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s u m m a r y

Due to the irregular distributions of aquifer hydraulic properties, the detail on the characterization of
flow field cannot be anticipated. There can be a great degree of uncertainty in the prediction of heat trans-
port processes anticipated in applying the traditional deterministic transport equation to field situations.
This article is therefore devoted to quantification of uncertainty involving predictions over larger scales in
terms of the temperature variance. A stochastic frame of reference is adopted to account for the spatial
variability in hydraulic conductivity and specific discharge. Within this framework, the use of the first-
order perturbation approximation and spectral representation leads to stochastic differential equations
governing the mean behavior and perturbation of the temperature field in heterogeneous aquifers. It
turns out that the mean equation developed in this sense is equivalent to the traditional deterministic
transport equation and the temperature variance gives a measure of the prediction uncertainty from
the traditional transport equation. The closed-form expression for the temperature variance developed
here indicates that the controlling parameters such as the correlation scale of specific discharge, which
measures the spatial persistence of the flow field, and the periodicity of the source term tend to increase
the variability in temperature field in heterogeneous aquifers. The uncertainty of the traditional heat
transport model increases as the penetration depth of thermal front through the aquifer increases. This
suggests that prediction of temperature distribution using the traditional heat transport model in heter-
ogeneous aquifers is expected to be subject to large uncertainty at a large depth (in the downstream
region). For the management purpose, the variance of temperature could serve as a calibration target
when applying the traditional model to field situations. It may be more reasonable to make conclusions
from, say, the mean temperature with one or two standard deviations rather than only the mean temper-
ature drawn from the traditional heat transport equation.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

It is well known that the transport of heat in aquifers is partly
driven by the flowing groundwater. Especially vertical water fluxes
are prone to propagate temperature differences. The fluctuations in
aquifer properties are often viewed as random processes as a result
of the details of which cannot be described precisely. The spatial
variations in hydraulic conductivity cause a non-uniform velocity
field. Many practical problems of heat transport involve predic-
tions over much larger scales than these at which direct measure-
ments are possible. It can thus be expected that there can be large
uncertainty in predictions of heat transport in the field based on
the traditional deterministic heat transport equation for a homog-
enous porous medium. Therefore, it is useful to provide a quantita-
tive measure of uncertainty, such as the variance of the predicted
temperature, as a calibration target when applying the determinis-
tic model to field situations. This could be performed using a sto-
chastic approach.

Stochastic modeling of subsurface flow and transport recognizes
hydrological properties of the porous medium to be affected by
uncertainty and regards these as random. This randomness leads
to predictions of the flow or transport process in terms of a relatively
small number of statistical properties, such as the first and second
moments of hydraulic head or concentration (namely, the mean
and variance, respectively). With the introduction of statistical
inference, a field-scale equation containing effective coefficients
such as effective hydraulic conductivities or macrodispersivities is
developed to model the ensemble mean behavior of the dependent
variable. In the case of natural formations, the mean stochastic
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Nomenclature

A amplitude of temperature variations
C specific heat capacity of the fluid–rock matrix
Cw specific heat capacity of the fluid
G Eq. (11)
K hydraulic conductivity
Ke effective thermal conductivity
L length of the domain
P period of temperature variations
R wave number
Sqq specific discharge spectrum
T temperature
T mean temperature
T0 fluctuation in temperature
T0* complex conjugate of T0

U =cq
Z vertical space coordinate
dZqZ

complex random amplitude of specific discharge pro-
cess

qi ith component of the specific discharge vector
�qi ith component of the mean specific discharge vector
q0i fluctuation in ith component of the specific discharge

vector
q ¼ �qZ

t time
C1 Eq. (22)
C2 Eq. (23)

HTq transfer function
k1 Eq. (14)
k2 Eq. (15)
N =(r2T/A2)0.5

U1 Eq. (24)
U2 Eq. (25)
U3 Eq. (26)
W ¼ T=A
ae =Ke/(qC)
b =pae/(UL)
c =qwCw/(qC)
e Eq. (16)
g =PU/L
k correlation scale of lnK
l1 =4p2t2 + 1
l2 =p2t2 + 1
f =Z/L
q density of the fluid–rock matrix
qw density of the fluid
r2

f variance of lnK
r2

q variance of the specific discharge
r2

T variance of temperature
s =p2aet/L2

m =k/L
- =exp(�1/t)
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solution is useful to make decisions (e.g., Andricevic and Cvetkovic,
1996; Maxwell et al., 1999) in real life transport events, but there
will be variations around the mean. Therefore, for a successful pre-
diction a quantification of the degree of variability around the pre-
dicted mean behavior (the variance) should be established.

Determination of ground water flux using the analytical solu-
tion to the one-dimensional heat transport model has been dem-
onstrated and applied to situations of stream–aquifer
interactions (e.g., Stallman, 1965; Silliman et al., 1995; Hopmans
et al., 2002; Hatch et al., 2006; Keery et al., 2007; Rau et al.,
2010; Jensen and Engesgaard, 2011) and groundwater recharge
(e.g., Suzuki, 1960; Taniguchi, 1993; Taniguchi and Sharma,
1993; Tabbagh et al., 1999; Bendjoudi et al., 2005; Cheviron
et al., 2005). Interpretation of field observations using one-dimen-
sional analytical results appropriate for a homogenous system may
lead to significant errors in the predicted vertical flux in situations
where the flow field is non-uniform (e.g., Shanafield et al., 2010;
Schornberg et al., 2010; Jensen and Engesgaard, 2011; Ferguson
and Bense, 2011; Rau et al., 2012b; Roshan et al., 2012; Cuthbert
and Mackay, 2013). In other words, the prediction can be subject
to high levels of uncertainty.

As will be seen in the next section given below, the mean heat
transport equation is identical to the traditional equation except
that the mean specific discharge is replaced by the local specific
discharge. The traditional analytical result describing the tempera-
ture distribution may be interpreted as the mean of temperature
distribution, while the temperature variance may then be viewed
as the uncertainty anticipated in applying the deterministic analyt-
ical result. For the prediction of an actual temperature distribution
in the field, it may be more reasonable to draw conclusions from
the mean value (the analytical result) and the variance rather than
only the mean temperature. This research is primarily concerned
with the development of a quantification of deviation around the
mean temperature field in a non-uniform flow field and the analy-
sis of the influence of controlling parameters on that. The analysis
we perform is relevant mainly to shallow subsurface situations
that receive and transfer cyclic temperature fluctuations (i.e., daily
or seasonal) over depth. The temperature fluctuations are damped
with depth depending on their periodicity, so the solution gener-
ally applies to the surficial zone (Anderson, 2005). We hope that
the findings provided here will be useful for interpretation of field
data.
2. Mathematical statement of the problem

The heat transport equation for three-dimensional saturated
flow in a porous medium at the local level can be written as
(e.g., de Marsily, 1986; Demenico and Schwartz, 1998)

Ke

qC
@2T

@X2
i

� qW CW

qC
@

@Xi
ðqiTÞ ¼

@T
@t

i ¼ 1;2;3 ð1Þ

where T is the temperature, Ke is the effective thermal conductivity,
C and q are specific heat capacity and density of the fluid–rock
matrix, respectively, Cw and qw are specific heat capacity and den-
sity of the fluid, respectively, and qi is the ith component of the spe-
cific discharge vector q = (q1, q2, q3). The effective thermal
conductivity takes into account the effects of thermal dispersion
and conduction through the rock–fluid matrix. It is worth mention-
ing that the effect of thermal dispersion is very small and negligible
(Bear, 1972; Hopmans et al., 2002; Rau et al., 2012a). The parame-
ters in Eq. (1), such as Ke, Cw, C, qw and q, are considered fixed
parameters for their variations in space and time may be assumed
to be negligible (e.g., Demenico and Schwartz, 1998; Anderson,
2005).

To account for the natural heterogeneity of geological forma-
tions, the log hydraulic conductivity lnK is regarded as the spatially
correlated random function. Spatially correlated random heteroge-
neity in lnK field results in spatial perturbations in specific dis-
charge in Eq. (1) and in turn in the modeled temperature field.
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Spatial flux variability has been discussed recently based on small-
scale experimental observations by Rau et al. (2012b). On a larger
scale, the propagation of the temperature signal over depth in a
heterogeneous streambed environment and its implications on
flux estimates have been investigated numerically (e.g., Ferguson,
2007; Schornberg et al., 2010; Ferguson and Bense, 2011).

In this study, the flow field we are concerned with is under the
steady-state condition, i.e., oqi/oXi = 0. This simplifies (1) to

Ke

qC
@2T

@X2
i

� qW CW

qC
qi
@T
@Xi
¼ @T
@t

ð2Þ

Consider a decomposition of variables qi and T in space into a
mean and a fluctuation about the mean represented, respectively,
by

T ¼ T þ T 0 ð3aÞ

and

qi ¼ qi þ q0i ð3bÞ

In Eq. (3) the bar represents the mean value while the prime
denotes the small perturbation about the mean. The perturbation
is considered to be a zero-mean, spatial stochastic process. In gen-
eral, it is preferable to work with perturbations which are small
such that the products of perturbations are small and negligible.

Following the approach of Gelhar and Axness (1983), we substi-
tute (3) into (2) and subsequently take the expectation of the
resulting equation to yield the equation governing the mean
temperature:

Ke

qC
@2T

@X2
i

� qW CW

qC
qi
@T
@Xi
¼ @T
@t

ð4Þ

In the development of Eq. (4), terms involving products of the
perturbations are disregarded. The differential equation governing
the perturbations of temperature, T0, is then obtained by subtract-
ing the mean Eq. (4) from (2), after using (3) into (2):

Ke

qC
@2T 0

@X2
i

� qW CW

qC
qi
@T 0

@Xi
� qW CW

qC
q0i
@T
@Xi
¼ @T 0

@t
ð5Þ

In the present study we are interested in the case where only the
mean vertical heat transport is preponderant (e.g., Reiter, 2001). i.e.,
@ T=@X3 � @T=@X1 and @T=@X2, and @2T=@X2

3 � @2T=@X2
1 and

@2T=@X2
2. We also consider here the steady-state flow assumption,

where the uniform mean flow is in the vertical direction (Z-direction
or X3-axis), �q1 ¼ �q2 ¼ 0 and �q3 ¼ q, but perturbations to the flow are
in three dimensions. As such, (4) and (5) reduce, respectively, to

ae
@2T

@Z2 � cq
@T
@Z
¼ @T
@t

ð6Þ

ae
@2T 0

@Z2 � cq
@T 0

@Z
� cq0Z

@T
@Z
¼ @T 0

@t
ð7Þ

where ae = Ke/(qC), c = qwCw/(qC), and q0Z is the perturbation to the
flow in the Z-direction. Note that in the development of Eq. (7), the
contribution of conduction and thermal dispersion in the transverse
heat transport process is disregarded.

The mean transport Eq. (6) is identical in form to the traditional
one-dimensional heat transport equation for a deterministic sys-
tem if the mean specific discharge parameter in Eq. (6) is replaced
with the local specific discharge parameter. The third term on the
left-hand side of Eq. (7) is the sink term and reflects the dissipation
produced by the mean temperature gradient interacting with the
fluctuations in specific discharge. Therefore, the solution to Eq.
(7), providing the relationship between the temperature and
specific discharge perturbations, forms the basis for characterizing
the variability (or uncertainty) of the mean (or traditional) heat
transport model. Determination of the variation of temperature
field from the use of the representation theorem is the line of the
research pursued here.

Note that the representation theorem applied by this work is
referred to the expectation of the product of the Fourier-Stieltjes
integral representation for T0 and its complex conjugate together
with the orthogonality property of random Fourier increments of
q0Z . The representation theorem has been widely applied to com-
pute the variances of hydraulic head and concentration fields in
the stochastic subsurface hydrology literature (e.g., Gelhar, 1993;
Zhang, 2002; Rubin, 2003).

To provide a complete description of the heat transport pro-
cesses given by Eqs. (6) and (7), it is necessary to specify the initial
and boundary conditions. The conditions we are concerned with
are deterministic and similar to those imposed by Hatch et al.
(2006):

TðZ;0Þ ¼ 0 ð8aÞ

Tð0; tÞ ¼ A cos
2p
P

t
� �

ð8bÞ

TðL; tÞ ¼ 0 ð8cÞ

and

T 0ðZ;0Þ ¼ 0 ð9aÞ

T 0ð0; tÞ ¼ 0 ð9bÞ

T 0ðL; tÞ ¼ 0 ð9cÞ

where A and P are the amplitude and the period of temperature
variations at the upper boundary, respectively (Stallman, 1965),
and L denotes the maximal depth so that Z 2 [0, L]. Note that
Hatch et al. (2006) reformulated Stallman’s solution (1965) to
reveal the amplitude and phase features.

In the next section, we proceed to develop the analytical solu-
tion of Eq. (7), which requires (6) to be solved first in order to know
the mean temperature gradient.
3. Solution to the stochastic perturbation equation

The analytical solution to Eq. (6) with boundary conditions (8)
can be found by using the method of eigenfunction expansions
(e.g., Farlow, 1993; Haberman, 1998) as:

TðZ;tÞ¼2AL2
X1
n¼1

1
np

sin
np
L

Z
� �

exp
UZ
2ae

� �
1
G

exp � n2p2ae

L2 þ U2

4ae

 !
t

" #(

�ð64a2
e L2p2þ4a2

e n2P2U2p2þL2P2U4Þ

�½L2P2U4þ4a2
ep

2ð16L2þn2P2U2Þ�cos
2p
P

t
� �

þ32a3
e n2Pp3 sin

2p
P

t
� ��

�2A
X1
n¼1

1
np

sin
np
L

Z
� �

exp
UZ
2ae

� �
exp � n2p2ae

L2 þ U2

4ae

 !
t

" #

þA
L�Z

L
exp

UZ
2ae

� �
cos

2p
P

t
� �

ð10Þ

where U = cq and

G ¼ 16a4
e n4P2p4 þ L4P2U4 þ 64a2

e L4p2 þ 8a2
e L2n2P2U2p2 ð11Þ

In the large-time limit aet/L2� 1/p2, we arrive at a simplified
form of Eq. (10) as:
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TðZ; tÞ ¼ 2
p

A exp
p
2

n
b

� �
sinðpnÞ exp � 1þ 1

4
1
b2

� �
s

� �
ðK1 � 1Þ

	

þK2 sin 2
s
bg

� �
�K1 cos 2

s
bg

� ��

þ Að1� nÞ exp
p
2

n
b

� �
cos 2

s
bg

� �
ð12Þ

and its spatial gradient takes the form

@T
@Z
¼ A

L
exp

p
2

n
b

� �
exp � 1þ 1

4
1
b2

� �
s

� �
ðK1 � 1Þ þK2 sin 2

s
bg

� ��	

�K1 cos 2
s
bg

� ��
1
b

sinðpnÞ þ 2 cosðpnÞ
� �

þ p
2

1
b
ð1� nÞ � 1

� �
cos 2

s
bg

� ��
ð13Þ

where f = Z/L, b = pae/(UL), s = p2aet/L2, g = PU/L, and

K1 ¼
64ðb2=g2Þ þ 4b2 þ 1

e
ð14Þ

K2 ¼ 32
b3

ge
ð15Þ

e ¼ 16b4 þ 8b2 þ 64ðb2=g2Þ þ 1 ð16Þ

Eq. (13) puts us in a position to develop the analytical solution
to Eqs. (7) and (9).

To determine the variance of temperature using the representa-
tion theorem, we need to construct a wave domain solution to Eqs.
(7) and (9). When the specific discharge, the input parameter in Eq.
(1), is defined as a second-order stationary process, its perturbed
quantities can then be represented by a Fourier-Stieltjes integral
representation

q0Z ¼
Z 1

�1
exp½iRZ�dZqZ

ðRÞ ð17Þ

where dZq1
ðRÞ is a complex random amplitude of the process and R

is the wave number. It is important to know that although the heat
transport process analysis is carried out herein within a one-
dimensional framework, the perturbation flow field is not a strictly
one-dimensional flow. However, to simplify the analysis, Gelhar
(1993) pointed out that the variability in longitudinal specific
discharge can be determined within the context of such a quasi-
one-dimensional treatment by using that obtained from a three-
dimensional analysis. Duffy (1982) and Gelhar and Gutjahr (1982)
used that conceptual framework in analysis of the one-dimensional
transport problem. That is why the one-dimensional representation
for the longitudinal specific discharge perturbation in Eq. (17) is
used.

In addition, the non-stationary Fourier-Stieltjes integral repre-
sentation (e.g., Li and McLaughlin, 1991) for the perturbed quanti-
ties allows us to relate the output (T0) to input ðq0ZÞ perturbations in
the following way

T 0 ¼
Z 1

�1
HTqdZqz

ðRÞ ð18Þ

where HTq represents the transfer function which describes the
relationship between spectral fluctuations in specific discharge
and spatial fluctuations in temperature. Introducing (17) and (18)
into (7) yields

ae
@2HTq

@Z2 � U
@HTq

@Z
� c expðiRZÞ @T

@Z
¼ @HTq

@t
ð19Þ

where @T=@Z is defined in Eq. (13). Transformation of the initial and
boundary conditions leads (9) to
HTqðZ;0Þ ¼ 0 ð20aÞ

HTqð0; tÞ ¼ 0 ð20bÞ

HTqðL; tÞ ¼ 0 ð20cÞ

For the case of aet/L2� 1/p2, the transfer function can be
expressed as:

HTqðZ; t; RÞ ¼ 4p cA

LU2e
exp

p
2

n
b

� �
sinðpnÞ

� 4aeC1ðsÞ½1� expðiRLÞ� Rþ iðU=aeÞ
RðL2R2 � 4p2Þ

(

þC2ðsÞ
LU � 2aeð1þ exp½iRL�Þ

L2R2 � p2
� i2L2Uð1þ exp½iRL�Þ

�

� K

ðL2R2 � p2Þ2

#)
ð21Þ

where

C1ðsÞ ¼ U1 exp � 1þ 1
4

1
b2

� �
s

� �
þU2 sin 2

s
gb

� �
�U3 cos 2

s
gb

� �
ð22Þ

C2ðsÞ ¼ ð4b2 þ 1Þ cos 2
s
gb

� �
� exp 1þ 1

4
1
b2

� �
s

� �	 �
þ 8

b
g

sin 2
s
gb

� �
ð23Þ

U1 ¼ ð4b2 þ 1ÞK1 þ 8
b
g

K2 þ eðK1 � 1Þ s
4b2 ð24Þ

U2 ¼ ð4b2 þ 1ÞK2 � 8
b
g

K1 ð25Þ

U3 ¼ ð4b2 þ 1ÞK1 þ 8
b
g

K2 ð26Þ

Combining (21) with (18) gives

T 0 ¼4p cA

LU2e
exp

p
2

n
b

� �
sinðpnÞ

�
Z 1

�1
4aeC1ðsÞ½1�expðiRLÞ� Rþ iðU=aeÞ

RðL2R2�4p2Þ

(

þC2ðsÞ
LU�2aeð1þexp½iRL�Þ

L2R2�p2
� i2L2Uð1þexp½iRL�Þ K

ðL2R2�p2Þ2

" #)
dZqz
ðRÞ

ð27Þ
4. Variance of temperature

It follows from the use of the representation theorem for T0 that

r2
T ¼ hT

0T 0�i ¼ 16p2 c2A2

L2U4e2
exp pn

b

� �
sin2ðpnÞ

�
Z 1

�1
32a2

eC
2
1
½R2 þ ðU=aeÞ2�½1� cosðRLÞ�

R2ðL2R2 � 4p2Þ2

(

þ8aeC1C2
LU½1� cosðRLÞ�

ðL2R2 � 4p2ÞðL2R2 �p2Þ
þ ðLU2=ae �4UÞsinðRLÞ

RðL2R2 �4p2ÞðL2R2 �p2Þ

"

�4
L2UR sinðRLÞ

ðL2R2 � 4p2ÞðL2R2 �p2Þ2

#
þC2

2
L2U2 þ8a2

e �4LUae

ðL2R2 �p2Þ2

"

þ4
ð2a2

e � aeLUÞcosðRLÞ
ðL2R2 �p2Þ2

þ4
L3U2R sinðRLÞ
ðL2R2 �p2Þ3

þ8
U2L4R2½1þ cosðRLÞ�
ðL2R2 �p2Þ4

#)
SqqðRÞdR ð28Þ
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where r2T is the variance of temperature, the angle bracket denotes
the expected value operator, T0* is the complex conjugate of T0, and
Sqq(R) is the specific discharge spectrum in wave number domain.
Eq. (28) provides a means of quantifying the temperature variability
for the mean heat transport process or the uncertainty in applying
the traditional (deterministic) heat transport model.

Before evaluation of Eq. (28) can be completed, it is necessary to
select the spectrum of the specific discharge process. We consider a
particular form for Sqq(R) (Bakr et al., 1978; Duffy, 1982)

SqqðRÞ ¼
2
p

K3R2

ð1þK2R2Þ2
r2

q ð29Þ

which is widely applicable to modeling of natural phenomena. In
Eq. (29), where k and r2

q represent the correlation scale and the var-
iance of the specific discharge process.
r2
T ¼ 64A2 b2

e2

r2
q

q2 exp p n
b

� �
sin2ðpnÞ 32C2

1t
3 1

4
t
l2

1

� t
l3

1

þ p2

b2

1
16p2

1
l2

1

þ 1
4

1
l2

1

½1þ ð1� tÞ-� t2ð1þ tÞ-þ t3� þ tð1�-Þðt2 � 1Þ
l3

1

� �� �	

þ8C1C2t
1

3pb
1
4

1
l1

4
3p2 ð1=t� 2Þ-þ 4t2-� t� ð1� tÞ-
� �

þ 1
2

1
l2

1

4
3p2 -þ 16

3
t2 � tð1�-Þð4t� 1Þ

� ���

þ1
4

1
l2

tþ ð1� tÞ-� 4t-þ 4
3p2 ð2� 1=tÞ-

� �
þ 1

2
1
l2

2

ð-� 1Þt� 2t2ð2� 1=tÞ-� 4t2-þ 4
3
t2 � 4

3p2 -
� �

þ 4t2

l3
2

½p2t2 �-�
�

þ 1
6b2 �1

2
t-
l1
þ t2ð1�-Þ

l2
1

þ 1
2

t-
l2
þ t2ð1þ-Þ

l2
2

� ��
þ C2

2t
3 2

1þ t� ð1� tÞ-
l2

2

� 8
tð1þ-Þ

l3
2

þ p
b
ð1� tÞ-� t� 1

l2
2

þ 4
tð1þ-Þ

l3
2

� ��

þp2

b2

1
12p2

�3p2tþ 2p2 þ 3
l2

2

� t
l3

2

½tþ ð2t� 1Þ-� 1� � 2
t2

l4
2

½3tþ ð3t� 4Þ-� þ 16t3 1þ-
l5

2

� ���
ð30Þ
Substituting (29) into (28) and performing integration yields-
where t = k/L, - = exp(�1/t), l1 = 4p2t2 + 1 and l2 = p2t2 + 1. From
a three-dimensional analysis of first-order fluctuations in flow
field, the variance of the specific discharge can be expressed in
the form (Gelhar and Axness, 1983; Dagan, 1987; Chang and Yeh,
2007)

r2
q

q2 ¼
8

15
r2

f ð31Þ

where r2
f is the variance of lnK. With (31), the final result is now

given by
r2
T ¼

512
15

A2r2
f
b2

e2 exp p n
b

� �
sin2ðpnÞ 32C2

1t
3 1

4
t
l2

1

� t
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5. Discussion

The analytical results above are developed based on the key
assumptions of smallness of the perturbations of specific dis-
charge and temperature (the first-order perturbation approxima-
tion), second-order stationarity of the specific discharge
perturbations, and nonstationary representation for the tempera-
ture perturbation. At this point it is appropriate to review those
assumptions. In terms of the variability of lnK, the first-order per-
turbation approximation leading to the analytical results is valid
only if the variance of lnK� 1 (Gutjahr and Gelhar, 1981). That
is, the variance of temperature developed here based on the
first-order approximation is restricted to the case of mildly heter-
ogeneous media. However, the study of Monte Carlo simulations
of flow through heterogeneous formations shows agreement with
the small perturbation approximation for the moments of hydrau-
lic head with variance up to 4 (Zhang and Winter, 1999;
Guadagnini and Neuman, 1999).

The assumption of stationarity of the specific discharge field is
valid when the mean hydraulic head field is uniform (or relatively
smooth). In other words, the only source of variability in specific
discharge is the hydraulic conductivity perturbation field. The log-
arithm of hydraulic conductivity in this work is modeled as a real-
ization of a stationary random field and, in turn, stationarity of the
specific discharge field is presumed. On the other hand, the space-
dependent mean temperature gradient (see Eq. (13)) produces
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Fig. 3. Dimensionless temperature profile with mean ± one standard deviation
envelopes.
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nonstationarity of temperature perturbation process, which
excludes the direct applicability of the stationary spectral repre-
sentation. The nonstationary Fourier-Stieltjes integral representa-
tion (Li and McLaughlin, 1991) is then used to represent the
temperature perturbation process instead.

The result in Eq. (32) shows that the amplitude of the temper-
ature variance is linearly proportional to the variance of lnK. The
textural variations exhibited in natural porous media give rise to
spatial variability of their constitutive properties. This implies that
the temperature variability increases linearly with the heterogene-
ity of the aquifer for mildly heterogeneous formations.

The variance of temperature as a function of correlation scale of
specific discharge for various values of g is presented graphically in
Fig. 1. Similar to the field-scale solute transport process, the corre-
lation scale k has a positive influence on the temperature variance.
As k increases, the persistence of correlations increases and the
fluctuations spend less time around the mean. This results in a
large variability in temperature field. The figure also indicates that
increasing period of temperature variations P tends to increase the
temperature variance with k held constant. As pointed out by Goto
et al. (2005) and Wörman et al. (2012), the damping of thermal
front is related to the periodicity of the source term. The thermal
front with small period of temperature variations penetrates more
rapidly into the aquifer than the large one does, but is dampened
more abruptly with depth, which leads to a less variability in tem-
perature field.

Fig. 2 shows how the variability in temperature field varies with
the depth. As the thermal front penetrates large regions of the
aquifer, the transported heat responds to larger and larger hetero-
geneities. There is a change in the size of those heterogeneities
with the depth in the associated flow field that affects the move-
ment of heat transport. This is why the temperature variability
Fig. 1. Dimensionless temperature variance as a function of dimensionless corre-
lation length of specific discharge.

Fig. 2. Dimensionless temperature variance as a function of dimensionless depth.
increases with the depth. The increase of variability in temperature
field with the depth reveals that the prediction of temperature dis-
tribution is subject to large uncertainty in the far-source region
(downstream region) in heterogeneous aquifers.

The analytical solution (12) to the mean temperature equation
described in this work is equivalent to that to the traditional
one-dimensional deterministic heat transport equation (e.g.,
Stallman, 1965). We can anticipate irregular variations in temper-
ature around the mean in natural porous media. Therefore, the var-
iance (32) gives us a quantitative measure of the uncertainty in
applying the traditional transport model to field situations. The
most challenging types of heat transport problems involve predic-
tions over much larger scales where direct measurements are not
possible. Under such conditions, the mean profile along with stan-
dard deviations provides a useful way of evaluating the model pre-
diction. For practical applications of heat transport modeling in the
field, for example for management purposes, it may be more rea-
sonable to consider, say, the mean temperature with one standard
deviation (square root of Eq. (32)) rather than only the mean tem-
perature drawn from the traditional heat transport equation. Fig. 3
indicates that the level of uncertainty grows with the depth and is
largest in the downstream. Presented in solid line is the predicted
mean temperature field, while the dashed lines present the tem-
perature field corresponding to the ± one standard deviation.
6. Conclusions

The perturbation-based nonstationary spectral techniques have
been applied to quantify the variability in temperature field in a
heterogeneous aquifer. The closed-form expressions developed
here apply to the region of shallow subsurface. We conclude from
the analysis of the closed-form expression for the temperature var-
iance that the correlation length scale of the specific discharge and
the period of temperature variations have a strong influence on
increasing the variability of temperature field. In addition, there
can be large uncertainty in the prediction of temperature distribu-
tion at a large depth in heterogeneous aquifers. From the practical
application viewpoint, a result such as (32) could serve as a calibra-
tion target when applying the traditional deterministic transport
equation to the field situations.
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