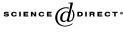


Available online at www.sciencedirect.com



JOURNAL OF Algebra

Journal of Algebra 298 (2006) 284-301

www.elsevier.com/locate/jalgebra

The quantum algebra $U_q(\mathfrak{sl}_2)$ and its equitable presentation

Tatsuro Ito^a, Paul Terwilliger^{b,*}, Chih-wen Weng^c

^a Department of Computational Science, Faculty of Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

^b Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, WI, 53706 USA ^c Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road,

Hsinchu 30050, Taiwan, ROC

Received 17 February 2005

Available online 7 December 2005

Communicated by Peter Littelmann

Abstract

We show that the quantum algebra $U_q(\mathfrak{sl}_2)$ has a presentation with generators $x^{\pm 1}$, y, z and relations $xx^{-1} = x^{-1}x = 1$,

$$\frac{qxy - q^{-1}yx}{q - q^{-1}} = 1, \qquad \frac{qyz - q^{-1}zy}{q - q^{-1}} = 1, \qquad \frac{qzx - q^{-1}xz}{q - q^{-1}} = 1.$$

We call this the *equitable* presentation. We show that y (respectively z) is not invertible in $U_q(\mathfrak{sl}_2)$ by displaying an infinite-dimensional $U_q(\mathfrak{sl}_2)$ -module that contains a nonzero null vector for y (respectively z). We consider finite-dimensional $U_q(\mathfrak{sl}_2)$ -modules under the assumption that q is not a root of 1 and char($\mathbb{K} \neq 2$, where \mathbb{K} is the underlying field. We show that y and z are invertible on each finite-dimensional $U_q(\mathfrak{sl}_2)$ -module. We display a linear operator Ω that acts on finite-dimensional $U_q(\mathfrak{sl}_2)$ -modules, and satisfies

$$\Omega^{-1}x\Omega = y, \qquad \Omega^{-1}y\Omega = z, \qquad \Omega^{-1}z\Omega = x$$

* Corresponding author.

0021-8693/\$ – see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2005.07.038

E-mail addresses: ito@kappa.s.kanazawa-u.ac.jp (T. Ito), terwilli@math.wisc.edu (P. Terwilliger), weng@math.nctu.edu.tw (C.-w. Weng).

on these modules. We define Ω using the *q*-exponential function. © 2005 Elsevier Inc. All rights reserved.

Keywords: Quantum group; Quantum algebra; Leonard pair; Tridiagonal pair

1. The algebra $U_q(\mathfrak{sl}_2)$

Let \mathbb{K} denote a field and let q denote a nonzero scalar in \mathbb{K} such that $q^2 \neq 1$. For an integer n we define

$$[n] = \frac{q^n - q^{-n}}{q - q^{-1}}$$

and for $n \ge 0$ we define

$$[n]^{!} = [n][n-1] \cdots [2][1].$$

We interpret [0]! = 1. We now recall the quantum algebra $U_q(\mathfrak{sl}_2)$.

Definition 1.1. We let $U_q(\mathfrak{sl}_2)$ denote the unital associative \mathbb{K} -algebra with generators $k^{\pm 1}$, *e*, *f* and the following relations:

$$kk^{-1} = k^{-1}k = 1,$$

$$ke = q^{2}ek,$$

$$kf = q^{-2}fk,$$

$$ef - fe = \frac{k - k^{-1}}{q - q^{-1}}.$$

We call $k^{\pm 1}$, e, f the Chevalley generators for $U_q(\mathfrak{sl}_2)$.

We refer the reader to [20,21] for background information on $U_q(\mathfrak{sl}_2)$. We will generally follow the notational conventions of [20].

2. The equitable presentation for $U_q(\mathfrak{sl}_2)$

In the presentation for $U_q(\mathfrak{sl}_2)$ given in Definition 1.1 the generators $k^{\pm 1}$ and the generators e, f play a very different role. We now introduce a presentation for $U_q(\mathfrak{sl}_2)$ whose generators are on a more equal footing.

Theorem 2.1. The algebra $U_q(\mathfrak{sl}_2)$ is isomorphic to the unital associative \mathbb{K} -algebra with generators $x^{\pm 1}$, y, z and the following relations:

$$xx^{-1} = x^{-1}x = 1, (1)$$

$$\frac{qxy - q^{-1}yx}{q - q^{-1}} = 1,$$
(2)

$$\frac{qyz - q^{-1}zy}{q - q^{-1}} = 1, (3)$$

$$\frac{qzx - q^{-1}xz}{q - q^{-1}} = 1.$$
(4)

An isomorphism with the presentation in Definition 1.1 is given by

$$x^{\pm 1} \to k^{\pm 1},$$

 $y \to k^{-1} + f(q - q^{-1}),$
 $z \to k^{-1} - k^{-1}eq(q - q^{-1}).$

The inverse of this isomorphism is given by

$$k^{\pm 1} \to x^{\pm 1},$$

 $f \to (y - x^{-1})(q - q^{-1})^{-1},$
 $e \to (1 - xz)q^{-1}(q - q^{-1})^{-1}.$

Proof. One readily checks that each map is a homomorphism of \mathbb{K} -algebras and that the maps are inverses. It follows that each map is an isomorphism of \mathbb{K} -algebras. \Box

The generators $x^{\pm 1}$, y, z from Theorem 2.1 are on an equal footing, more or less. In view of this we make a definition.

Definition 2.2. By the *equitable presentation* for $U_q(\mathfrak{sl}_2)$ we mean the presentation given in Theorem 2.1. We call $x^{\pm 1}$, y, z the *equitable generators*.

We remark that the isomorphism given in Theorem 2.1 is not unique. This is a consequence of the following lemma.

Lemma 2.3. For an integer *i* and nonzero $\alpha \in \mathbb{K}$ there exists a \mathbb{K} -algebra automorphism of $U_q(\mathfrak{sl}_2)$ that satisfies

$$k^{\pm 1} \to k^{\pm 1}, \qquad e \to \alpha e k^i, \qquad f \to \alpha^{-1} k^{-i} f.$$

Proof. Routine. \Box

3. The elements *y* and *z* are not invertible in $U_q(\mathfrak{sl}_2)$

In this section we show that the equitable generators y and z are not invertible in $U_q(\mathfrak{sl}_2)$. In order to show that y (respectively z) is not invertible in $U_q(\mathfrak{sl}_2)$ we display an infinite-dimensional $U_q(\mathfrak{sl}_2)$ -module that contains a nonzero null vector for y (respectively z).

Lemma 3.1. There exists a $U_q(\mathfrak{sl}_2)$ -module Γ_y with the following property: Γ_y has a basis

$$u_{ij}, \quad i, j \in \mathbb{Z}, \ j \ge 0,$$

such that

$$x u_{ij} = u_{i+1,j},$$

$$x^{-1} u_{ij} = u_{i-1,j},$$

$$y u_{ij} = q^{2i-j} (q^j - q^{-j}) u_{i,j-1} - q^i (q^i - q^{-i}) u_{i-1,j},$$

$$z u_{ij} = q^{-2i} u_{i,j+1} + q^{-i} (q^i - q^{-i}) u_{i-1,j},$$

for all $i, j \in \mathbb{Z}$ with $j \ge 0$. In the above equations $u_{r,-1} := 0$ for $r \in \mathbb{Z}$.

Proof. One routinely verifies that the given actions of $x^{\pm 1}$, y, z satisfy the relations (1)–(4). \Box

Lemma 3.2. The following (i)–(iii) hold:

- (i) $yu_{00} = 0$, where the vector u_{00} is from Lemma 3.1.
- (ii) y is not invertible on Γ_y , where Γ_y is the $U_q(\mathfrak{sl}_2)$ -module from Lemma 3.1.
- (iii) y is not invertible in $U_q(\mathfrak{sl}_2)$.

Proof. Immediate.

Remark 3.3. Referring to Lemma 3.1, we have $u_{ij} = x^i z^j u_{00}$ for $i, j \in \mathbb{Z}, j \ge 0$.

Lemma 3.4. There exists a $U_q(\mathfrak{sl}_2)$ -module Γ_z with the following property: Γ_z has a basis

$$v_{ij}, \quad i, j \in \mathbb{Z}, \ j \ge 0,$$

such that

$$xv_{ij} = v_{i+1,j},$$

$$x^{-1}v_{ij} = v_{i-1,j},$$

$$yv_{ij} = q^{2i}v_{i,j+1} - q^{i}(q^{i} - q^{-i})v_{i-1,j},$$

T. Ito et al. / Journal of Algebra 298 (2006) 284-301

$$zv_{ij} = q^{-i}(q^i - q^{-i})v_{i-1,j} - q^{j-2i}(q^j - q^{-j})v_{i,j-1}$$

for all $i, j \in \mathbb{Z}$ with $j \ge 0$. In the above equations $v_{r,-1} := 0$ for $r \in \mathbb{Z}$.

Proof. One routinely verifies that the given actions of $x^{\pm 1}$, y, z satisfy the relations (1)–(4). \Box

Lemma 3.5. The following (i)–(iii) hold:

(i) zv₀₀ = 0, where the vector v₀₀ is from Lemma 3.4.
(ii) z is not invertible on Γ_z, where Γ_z is the U_q(sl₂)-module from Lemma 3.4.
(iii) z is not invertible in U_q(sl₂).

Proof. Immediate.

Remark 3.6. Referring to Lemma 3.4, we have $v_{ij} = x^i y^j v_{00}$ for $i, j \in \mathbb{Z}, j \ge 0$.

4. Finite-dimensional $U_q(\mathfrak{sl}_2)$ -modules

From now on we restrict our attention to finite-dimensional $U_q(\mathfrak{sl}_2)$ -modules. In order to simplify things we make the following assumption.

For the rest of this paper, we assume q is not a root of 1, and that $char(\mathbb{K}) \neq 2$.

In this section we show that the equitable generators y and z are invertible on each finitedimensional $U_q(\mathfrak{sl}_2)$ -module.

We begin with some general comments. By [20, Theorems 2.3, 2.9] each finitedimensional $U_q(\mathfrak{sl}_2)$ -module M is semi-simple; this means that M is a direct sum of simple $U_q(\mathfrak{sl}_2)$ -modules. The finite-dimensional simple $U_q(\mathfrak{sl}_2)$ -modules are described as follows.

Lemma 4.1. [20, Theorem 2.6] *There exists a family of finite-dimensional simple* $U_q(\mathfrak{sl}_2)$ *-modules*

$$L(n,\varepsilon), \quad \varepsilon \in \{1, -1\}, \ n = 0, 1, 2, \dots,$$
 (5)

with the following properties: $L(n, \varepsilon)$ has a basis v_0, v_1, \ldots, v_n such that $kv_i = \varepsilon q^{n-2i}v_i$ for $0 \le i \le n$, $fv_i = [i + 1]v_{i+1}$ for $0 \le i \le n - 1$, $fv_n = 0$, $ev_i = \varepsilon [n - i + 1]v_{i-1}$ for $1 \le i \le n$, $ev_0 = 0$. Every finite-dimensional simple $U_q(\mathfrak{sl}_2)$ -module is isomorphic to exactly one of the modules (5).

The equitable generators act on the modules $L(n, \varepsilon)$ as follows.

Lemma 4.2. For an integer $n \ge 0$ and for $\varepsilon \in \{1, -1\}$, the $U_q(\mathfrak{sl}_2)$ -module $L(n, \varepsilon)$ has a basis u_0, u_1, \ldots, u_n such that

$$\varepsilon x u_i = q^{n-2i} u_i \quad (0 \leqslant i \leqslant n), \tag{6}$$

$$(\varepsilon y - q^{2i-n})u_i = (q^{-n} - q^{2i+2-n})u_{i+1} \quad (0 \le i \le n-1), \qquad (\varepsilon y - q^n)u_n = 0, \quad (7)$$

$$(\varepsilon z - q^{2i-n})u_i = (q^n - q^{2i-2-n})u_{i-1} \quad (1 \le i \le n), \qquad (\varepsilon z - q^{-n})u_0 = 0.$$
(8)

Proof. For the purpose of this proof we identify the copy of $U_q(\mathfrak{sl}_2)$ given in Definition 1.1 with the copy given in Theorem 2.1, via the isomorphism in Theorem 2.1. Let the basis v_0, v_1, \ldots, v_n for $L(n, \varepsilon)$ be as in Lemma 4.1. Define $u_i = \gamma_i v_i$ for $0 \le i \le n$, where $\gamma_0 = 1$ and $\gamma_i = -\varepsilon q^{n-i} \gamma_{i-1}$ for $1 \le i \le n$. Using x = k, $y = k^{-1} + f(q - q^{-1})$, and $z = k^{-1} - k^{-1} eq(q - q^{-1})$, together with the data in Lemma 4.1, we routinely verify (6)–(8). \Box

Note 4.3. The basis u_0, u_1, \ldots, u_n in Lemma 4.2 is normalized so that $yu = \varepsilon q^{-n}u$ and $zu = \varepsilon q^n u$ for $u = \sum_{i=0}^n u_i$.

Corollary 4.4. For an integer $n \ge 0$ and for $\varepsilon \in \{1, -1\}$, the following (i), (ii) hold on the $U_q(\mathfrak{sl}_2)$ -module $L(n, \varepsilon)$:

(i) Each of x, y, z is semi-simple with eigenvalues εq^n , εq^{n-2} , ..., εq^{-n} .

(ii) Each of x, y, z is invertible.

Proof. For x this is clear from (6). We now verify our assertions for y. With respect to the basis u_0, u_1, \ldots, u_n for $L(n, \varepsilon)$ given in Lemma 4.2, by (7) the matrix representing y is lower triangular with (i, i) entry εq^{2i-n} for $0 \le i \le n$. Therefore the action of y on $L(n, \varepsilon)$ has eigenvalues $\varepsilon q^n, \varepsilon q^{n-2}, \ldots, \varepsilon q^{-n}$. These eigenvalues are mutually distinct so this action is semi-simple. These eigenvalues are nonzero so this action is invertible. We have now verified our assertions for y. Our assertions for z are similarly verified. \Box

By Corollary 4.4 and since each finite-dimensional $U_q(\mathfrak{sl}_2)$ -module is semi-simple we obtain the following result.

Corollary 4.5. On each finite-dimensional $U_q(\mathfrak{sl}_2)$ -module the actions of y and z are invertible.

Motivated by Corollary 4.5 we make the following definition.

Definition 4.6. We let y^{-1} (respectively z^{-1}) denote the linear operator that acts on each finite-dimensional $U_q(\mathfrak{sl}_2)$ -module as the inverse of y (respectively z).

5. The elements n_x , n_y , n_z

In this section we define some elements n_x , n_y , n_z of $U_q(\mathfrak{sl}_2)$ and show that these are nilpotent on each finite-dimensional $U_q(\mathfrak{sl}_2)$ -module. We then recall the q-exponential function \exp_q and derive a number of equations involving $\exp_q(n_x)$, $\exp_q(n_y)$, $\exp_q(n_z)$. These equations will show that on finite-dimensional $U_q(\mathfrak{sl}_2)$ -modules the operators y^{-1} , z^{-1} from Definition 4.6 satisfy

$$y^{-1} = \exp_q(n_z) x \exp_q(n_z)^{-1},$$
 (9)

$$z^{-1} = \exp_q(n_y)^{-1} x \exp_q(n_y).$$
(10)

We begin with an observation.

Lemma 5.1. The equitable generators x, y, z of $U_q(\mathfrak{sl}_2)$ satisfy

$$q(1 - yz) = q^{-1}(1 - zy),$$

$$q(1 - zx) = q^{-1}(1 - xz),$$

$$q(1 - xy) = q^{-1}(1 - yx).$$

Proof. These equations are reformulations of (2)–(4).

Definition 5.2. We let n_x , n_y , n_z denote the following elements in $U_q(\mathfrak{sl}_2)$:

$$n_x = \frac{q(1-yz)}{q-q^{-1}} = \frac{q^{-1}(1-zy)}{q-q^{-1}},$$
(11)

$$n_y = \frac{q(1-zx)}{q-q^{-1}} = \frac{q^{-1}(1-xz)}{q-q^{-1}},$$
(12)

$$n_z = \frac{q(1-xy)}{q-q^{-1}} = \frac{q^{-1}(1-yx)}{q-q^{-1}}.$$
(13)

Note 5.3. Under the isomorphism given in Theorem 2.1 the preimage of n_y (respectively n_z) is *e* (respectively -qkf).

We recall some notation. Let V denote a finite-dimensional vector space over K. A linear transformation $T: V \to V$ is called *nilpotent* whenever there exists a positive integer r such that $T^r V = 0$.

We are going to show that each of n_x, n_y, n_z is nilpotent on all finite-dimensional $U_q(\mathfrak{sl}_2)$ -modules. We will show this using the following lemma.

Lemma 5.4. *The following relations hold in* $U_q(\mathfrak{sl}_2)$:

$$xn_y = q^2 n_y x, \qquad xn_z = q^{-2} n_z x,$$
 (14)

$$yn_z = q^2 n_z y, \qquad yn_x = q^{-2} n_x y,$$
 (15)

$$zn_x = q^2 n_x z, \qquad zn_y = q^{-2} n_y z.$$
 (16)

Proof. In order to verify these equations, eliminate n_x , n_y , n_z using Definition 5.2 and simplify the result. \Box

Lemma 5.5. Each of n_x , n_y , n_z is nilpotent on finite-dimensional $U_q(\mathfrak{sl}_2)$ -modules.

Proof. We prove the result for n_x ; the proof for n_y and n_z is similar. Since each finitedimensional $U_q(\mathfrak{sl}_2)$ -module is semi-simple and in view of Lemma 4.1, it suffices to show that n_x is nilpotent on each module $L(n, \varepsilon)$. By Corollary 4.4(i), $L(n, \varepsilon)$ has a basis w_0, w_1, \ldots, w_n such that $yw_i = \varepsilon q^{n-2i}w_i$ for $0 \le i \le n$. Using the equation on the right in (15) we routinely find that $n_x w_i$ is a scalar multiple of w_{i+1} for $0 \le i \le n-1$ and $n_x w_n = 0$. This shows that n_x is nilpotent on $L(n, \varepsilon)$ and the result follows. \Box

We now recall the *q*-exponential function.

Definition 5.6. [31, p. 204] Let *T* denote a linear operator that acts on finite-dimensional $U_q(\mathfrak{sl}_2)$ -modules in a nilpotent fashion. We define

$$\exp_q(T) = \sum_{i=0}^{\infty} \frac{q^{i(i-1)/2}}{[i]!} T^i.$$
(17)

We view $\exp_q(T)$ as a linear operator that acts on finite-dimensional $U_q(\mathfrak{sl}_2)$ -modules.

The following result is well known and easily verified.

Lemma 5.7. [31, p. 204] Let T denote a linear operator that acts on finite-dimensional $U_q(\mathfrak{sl}_2)$ -modules in a nilpotent fashion. Then on each of these modules $\exp_q(T)$ is invertible; the inverse is

$$\exp_{q^{-1}}(-T) = \sum_{i=0}^{\infty} \frac{(-1)^{i} q^{-i(i-1)/2}}{[i]!} T^{i}.$$

The following lemma is essentially a special case of [28, Eq. (4.8)]; we include a proof for the sake of completeness.

Lemma 5.8. [28, Eq. (4.8)] *The following* (i)–(iii) *hold on each finite-dimensional* $U_q(\mathfrak{sl}_2)$ -*module*:

- (i) $\exp_{q}(n_{y})^{-1}x \exp_{q}(n_{y}) = z^{-1}$,
- (ii) $\exp_{a}(n_{z})^{-1}y \exp_{a}(n_{z}) = x^{-1}$,
- (iii) $\exp_q(n_x)^{-1}z \exp_q(n_x) = y^{-1}$.

Proof. (i) We show

$$x \exp_q(n_y) z = \exp_q(n_y). \tag{18}$$

The left-hand side of (18) is equal to $x \exp_q(n_y) x^{-1} xz$. Observe $x \exp_q(n_y) x^{-1} = \exp_q(xn_yx^{-1})$ by (17) and $xn_yx^{-1} = q^2n_y$ by (14). Also $xz = 1 - q(q - q^{-1})n_y$ by (12). Using these comments and (17) we routinely find that the left-hand side of (18) is equal to the right-hand side of (18). The result follows.

(ii), (iii) Similar to the proof of (i) above. \Box

For convenience we display a second "version" of Lemma 5.8.

Lemma 5.9. The following (i)–(iii) hold on each finite-dimensional $U_q(\mathfrak{sl}_2)$ -module:

(i) $\exp_q(n_z)x \exp_q(n_z)^{-1} = y^{-1}$, (ii) $\exp_q(n_x)y \exp_q(n_x)^{-1} = z^{-1}$, (iii) $\exp_q(n_y)z \exp_q(n_y)^{-1} = x^{-1}$.

Proof. For each of the equations in Lemma 5.8 take the inverse of each side and simplify the result. \Box

We note that Eqs. (9), (10) are just Lemmas 5.9(i) and 5.8(i), respectively.

6. Some formulae involving the *q*-exponential function

In the next section we will display a linear operator Ω that acts on finite-dimensional $U_q(\mathfrak{sl}_2)$ -modules, and satisfies $\Omega^{-1}x\Omega = y$, $\Omega^{-1}y\Omega = z$, $\Omega^{-1}z\Omega = x$ on these modules. In order to prove that Ω has the desired properties we will first establish a few identities. These identities are given in this section.

Lemma 6.1. The following (i)–(iii) hold on each finite-dimensional $U_q(\mathfrak{sl}_2)$ -module:

(i) $\exp_q(n_z)^{-1}x \exp_q(n_z) = xyx$, (ii) $\exp_q(n_x)^{-1}y \exp_q(n_x) = yzy$, (iii) $\exp_q(n_y)^{-1}z \exp_q(n_y) = zxz$.

Proof. (i) The element xy commutes with n_z by (13) so xy commutes with $\exp_q(n_z)$ in view of (17). Therefore $\exp_q(n_z)^{-1}xy\exp_q(n_z) = xy$. By Lemma 5.8(ii) we have $y\exp_q(n_z) = \exp_q(n_z)x^{-1}$. Combining these last two equations we routinely obtain the result.

(ii), (iii) Similar to the proof of (i) above. \Box

Lemma 6.2. The following (i)–(iii) hold on each finite-dimensional $U_q(\mathfrak{sl}_2)$ -module:

(i) $\exp_q(n_y)x \exp_q(n_y)^{-1} = xzx$, (ii) $\exp_q(n_z)y \exp_q(n_z)^{-1} = yxy$, (iii) $\exp_q(n_x)z \exp_q(n_x)^{-1} = zyz$.

Proof. (i) By Lemma 6.1(iii) we have $\exp_q(n_y)zxz \exp_q(n_y)^{-1} = z$. In this equation we eliminate $\exp_q(n_y)z$ and $z \exp_q(n_y)^{-1}$ using Lemma 5.9(iii). The result follows. (ii), (iii) Similar to the proof of (i) above. \Box

Lemma 6.3. The following (i)–(iii) hold on each finite-dimensional $U_q(\mathfrak{sl}_2)$ -module:

(i) $\exp_q(n_x)^{-1}x \exp_q(n_x) = x + y - y^{-1}$, (ii) $\exp_q(n_y)^{-1}y \exp_q(n_y) = y + z - z^{-1}$, (iii) $\exp_q(n_z)^{-1}z \exp_q(n_z) = z + x - x^{-1}$.

Proof. (i) Using (2), (4) and (11) we obtain $xn_x - n_x x = y - z$. By this and a routine induction using (15), (16) we find

$$xn_x^i - n_x^i x = q^{1-i}[i] \left(n_x^{i-1} y - zn_x^{i-1} \right)$$
(19)

for each integer $i \ge 0$. Using (17) and (19) we obtain

$$x \exp_{q}(n_{x}) - \exp_{q}(n_{x})x = \exp_{q}(n_{x})y - z \exp_{q}(n_{x}).$$
(20)

In line (20) we multiply each term on the left by $\exp_q(n_x)^{-1}$ and evaluate the term containing *z* using Lemma 5.8(iii) to get the result.

(ii), (iii) Similar to the proof of (i) above. \Box

Lemma 6.4. The following (i)–(iii) hold on each finite-dimensional $U_q(\mathfrak{sl}_2)$ -module:

(i) $\exp_q(n_x)x \exp_q(n_x)^{-1} = x + z - z^{-1}$, (ii) $\exp_q(n_y)y \exp_q(n_y)^{-1} = y + x - x^{-1}$, (iii) $\exp_q(n_z)z \exp_q(n_z)^{-1} = z + y - y^{-1}$.

Proof. (i) By Lemma 6.3(i) we have

$$x = \exp_q(n_x) \left(x + y - y^{-1} \right) \exp_q(n_x)^{-1}.$$
 (21)

By Lemma 5.9(ii) we have $\exp_q(n_x)y \exp_q(n_x)^{-1} = z^{-1}$ and $\exp_q(n_x)y^{-1} \exp_q(n_x)^{-1} = z$. Evaluating (21) using these comments we obtain the result.

(ii), (iii) Similar to the proof of (i) above. \Box

7. The operator Ω

In this section we display a linear operator Ω that acts on finite-dimensional $U_q(\mathfrak{sl}_2)$ -modules, and satisfies $\Omega^{-1}x\Omega = y$, $\Omega^{-1}y\Omega = z$, $\Omega^{-1}z\Omega = x$ on these modules. In order to define Ω we first recall the notion of a *weight space*.

Definition 7.1. Let *M* denote a finite-dimensional $U_q(\mathfrak{sl}_2)$ -module. For an integer λ and for $\varepsilon \in \{1, -1\}$ define

$$M(\varepsilon, \lambda) = \{ v \in M \mid xv = \varepsilon q^{\lambda}v \}.$$

We call $M(\varepsilon, \lambda)$ the (ε, λ) -weight space of M with respect to x. By Corollary 4.4(i) and since M is semi-simple, M is the direct sum of its weight spaces with respect to x.

Definition 7.2. We define a linear operator Ψ that acts on each finite-dimensional $U_q(\mathfrak{sl}_2)$ module M. In order to do this we give the action of Ψ on each weight space of M with respect to x. For an integer λ and for $\varepsilon \in \{1, -1\}$, Ψ acts on the weight space $M(\varepsilon, \lambda)$ as $q^{-\lambda^2/2}I$ (if λ is even) and $q^{(1-\lambda^2)/2}I$ (if λ is odd), where I denotes the identity map. We observe that Ψ is invertible on M.

Lemma 7.3. For the operator Ψ from Definition 7.2 the following (i)–(iii) hold on each finite-dimensional $U_q(\mathfrak{sl}_2)$ -module:

- (i) $\Psi^{-1}x\Psi = x$,
- (ii) $\Psi^{-1}n_{y}\Psi = xn_{y}x$,
- (iii) $\Psi^{-1}n_z\Psi = x^{-1}n_zx^{-1}$.

Proof. Let *M* denote a finite-dimensional $U_q(\mathfrak{sl}_2)$ -module. For an integer λ and for $\varepsilon \in \{1, -1\}$ we show that each of (i)–(iii) holds on $M(\varepsilon, \lambda)$.

(i) On $M(\varepsilon, \lambda)$ each of Ψ, x acts as a scalar multiple of the identity.

(ii) For notational convenience define s = 0 (if λ is even) and s = 1 (if λ is odd). For $v \in M(\varepsilon, \lambda)$ we show $\Psi^{-1}n_y\Psi v = xn_yxv$. Using the equation on the left in (14) we find $n_yv \in M(\varepsilon, \lambda + 2)$. Using this we find

$$\Psi^{-1}n_{y}\Psi v = q^{(s-\lambda^{2})/2}\Psi^{-1}n_{y}v$$
$$= q^{(s-\lambda^{2})/2}q^{((\lambda+2)^{2}-s)/2}n_{y}v$$
$$= q^{2\lambda+2}n_{y}v$$

and also

$$xn_yxv = \varepsilon q^{\lambda}xn_yv$$
$$= \varepsilon q^{\lambda}\varepsilon q^{\lambda+2}n_yv$$
$$= q^{2\lambda+2}n_yv.$$

295

Therefore $\Psi^{-1}n_y\Psi v = xn_yxv$. We have now shown $\Psi^{-1}n_y\Psi$ and xn_yx coincide on $M(\varepsilon, \lambda)$.

(iii) Similar to the proof of (ii) above. $\ \ \Box$

Definition 7.4. We define

$$\Omega = \exp_q(n_z)\Psi \exp_q(n_y), \tag{22}$$

where n_y, n_z are from Definition 5.2 and where Ψ is from Definition 7.2. We view Ω as a linear operator that acts on finite-dimensional $U_q(\mathfrak{sl}_2)$ -modules.

We now present our main result.

Theorem 7.5. For the operator Ω from Definition 7.4 the following hold on each finitedimensional $U_q(\mathfrak{sl}_2)$ -module:

$$\Omega^{-1}x\Omega = y, \qquad \Omega^{-1}y\Omega = z, \qquad \Omega^{-1}z\Omega = x.$$

Proof. Observe

$$\begin{split} \Omega^{-1} x \Omega &= \exp_q(n_y)^{-1} \Psi^{-1} \exp_q(n_z)^{-1} x \exp_q(n_z) \Psi \exp_q(n_y) \\ &= \exp_q(n_y)^{-1} \Psi^{-1} x y x \Psi \exp_q(n_y) \quad \text{(by Lemma 6.1(i))} \\ &= \exp_q(n_y)^{-1} \Psi^{-1} x y \Psi x \exp_q(n_y) \quad \text{(by Lemma 7.3(i))} \\ &= \exp_q(n_y)^{-1} \Psi^{-1} (1 - q^{-1} (q - q^{-1}) n_z) \Psi x \exp_q(n_y) \quad \text{(by (13))} \\ &= \exp_q(n_y)^{-1} (x - q^{-1} (q - q^{-1}) x^{-1} n_z) \exp_q(n_y) \quad \text{(by Lemma 7.3(iii))} \\ &= \exp_q(n_y)^{-1} (x - x^{-1} + y) \exp_q(n_y) \quad \text{(by (13))} \\ &= y \quad \text{(by Lemma 6.4(ii))} \end{split}$$

and

$$\begin{aligned} \mathcal{Q}^{-1} y \mathcal{Q} &= \exp_q(n_y)^{-1} \Psi^{-1} \exp_q(n_z)^{-1} y \exp_q(n_z) \Psi \exp_q(n_y) \\ &= \exp_q(n_y)^{-1} \Psi^{-1} x^{-1} \Psi \exp_q(n_y) \quad \text{(by Lemma 5.8(ii))} \\ &= \exp_q(n_y)^{-1} x^{-1} \exp_q(n_y) \quad \text{(by Lemma 7.3(i))} \\ &= z \quad \text{(by Lemma 5.8(i))} \end{aligned}$$

and

$$\begin{split} & \Omega^{-1} z \Omega = \exp_q(n_y)^{-1} \Psi^{-1} \exp_q(n_z)^{-1} z \exp_q(n_z) \Psi \exp_q(n_y) \\ & = \exp_q(n_y)^{-1} \Psi^{-1} (z + x - x^{-1}) \Psi \exp_q(n_y) \quad \text{(by Lemma 6.3(iii))} \\ & = \exp_q(n_y)^{-1} \Psi^{-1} (x - q^{-1} (q - q^{-1}) n_y x^{-1}) \Psi \exp_q(n_y) \quad \text{(by (12))} \\ & = \exp_q(n_y)^{-1} (x - q^{-1} (q - q^{-1}) \Psi^{-1} n_y \Psi x^{-1}) \exp_q(n_y) \quad \text{(by Lemma 7.3(i))} \\ & = \exp_q(n_y)^{-1} (x - q^{-1} (q - q^{-1}) x n_y) \exp_q(n_y) \quad \text{(by Lemma 7.3(ii))} \\ & = \exp_q(n_y)^{-1} x z x \exp_q(n_y) \quad \text{(by (12))} \\ & = x \qquad \text{(by Lemma 6.2(i)).} \qquad \Box \end{split}$$

We finish this section with a comment.

Corollary 7.6. On a finite-dimensional $U_q(\mathfrak{sl}_2)$ -module, Ω^3 commutes with the action of each element of $U_q(\mathfrak{sl}_2)$.

Proof. Immediate from Theorem 7.5 and since $x^{\pm 1}$, *y*, *z* generate $U_q(\mathfrak{sl}_2)$. \Box

8. The action of Ω on $L(n, \varepsilon)$

In this section we describe the action of Ω on the module $L(n, \varepsilon)$. We will do this by displaying the action of Ω and Ω^{-1} on the basis for $L(n, \varepsilon)$ given in Lemma 4.2. We begin with a few observations.

Lemma 8.1. For an integer $n \ge 0$ and for $\varepsilon \in \{1, -1\}$ let u_0, u_1, \ldots, u_n denote the basis for $L(n, \varepsilon)$ given in Lemma 4.2. Then $\Psi u_i = q^{2i(n-i)+(s-n^2)/2}u_i$ for $0 \le i \le n$, where s = 0 (if n is even) and s = 1 (if n is odd).

Proof. Immediate from Definition 7.2. \Box

Lemma 8.2. For an integer $n \ge 0$ and for $\varepsilon \in \{1, -1\}$ let u_0, u_1, \ldots, u_n denote the basis for $L(n, \varepsilon)$ given in Lemma 4.2. Then the following (i), (ii) hold:

(i) $n_y u_i = -q^{n-i} [n-i+1] u_{i-1}$ $(1 \le i \le n), n_y u_0 = 0.$ (ii) $n_z u_i = q^{-i} [i+1] u_{i+1}$ $(0 \le i \le n-1), n_z u_n = 0.$

Proof. Use Lemma 4.2 and Definition 5.2. \Box

We recall some notation. For integers $n \ge i \ge 0$ we define

$$\begin{bmatrix} n \\ i \end{bmatrix} = \frac{[n]!}{[i]![n-i]!}$$

Lemma 8.3. For an integer $n \ge 0$ and for $\varepsilon \in \{1, -1\}$ let u_0, u_1, \ldots, u_n denote the basis for $L(n, \varepsilon)$ given in Lemma 4.2. Then for $0 \le j \le n$ we have

$$\exp_{q}(n_{y})u_{j} = \sum_{i=0}^{j} (-1)^{i+j} q^{(j-i)(n-i-1)} {n-i \brack j-i} u_{i},$$
(23)

$$\exp_{q}(n_{y})^{-1}u_{j} = \sum_{i=0}^{J} q^{(j-i)(n-j)} {n-i \brack j-i} u_{i},$$
(24)

$$\exp_q(n_z)u_j = \sum_{i=j}^n q^{j(j-i)} \begin{bmatrix} i\\j \end{bmatrix} u_i,$$
(25)

$$\exp_q(n_z)^{-1}u_j = \sum_{i=j}^n (-1)^{i+j} q^{(j-i)(i-1)} \begin{bmatrix} i\\j \end{bmatrix} u_i.$$
 (26)

Proof. In order to verify (23) and (25), evaluate the left-hand side using Lemma 8.2 and Definition 5.6. Lines (24) and (26) are similarly verified using Lemma 5.7. \Box

Theorem 8.4. For an integer $n \ge 0$ and for $\varepsilon \in \{1, -1\}$ let u_0, u_1, \ldots, u_n denote the basis for $L(n, \varepsilon)$ given in Lemma 4.2. Then for $0 \le j \le n$ we have

$$\Omega u_j = \sum_{i=0}^{n-j} (-1)^j q^{(n-i-1)j+(s-n^2)/2} {n-i \choose j} u_i,$$
(27)

$$\Omega^{-1}u_j = \sum_{i=n-j}^n (-1)^{n-j} q^{(1-i)(n-j) + (n^2-s)/2} \begin{bmatrix} i\\ n-j \end{bmatrix} u_i,$$
(28)

where s = 0 (if n is even) and s = 1 (if n is odd).

Proof. In order to verify (27), evaluate the left-hand side using (22), Lemma 8.1, (23), (25), and simplify the result using the *q*-Vandermonde summation formula [10, p. 11]. Line (28) is similarly verified. \Box

We finish this section with a comment.

Corollary 8.5. For an integer $n \ge 0$ and for $\varepsilon \in \{1, -1\}$, Ω^3 acts as a scalar multiple of the identity on $L(n, \varepsilon)$. The scalar is $q^{-n(n+2)/2}$ (if n is even) and $-q^{(1-n)(n+3)/2}$ (if n is odd).

Proof. Routine calculation using Theorem 8.4. \Box

9. Remarks

In this section we make some remarks and tie up some loose ends.

Remark 9.1. In [7] Fairlie considers an associative \mathbb{K} -algebra with generators *X*, *Y*, *Z* and relations

$$qXY - q^{-1}YX = Z, (29)$$

$$qYZ - q^{-1}ZY = X, (30)$$

$$qZX - q^{-1}XZ = Y.$$
 (31)

He interprets this algebra as a q-deformation of SU(2) and he works out the irreducible representations. See [5, Remark 8.11], [8, Section 3], [16,25] for related work. In spite of the superficial resemblance we do not see any connection between (29)–(31) and the equitable presentation of $U_q(\mathfrak{sl}_2)$.

Remark 9.2. In [46] A.S. Zhedanov introduced the Askey–Wilson algebra. He used it to study the Askey–Wilson polynomials and related polynomials in the Askey scheme [22]. The following attractive version of the algebra appears in [27, p. 101], [30], [43, Section 3.3.3]. For a sequence of scalars g_x , g_y , g_z , h_x , h_y , h_z taken from K, the corresponding Askey–Wilson algebra is the unital associative K-algebra with generators *X*, *Y*, *Z* and relations

$$qXY - q^{-1}YX = g_z Z + h_z, (32)$$

$$qYZ - q^{-1}ZY = g_x X + h_x, (33)$$

$$qZX - q^{-1}XZ = g_yY + h_y.$$
 (34)

See [11–15,41,47,48] for work involving the Askey–Wilson algebra. We note that for $g_x = g_y = g_z = 1$ and $h_x = h_y = h_z = 0$ the relations (32)–(34) become (29)–(31). Moreover for $g_x = g_y = g_z = 0$ and $h_x = h_y = h_z = q - q^{-1}$ the relations (32)–(34) become (2)–(4). In this case, and referring to Theorem 2.1, the Askey–Wilson algebra is isomorphic to the subalgebra of $U_q(\mathfrak{sl}_2)$ generated by x, y, z. As far as we know, this case of the Askey–Wilson algebra has not yet been considered by other researchers.

Remark 9.3. In the literature one can find many presentations of algebras that are related in some way to \mathfrak{sl}_2 . See, for example, [1–4,6,9,23,24,26], [27, p. 48], [29,42,44,45]. As far as we know, none of these has a direct connection to the equitable presentation of $U_q(\mathfrak{sl}_2)$.

Remark 9.4. The equitable presentation for $U_q(\mathfrak{sl}_2)$ appears implicitly as part of a presentation given in [19, Theorem 2.1] for the quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_2)$.

Remark 9.5. In light of Theorem 2.1 and Corollary 4.5 it is natural to consider a unital associative \mathbb{K} -algebra that has generators $x^{\pm 1}$, $y^{\pm 1}$, $z^{\pm 1}$ and relations

$$xx^{-1} = x^{-1}x = 1, \qquad yy^{-1} = y^{-1}y = 1, \qquad zz^{-1} = z^{-1}z = 1,$$
$$\frac{qxy - q^{-1}yx}{q - q^{-1}} = 1, \qquad \frac{qyz - q^{-1}zy}{q - q^{-1}} = 1, \qquad \frac{qzx - q^{-1}xz}{q - q^{-1}} = 1.$$

We denote this algebra by $U_q^{\Delta}(\mathfrak{sl}_2)$ and call it the *equitable q*-deformation of \mathfrak{sl}_2 . We invite the reader to investigate $U_q^{\Delta}(\mathfrak{sl}_2)$.

Remark 9.6. For a symmetrizable Kac–Moody Lie algebra \mathfrak{g} the second author has obtained a presentation for the quantum group $U_q(\mathfrak{g})$ that is analogous to the equitable presentation for $U_q(\mathfrak{sl}_2)$. See [40] for the details.

Remark 9.7. We discovered the equitable presentation for $U_q(\mathfrak{sl}_2)$ during our recent study of tridiagonal pairs [17–19], and the closely related Leonard pairs [32–39,41]. A Leonard pair is a pair of semi-simple linear transformations on a finite-dimensional vector space, each of which acts tridiagonally on an eigenbasis for the other [32, Definition 1.1]. There is a close connection between Leonard pairs and the orthogonal polynomials that make up the terminating branch of the Askey scheme [22], [32, Appendix A], [38]. A tridiagonal pair is a mild generalization of a Leonard pair [17, Definition 1.1].

References

- V. Bavula, D.A. Jordan, Isomorphism problems and groups of automorphisms for generalized Weyl algebras, Trans. Amer. Math. Soc. 353 (2001) 769–794.
- [2] V. Bavula, F. van Oystaeyen, Simple modules of the Witten–Woronowicz algebra, J. Algebra 271 (2004) 827–845.
- [3] G. Benkart, T. Roby, Down-up algebras, J. Algebra 209 (1998) 305-344.
- [4] T. Cassidy, B. Thomas, Basic properties of generalized down-up algebras, J. Algebra 279 (2004) 402-421.
- [5] N. Ciccoli, F. Gavarini, A quantum duality principle for subgroups and homogeneous spaces, math.QA/0312289.
- [6] C. Delbecq, C. Quesne, Representation theory and q-boson realizations of Witten's su(2) and su(1, 1) deformations, Phys. Lett. B 300 (1993) 227–233.
- [7] D.B. Fairlie, Quantum deformations of SU(2), J. Phys. A 23 (1990) L183-L187.
- [8] E.G. Floratos, S. Nicolis, An SU(2) analogue of the Azbel–Hofstadter Hamiltonian, J. Phys. A 31 (1998) 3961–3975.
- [9] K. Fujikawa, H. Kubo, An extended q-deformed su(2) algebra and the Bloch electron problem, Phys. Lett. A 239 (1998) 21–26.
- [10] G. Gasper, M. Rahman, Basic Hypergeometric Series, Encyclopedia Math. Appl., vol. 35, Cambridge Univ. Press, Cambridge, 1990.
- [11] Ya.A Granovskiĭ, A.S. Zhedanov, Nature of the symmetry group of the 6*j*-symbol, Zh. Eksper. Teoret. Fiz. 94 (1988) 49–54.
- [12] Ya.I. Granovskiĭ, I.M. Lutzenko, A.S. Zhedanov, Mutual integrability, quadratic algebras, and dynamical symmetry, Ann. Physics 217 (1992) 1–20.
- [13] Ya.I. Granovskiĭ, A.S. Zhedanov, "Twisted" Clebsch–Gordan coefficients for su_q(2), J. Phys. A 25 (1992) L1029–L1032.

- [14] Ya.I. Granovskiĭ, A.S. Zhedanov, Linear covariance algebra for $sl_q(2)$, J. Phys. A 26 (1993) L357–L359.
- [15] Ya.I. Granovskii, A.S. Zhedanov, Spherical q-functions, J. Phys. A 26 (1993) 4331–4338.
- [16] M. Havlíček, A.U. Klimyk, S. Pošta, Representations of the cyclically symmetric q-deformed algebra soq (3), J. Math. Phys. 40 (1999) 2135–2161.
- [17] T. Ito, K. Tanabe, P. Terwilliger, Some algebra related to P- and Q-polynomial association schemes, in: Codes and Association Schemes, Piscataway, NJ, 1999, Amer. Math. Soc., Providence, RI, 2001, pp. 167– 192.
- [18] T. Ito, P. Terwilliger, The shape of a tridiagonal pair, J. Pure Appl. Algebra 188 (2004) 145-160.
- [19] T. Ito, P. Terwilliger, Tridiagonal pairs and the quantum affine algebra $U_q(sl_2)$, Ramanujan J., in press, math.QA/0310042.
- [20] J.C. Jantzen, Lectures on Quantum Groups, Grad. Stud. Math., vol. 6, Amer. Math. Soc., Providence, RI, 1996.
- [21] C. Kassel, Quantum Groups, Springer-Verlag, New York, 1995.
- [22] R. Koekoek, R.F. Swarttouw, The Askey scheme of hypergeometric orthogonal polynomials and its qanalogue, Report 98-17, Delft University of Technology, The Netherlands, 1998, available at http://aw.twi. tudelft.nl/~koekoek/research.html.
- [23] L. Le Bruyn, Two remarks on Witten's quantum enveloping algebra, Comm. Algebra 22 (1994) 865–876.
- [24] L. Le Bruyn, Conformal sl₂ enveloping algebras, Comm. Algebra 23 (1995) 1325–1362.
- [25] M. Odesskii, An analogue of the Sklyanin algebra, Funct. Anal. Appl. 20 (1986) 78–79.
- [26] W. Pusz, S.L. Woronowicz, Twisted second quantization, Rep. Math. Phys. 27 (1989) 231-257.
- [27] A. Rosenberg, Noncommutative Algebraic Geometry and Representations of Quantized Algebras, Kluwer Academic, Dordrecht, 1995.
- [28] H. Rosengren, A new quantum algebraic interpretation of the Askey–Wilson polynomials, in: q-Series from a Contemporary Perspective, South Hadley, MA, 1998, in: Contemp. Math., vol. 254, Amer. Math. Soc., Providence, RI, 2000, pp. 371–394.
- [29] S.P. Smith, A class of algebras similar to the enveloping algebra of sl(2), Trans. Amer. Math. Soc. 322 (1990) 285–314.
- [30] S.P. Smith, A.D. Bell, Some 3-dimensional skew polynomial rings, unpublished lecture notes, 1991.
- [31] T. Tanisaki, Lie Algebras and Quantum Groups, Kyoritsu Publishers, 2002 (in Japanese).
- [32] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001) 149–203.
- [33] P. Terwilliger, Two relations that generalize the q-Serre relations and the Dolan–Grady relations, in: Physics and Combinatorics, Nagoya, 1999, World Scientific, River Edge, NJ, 2001, pp. 377–398, math.QA/0307016.
- [34] P. Terwilliger, Leonard pairs from 24 points of view, Rocky Mountain J. Math. 32 (2) (2002) 827-888.
- [35] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other; the TD–D and the LB–UB canonical form, J. Algebra 291 (1) (2005) 1–45, math.RA/0304077.
- [36] P. Terwilliger, Introduction to Leonard pairs. OPSFA Rome 2001, J. Comput. Appl. Math. 153 (2) (2003) 463–475.
- [37] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the split decomposition, J. Comput. Appl. Math. 178 (2005) 437–452, math.RA/0306290.
- [38] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array, Des. Codes Cryptogr. 34 (2005) 307–332, math.RA/0306291.
- [39] P. Terwilliger, Leonard pairs and the q-Racah polynomials, Linear Algebra Appl. 387 (2004) 235–276.
- [40] P. Terwilliger, The equitable presentation for the quantum group $U_q(\mathfrak{g})$ associated with a symmetrizable Kac–Moody algebra \mathfrak{g} , J. Algebra, submitted for publication.
- [41] P. Terwilliger, R. Vidunas, Leonard pairs and the Askey–Wilson relations, J. Algebra Appl. 3 (2004) 1–16.
- [42] J. Van der Jeugt, R-matrix formulation of deformed boson algebra, J. Phys. A 26 (1993) L405–L411.
- [43] P.B. Wiegmann, A.V. Zabrodin, Algebraization of difference eigenvalue equations related to $U_q(sl_2)$, Nucl. Phys. B 451 (1995) 699–724.
- [44] E. Witten, Gauge theories, vertex models, and quantum groups, Nucl. Phys. B 330 (1990) 285-346.
- [45] E. Witten, Quantization of Chern–Simons gauge theory with complex gauge group, Comm. Math. Phys. 137 (1991) 29–66.
- [46] A.S. Zhedanov, "Hidden symmetry" of the Askey–Wilson polynomials, Teoret. Mat. Fiz. 89 (1991) 190–204 (in Russian); English translation: Theoret. Math. Phys. 89 (1991) 1146–1157.

- [47] A.S. Zhedanov, Quantum $su_q(2)$ algebra: "Cartesian" version and overlaps, Modern Phys. Lett. A 7 (1992) 1589–1593.
- [48] A.S. Zhedanov, Hidden symmetry algebra and overlap coefficients for two ring-shaped potentials, J. Phys. A 26 (1993) 4633–4641.