where the operator A (z) is defined as:
A(7) = S.(2)039,(0, 7). (D.16)
Itis straightforward to see that A is a highly irrelevant operator with a scaling dimension[ A] = 2 + % > 1for
any K > 0; we therefore ignore it here.
The second term in equation (D.13) (proportional to d,6, (0, 7)) will contribute to the renormalization of

the ]le term. Combining everything from equation (D.7) to equation (D.16), the one-loop RG scaling equation
for 5j° becomes:

w2
d5j1Z ¥4 (]2}/)
S i (D.17)
dlnpu 8nvp
With the proper rescaling of 5: ;7 — \/% 157, we finally reproduce the RG scaling equation for j7 in

equation (19).
In fact, the above results can be understood alternatively in terms of non-vanishing correlator
((9) = (jzxy 0, 7) jzxy (0, ') 5jlz (x, 7)), which measures the cross-correlations between the §j;° and 72 terms at

the 2CK fixed point under one-loop RG. Here, 6]32, fzxy refer to the bosonic operators associated with the dj;” and

7 terms, respectively. A typical term in O reads:
<@> ~ <e16n(o,r)e—i9a(o,f’) axes(x - 0, f) > (D.18)
Viaequation (D.12) and the 2CK open boundary condition, in the limit of x, ¢ - 0andz’ = 0, we have
Hu (0’ T) - 6& (0’ T/) ~ oa (x) T) - oa (x’ T/)
2
x 2( 1R L
-S4 w0 + o0
+ ¢1L (X, T) + ¢2R (x) 7))|x—>0] + -

2
=10.0,(x, 1) — %6,%(/)5 (x, 7) + - (D.19)
x—0
where -+ refers to the higher order contributions. Note that the term azéiqﬁs (%, 7)|x—01n equation (D.19) is
related to .0, (0, 7) viaequation (A.20):

£ 22
= 2.0,0,0.(0, 7). (D.20)

[12
— 03¢, (x, )
2 Vg

x—0

With the above relations, equation (D.18) becomes:

(@)~ (ei90090,,(0.7)

~ < (1 - Z“—Z,a,axes (0, f))axas(o, ‘E) >

VF

a2

- -Ea,@xes(o, 20,6, (0, 1)> (D.21)
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where we have dropped the term 70,6, (x, 7) = %dx@ (x, 7) in equation (D.19) as(d.¢), (x, 7) k6, (x, 7))

vanishes. Itis clear from equation (D.21) that the correlator gets a finite expectation value as
(046, (0, 7) 0,0, (0, 7)) does not vanish:

<ax95(o, 7)0.0 (0, ¢)> = linglzaxé,-c<ei’7‘95("’7)e_i”95(’_“’f)> #0 (D.22)
n-0ny

as the correlator (6, (x, 7) 6, (%, 7)) isanon-trivial function of x — X andr — 7.
Note that although 6, (0, 7) decouples from €, (0, 7), due to the 2CK open boundary condition, the

correlator <]¢2xy 0, 7) fzxy (0, 7") jAlz (0, 7)) does not vanish. This alternative route provides us with a justification of
our previous derivations for the RG scaling equations equation (19) via re-fermionization.
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