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This study develops a mathematical model for contaminant transport due to well injection in a radial
two-zone confined aquifer system, which is composed of a wellbore skin zone and a formation zone.
The model contains two transient equations describing the contaminant concentration distributions;
one is for contaminant transport in the skin zone while the other is for transport in the formation zone.
The contaminants are injected into the well with given dispersive and advective fluxes; therefore, the
well boundary is treated as a third-type (Robin) condition. The solution of the model derived by the
method of Laplace transforms can reduce to a single-zone solution in the absence of the skin zone. In
addition, an approximate solution in the time domain is also developed by neglecting dispersion for
the case that the contaminants move away from the injection well. Analysis of the semi-analytical
solution showed that the influence of the skin zone on the concentration distribution decreases as time
elapses. The distribution will be over-estimated near the wellbore if the constant concentration
(Dirichlet) condition is adopted at the well boundary. The approximate solution has advantages of easy
computing and yield reasonable predictions for Peclet numbers larger than 50, and thus is a practical
extension to existing methods for designing aquifer remediation systems or performing risk assessments.
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1. Introduction

Radial contaminant transport problems have been intensively
studied. Ogata (1958) was the first to develop an analytical solution
using the complex integral method for radial transport problems
with aninjection of constant contaminant concentration at the well-
bore, yet his solution was in terms of an integral form and cannot be
evaluated numerically. Tang and Babu (1979) presented a complete
solution in terms of Bessel functions and modified Bessel functions
for radial transport; however, their solution was in a very compli-
cated form and difficult to evaluate. Moench and Ogata (1981)
solved the radial transport equation by Laplace transforms. They
obtained the Laplace-domain solution involving Airy functions and
then inverted the solution numerically using the Stehfest algorithm
to the time domain. Later, Hsieh (1986) gave an analytical solution
for the radial transport problem; this solution consisted of an inte-
gral form with Airy functions, and was computed by the 20-point
Gaussian quadrature. Chen et al. (2002) applied a Laplace transform
power series (LTPS) technique to solve the radial solute transport
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equation with a spatially variable coefficient. The aquifer pumping
induced a convergent flow field and the groundwater velocity there-
fore varied with radial distance. Their analytical results indicated
that the LTPS technique can effectively and accurately handle the
radial transport equation under the condition of high Peclet number.
Later, Chen (2010) presented a mathematical model for describing
three-dimensional transport of a contaminant originating from an
area centered within a radial, non-uniform flow field. The solution
of the model was developed by coupling the power series technique,
the Laplace transform and the finite Fourier cosine transform. The
comparison between this solution and the Laplace transform solu-
tion showed excellent agreement. Chen et al. (2012a) considered
radial contaminant transport problems in a two-zone confined aqui-
fer system and presented a semi-analytical solution for describing
the concentration distribution in the aquifer system, which consists
of a formation zone and a skin zone resulted from well drilling and/
or well completion. Liu et al. (2013) derived a semi-analytical solu-
tion to the problem of groundwater contamination in an aquifer-
aquitard-aquifer system, considering both advective transport and
diffusive transport of contaminants in the aquifers and the interven-
ing aquitard. All of the solutions mentioned above adopt a constant
concentration condition at the inlet boundary, implying that the
contaminants are well mixed and continuously enter the aquifer
systems. In other words, those solutions were derived under the
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first-type boundary (or Dirichlet boundary) condition at the well
boundary.

The third-type boundary condition, also called Robin boundary
condition, which considers the effects of both the dispersive and
advective fluxes, may also be adopted at the rim of the wellbore.
This condition leads to conservation of mass inside the formation,
while the wellbore has a well-mixed concentration at a constant
flow rate entering the formation (Bear, 1972). Chen (1987) pre-
sented an analytical solution for radial dispersion problems with
Robin conditions at the rim of the wellbore. The analysis of Yeh
and Yeh (2007) indicates that the solution obtained from the con-
taminant transport equation with the Dirichlet boundary condi-
tion over-estimates the concentration near the wellbore if the
flow regime is dispersion dominant. Pérez Guerrero and Skaggs
(2010) presented a general analytical solution depicting solute
transport with a distance-dependent dispersivity in a heteroge-
neous medium subject to a general boundary condition, which
can be a first-, second-, or third-type. Veling (2012) presented a
mathematical model describing the solute concentration distribu-
tion in a radial groundwater velocity field due to well extraction
or injection. The model was composed of a radial transport
equation with a Dirichlet, Neumann, or inhomogeneous mixed
boundary condition at the well boundary. The solution of the
model was solved using the methods of Laplace transform and
generalized Hankel transform. Chen et al. (2011) developed an
analytical model depicting two-dimensional radial transport in a
finite-domain medium subject to either the first- or the third-
type boundary condition at the well boundary. Recently, Chen
et al. (2012b) derived a generalized analytical solution for the
problem of coupled multi-species contaminant transport in a
finite-domain medium under an arbitrary time-dependent third-
type boundary condition. Wang and Zhan (2013) developed a
mathematical model for describing radial reactive solute
transport due to well injection in an aquifer-aquitard system con-
sisting of a main aquifer and overlying and underlying aquitards.
The well boundary was specified as either Dirichlet or Robin type.
In fact, the Dirichlet boundary can be considered as a special case
of the Robin boundary because the solution developed with the
Robin boundary can reduce to the one with the Dirichlet
boundary if the dispersion mechanism is negligible.

In the past, many studies have been devoted to the develop-
ment of approximate solutions for radial dispersion contaminant
transport problems. Raimondi et al. (1959) derived an approximate
solution based on two assumptions. One was that the total deriva-
tive of the contaminant concentration with respect to time is equal
to zero when the solute is far away from the well. The other was to
neglect the radius of the injection well. Hoopes and Harleman
(1967) presented a summary of earlier works and provided an
approximate solution by neglecting the effect of a finite well
radius. Later, both Dagan (1971) and Gelhar and Collins (1971)
obtained approximate solutions by employing the perturbation
method. Tang and Babu (1979) also presented an approximate
solution based on the work of Raimondi et al. (1959) with the con-
sideration of the well radius.

The objective of this study is to develop a mathematical model
for describing radial contaminant transport in a two-zone confined
aquifer with a Robin boundary condition specified at the injection
well. The solution (i.e., in Laplace domain) of the model is derived
by the method of Laplace transform, and the time-domain results
(hereinafter referred to as “semi-analytical solution”) are obtained
by the Crump algorithm (1976). In addition, an approximate
solution in the time domain is also developed in terms of error
and complementary error functions. The impacts of the skin zone
and the use of different boundary conditions on the contaminant
concentration distribution in the aquifer system are investigated
based on the developed solution.

2. Methodology
2.1. Analytical solution

Some assumptions are made for the mathematical model
describing radial transport of the injected contaminant in a
two-zone confined aquifer system. They are: (1) the aquifer is
homogeneous, isotropic and of uniform thickness, (2) the injection
well has a finite radius and a finite thickness skin, and therefore the
aquifer can be considered as a two-zone system, (3) the well fully
penetrates the aquifer, and (4) the effect of molecular diffusion is
negligible. The groundwater velocity in a steady-state radial flow
system can be written as:

v=Q/27rbn (1)

where Q is a constant injection rate (L3/T), r is a radial distance from
the center of the wellbore (L), b is the aquifer thickness (L), and n is
the aquifer porosity (-).

The governing equation describing the concentration distribu-
tions in the wellbore skin zone and formation zone are expressed,
respectively, as:

aC; aC, D 8%,

StV =Diga for ru<r<mn and t>0 (2)
and

aC,  9C, | &G

WJH}W*DZ a2 for ri<r<oco and t>0 (3)

where C; and G, are the contaminant concentrations in the skin
zone (or called first zone) and formation zone (or called second
zone) [M/L3], respectively; D, and D, are the dispersion coefficients
in the first zone and second zone defined by D; = «;v and D, = a5,
respectively [L?/T]; oy and o, are the radial dispersivities in the first
zone and second zone, respectively [L]; t is the time since injection
[T]; ry is the well radius [L]; r is the radial distance from the central
of the well to the outer radius of the skin zone [L].

For the sake of convenience, the dimensionless forms for Egs.
(2) and (3) can be formulated, respectively, as:

9*G,  9G, oG,

92 _ﬁz’oﬁ for p,<p<p, and >0 4)
and

G, 909G, 9G,

97 —W_pW for py<p<oco and 7>0 (5)

where G; = C;/Cy and G, = G;/Cy are the dimensionless concentra-
tions in the first and second zones, respectively; p is a dimension-
less radial distance defined as p=rfa, and the other two
dimensionless radial distances are p,, =rn /0, and p; =r1fop; Tis a
dimensionless time defined as t = Qt/(2mbnod); k =04/, is the
ratio of the skin-zone dispersivity to the formation-zone dispersiv-
ity. Initially, the aquifer system is considered to be free from con-
tamination; i.e., the contaminant concentrations in both the skin
and formation zones are equal to zero and expressed as:

Gi(p,0) = Ga(p,0) =0 for p > p, (6)

The Robin condition specified at the wellbore boundary is
expressed as

Gl(pw,r)—x%%v’f)ﬂ for >0 (7)

The condition at the remote boundary is considered to be free
from contamination and thus described as:

Gz(00,7)=0 for 7>0 (8)
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The continuity requirements for the contaminant concentration
and flux at the interface of the skin zone and formation zone are,
respectively:

Gi(p1,T) = Galpy,T) for >0 ©)
and
2001 0G0 T) o 1 g (10)

ap op

Applying the Laplace transform to Eqs. 4-10 results in:

d*G, dG,

dpl_ﬁ_pscl (11)

G, dG,

ap ~dp P 12)
dGi(p,,s) _1

G1(py,S) — K ip S (13)

Ga(00,5) =0 (14)

Gi(p1,5) =Ga(py,S) (15)

dGi(p;,5) _dGa(py.9)

K= (16)

where G is the dimensionless Laplace-domain concentration and s is
the transform parameter. Eqs. 11-16 can be solved as:

G- Lo 1529

" 2 (p.py) —2K27g(p, p1)
f(ow: p1) = K2138(p,, 01) +2813K23h(py, p,,) — 2812 K431(p1, py)
(17)

and
_ 1 _ _
G- e (552 30)

% 2K2/3j<p17p1)
F(Pw: 1) —K238(py, 1) +2813K253R(py, py,) — 2813 K431y, py)
(18)

where f(x,y), g(x,y), h(x,y), i(x,y) and j(x,y) are functions composed of
the Airy functions Ai(z), Bi(z), and the derivatives of the Airy func-
tions Ai’(z) and Bi’(z). Detailed derivation for Eqgs. (17) and (18) is
given in Appendix A.

For the absence of the wellbore skin (i.e., p1=pw, o1=0d,
and x=1), both Eqgs. (17) and (18) reduce to the same result,
expressed as:

Gi(p.s) = Galp.5)

1 P~ Pu 24i(zy, p)
=5 exl’( 2 )Ai(zl, 0.) — 2513A1 (21, py)

(19)

which is identical to Chen’s (1987) solution for a single-zone
aquifer. Obviously, Chen’s (1987) solution can be considered as a
special case of the present solution.

Egs. (17) and (18) are in the Laplace domain and expressed in
terms of the Airy functions. The inversion of those two equations
to the time domain may not be tractable due to the complexity of
the Airy functions. The Crump algorithm (1976) is therefore adopted
to obtain the time-domain solution. Based on Abramowitz and
Stegun (1972), the Airy functions are associated with the modified
Bessel functions for positive arguments. These functions and their
derivatives can be written as:

Ai(z) =%\/§K1/3(6) (20)
Bi(2)= 20150 +1u5(2) 1)
i) =1 ZoKan(0) (22)
B (2)=—{1-2a(0)+ () (23)

where I and K are the first kind and second kind modified Bessel
functions for ¢ =2/3 - 232

2.2. Approximate solution

Consider that the contaminant concentration in the region far
away from the injection well does not change with time. That is
to say dC/dt=0 and:
aC aC
— = —y—
ot or

Accordingly, the right-hand side terms in both Egs. (2) and (3)
are the same and can be written, respectively, as:

(24)

o*C oy 6°C
o= o 23)
and
O*C oy &*C
o~ v o (26)

Based on Egs. (25) and (26), Egs. (4) and (5) can be transformed,
respectively, to:

9Gi 109G G

ot Tpap P am @7
and
9G, 109G, &G
ot Tpap P o (28)
Also, Egs. (27) and (28) can, respectively, be reduced to:

d’G dG,

+2W;—-——+=0 29
v t W, (29)
and
d*G, dG,

+2W, —==0 30
dW; 2 dw, G0

if introducing the new variables W; and W,, respectively, defined
as:

w1<p7r)=(%27r)/\/‘§¢p3 31)

and

wap.n = (<) / Vo (32)

With Egs. 6-10, Egs. (29) and (30) can be found, respectively,

as:
 nerfe(Wa,)) + {[erf (Wi ,,) — erf(Wh)]

SO = e Way,) + e Wiy, - ef Wiy +0 O

and

Gy (p,7) n erfe(Wa) (34)

T nerfc(Way,) + Cerf (W, ) — erf (Wi, )] + 0
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with

1N =4 VKT p}, exp(W;,, +W3,) (35)
{=4VTp}, exp(W5,, + W3 ) (36)
0= /3kp3 (6T + p},) exp(W3,) (37)

where erf(-) and erfc(-) are, respectively, the error function and
the complementary error function with the arguments Wi,
Wi,, and W,, , respectively, representing Wi(p1, t), Wi(pw, T)
and Wz(p], T).

= c/c,
o
|

0.6 —

0.4 —

Dimensionless concentration, G

T T T TTTTT
0.1 1 10 100
Dimensionless time, T

Fig. 1a. Temporal distributions of dimensionless concentration at p = 2, 4 and 6 for
pw=1,p1=4and k=0.51 and 2.

=c/c,

Dimensionless concentration, G

10 100 1000 10000
Dimensionless time, ©

Fig. 1b. Temporal distributions of dimensionless concentration at p = 20, 40 and 60
for p,, =10, p; =40 and k =0.5, 1 and 2.

3. Results and discussion

The temporal distribution curves of the dimensionless
contaminant concentration predicted by the present solution with
dispersivity ratios x = 0.5, 1, and 2 are shown in Fig. 1a for p,, =1
and p; =4 and Fig. 1b for p,, =10 and p; =40. These two plots
indicate that the skin zone with a smaller dispersivity has a lower
concentration at the early injection period but a higher concentration
at the late period. In addition, the effect of the skin-zone dispersivity
on the concentration distribution is more significant in the skin
zone than in the formation zone.

The spatial distribution curves of the dimensionless concentra-
tion predicted by the present solution at small dimensionless times

=c/c,

Dimensionless concentration, G

Dimensionless distance, p

Fig. 2a. Spatial distributions of dimensionless concentration when 7 = 0.5, 4.5, and
18 for pw=1, py=2and k=0.5, 1 and 2.

=crc,

Dimensionless concentration, G

Dimensionless distance, p

Fig. 2b. Spatial distributions of dimensionless concentration when t = 0.5, 4.5, and
18 for pw=1, p1=4and k=0.5, 1 and 2.
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Semi-Analytical
Solution

\ — — — — Approx. Solution

crc,

p,=1,p =2

Dimensionless concentration, G

Dimensionless distance, p

Fig. 3. Spatial distributions of dimensionless concentration predicted by the semi-
analytical solution and the approximate solution when t = 50, 225, 450, 900 and
1800.

are shown in Fig. 2. Fig. 2a indicates that the influence of the skin-
zone dispersivity on the concentration decreases quickly with
increasing time. The concentration curves for different values of
K tend to merge into one line as the time elapses. A smaller disper-
sivity ratio has a higher concentration near the well but a lower
concentration away from the well. Such a phenomenon can be
attributed to the use of the Robin condition at the well boundary.
Fig. 2b shows the concentration distributions for the aquifer with
a larger skin thickness. Compared to Fig. 2a, the effect of the skin
thickness on the concentration distribution becomes large at large
times.

Fig. 3 illustrates the comparison of the spatial dimensionless
concentration distributions predicted by the present semi-analytical
solution and approximate solution. The figure indicates that the

!
Semi-Analytical /

- Solution
— — — — Approx. Solution

crc,

0.8 —

0.6 —

0.4 —

0.2 —

Dimensionless concentration, G

0 - -
LI IIIIIII T rrle] T T IIIIII| LU

1 10 100 1000 10000
Dimensionless time, t

Fig. 4. Comparison between the semi-analytical solution and the approximate
solution for P, =10, 20, and 50.

approximate solution predicts poorly in the regions of high and
low concentrations, but accurately in the region of intermediate
concentrations (i.e., dimensionless concentrations in the range
0.2-0.8) as compared with those from the semi-analytical solution.
The difference between these two solutions arises because the effect
of dispersion is neglected in the development of the approximate
solution. From a remediation perspective, the approximate solution
is a convenient tool for providing useful information in designing
aquifer clean-up systems or performing risk assessments.

The accuracy of the approximate solution depends on the mag-
nitude of the Peclet number, defined as P.=vL/D, where v is
defined in Eq. (1), and L is a characteristic length chosen as the
distance between the injection well and the observation well. P,
reduces to rf/o, the dimensionless radial distance (p), because
D =owv and L=r. Fig. 4 shows the temporal distributions of the
dimensionless concentrations at r=20 m predicted by the semi-
analytical solution and the approximate solution, for r,,=0.1 m,
ri=1m, and P, =10, 20 and 50 (i.e,, «=2, 1 and 0.4 m). When
P. =50, both solutions agree well, and the largest difference in
the predicted concentration is less than 0.05, indicating that the
approximate solution gives good predictions when P, > 50.

4. Conclusions

A mathematical model is presented for describing the concen-
tration distribution in a radial two-zone aquifer system due to well
injection at a constant rate and well mixed contaminant concentra-
tion. The solution of the model is derived based on the methods
of the Laplace transform and the Crump algorithm. The present
solution reduces to Chen’s (1987) solution in the absence of the
wellbore skin. In addition, the present solution allows for the
investigation of the influences of wellbore skin and different
boundary conditions on the spatiotemporal dimensionless
concentration distributions.

It was found that the dimensionless concentration distributions
in the skin and formation zones differ from those in the homoge-
neous (single-zone) system. For the skin zone with a small disper-
sivity ratio, the concentration is lower at early injection periods but
higher at late injection periods. In contrast, the concentration will
be higher at the early period but lower at the late period for the
case that the two-zone aquifer system has a large dispersivity ratio.
The effect of skin thickness on the concentration distribution is
large if the skin zone is thick and/or the time is large. In addition,
the influence of skin zone on the dimensionless concentration
decreases with increasing dimensionless time.

An approximate solution is also developed by considering that
the contaminant concentration remains constant at significant
distances from the well. When P, > 50, the concentrations
predicted by the approximate solution have good agreement with
those of the semi-analytical solution. The approximate solution has
a much simpler form and therefore more easily evaluates the
numerical value than the semi-analytical solution.

The predicted results from the semi-analytical solution
demonstrate that the contaminant concentration at the wellbore
during the early period of injection will be less than the injected
concentration if the Robin boundary condition is adopted in the
radial transport model. This is an important deviation from
the models that adopt the Dirichlet condition, which causes the
wellbore rim concentration to be equal to the injected concentration.
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Appendix A. Derivation of Eqgs. (17) and (18)
Assume that:

G = Uy exp(mp) (A1)

where m = 1/2k. Substituting Eq. (A.1) into Eq. (11) results in:

d*uU, 1 ps

—dpz - (m + ?) U =0 (A2)
Defining  Zy(p,s)=(s/x)"?(p +1/4xs), Eq. (A2) can be

transformed to the Airy equation expressed as:

2

d—l?—Z1U1:O for p, <p<p; (A3)

dz;
Also, let:

G2 = Uz exp(np) (A4)

where n = 1/2. With Eq. (A.4), Eq. (12) leads to:

d’u, (1

s (z + ps) Uy =0 (A5)
Setting Z,(p, s) = s'3(p + 1/4s), Eq. (A.5) becomes:

2

d;Z—ZzUZ:O for p;<p<oo (A.6)
2
To solve Egs. (A.3) and (A.6), we assume:

Ui(p,s) = aAi(Z,) + bBi(Z,) (A7)

and

Ux(p,s) = cAi(Zy) + dBi(Zy) (A.8)

Based on the boundary conditions (Eqs. 13-16), the coefficients
aand b in Eq. (7) as well as c and d in Eq. (8) can be simultaneously
determined as:

1 , . . , 1
a=_exp (%) (28 Za,, )Bi(Z1,,) ~ 262 Ai(Z2 B (21, (A.9)

1 ) . ‘ ) 1
b—exp (ZLKW) RKPAI (Z15,)Ai(Za,, )~ 2821 Al (Z2p)) (A10)
c= % exp (plz;,cpw _%) K2P[2A1 (21, )Bi(Z1 ) — 2Ai(Z1 . BI (Z1 . )]% (A11)
d=0 (A.12)
where
¥ = f(pw: p1) = K8(Pw: p1) + 252K h(py, py,)

- 251/3K4/3i(p17pw) (A13)

and f(x,y), g(x.y), h(xy), i(x,y) and j(x,y) are functions composed of
the Airy functions and expressed as:

f(.y) = Al (Za,,)Ai(Z1x)Bi(Z1y) — Al(Z1)Bi(Z1x)] (A.14)
8(x,y) = Ai(Za,p,)|Ai(Z1x)BI (Z1y) — Al (Z14)Bi(Z1)] (A.15)
h(x,y) = Al (Z5 5, )|Ai(Z1x)Bi (Z1y) — Al (Z1,)Bi(Z1 x)] (A.16)
i(x,y) = Ai(Z,p, )JAT (Z1x)Bi' (Z1y) — Al (Z1)Bi (Z1x)] (A17)
J(%.y) = Ai(Z2,p) AT (Z1x)Bi(Z1y) — Ai(Z1)Bi (Z1)] (A.18)

where the arguments Z,, Z,, and Z,, represent Zi(p1,S$),
Z1(pw, S) and Z(p1, S), respectively.
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