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Simulated Annealing for Sequential Pattern
Detection and Seismic Applications

Kou-Jen Huang, Kou-Yuan Huang, Senior Member, IEEE, I-Chieh Chen, and Luke K. Wang

Abstract—Sequential pattern detection with simulated anneal-
ing (SA) is adopted to estimate parameters and detect lines,
ellipses, hyperbolas type by type, and patterns by patterns in
each type. The motivation of the sequential detection method is
to deal with multiple patterns. The parameters of a pattern are
formed as a vector and used as a state, and adjusted in SA.
A sequential detection algorithm using SA to detect patterns is
proposed. It detects one or a small number of patterns at each
step. SA has the capability of the global minimization. The six
parameters of patterns are adjusted sequentially step by step.
The computation can converge efficiently. In the experiment, the
result of sequential detection is better than that of synchronous
detection in detecting a large number of patterns. In sequential
detection, detection of one pattern at each step can have less
computation time and good convergence in total detection than
using two or more pattern detections. In simulated seismic data,
SA is applied to detect the hyperbolas in the common depth
point (CDP) gather. In real one-shot seismogram, SA is applied
to detect lines of direct wave and hyperbolas of reflection wave.
The results can show that the proposed method is feasible.

Index Terms—Ellipse, hyperbola, line, parametric pattern
detection, seismic patterns, sequential detection, simulated
annealing (SA).

I. INTRODUCTION

P ATTERN detection was very important in computer
vision. Usually the Hough transform (HT) was used to

detect patterns in images [1]. The generalized HT (GHT) and
several efficient GHT methods were ever proposed to detect
the patterns which can be lines, circles, ellipses, and arbitrary
shapes [2], [3], but no one efficient method had both the less
memory requirements and the less computational complexity.
The hyperbolas were not detected.

In seismic exploration data, a one-shot seismogram contains
line pattern from direct wave and hyperbolic pattern from
reflection wave [4]–[6]. Huang et al. employed the HT to
detect line pattern from direct wave and hyperbolic pattern
from reflection wave [7]. However, there was a problem in
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determining the peaks in the parameter space. The memory
requirement was a problem in the parameter space also.

In 2002, the HT neural network (HTNN) was proposed to
detect lines, circles, and ellipses, but the hyperbolas were not
detected also [8]. In 2006, Huang et al. adopted the HTNN
to detect the parametric patterns including hyperbolas [9], but
the HTNN used the gradient descent method that had the local
minimum problem.

The simulated annealing (SA) was first proposed by Kirk-
patrick et al. [10]. Its global optimization capability relied on
the Metropolis criterion [11]. There were some applications
of SA to the geoscience and remote sensing and the results
were good [12]–[15]. There were some seismic applications
of SA and the results were good also [16]–[20]. Huang and
Chen had ever applied the SA for pattern detection and
seismic applications [21], [22]. A small number of patterns,
at most four, were detected synchronously, but there was no
experiment for a large number of patterns.

The SA is a global optimization method. Here, we use it for
pattern detection and seismic applications. There are two kinds
of processing. One is the synchronous detection that detects all
parametric patterns at the same time, but there is a convergence
problem and the detection result is not good for a large
number of patterns. The other is the sequential detection that
detects one or a small number of patterns at each step and the
final detection result is good. Sequential detection method can
overcome the convergence problem of synchronous detection.
Taking the advantages of SA and sequential detection method,
we propose the SA detection system to detect the patterns
with sequential procedure. Also, we apply the SA to detect
hyperbolas in the seismic common depth point (CDP) gather
and lines from direct wave and hyperbolas from reflection
wave in the real seismic data. The CDP gather was also called
common midpoint (CMP) gather [5], [6].

II. SEQUENTIAL PATTERN DETECTION

We sequentially detect the parametric patterns type by
type that includes lines, ellipses, and hyperbolas. The ellipse
includes circle. Each pattern is represented by a set of param-
eters. The SA can estimate parameters of each pattern.

The procedure of sequential pattern detection is shown
in Fig. 1. First, there are N points in the image. The SA
parameter estimation system can detect a set of parameter
vectors of one type. One or some patterns are detected. Then,
the system deletes the detected patterns and the corresponding
points that are close to them and repeats detection on the
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Fig. 1. Sequential pattern detection.

TABLE I
RELATION BETWEEN SHAPE AND PARAMETERS IN (2)

remaining points. Until all patterns of one type are detected,
it changes to detect the next type. After detecting all types,
the system stops.

We define system error. The SA algorithm can estimate the
parameters of all patterns with minimum error.

A. Parametric Patterns

For ellipse or hyperbola detection, the standard equation is
expressed as

x′2

a′2
± y′2

b′2
= 1. (1)

The shape is transferred through translation, rotation, and
scaling. The equation is expressed as

a[(x−mx)cos θ + (y −my)sin θ]
2

+ b[−(x−mx)sin θ + (y −my)cos θ]
2 = f

(2)

where (mx, my) is the center, a and b are the shape parameters,
θ is the rotation angle, and f is the size of the pattern.
Table I lists the relation between the shape of the equation
and parameters a, b, and f . The symbol + is the positive
number and the symbol − is the negative number.

In vector form, a parameter vector p = [mx my a b θ f ]
T

represents a pattern (ellipse or hyperbola). For the kth pattern,
pk = [mk,x mk,y ak bk θk fk]

T , and for all K patterns, the
matrix P = [p1 p2 . . . pk . . . pK]. We set f as a positive number.
The parameters a, b, and f can show types of patterns as listed
in Table I.

Fig. 2. Equal radial distance curves to a hyperbola x2 − y2 = 1.

For line, the equation is expressed as

ax+ by + c = 0. (3)

A parameter vector p = [a b c]
T represents a line pattern. For

the kth pattern, pk = [ak bk ck]
T , and for all K line patterns,

the matrix P = [p1 p2 . . . pk . . . pK].

B. System Error

Considering N points from K patterns in an image, for the
error (distance and energy) of the system, at first we calculate
the distance from a point to a pattern. Then, we calculate the
distance from a point to all K patterns. Finally, we calculate
the distance from all N points to all K patterns as the system
error.

1) Distance from a Point to a Pattern: For detection of el-
lipses and hyperbolas, the distance from appoint xi = [xi yi]

T

to the kth pattern is defined as dk(xi)

dk(xi) = min
z

‖xi − z‖ (4)

where z is a point on the (2) of the kth pattern. From (4), the
point z on the kth pattern is the nearest to xi. dk(xi) is the
length of the perpendicular line segment from xi to (2) [23]. In
the implementation, we estimate (4) by sampling sufficiently
enough points, e.g., 1000 points, from (2), and find the nearest
point z to xi .

The other kind of distance from a point xi = [xi yi]
T to the

kth pattern could also be defined in [21] and [22] as

dk(xi) = |ak[(xi −mk x)cos θk + (yi −mk y)sin θk]
2

+ bk[−(xi−mk x) sin θk+(yi−mk y)cos θk]
2−fk|.

(5)

It was a radial distance [23]. Fig. 2 shows the equal distance
curves of a hyperbola. The equal distance curves were very
close to the four far away sides of a hyperbola. The point
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Fig. 3. Steps of distance calculation from a point to all K patterns.

was near to the side of hyperbola, but the distance was very
big. Because the distance defined in (5) becomes sensitive
at some particular positions, here we use (4) in the distance
computation.

For line detection, the distance from a point xi = [xi yi]
T

to the kth line pattern is defined as

dk(xi) = dk(xi, yi) =
|akxi + bkyi + ck|√

a2k + b2k
. (6)

Also, we can use (2) to detect line. The line is one of the
asymptotes of a hyperbola. We set f = 0. For a and b, one is
positive and the other is negative.

2) Error from a Point to All Patterns: Error (distance and
energy) from a point to all patterns is defined as the minimal
distance from the point to all patterns. The error of the ith
point xi to all K patterns is defined as Ei

Ei = min
k

ek(xi)

ek(xi) = −exp(−d2k(xi)/q) (7)

where q is a parameter to adjust the sensitivity of the kth
pattern to the outliers. Equation (7) can reduce the effect
of outliers and still keep the error for minimization in the
following system error (8). Fig. 3 shows the calculating
procedure for the distance of a point to all K patterns. The
distance layer computes the distance from a point to each
pattern by (4) or (6), and the error layer outputs the minimum
error from a point to all K patterns by (7).

3) System Error From All Points to All Patterns: The
system error is defined as the average of errors from all N
points to all K patterns

E =
1

N

N∑
i=1

Ei. (8)

The calculating procedure of system error is shown in Fig. 4.

C. SA for Parameter Estimation

We use SA to estimate parameters and detect patterns. To
detect lines, we use the line equation in (3). To detect ellipses
or circles, we use (2) and set a > 0, b > 0, and f > 0. To
detect hyperbolas, we use (2) and set a < 0, b > 0, and f > 0
in order to detect the seismic reflection patterns.

Fig. 4. Steps of calculating system error and SA.

The goal of using SA is to find a set of parameter vectors
that can globally minimize the error of the system. We use the
temperature decreasing function T (t) by [10]

T (t) = Tmax × β(t−1), for t = 1, 2, 3, . . . , 0 < β < 1
(9)

where t is the temperature step index.
Adjusting all parameters of a pattern at a time is not efficient

in convergence [8]. We adjust parameters sequentially step by
step. For line, the order is a and b for slope, and then c for
intercept. For ellipse or hyperbola, the order is the center (mx,
my), the shape parameters a and b, the rotation angle θ, and
the size f .

Algorithm 1 SA algorithm to Estimate Parameters of K
Patterns (Lines, Ellipses, or Hyperbolas)

Input: N points in an image. Set K as the number of
patterns and Ns as the temperature cooling steps.

Output: A set of K parameter vectors.
Step 1: Initialization.
In the initial step t = 1, choose Tmax as T (1) at high tem-

perature. Initialize β and 0 < β < 1. Define the temperature
decreasing function as in (9)

T (t) = Tmax × β(t−1).

Initialize parameter vectors of K patterns, p1 p2 . . .
pk . . . pK, where pk = [ak bk ck]

T for lines and pk =

[mkx mky ak bk θk fk]
T for ellipses or hyperbolas. One p is

for one pattern and set P = [p1 p2 . . . pk . . .pK ] for all K
patterns.

Calculate energy E(P) as that in (8).
Step 2: Randomly change parameter vectors and decide the

new parameter vectors at a temperature or in one cooling step.
For m = 1 to Nt (Nt trials at a temperature)
For k = 1 to K(k is the index of the pattern)
To detect lines, go to Step 2A; to detect ellipses and
hyperbolas, go to Step 2B.
Step 2A for line detection:
Start a trial, including the following steps (a) and (b).
(a) Randomly change the slope parameters:

[a′k b
′
k]

T = [ak bk]
T + αabs (10)
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where s = [s1 s2]
T is a 2× 1 random vector, s1 and s2

are Gaussian random variables with N(0, 1), and αab is a
constant.

Now p′
k = [a′k b

′
k ck]

T and P′ = [p1 p2 . . . p′
k . . . pK ]. Cal-

culate the new energy E
(
P′) from N points to K patterns and

use Metropolis criterion to decide whether or not to accept
P′. If the new energy is less than or equal to the original
one ΔE = E(P′)− E(P) ≤ 0, then accept P′. Otherwise, the
new energy is higher than the original one, ΔE = E(P′)−
E(P) > 0. In this case, compute prob = exp[−ΔE/T (t)].
Generate a random number r uniformly distributed over (0, 1).
If prob ≥ r, accept P′; otherwise, reject it and keep previous P.

(b) Randomly change the intercept parameter:

c′k = ck + αcs (11)

where s is a Gaussian random variable with N(0, 1) and αc

is a constant.
Now p′

k = [ak bk c
′
k]

T and P′ = [p1 p2 . . . p′
k . . . pK]. Sim-

ilar to Step 2A(a), calculate the new energy E (P′) from
N points to K patterns and use Metropolis criterion to decide
whether or not to accept P′.

Step 2B for ellipse and hyperbola detection:
Start a trial, including the following steps (a)–(d).
(a) Randomly change the center of the kth pattern:

[m′
kx m

′
ky]

T = [mkx mky]
T + αms (12)

where s = [s1 s2]
T is a 2× 1 random vector, s1 and s2

are Gaussian random variables with N(0, 1), and αm is a
constant.

Now p′
k = [m′

kx m
′
ky ak bk θk fk]

T and P′ = [p1 p2 . . .
p′
k . . . pK]. Similar to Step 2A(a), calculate the new energy

E
(
P′) from N points to K patterns and use Metropolis

criterion to decide whether or not to accept P′.
(b) Randomly change the shape parameters:

[a′k b
′
k]

T = [ak bk]
T + αabs (13)

where s = [s1 s2]
T is a 2× 1 random vector, s1 and s2

are Gaussian random variables with N(0, 1), and αab is a
constant.

Note that for detecting ellipses, we set a′k > 0 and b′k > 0.
For detecting hyperbolas, we set a′k > 0 and b′k < 0. Now
p′
k = [mkx mky a

′
k b

′
k θk fk]

T and P ′ = [p1 p2 . . . p′
k . . . pK].

Similar to Step 2A(a), calculate the new energy E
(
P′) from

N points to K patterns and use Metropolis criterion to decide
whether or not to accept P′.

(c) Randomly change the angle:

θ′k = θk + αθs (14)

where s is a Gaussian random variable with N(0, 1), and αθ

is a constant.
Now p′

k = [mkx mky ak bk θk f
′
k]

T and P ′ = [p1 p2 . . .
p′
k . . . pK]. Similar to Step 2A(a), calculate the new energy

E(P′) from N points to K patterns and use Metropolis
criterion to decide whether or not to accept P′.

(d) Randomly change the size:

f ′
k = |fk + αfs| (15)

where s is a Gaussian random variable with N(0, 1) and αf

is a constant.
Now p′

k = [mkx mky ak bk θk f
′
k]

T and P ′ = [p1 p2 . . .
p′
k . . . pK]. Similar to Step 2A(a), calculate the new energy

E (P′) from N points to K patterns and use Metropolis
criterion to decide whether or not to accept P′.

End for k (pattern)
End for m (trial)
Step 3: System Cooling.
Add 1 to t. Decrease temperature T according to the cooling

function (9) T (t) = Tmax × β(t−1) and repeat Step 2 and 3
until t = Ns cooling steps for the low temperature.

D. Sequential Pattern Detection

We detect lines, ellipses, and hyperbolas type by type
sequentially. We must set the threshold of error λe and the
threshold of point number λp. If the error (distance) from a
point to a pattern as in (4) or (6) is less than λe, then the point
belongs to that pattern. If a pattern contains enough points
that are larger than λp, then the pattern is detected. This is
to ensure that the pattern covers enough points instead of just
being represented by a few points.

We input points to the sequential pattern detection system.
One or some patterns are detected. We remove the detected
patterns and their corresponding points. Then, we input the
remaining data to the detection system for further detection.
It repeats until all patterns of a type are detected. Then, we
change to detect the patterns of the next type. When patterns
of all types are detected, the system stops. The algorithm is
as follows.

Algorithm 2 Sequential Pattern Detection System
Input: N points in an image. Set K1, K2, and K3 as the

number of lines, ellipses, and hyperbolas.
Output: A set of estimated parameter vectors for K1 lines,

K2 ellipses, and K3 hyperbolas.
Step 1: Initialization.
Set the order of pattern type: line, ellipse, and hyperbola.
Set threshold of error λe and threshold of point number λp.
Step 2: Detect one or some patterns in one type (line,

ellipse, or hyperbola) by SA parameter estimation system of
Algorithm 1.

Step 3: Remove the detected patterns and their correspond-
ing points.

Step 4: Check the detection results.
If all patterns of a type are detected, go to Step 5. Otherwise,

go to Step 2 and continue to detect the patterns of the same
type.

Step 5: Check the detection type.
If all types are detected, stop the detection. Otherwise,

change to detect the next type and go to Step 2 to detect
the patterns of that type.

We use Fig. 5 as an example. We number each pattern in
the image which consists of one line, two ellipses, and one
hyperbola. We detect one pattern at each step. The sequence
is line 1, ellipse 2, ellipse 3, and hyperbola 4 as shown in
Fig. 5. Finally, all patterns can be detected type by type and
pattern by pattern. The simulation is in the experiment.
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Fig. 5. Example of sequential detection.

Fig. 6. Direct wave and reflection from the single horizontal layer.

III. SEISMIC PATTERNS

Seismic reflection method is important in oil and gas
exploration. Seismic signal is generated by explosion. For a
one shot, there are many receivers on the two sides. After
explosion, there are direct P-wave along the ground surface
and reflection P-wave from the subsurface reflection layers.
At one-shot seismogram, we use SA to estimate parameters
of line patterns of direct wave and hyperbolic patterns of
reflection wave.

A. Direct Wave

From Fig. 6, the equation for the travel time t of the direct
wave from a shot point to a receiver on the ground is in (16).
The velocity of P-wave is v. The distance of receiver is x. It
is a line in the time–distance space

t =
x

v
. (16)

B. Reflection of Single Layer

After one shot, the wave propagates through the medium
and is reflected back from the reflection layer. There are two
cases of reflection: from the horizontal layer and from the
dipping layer.

The first case is the horizontal reflection layer as shown
in Fig. 6. The depth of reflection layer is d. The time of the
wave reaching the kth receiver is derived in (17), and the
time–distance curve is a hyperbola

t =

(
OQ+QP

)
v

=
O′P
v

=

√
OO′2 +OP

2

v
=

√
(2d)

2
+ x2

v

=

√(
2d

v

)2

+
(x
v

)2
. (17)

Fig. 7. Reflection from the dipping reflection layer.

Fig. 8. Travel path of a reflected ray in a multilayer structure.

The other case is the dipping reflection layer as shown in
Fig. 7. The layer dipping angle is θ. In this case, we use the
trigonometric laws of cosine to derive the relation between
receiving time t and the distance x in (18). After further
algebraic calculation, it is also a hyperbola in (19). Note here,
the hyperbola pattern from dipping reflection layer has a shift
related to the hyperbola which is from horizontal reflection
layer

t =
(OQ+QP)

v = O′P
v =

√
O′O2

+OP
2−2·O′O·OP ·cos(angle(∠O′OP ))

v

=

√
O′O2

+OP
2−2·O′O·OP ·cos(90◦−θ)

v =

√
(2d)2+x2−4dx sin θ

v
(18)

t =

√
(2d)2 + (x− 2d sin θ)2 − (2d)2 sin2 θ

v

=

√
(2d cos θ)2 + (x− 2d sin θ)2

v
. (19)

C. Reflection of Multilayer

According to Dix’s equation [5], [6], [24], [25], the total
travel time of the reflection tn(x) in Fig. 8 from the small
offset x(x << d) and the n layers at depth d is given by

tn(x) = (4d2 + x2)1/2/Vrms,n (20)

where d is the depth for the n layers, Vrms,n is the root-
mean-square velocity from ground down to the nth layer. So
the time–distance curve is also a hyperbola.
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Fig. 9. Sequential detection on patterns of mixed types. First step: (a) input
data and (b) detected line. Second step: (c) remaining data and (d) detected
first ellipse. Third step: (e) remaining data and (f) detected second ellipse.
Fourth step: (g) remaining data and (h) detected hyperbola. (i) Final detected
patterns.

IV. EXPERIMENTS

In experiments, there are patterns of mixed types, 10 el-
lipses, real one-shot seismogram, and seismic CMP gather
data. The synchronous and the sequential detections are used.
There is a comparison for both detections.

A. Detection of Patterns in Mixed Types

In Fig. 9(a), there are four mixed type patterns. In this ex-
periment, the sequential detection method is used. One pattern
is detected at each step. The four steps are shown in Fig. 9.
Each step shows input data, detected pattern, and remaining
data. In the line detection, we set the parameters of SA system:
αab = 0.2, αc = 4, β = 0.99, q = 0.2, Tmax = 100, Nt = 20,
Ns = 1000, λe = 1.2, and λp = 48. In the ellipse detection,
we set the parameters: αm = 1, αab = 1, αθ = 2, αf = 2,
β = 0.99, q = 0.2, Tmax = 100, Nt = 20, Ns = 1000, λe =
1.2, and λp = 30. In the hyperbola detection, we set the
parameters: αm = 1, αab = 4, αθ = 0.5, αf = 6, β = 0.99,
q = 0.2, Tmax = 100, Nt = 20, Ns = 1000, λe = 1.2, and
λp = 30. The detection results of four steps are shown in
Fig. 9.

B. Detection in a Large Number of Patterns

We do experiments on detecting a large number of patterns
using both synchronous detection and sequential detection

Fig. 10. Synchronous detection on 10 ellipses. (a) Input data. (b) Detected
patterns. (c) Energy versus temperature cooling step.

and make a comparison. In Fig. 10, the simulated patterns
include10 ellipses. Each point is added with Gaussian noise
N(0, 0.2)×N(0, 0.2), and every ellipse contains at least
30 points.

1) Synchronous Detection: We use the synchronous dete-
ction to detect 10 ellipses in Fig. 10(a). We set the para-
meters of SA system: αm = 1, αab = 1, αθ = 2, αf = 2,
β = 0.99, q = 0.2, Tmax = 100, Nt = 20, and Ns = 1000,
λe = 1.2, and λp = 30. Fig. 10(b) shows the detection
result. Fig. 10(c) shows the energy versus temperature
cooling step. Only seven ellipses are correctly detected.
The detection result is not good. The reason is that 60
parameters of 10 ellipses must be determined synchro-
nously and there is also a problem of interference and the
convergence.

We take the detected patterns from the minimum error in
the 1000 temperature cooling steps, not at the last temperature.
All the experiments have the same procedure.

2) Sequential Detection: We use the sequential detection
to detect 10 ellipses in Fig. 11(a), same as Fig. 10(a). One
pattern is detected at each step. We set that the parameters
are the same as that of the synchronous detection. There
are 10 steps in the sequential detection. We just show the
results of two steps in the following. They are shown in
Figs. 11–13.

Fig. 11(b) shows the result at the first step where the pattern
close to the points is detected. Fig. 11(c) shows the plot of
energy versus temperature cooling step.
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Fig. 11. Sequential detection at the first step on 10 ellipses. (a) Input data.
(b) Detected pattern. (c) Energy versus temperature cooling step.

Fig. 12(a) shows the remaining points at the fifth step.
Fig. 12(b) shows the detected pattern. Fig. 12(c) shows the
plot of energy versus temperature cooling step.

Fig. 13 plots the final result. Every pattern is detected.
The result is quite good. Comparing the detection results in
Figs. 10(b) and 13, the sequential detection is better than the
synchronous detection in detecting a large number of patterns.

In the experiments of sequential detection on 10 ellipses,
we use one, two, and three patterns at each step. If we detect
one pattern at each step, we must do 10 steps. Each ellipse
has six parameters. If we detect two patterns at each step, we
must do five steps. However, the CPU time in the two-pattern
detection is more than two times in the one-pattern detection.
So, one-pattern detection takes less CPU time in the detection
of all 10 ellipses. It is the same result for the detection of three
patterns. Moreover, for the detection of two and three patterns,
the number of pattern parameters is 12 and 18, as there is more
interference in the detection. The detection result may be not
good. The one-pattern detection at each step has the less CPU
time and can get good result.

C. Experiments on Real One-Shot Seismogram

The system is applied to detect line pattern from direct
wave and hyperbolic patterns from reflection wave in real one-
shot seismic data. We obtain seismic data from Seismic Unix
System [5]. The real data of one-shot seismogram in Fig. 14(a)
are from Canadian Artic. The receivers are at two sides. It has

Fig. 12. Sequential detection at the fifth step. (a) Input data. (b) Detected
pattern. (c) Energy versus temperature cooling step.

Fig. 13. Final detected patterns by sequential detection.

48 traces and 3100 samples per trace with sampling interval
0.002 s.

The seismogram is preprocessed by envelope processing,
peak detection, and threshold processing [7]. Because after
1.4 s the signal is weak, we only choose points with t <
1.4 s, which includes pattern points from direct wave, first
layer reflection wave, and second layer reflection wave as
in Fig. 14(b), where there are 88 points. The image data
in Fig. 14(b) are the input to the SA parameter detection
system.

1) Synchronous Detection: We set the parameters of SA
system: αm = 1, αab = 4, αθ = 0.5, αf = 6, β = 0.99, q =
0.2, Tmax = 500, Nt = 20, Ns = 1000, λe = 1.2, and λp =
10. Fig. 14(c) shows the synchronous detection result. Three
hyperbolas are detected. Because of random process, we
do many experiments, but we cannot get good result every
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Fig. 14. Synchronous detection on real one-shot seismogram. (a) Real seismic
data at Canadian Artic. (b) Image data after preprocessing. (c) Detected
patterns. (d) Energy versus temperature cooling step.

time. The computation time takes much longer than that of
sequential method in the following comparison.

2) Sequential Detection: We do sequential hyperbola de-
tection in Fig. 14(b). We set the parameters of SA sys-
tem: αm = 1, αab = 4, αθ = 0.5, αf = 6, β = 0.99, q = 0.2,
Tmax = 100, Nt = 20, Ns = 1000, λe = 1.2, and λp = 10.
Fig. 15 shows the sequential detection steps. Fig. 15(a), (c),
and (e) are the first to third detected patterns, and Fig. 15(b)
and (d) are the remaining data after the first and second
detection steps. Fig. 15(f) is the final detected patterns.

D. Experiments on Seismic CDP Gather

We generate the shot recording data from geologic model.
From many one-shot seismograms, we collect CDP gather

data in the following. Then, we apply the SA to estimate the
parameters of hyperbolic patterns on the simulated seismic
CDP gather.

1) Geologic Model, Seismic Data, and CDP Gather: We
use Seismic Unix System [5] to generate a geologic model
of five layers as shown in Fig. 16. The interval velocity of
each layer is listed in Table II. We have one-shot point and
receivers at two sides and get one-shot seismogram. Then,
we move shot point and receivers at the same time and
get the other seismogram. Repeatedly, we have 40 shots to
obtain 40 one-shot seismograms. The first shot point starts at
2 km distance from the origin. The sampling time is 0.004 s.
Each shot point is in the middle of the 60 spread receivers.
The distance between two receivers is 50 m. After finishing
the first shot, the second shot point and all receivers move
50 m from left to right. The range of shot points is from
2 to 3.95 km and the range of receivers is from 0.525 to
5.425 km.

Fig. 15. Sequential detection on real one-shot seismogram. (a) First detected
pattern. (b) Remaining data. (c) Second detected pattern. (d) Remaining data.
(e) Third detected pattern. (f) Final detected patterns.

Fig. 16. Geologic model of five layers.

TABLE II
INTERVAL VELOCITY IN GEOLOGIC MODEL

We collect those reflection traces with the same reflection
point from underground at different shots and receivers to
become a CDP gather [5], [6]. One example of collecting
CDP traces is shown in Fig. 17. The travel time of reflection
is the same as (20). There are total 138 CDP gathers from
40 shot records. We choose one example of CDP gather #72
at 3.0375 km in Fig. 18(a). The patterns are hyperbolas from
the reflection of CDP of different layer depths. Fig. 18(b) is
the preprocessing result through envelope, threshold, and peak
processing [7]. There are four hyperbolas.
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Fig. 17. Six traces of CDP gather 11 with midpoint at 275 m.

Fig. 18. Synchronous four hyperbolas detection on seismic CDP gather.
(a) CDP gather #72 at 3.0375 km. (b) Image data after preprocessing. (c)
Synchronous detection result. (d) Energy versus temperature cooling step.

2) Synchronous Hyperbola Detection on CDP Gather:
We use synchronous hyperbola detection in Fig. 18(b). We
set the parameters of SA system: αm = 1, αab = 4, αθ =
0.5, αf = 6, β = 0.99, q = 0.2, Tmax = 500, Nt = 20, Ns =
1000, λe = 1.2, and λp = 10. Fig. 18(c) shows the detected
patterns. Only three hyperbolas are correctly detected. Because
24 parameters are computed at one time and there is more
interference, the result is not good.

3) Sequential Hyperbola Detection on CDP Gather: We do
sequential hyperbolic detection in Fig. 18(b). We set the pa-
rameters of SA system: αm = 1, αab = 4, αθ = 0.5, αf = 6,
β = 0.99, q = 0.2, Tmax = 100, Nt = 20, Ns = 1000, λe =
1.2, and λp = 10. There are four steps in the detection. We
just show the results of two steps in the following. The first
detection step is shown in Fig. 19. The third detection step is
shown in Fig. 20. Final detection result is shown in Fig. 20(d).
Four hyperbolas are correctly detected.

Fig. 19. Sequential four hyperbolas detection on seismic CDP gather. (a) First
detection result. (b) Energy versus cooling step. (c) Remaining data.

Fig. 20. Sequential four hyperbolas detection on seismic CDP gather. (a)
Third detection on remaining data. (b) Detected pattern. (c) Energy versus
cooling step. (d) Final detection result.

E. Computation Time and Memory Space Requirements

We compare the computation time and memory space
between synchronous detection in Table III and sequential
detection in Table IV. We use MATLAB R2013b programming
to run the experiments by a computer with an Intel core-i7
CPU. Although there is no big difference in memory space
requirements of two methods, the sequential detection takes
much less computation time.
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TABLE III
COMPUTATION TIME AND MEMORY SPACE REQUIREMENTS FOR

SYNCHRONOUS METHOD

TABLE IV
COMPUTATION TIME AND MEMORY SPACE REQUIREMENTS FOR

SEQUENTIAL METHOD

V. CONCLUSION AND DISCUSSION

We adopt the previously available SA-based method and
apply it in a new domain, i.e., the area of seismic data process-
ing, the main innovation. We use SA with sequential steps to
estimate parameters and detect lines, ellipses, hyperbolas type
by type, and patterns by patterns in each type. The motivation
of sequential detection method is to deal with a large number
of patterns.

We adjust the parameters of a pattern sequentially step
by step. The computation can converge efficiently than all
parameters that are adjusted at one time.

In the simulation experiments, the result of sequential de-
tection is better than that of synchronous detection in detecting
a large number of patterns. The sequential detection also takes
much less computation time than that of synchronous detec-
tion. In sequential detection, detection of one pattern at each
step can have less computation time and good convergence in
total detection than using two or more pattern detections. In
simulated seismic data, SA is applied to detect the hyperbolas
in the CDP gather. In real one-shot seismogram, SA is applied
to detect lines of direct wave and hyperbolas of reflection
wave. The results show that the proposed method is feasible.
The computed hyperbolic parameters can be used in normal
move-out (NMO) correction and velocity analysis for further
seismic data processing [5], [6].

In the experiments, we set the parameters of SA that include
the initial temperature Tmax, parameter β, number of trials at
one temperature Nt, and number of temperature cooling steps
Ns, but we need to study a systematic method to determine
those parameters.
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