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On the Capacity of the Multiantenna Gaussian
Cognitive Interference Channel

Stefano Rini and Andrea Goldsmith

Abstract—The capacity of the multiantenna Gaussian cognitive
interference channel is studied. The cognitive interference chan-
nel is a variation of the classical two-users interference channel
in which one of the transmitters, the cognitive transmitter, is also
provided with the message of the second transmitter, the primary
transmitter. We study the capacity of the multiple-input multiple-
output Gaussian model, that is the channel in which the inputs
are vectors and the outputs are obtained as linear combinations
of the channel inputs plus an additive complex Gaussian noise.
This channel models a wireless scenario in which transmitters
and receivers have multiple antennas. For this channel, we derive
capacity to within an additive gap, that is we show that inner and
outer bounds to capacity lie to within a constant distance of each
other. The gap between the inner and outer bounds depends on
the number of antennas at the cognitive receiver and both bounds
can be easily evaluated by considering jointly Gaussian inputs.
We also derive capacity to within a constant multiplicative factor
of two, that is we show that the ratio between inner and outer
bound is at most two. The additive gap well-characterizes the
capacity at high SNR, while the multiplicative gap is useful at low
SNR. We also derive the exact capacity for a subset of the “strong
interference” regime: in this subset, the primary transmitter can
decode the cognitive message without loss of optimality. This
new capacity result extends and generalizes previously known
capacity results, in particular, the capacity in the “very strong
interference” and the “primary decodes cognitive” regimes.

Index Terms—Cognitive interference channel; Capacity; Ca-
pacity to within a constant gap; Superposition coding; Interfer-
ence pre-cancellation.

I. INTRODUCTION

THE ADVENT of smart wireless devices that can sense
and adapt to the surrounding radio environment promises

to drastically improve the efficiency in the frequency spectrum
utilization. By allowing nodes in the network to overhear the
transmissions taking place over the medium, it is possible
to develop decentralized and dynamic cooperation strategies
which are not possible in centralized networks. The ability
of a device to adapt its transmissions to the surrounding
RF environment is usually termed cognition. The study of
cognitive networks is notably difficult: the dependency of the
transmission strategy upon the channel conditions introduces
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a variability in the overall performance which is hard to
analyze. For this reason, and despite their relevance in modern
communication systems, it has been hard to characterize the
optimal performance of general cognitive networks.

We approach the study of cognitive networks from an infor-
mation theoretic standpoint, that is we attempt to characterize
the limiting rate advantages that are provided by cognition in
the context of Shannon capacity. More specifically, we focus
on an information theoretic model that captures the fundamen-
tal features of cooperation in cognitive networks: the cognitive
interference channel [1]. This channel is obtained from the
classic two-user interference channel by providing one of the
transmitters, the cognitive transmitter, with the message of
the other user, the primary user. The extra information at
the cognitive transmitter models the ability of this node to
acquire information about the surrounding nodes by exploiting
the broadcast nature of the wireless medium.

The cognitive interference channel idealizes the capabilities
of the cognitive transmitter in two ways: (i) it assumes that the
extra knowledge of the primary message is available a priori at
the cognitive transmitter, instead of causally learned through
successive transmissions and (ii) it considers the case in which
the cognitive transmitter is able to acquire the primary message
in its entirety. Additionally, (iii) full channel knowledge is
assumed at every node. Although more realistic channels have
been considered in the literature, only this idealized model
has been possible to derive capacity regions or bounds on the
limiting advantages provided by cognition. Also, the study of
this model has provided important insights about the role of
cooperation in cognitive networks and the associated optimal
transmission strategies that may guide the design of practical
communication systems.

Although this model should be considered as an idealization
of more practical scenarios, some of the assumptions of this
model are also valid in real networks. For instance, (i) the
assumption of the a priori knowledge of the primary message
is valid in networks in which base stations are connected
through a high-speed link or in networks in which one node
can overhear the transmissions of the neighbouring nodes; (ii)
the assumption of full message knowledge holds in networks
which have a long packet size, and thus intercepting the
packed of on user gives access to the full message information.
Finally, (iii) the full channel knowledge assumption is reason-
able in networks which vary slowly over time and in which
sufficient feedback rate is available between the receivers and
all the transmitters. This is again the case in a downlink system
where base stations are connected through a high-capacity link
which can be used to quickly share channel state information.
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Indeed Coordinated Multi-Point (CoMP) transmissions and
Virtual Base Stations (VBS) protocols are current technologies
which point toward a base station architecture where messages
and channel knowledge are shared across transmitters.

Literature Overview

The study of the Cognitive InterFerence Channel (CIFC)
was initiated in [1] and the capacity of this model, for both
the discrete memoryless case and the Gaussian case, remains
unknown in general. General outer bounds [2] as well as inner
bounds [3] have been derived in the literature and they have
been shown to coincide for some classes of channels.

Three channel models are investigate in the literature: the
general CIFC, the MIMO CIFC and the Gaussian CIFC. The
general CIFC is the most general model in which the outputs
are any random function of the inputs. A sub-class of this
general channel model is the MIMO CIFC, in which the inputs
are vectors of any size and the outputs are linear combination
of the inputs plus additive Gaussian noise. The Gaussian CIFC
is a sub-class of the MIMO CIFC in which the inputs and
outputs are restricted to be scalars.

We next review these results in terms of (a) capacity results,
(b) outer bounds, (c) achievable regions and (d) approximate
characterizations of capacity; lastly, we focus on the model of
interest: (e) the Multiple-Input Multiple-Output CIFC.

The contributions from prior work that are most relevant
for this work are also summarized in Fig. 1(a) and in Table I.

In Fig 1(a), three columns represent three classes of chan-
nels: the general CIFC, the MIMO CIFC and the Gaussian
CIFC. The contributions in the literature are represented using
rectangles crossing the different columns: hatched rectangles
represent bounds on capacity (such as inner and outer bounds)
while solid colors represent exact capacity results. When a
rectangle is in a given column, this indicates that a certain
result holds for a certain class of channels. The intersection
among rectangles indicates that the multiple contributions hold
for the same set of channels. The results in Fig. 1(a) are also
detailed in Tab. I: here each result is further characterized by
the class of channel, type of contribution (inner bound, outer
bound etc.) and a bibliographic reference is also provided.
Each contribution is identified by roman numerals in both Fig.
1(a) and in Tab. I: this roman numeral is also indicated in
parenthesis in the following section, when each contribution
is introduced in detail.

a) Capacity Results: Given its full generality, the capacity
of the CIFC in which the channel output are any function
of the current channel input is currently unknown. For this
wide class of channels, capacity is known in the “cognitive
more capable” regime (Num. II, Fig. 1(a)), a class of channels
which intuitively identifies the models in which there is no
loss of optimality in having the cognitive receiver decode both
messages. The cognitive more capable regime is a generaliza-
tion of capacity results that had been previously derived in
the literature. The first of such results is the capacity in the
“very weak interference” regime [4]. For this set of channels,
capacity is achieved by having the primary receiver treat the
interference from the cognitive transmitter as noise, while
the cognitive receiver decodes both codewords. Capacity was

successively derived for the “very strong interference” regime,
where it is attained by transmitting the cognitive codeword
over the primary codeword and having both receivers decode
both messages. This regime is analogous to the “very strong
interference” regime for the classical InterFerence Channel
(IFC) [5] in which the level of the interference at both re-
ceivers is so high that the interfering codeword can be decoded
before the intended codeword and stripped from the channel
output. The “very weak interference” regime [4] and the “very
strong interference” regime [2] were later generalized in the
“better cognitive decoding” regime [3]. In this regime capacity
is achieved by dividing the cognitive message into two sub-
messages: one sub-message, the “cognitive private” message,
is decoded only at the cognitive receiver while the other sub-
message, the “cognitive public” message, is decoded at both
receivers. By setting the rate of the cognitive private message
to zero, this result reduces to the “very strong interference”
capacity, while setting the rate of the cognitive public message
to zero reproduces the “very weak interference” capacity. The
rate of the two sub-messages can be varied to achieve a larger
attainable region in different channel conditions and target
rates, which produces new capacity results. The “cognitive
more capable” regime [6] is an refinement of the “better cog-
nitive decoding” regime which considers the same achievable
strategy and outer bound but provides a simplification of the
attainable region.

Capacity is known for two more specific classes of channels:
the semi-deterministic CIFC and the Gaussian CIFC; the semi-
determinist CIFC is defined as the CIFC where the channel
output at the cognitive decoder is a deterministic function of
the inputs, while the output at the primary decoder is any
random function. In this channel model, capacity is achieved
by having the cognitive transmitter pre-code against the pri-
mary interference while simultaneously aiding the primary
transmitter [7]. Since the cognitive output is obtained through
a deterministic function, the cognitive transmitter can fully
pre-cancel the effect of the interference as in the deterministic
Gelf’and-Pinsker problem [8].

A larger set of capacity results is available for the Gaussian
channel, that is the channel for which the channel inputs
are complex numbers and the channel outputs are obtained
as linear combinations of the inputs plus Gaussian noise.
For this model, capacity is known in two more regimes
than for the general CIFC: the “weak interference” regime
and the “primary decodes cognitive” regime. In the “weak
interference” regime [4], capacity is achieved by having the
primary receiver treat the interference as noise while the
cognitive transmitter pre-codes its message against the known
primary interference. The outer bound for this capacity result
utilizes the entropy power inequality and is inspired by the
proof of the capacity of the Gaussian broadcast channel. The
inner bound also relies on the classical “writing on dirty paper”
results [9] which implies that the cognitive transmitter can
fully pre-cancel the effect of the interference at the cognitive
receiver. The capacity in the “very weak interference” regime
for the general CIFC is a subset of the “weak interference”
regime for the Gaussian channel in which capacity can also
be attained using interference decoding instead of interference
pre-cancellation.
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The other regime in which capacity is known for the
Gaussian case is the “primary decodes cognitive” regime [10]
(Num. IV, Fig. 1(a)). Here, capacity is achieved by pre-coding
the cognitive codeword against the interference created by the
primary transmission and having the primary receiver decode
both messages. The primary decoder gains insight over its
own message by decoding the cognitive codeword, since the
interference against which the cognitive codeword is pre-coded
is indeed the primary codeword.

b) Outer Bounds: The tightest available outer bound for the
CIFC is derived in [11, Th. 4] using a technique originally
developed for the broadcast channel in [12] (Num. I, Fig.
1(a)). This outer bound encompasses and generalizes all the
outer bounds which are known to be attainable. In particular,
this outer bound corresponds to capacity in the “cognitive
more capable regime”, the “weak interference regime” and
the “better cognitive decoding” regime. Although the outer
bound in [11, Th. 4] is the tightest known outer bound, it is
difficult to evaluate as it is expressed as the maximization over
three auxiliary random variables. This maximization cannot
be explicitly solved, not even for some classical channels
such as the Gaussian channel. For this reason, an alternative
outer bound is derived in [3, Th. 4.1] which is expressed
only as a function of the channel inputs and the channel
outputs. This outer bound is used to show capacity in the
semi-deterministic CIFC [7] but is known not to be tight in
other classes of channels. Another simple outer bound is the
“strong interference” [2] (Num. III, Fig. 1(a)) outer bound,
which is capacity in the “very strong interference” and the
“better cognitive decoding” regime. This outer bound is also
expressed only as a function of the channel inputs and channel
outputs but is again known not to be tight in general.

c) Achievable Schemes: Since the CIFC generalizes both the
IFC and the broadcast channel, different achievable schemes
can be devised for this model which combine techniques
available for these simpler channel models. In particular, we
consider the following three main coding strategies for the
CIFC: rate-splitting, superposition coding and binning. Rate
splitting divides the message of one user into multiple sub-
messages which are encoded/decoded by a different set of
transmitters/receivers. In the CIFC both cognitive and primary
messages can be split into private and common sub-messages:
the private messages are decoded only at the intended re-
ceivers, while the common messages are decoded at both
receivers. Superposition coding is attained by “stacking” the
codeword of one user over the codeword of another user: the
top codeword can then be decoded only when the bottom
codeword is correctly decoded. This reduces the possibility
of decoding errors, thus enhancing the performance of the
code. Clearly, the two codewords must be known at the
same set of encoders for superposition to be feasible. In the
CIFC, cognitive codewords can be superposed over primary
codewords, since the primary message is known also at the
cognitive transmitter but not vice-versa.

Binning consists of pre-coding the codeword of one user
against the interference created by another user at the intended
decoder. Binning was originally introduced for the Gel’fand-
Pinsker problem [8]: a point to point channel in which the

outputs is determined by the channel inputs and a sequence of
states which is known at the transmitter but not at the receiver.
The transmitter can thus design the transmitter codeword so as
to “mask” the effect of the channel state to the received output.
For binning to be feasible, the interference must be known
at the encoder, which implies that cognitive messages can
be pre-coded against the interference created by the primary
transmission at the cognitive receiver.

A scheme which combines all the possible ways of rate-
splitting messages, superposing and binning codewords over
and against one another is derived is [3] (Num. I, Fig.
1(a)). This scheme generalizes the achievable rate regions
used to prove capacity in those regimes where capacity is
known. Unfortunately this scheme also contains an number
of auxiliary random variables and can be computed explicitly
only under some simple assignments. As a consequence of
this, a comparison of the different coding strategies is often
not straightforward and no clear conclusion can be drawn over
which coding choices are optimal in different sets of channels.

d) Approximate Characterizations of Capacity: Given the
difficulties in determining inner and outer bounds in closed
form, progress has been slow in determining the exact capacity
for models such as the Gaussian CIFC. On the other hand,
it has been shown that capacity for the Gaussian case can
be attained to within an additive gap of 2 bits/s/Hz and a
multiplicative factor of two [13]. That is, the region where
the exact capacity lies has been determined up to a finite
distance and a finite multiplicative value. The additive gap
well characterizes the capacity at high SNR: in this regime the
capacity region is large and a small uncertainty on the exact
boundary of the capacity is not relevant. On the other hand,
the multiplicative gap is useful at low SNR: when the capacity
region is small, a multiplicative factor provides a better
bound on the exact value of capacity. These two approximate
characterizations of the exact capacity have been derived using
insights from the high SNR deterministic approximation of the
Gaussian cognitive interference channel [14], a deterministic
model that captures the behavior of a Gaussian network for
large transmit powers [15].

e) Multiple-Input Multiple-Output CIFC: In this work, we
focus on the Multiple-Input Multiple-Output CIFC (MIMO
CIFC), a generalization of the Gaussian CIFC in which trans-
mitters and receivers possess multiple antennas. The capacity
of this channel model is still largely unknown since the
capacity results for the “weak interference” and the “primary
decodes cognitive” regimes do not extend from the single
antenna to the MIMO scenario in a straightforward manner.
The authors of [16] were the first to specifically study the
capacity of the MIMO CIFC and propose an outer bound and
an achievable region based on dirty paper coding [9] (Num. V,
Fig. 1(a)). The sum Degrees Of Freedom (DOF) of the MIMO
CIFC were studied in [17] where it was shown that the MIMO
CIFC has a larger sum DOF than the classical IFC. MIMO
CIFCs have also been studied through a game theoretical
approach: the cognitive MIMO transceivers compete with each
other to maximize their information rate [18] and to allow the
coexistence of primary and cognitive users in the presence of
perfect channel knowledge [19].
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TABLE I
A SUMMARY OF THE CONTRIBUTIONS IN THE LITERATURE, AS DESCRIBED IN SEC. I.

Index Channel Model Contribution References
I general CIFC tightest outer bound [11]
I general CIFC largest inner bound [3]
II general CIFC cognitive more capable capacity [6]
III general CIFC strong interference outer bound [2]
IV Gaussian CIFC better cognitive decoding capacity [3]
V MIMO CIFC inner and outer bounds [16]

Contributions

We now summarize the main contributions of this work
on the capacity region of the general CIFC and the MIMO
CIFC. The contributions in the paper are also depicted in
Fig. 1(b). This figure uses the same formalism as Fig. 1(a):
rounded boxes represent channel models, while rectangles
represent our contributions in terms of approximate capacity
(hatching rectangles) or capacity (solid-colored rectangles).
Each contribution is also numbered using a roman numeral:
this numeral is used in the enumeration that follows and which
presents each contribution in detail.
(I) Derive the approximate capacity for the general CIFC
by considering an inner bound with superposition coding and
binning and proving a constant gap between the inner and
outer bounds. The gap between the inner and outer bounds
intuitively relates to the ability of the cognitive transmitter to
predict the channel output at the cognitive receiver. This result
generalizes the capacity for the semi-deterministic CIFC in
which the gap between the inner and outer bounds is zero.
(II) Derive the capacity of the MIMO CIFC to within a
constant gap: For the MIMO CIFC the approximate capacity
for the general CIFC translates to a gap between the inner
and outer bounds which depends on the number of antennas
at the cognitive receiver. We also derive a simpler expression
of the outer bound by showing that one needs only to consider
jointly Gaussian random variables: this greatly simplifies the
task of evaluating the approximate capacity for a given channel
model.
(III) Derive the capacity of the MIMO CIFC to within
a multiplicative factor of two by having the cognitive
transmitter pre-cancel the interference created by the primary
transmitter while the primary decoder treats the interference
as noise. This result is useful when characterizing the capacity
of the MIMO CIFC at low SNR.
(VI) Generalize the capacity results for the MIMO CIFC
in the “strong interference” regime: Capacity in the “strong
interference” regime is known in two cases: the “very strong
interference” regime and the “primary decodes cognitive”
regime. Both results use the same converse but they differ in
the achievability proof. We show that a larger capacity result
can be attained by considering an achievable strategy which
generalizes the achievable region in the two regimes. In this
scheme, the primary message is rate-split into a common and a
private part and the private part is then superimposed over the
public one. The cognitive message is then superimposed over
the common-primary message and binned against the private-
primary message.

Paper Organization

The remainder of the paper is organized as follows: Sec. II
introduces the channel model under consideration. In Sec. III
we review relevant results available in the literature that will
be used in subsequent sections and, in Sec. IV, relevant inner
bounds are introduced. In Sec. V the approximate capacity
for the general CIFC is derived. Capacity for a subset of the
MIMO CIFC is derived in Sec. VII. Sec. IX concludes the
paper.

II. CHANNEL MODEL

A two user InterFerence Channel (IFC) is a multi-terminal
network with two senders and two receivers. Each transmitter
i wishes to communicate a message Wi to receiver i, i∈ [1,2].
In the classical IFC the two transmitters operate independently
and have no knowledge of each others’ messages. In this paper
we consider a variation whereby transmitter 1, the cognitive
transmitter, in addition to its own message W1, also knows
the message W2 of transmitter 2, the primary transmitter).
We refer to transmitter/receiver 1 as the cognitive pair and
to transmitter/receiver 2 as the primary pair. This model is
termed the Cognitive InterFerence Channel (CIFC) and is an
idealized model for unilateral transmitter cooperation.

More precisely, transmitter i ∈ [1,2] wishes to communicate
a message Wi, uniformly distributed on [1 · · ·2NRi ], to receiver
i in N channel uses. The two messages are independent.
Transmitter 1 knows both messages while transmitter 2 knows
only W2. The channel is assumed to be memoryless, that is
the channel output only depends on the current channel input.

In the following we consider three classes of input/output
relationships:

• The general CIFC, which is the most general model in
which the channel outputs are obtained as any random
function of the inputs

• The Gaussian CIFC, that is the model in which the
channel outputs are obtained as a linear function of the
inputs plus an additive white Gaussian noise term. The
inputs are additionally subject to a second moment (i.e.
power) constraint.

• The MIMO CIFC which generalizes the Gaussian CIFC
to the case in which inputs and outputs are vectors. The
inputs are additionally subject to a covariance constraint.

We now present each model separately to better introduce
the notation and the nomenclature used in the following.
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(a) The relevant literature, as presented in Sec I. (b) Our contributions, as presented in Sec. I.

Fig. 1. A pictorial representation of the relevant literature and of our contributions for the general CIFC, the MIMO CIFC and the Gaussian CIFC.

Fig. 2. The general Cognitive Interference Channel (general CIFC).

A. General CIFC

The input/output relationship in each channel use is de-
scribed by the conditional probability

PN
Y1,Y2|X1,X1

=
N

∏
i=1

PY |X (yi|xi). (1)

for some conditional probability PY |X which can be either
continuous or discrete. A graphical representation of the
general CIFC is provided in Fig. 2.

B. Gaussian CIFC

As we shall see, most of the literature so far has focused
on the additive white Gaussian noise model channel; for
simplicity we refer to this channel as the Gaussian CIFC (G
CIFC).

For the G CIFC PY |X can be parameterized as

Y1 = X1 + aX2+Z1 (2a)
Y2 = |b|X1 + X2 +Z2, (2b)

where Z ∼ CN (0,1), i ∈ {1,2} and for a,b ∈ C. Note that
the phase of b can be disregarded without loss of generality
[20, App. A]. This channel model is depicted in Fig. 3.

Fig. 3. The Gaussian Cognitive Interference Channel (G IFC).

C. Multiple-Input Multiple-Output CIFC

In the Multiple-Input Multiple-Output CIFC (MIMO CIFC),
the input/output relationship PY |X is described as

Y1 = H11X1 +H12X2 +Z1 (3a)
Y2 = H21X1 +H22X2 +Z2, (3b)

where Yi’s and Xj’s are column vectors of size mi and n j
respectively, Hi j, i, j ∈ {1,2} are complex matrices of size
mi×n j and Zi are iid, zero mean and unitary variance complex
Gaussian random column vectors of size mi. Additionally, the
channel inputs Xj are subject to the second moment constraint

E[XjXH
j ] = Σ j � S j j ∈ {1,2}, (4)

for some S � 0 where � denotes partial ordering between
symmetric matrices, that is B � A means that B − A is a
positive semi-definite matrix. This channel is a special case
of the channel model in (1) but generalizes the model in (2).
A graphical representation of the MIMO CIFC is provided in
Fig. 4.

Any general CIFC in which the channel outputs are obtained
as a linear combination of the inputs plus a noise term with any
covariance can be reduced to the model in (3) by whitening
the noise in the channel output. This can be done through a
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Fig. 4. The Multiple-Input Multiple-Output Cognitive InterFerence Channel
(MIMO CIFC)

linear operation which is invertible and thus does not change
the capacity of the channel.

D. Relevant Definitions

We next introduce the definition of code, achievable region
and capacity for this channel are introduced next. In the fol-
lowing definitions, the calligraphic font indicates the support
of a variable.

Definition 1. Code.
A (2NR1 ;2NR2 ;N) code for the CIFC consists of two message
sets W1 = [1 . . .2NR1 ], W2 = [1 . . .2NR2 ], two encoding func-
tions and two decoding functions, one per each encoder and
decoder respectively.

The encoding function at transmitter 1 is defined as

XN
1 : W1 ×W2 → X N

XN
1 = XN

1 (W1,W2),

while the encoding function at transmitter 2 is defined as

XN
2 : W2 → X N

XN
2 = XN

2 (W2).

Similarly, the decoding functions at the receivers are defined
as

Ŵj : Y → W j

Ŵj = Ŵi(Y N
i ), j ∈ [1,2].

Definition 2. Achievable Rate
The rate pair (R1,R2) is achievable if there exists a sequence
of codes such that, for W1 and W2 uniformly distributed over
their support, we have that the probability of a decoding error
at both receivers goes to zero as the block length N goes to
infinity.

More precisely, the probability of decoding error for a code
(2NR1 ;2NR2 ;N) is defined as

Pe(2NR1 ;2NR2 ;N) = P

[
Ŵ1(Y N

1 ) �=W1 or Ŵ2(Y N
2 ) �=W2

]
(5)

while a rate pair (R1,R2) is achievable when there exists a
sequence of codes such that

lim
N→∞

Pe(2NR1 ;2NR2 ;N) = 0 (6)

Note that the error probability in (6) is averaged over all state
sequences and all messages.

Definition 3. Capacity and Approximate Capacity.
The capacity C is the supremum of all the achievable rates.
The region RIN is said to be an inner bound to the capacity
region if RIN ⊆C. Similarly, the region ROUT is an outer bound
to capacity if ROUT ⊇C.

An inner and outer bound for which

ROUT −RIN ≤ Δ, (7)

for some constant Δ∈R+ are said to characterize the capacity
to within an additive gap of Δ bits/channel use (bits/cu).

Similarly, an inner bound and outer bound for which

ROUT/RIN ≤ Δ, (8)

for some constant Δ∈R+ are said to characterize the capacity
to within a multiplicative gap of Δ.

Capacity to within an additive gap and a multiplicative gap
provide an approximate characterization of capacity. This is
useful in many channels in which the exact capacity is too
hard to characterize exactly. Determining capacity to within
an additive is useful when the capacity region is large, since
a small difference between the inner and outer bound is
negligible in these circumstances. On the other hand, when the
capacity region is small, a constant multiplicative gap provides
a better bound on the exact capacity.

III. KNOWN RESULTS FOR THE CIFC

In this section we review some of the relevant results
derived in the literature that we will use in our derivations.
We first present results concerning the general CIFC and then
the results for the G CIFC.

A. Results for the general CIFC

A general outer bound to the capacity region of the general
CIFC was first derived in [4]. This outer bound is inspired by
the Körner - Marton outer bound for the broadcast channel
[21] and it has been show to be tight for various classes of
channels.

Theorem III.1. Wu et al. Outer Bound [4, Th. 3.2]. The
region

R1 ≤ I(Y1;X1|X2) (9a)
R2 ≤ I(Y2;U,X2) (9b)

R1 +R2 ≤ I(Y2;U,X2)+ I(Y1;X1|X2,U), (9c)

where the union is over all the distributions PU,X1,X2 , is an
outer bound to the capacity region of a general CIFC.

Note that the outer bound in Th. III.1, just as the outer
bound it Körner - Marton, contains an auxiliary Random
Variables (RV) U which is not part of the channel description
but is introduced to obtain a single letter expression of the
bound.

A tighter outer bound than the one in Th. III.1 can be
derived in a regime analogous to the “strong interference”
regime for the IFC, in which having the primary receiver
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decode the cognitive receiver can be done without loss of
optimality.

Theorem III.2. “Strong Interference” Outer Bound [11,
Th. 4]. Let the “strong interference” regime be defined as the
set of CIFCs for which

I(Y1;X1|X2)≤ I(Y2;X1|X2), (10)

for all the distributions PX1X2 , then the region

R1 ≤ I(Y1;X1|X2) (11a)
R1 +R2 ≤ I(Y2;X1,X2), (11b)

where the union is over all the distributions PX1,X2 , is an outer
bound to the capacity region of a general CIFC in “strong
interference”.

From a high level perspective, the condition in (10) char-
acterizes those channels for which, given that X2 has been
decoded, X1 is more easily decoded from Y2 rather than from
Y1. Since X2 has to necessarily be decoded at receiver 2, this
regime can be thought of as the regime in which receiver 2
can decode both messages without loss of optimality.

Capacity is known in a subset of the “strong interference”
regime, the “very strong interference” regime. Here the “strong
interference” outer bound is attained by having both receivers
decode both messages and by superimposing the cognitive
codeword over the primary codeword.

Theorem III.3. Capacity in the “Very Strong Interference”
Regime [22, Th. 1]. Let the “very strong interference” regime
be defined as the set of CIFCs in the “strong interference”
regime for which

I(Y2;X1,X2)≤ I(Y1;X1,X2), (12)

for all the distributions PX1,X2 . In the “very strong interfer-
ence” regime the region in (11b) is the capacity region.

B. Results for the G CIFC

The set of regimes for which the G CIFC capacity is known
is larger than for the general CIFC. In the primary G CIFC,
binning at the cognitive user can attain perfect interference
pre-cancellation and this is the key to achieve capacity in
different parameter regimes.

Theorem III.4. Gaussian “Weak Interference” Capacity
[4, Lem. 3.6]. If |b| < 1, the capacity of the G CIFC is the
union over α ∈ [0,1] of the region

R1 ≤ C (αP1) (13a)

R2 ≤ C (|b|2P1 +P2 + 2
√

α|b|2P1P2)−C (|b|2αP1), (13b)

for C (x) = log(1+ x) and α = 1−α .

Capacity in the Gaussian “weak interference” regime is
achieved by pre-coding the cognitive codeword against the in-
terference experienced at the cognitive decoder while treating
the interference as noise at the primary decoder. The “strong
interference” regime in Th. III.2 takes a particularly simple
expression for the G CIFC.

Lemma III.5. Gaussian “Strong Interference” Outer
Bound [11, Th. 4]. If |b| ≥ 1, then the region

R1 ≤ C (αP1) (14a)

R1 +R2 ≤ C (|b|2P1 +P2 + 2
√

α|b|2P1P2), (14b)

where the union is over α ∈ [0,1], is an outer bound to the
capacity region.

In the “strong interference” regime the primary receiver,
after having decoded its intended message, can reconstruct an
equivalent channel output at the cognitive receiver since

Ỹ1 ∼ Y2 − (a|b|− 1)X2

|b| + Z̃1, (15)

with Z̃1 ∼ CN (0,1− |b|−2). This observation provides an
intuitive interpretation of the sum rate bound in (14b) which
suggest that, when |b| ≥ 1, the primary receiver can decode
both messages without loss of optimality. The next lemma
translates Th. III.3 to the G CIFC model.

Lemma III.6. Gaussian “Very Strong Interference” Ca-
pacity [11, Th. 4]. If |b| ≥ 1 and

(1−|b|2)P1 +(|a|2 − 1)P2 ≥ 0 (16a)

(1−|b|2)P1 +(|a|2 − 1)P2 ≥ 2
(|b|−Re{aH})√αP1P2,

(16b)

the region in (14) is the capacity.

In the “very strong interference” regime, capacity is achieved
by superimposing the cognitive message over the primary
message and having both decoders decode both messages.

Capacity is also known in another subset of the “strong
interference” regime for the G CIFC which is denoted as the
“primary decodes cognitive” regime.

Theorem III.7. “Primary Decodes Cognitive” Capacity
[10, Th. 3.1]. If |b| ≥ 1 and

P2|1− a|b||2(1+P1)≥ (|b|2 − 1)(1+P1+ |a|2P2) (17a)

P2|1− a|b||2 ≥ (|b|2−1)(1+P1+ |a|2P2−2Re{a}√P1P2),
(17b)

the region in (14) is the capacity.

In Th. III.7 capacity is achieved by pre-coding the cognitive
message against the interference and having the primary
receiver decode codewords. Intuitively, the primary decoder
gains insight over its own message by decoding the cognitive
codeword, since the interference against which the cognitive
codeword is pre-coded is indeed the primary codeword.

IV. INNER BOUNDS

The largest known inner bound for a general CIFC is
obtained in [23] while a compact expression for this region
is provided in [20, Sec. IV]. In this section we introduce two
sub-schemes of the general transmission scheme in [23] that
will be relevant in developing our main results. One scheme
generalizes the capacity achieving schemes in the “very strong
interference” of Th. III.3 and the “primary decodes cognitive”
of Th. III.7. The other scheme is the transmission strategy
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(a) The chain graph representation of the inner bound in Th. IV.1 (b) The chain graph representation of the inner bound in Th. IV.2

Fig. 5. The RVs for message 1 are in blue diamond boxes while the RVs for message 2 are in green square boxes. A solid line among RVs indicates that
the RVs are superimposed while a dashed line that the RVs are binned against each other.

which achieves capacity in the semi-deterministic CIFC and
the capacity of the G CIFC to within one bit [7] .

Theorem IV.1. Achievable Scheme (F) in [20, Sec. IV.F].
The following region is achievable in a general CIFC

R1 ≤ I(Y1;U1c|U2c)− I(U1c;X2|U2c) (18a)
R1 +R2 ≤ I(Y2;X1,X2) (18b)
R1 +R2 ≤ I(Y2;X2|U1c,U2c)+ I(Y1;U1c,U2c) (18c)

2R1 +R2 ≤ I(Y2;U1c,X2|U2c)+ I(Y1;U1c,U2c)

− I(U1c;X2|U2c), (18d)

for any distribution PU2c,U1c,X1,X2 .

Proof: We provide here a sketch of the proof: the
full proof is provided in Appendix A. The message W1 is
associated with the RV U1c and decoded at both receivers
(“c” stands for common). The message W2 is rate-split into
common and private parts which are associated with U2c and
X2 respectively.

The chain graph representation [24] of the achievable
scheme in Th. IV.1 is provided in Fig. 5(a). Each box repre-
sents a RV in (18), a solid line represents superposition coding,
a dashed line binning and a dotted line a deterministic depen-
dence. The blue diamond box contains the message W1 while
the green, square boxes contain part of the message W2. We
next introduce an achievable scheme first considered in [23]
and which achieves the capacity for the semi-deterministic
CIFC [7], a CIFC in which the channel output at the cognitive
receiver is a deterministic function of the inputs, while the
output at the primary decoder is any random function. This
scheme also approaches the capacity of the Gaussian CIFC to
within one bit for channel parameters [7].

Theorem IV.2. Achievable Scheme (C) in [20, Sec. IV.F].

The following region is achievable in a general CIFC

R1 ≤ I(Y1;U1pb)− I(U1pb;X2) (19a)
R2 ≤ I(Y2;U2pb,X2) (19b)

R1 +R2 ≤ I(Y2;U2pb,X2)+ I(Y1;U1pb)

− I(U1pb;X2,U2pb), (19c)

for any distribution PU1pb,U2pb,X1,X2 .

A chain graph representation of the inner bound in Th.
IV.2 is provided in Fig. 5(b). Encoder 2 transmits W2 through
the RV X2 while encoder 1 sends W1 through U1pb. The RV
U2pb is superimposed over X2 and pre-coded at transmitter 1
against the interference created by U1pb at the primary receiver.
Similarly, the RV U1pb is pre-coded at transmitter 1 against the
interference created by X2 and U2pb at the cognitive receiver.

V. APPROXIMATE CAPACITY FOR THE GENERAL CIFC
In this section we show that the capacity of the general

CIFC can be attained to within a constant gap between the
inner and outer bounds which depends on how well the
cognitive transmitter can forecast the output at the cognitive
receiver. This result generalizes the capacity of the semi-
deterministic CIFC in which case the gap between the two
bounds is zero.

Theorem V.1. Approximate Capacity for the General
CIFC If the rate pair (R1,R2) belongs to the capacity region
of a general CIFC, then the point (R1 − Δ,R2 −

√
2Δ) is

achievable for

Δ = max
PX1,X2

I(Y1;X1,X2|Ỹ1), (20)

where Ỹ1|X1,X2 ∼ Y1|X1,X2.

Proof: We provide here a sketch of the proof: the com-
plete proof is provided in Appendix B. Th. V.3 is graphically
represented in Fig. 6: the inner bound in Th. IV.2 is depicted
in solid green blue while the outer bound in Th. III.1 is solid
green. The distribution of the inner and outer bounds for a
fixed distribution in the union operation is shown in dotted
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Fig. 6. A visual representation of Th. V.3 in which the distance between the
inner and outer bounds for a general CIFC is bounded.

lines, blue and green respectively. The proof is shown by
bounding the maximum distance between the inner and outer
bounds for all the fixed distributions. The distance is zero
for the R2 bounds while it is I(Y1;X1,X2|Ỹ1) for both the R1
bounds and the sum rate bounds. Since the distance is bounded
for each fixed distribution, it is bounded when taking the union
over all distributions.

The gap between the two bounds for a fixed distribution
depends on the term I(Y1;X1,X2|Ỹ1) where Ỹ1 is obtained at
the cognitive transmitter by passing X1 and X2 through the test
channel PY1|X1,X2 . The gap between the two bounds therefore
intuitively relates to the ability of the cognitive transmitter to
reproduce the output at the cognitive receiver. The overall gap
between the inner and outer bounds is obtained as the largest
among the gaps for each fixed distribution.

Lemma V.2. Semi-Deterministic CIFC The semi-
deterministic channel studied in [10] is a special class
of the CIFC in which the channel output at the cognitive
interference channel is a deterministic function of X1 and
X2 while the primary output is any random function of the
channel inputs. In this model, it is possible to generate Ỹ1 = Ỹ
thus the result in Th. V.3 implies capacity.

A. Additive Gap in the “Strong Interference” Regime

The “strong interference” outer bound in Th. III.2 can be
obtained from the outer bound in Th. III.1 by setting U = X1.
This implies that, under condition (10), one can restrict the
distribution of U to be equal to X1. This simplification also
results in a reduction of the gap between the inner and outer
bounds.

We can refine the gap between the inner and outer bounds
in the strong interference regime of Th. III.2 as follows:

Theorem V.3. Approximate Capacity for the General
CIFC in “Strong Interference”: If the rate pair (R1,R2)
belongs to the capacity region of a general CIFC in “strong
interference”, then the point (R1 −Δ,R2) is achievable for

Δ = max
PX1,X2

I(Y1;X1,X2|Ỹ1), (21)

where Ỹ1|X1,X2 ∼ Y1|X1,X2.

Proof: Note that the “strong interference” outer bound in
Th. III.2 has two Pareto-optimal corner points:

Aout−SI = (I(Y1;X1|X2), I(Y2;X1,X2)− I(Y1;X1|X2)) (22a)

Bout−SI = (0, I(Y2;X1,X2)) . (22b)

The point Bout−SI is always achievable with a MISO strategy,
that is by having both transmitters communicate exclusively
with the primary receiver as in a MISO channel. For the
point Aout−SI we will employ the inner bound of (19) with the
assignment U1pb = Ỹ1 and U2pb = X1 as in Th. V.3 to obtain
a gap in the R1 coordinate of

RA−out
1 −RA−in

1 = I(Y1;X1,X2|Ỹ1). (23)

and a gap of zero in the R2 coordinate since

RA−out
2 −RA−in

2 = I(Y2;X1,X2)− I(Y1;X1|X2)+

−
(

I(Y2;X1,X2)− I(Ỹ1;X1|X2)
)
= 0. (24)

This concludes the proof.

VI. APPROXIMATE CAPACITY FOR THE MIMO CIFC

The approximate characterization of the capacity of the
MIMO CIFC is readily obtained from Th. V.3.

Lemma VI.1. MIMO CIFC For the MIMO CIFC we have
that Δ in Th. V.3 can be evaluated as

Δ = max
PX1,X2

I(Y1;X1,X2|Ỹ1)≤ n1, (25)

where n1 is the number of antennas at the cognitive receiver.

Proof: We explicitly write the optimization in (VI.1) as

max
PX1,X2

H(Y1|Ỹ1)−H(Z1) = max
PX1,X2

H(Y1 − Ỹ1|Ỹ1)−H(Z1) (26a)

= max
PX1,X2

≤ H(Z1 − Z̃1|Ỹ1)−H(Z1)

(26b)

≤ H(Z1 − Z̃1)−H(Z1) (26c)
= 2n1 − n1 = n1, (26d)

which concludes the proof.
Although the result in Lem VI.1 is sufficient to characterize

the capacity of the MIMO CIFC to within n1 bits/cu, the outer
bound is expressed as the PU,X1,X2 . This union is not easily
computed and the result does not provide any indication on
what distributions produce outer bound points on the convex
hull of the union. In the next theorem we show that for the
MIMO CIFC it is sufficient to consider only jointly complex
Gaussian [U X1 X2] in the outer bound in Th.III.1.

Theorem VI.2. MIMO CIFC Outer Bound: The outer
bound in Th. III.1 for the MIMO CIFC can be equivalently
obtained by considering the region in (9) and taking the union
over all the zero mean jointly Gaussian [U X1 X2] for which
(4) is satisfied.

Proof: The proof involves showing that the union over all
possible distributions PU,X1,X2 is equivalent to the union over
jointly complex Gaussian [U X1 X2]. The complete proof can
be found in Appendix C.
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The characterization of the capacity provided in Lem. VI.1
well bounds the capacity region at high SNR. For low SNR,
it is more useful to characterize the region in terms of a
multiplicative factor, instead of an additive one. Next we show
capacity to within a factor two for any MIMO CIFC.

Theorem VI.3. Capacity of the MIMO CIFC to within a
factor two: If (R1,R2) ∈ Rout, then (R1/2,R2/2) is achiev-
able.

Proof: Consider first the outer bound in (9): by taking the
maximum of each bound, we obtain the looser outer bound

R1 ≤ I(Y1;X1|X2) (27a)
R2 ≤ I(Y2;X1,X2), (27b)

where the union is over all the distributions pX1,X2 . Since the
Gaussian distribution maximizes entropy, it is only necessary
to consider jointly Gaussian channel inputs.

Consider then the following two achievable points

Ain,DPC = (I(Y1;X1|X2), I(Y2;X2)) (28a)

Bin,MISO = (0, I(Y2;X1,X2)) . (28b)

The point Ain,DPC is achievable using the inner bound in Thm.
IV.2 by setting U2pb = /0 and

U1pb = X1 +AX2 (29a)

A = Var[X1]HH
11(H11Var[X1]HH

11 + I)−1, (29b)

which completely cancels the effect of the interference at
receiver 1. The point Bin,MISO is achieved with the choice
U1pb =U2pb = /0 which corresponds to having both encoders
transmit to Rx 2 as in a MISO channel.

We now show that the simplified outer bound of (27) is to
within a factor of two from the convex closure of Ain,DPC and
Bin,MISO. Since Ain,DPC and Bin,MISO are achievable, with time
sharing we can achieve any point (R1,R2) such that

R2 =− I(Y2;X1|X2)

I(Y1;X1|X2)
R1 + I(Y2;X1,X2), (30)

for R1 ∈ [0 . . . I(Y1;X1|X2)]. In particular, the following rate
point is achievable,

Cin = (RC−in
1 ,RC−in

2 ) (31a)
= (1/2I(Y1;X1|X2),1/2(I(Y2;X1,X2)+ I(Y2;X1,X2))) ,

For this point we have that 2RC−in
1 = (27a) while

2RC−in
2 − (27b)= I(Y2;X1,X2)+ I(Y2;X2)− I(Y2;X1,X2)

= I(Y2;X2)≥ 0. (32a)

VII. CAPACITY RESULTS FOR THE MIMO CIFC

After having characterized the approximate capacity of
the MIMO CIFC, we now derive a new capacity result for
a subset of the parameters regime. This result is obtained
by generalizing and expanding the capacity results in the
“very strong interference” and the “primary decodes cogni-
tive” regimes for the G CIFC. Both results are obtained by
showing the achievability of the same outer bound, the “strong

interference” outer bound in Lem. III.5. By considering an
achievable scheme which merges the achievable schemes that
attain capacity in these two results, it is possible to achieve
the “strong interference” outer bound in a regime which is
larger than the union of the “very strong interference” and the
“primary decodes cognitive” regimes.

Let’s begin by deriving the equivalent of the “strong inter-
ference” outer bound in Th. III.5 for the MIMO BC.

Lemma VII.1. MIMO “Strong Interference” Outer
Bound. Let the “strong interference” regime be defined as
the set of MIMO CIFCs for which

|H11| ≤ |H21|, (33)

then the region

R1 ≤ log |Cov(H11X1 +Z1)| (34a)
R1 +R2 ≤ log |Cov(H12X1 +X2H22 +Z2)|, (34b)

where the union is over all [X1 X2] ∼
C N (0, [K11,K12;K21,K22]) with Kii ≺ Si for i ∈ {1,2}
is an outer bound to the capacity region of the MIMO CIFC
in “strong interference”.

Proof: The proof consists of showing that the inequality
in (10) for the MIMO CIFC can be evaluated only for jointly
Gaussian inputs using the extremal inequality. The full proof
is provided in Appendix D.

In the “very strong interference” regime, the outer bound
in Lem. VII.1 is achieved by superimposing the cognitive
codeword over the primary one and having both decoders
decode both messages. This corresponds to the scheme in Th.
IV.1 where U2c = X2, that is, the primary message is set to be
common.

In the “primary decodes cognitive” regime, the outer bound
in Th. VII.1 is achieved by having the primary message private
and pre-coding the cognitive codeword against the primary
interference. The primary receiver decodes both codewords
and uses the cognitive codeword as a side information to
decode its intended message. This corresponds to the scheme
in Th. IV.1 where U2c = /0, that is, the primary message is set
to be private.

The scheme in Th. IV.1 unifies and generalizes the two
capacity achieving schemes by considering the case in which
the private message is split in two parts, a common and a
private part. The cognitive message is public and pre-coded
against the private primary message.

Theorem VII.2. Capacity for a Subset of the “Strong
Interference” Regime. If for each [X1 X2] in Lem. VII.1 there
exists an assignment

X1c ∼ C N (0,K11 −K12) (35a)
X2p ∼ C N (0,K2p), K2p � K22 (35b)
X2c ∼ C N (0,K22 −K2p) (35c)
X2 = X2c +X2p (35d)

X1 = X1c +K12K−1/2
22 X2 (35e)

U1c = X1c +ΛCostaH12X2p (35f)

ΛCosta = K1cHH
11(I+H11K1cHH

11)
−1, (35g)
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such that

I(Y1;U1c,U2c)≥ I(Y2;U1c,U2c) (36a)
I(Y1;U1c)≥ I(Y2;U1c), (36b)

then, the region in Lem. VII.1 is the capacity region.

Proof: With the choice of U1c in (35g) the bound in (18a)
becomes equal to the bound in (34a) since this corresponds
to the assignment in [9]. Since (18b) equals (34b), capacity is
shown when the bounds (18d) and (18c) are redundant. The
conditions in (36) guarantee that this is indeed the case.

We next verify that Th. VII.2 generalizes the “very strong
interference” and the “primary decodes cognitive” capacity
results.

Lemma VII.3. The “very strong interference” result corre-
sponds to the case where K2p is a zero matrix in which case
the conditions in (36) reduce to

I(Y1;X1,X2)≥ I(Y2;X1,X2) (37a)
I(Y1;X1)≥ I(Y2;X1). (37b)

Since I(Y1;X1|X2) ≥ I(Y1;X1|X2) in the “strong interference”
regime, condition (37b) is redundant.

Similarly, the “primary decodes cognitive” regime, is ob-
tained by setting K2p = K22 in which case the conditions in
(36) reduce to

I(Y1;U1c)≥ I(Y2;U1c), (38a)

which corresponds to the condition in (17) for the MIMO
CIFC.

A. G CIFC Example

To prove that the result in Th. VII.2 is more general than
the union of the “very strong interference” and the “primary
decodes cognitive” capacity results, we focus on the G CIFC.
For this channel model, the set of input covariances which
produce points on the convex hull of the “strong interference”
outer bound can be parameterized as in (13). We begin by
proving the partial achievability of the “strong interference”
outer bound using superposition coding.

Lemma VII.4. Partial achievability of the “strong inter-
ference” outer bound with superposition coding [2]. When
|b| ≥ 1, the “strong interference” outer bound is achievable
at the point corresponding to α = x if

(1−|b|2)P1 +(|a|2 − 1)P2 ≥
2
(|b|−Re{aH})√xP1P2. (39)

Proof: When fixing the rate of the private primary mes-
sage to zero in (18) and for |b| ≥ 1, the rate bound (18d) can
be dropped. The outer bound is achieved when condition (36a)
is met, which translates to (39).

The capacity result in Th. III.6 is obtained by imposing
condition (39) for all α ∈ [0,1].

We now provide the conditions for the partial achievability
of the “strong interference” outer bound with binning.

Lemma VII.5. Partial achievability of the “strong inter-
ference” outer bound with binning [10]. When |b| ≥ 1, the

“strong interference” outer bound is achievable at the point
corresponding to α = x if

P2 (1− a|b|)2 (αP1 + 1) (40)

− (|b|2 − 1)(P1+ |a|2P2 + 2a
√

xP1P2 + 1)≥ 0.

Proof: When fixing the rate of the common primary
message to zero in (18) and for |b| ≥ 1, the rate bound (18d)
can be dropped. The outer bound is achieved when condition
(36b) is met, which translates to (40).

With the aid of Lem. VII.4 and Lem. VII.5, we now show
the achievability of the “strong interference” outer bound for
|b| ≥ 1 using the inner bound in Th. IV.1.

Theorem VII.6. New Achievability of the Strong Interfer-
ence Outer Bound Let (i)|α=γ indicates that condition (i)
holds for the assignment α = γ and define

α̃ = max
{

0,min
{

1,
(|a|2 − 1)P2 +(1−|b|2)P1

2(Re{aH}− |b|)√P1P2

}}
. (41)

If

(40)|α=0 , (39)|α=1 , (40)|α=α̃ , (42)

or

(40)|α=1 , (39)|α=0 , (40)|α=α̃ , (43)

the region in (14) is the capacity region.

Proof: Capacity is shown by extending the partial achiev-
ability results of Lem. VII.4 and Lem. VII.5 to whole range
α ∈ [0,1]. To match the inner bound in Th. IV.1 with the
assignment in (35) and the outer bound in Th. III.5 for β ≥ 1
we need equations (18c) and (18d) to be redundant, that is

I(Y2;U1c,X2|U2c)≥ I(Y1;U1c|X2,U2c) (44a)
I(Y1;U1c,U2c)≥ I(Y2;U1c,U2c) (44b)

I(Y1;U2c)≥ I(Y2;U2c). (44c)

For the G CIFC condition (44c) can be rewritten as

|a|2P2 +P1 + 2Re{aH}√αP1P2 + 1

αP1 +β
∣∣√αP1 + a

√
P2
∣∣2 + 1

(45)

≥ |b|2P1 +P2 + 2|b|√αP1P2 + 1

|b|2αP1 +β
∣∣∣√|b|2αP1 +

√
P2

∣∣∣2 + 1
.

Condition (45) holds only for β = 0 in the “strong interfer-
ence” but outside the “very strong interference” regime. This
implies that when condition (39) does not hold, one can hope
to achieve the outer bound only with the choice β = 0. With
this observation we conclude that capacity can be achieved
using β = 0 for a subset of the α ∈ [0,1] while using β = 1
for the remaining subset. That is, either condition (39) or (40)
must hold for any α ∈ [0,1]. Note that condition (39) is linear
in

√
x, so if it holds for α1 and α2, then it holds for the whole

interval [α1,α2]. Similarly, (40) is quadratic and concave in√
x, so if it holds for α1 and α2, then it holds for the whole

interval [α1,α2]. For this reason the outer bound is achievable
for any α ∈ [0,1] when: (i) one condition holds in both zero
and one, or (ii) one condition holds in zero and in α = α̃ and
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(a) The capacity result in Th. VII.6 for the condition in (42). (b) The capacity result in Th. VII.6 for the condition in (43).

Fig. 7. A graphical representation of the capacity result in Th. VII.6.

the other holds in α = α̃ and one. For simplicity we choose
α ′ to be the α for which condition (39) holds with equality
as in (41).

The proof of Th. VII.6 is depicted in Fig. 7. Under the
condition in Lem. VII.4 the strong interference outer bound
can be attained using superposition coding. Similarly, under
the condition in Lem. VII.5, it can be attained with binning.
When condition (42) holds, the strong interference outer bound
is attained by binning in the interval α ∈ [0, α̃] while it in
attained by superposition coding in the interval α ∈ [α̃,1].
For condition (43) we have the reverse situation: superposition
coding attains the strong interference outer bound in the
interval α ∈ [0, α̃], while binning achieves the outer bound
in α ∈ [α̃,1].

In the proof of Th. VII.6, the optimal transmission strategy
is obtained by having either a primary public message or
a primary private one, depending on the cooperation level
between the transmitters. This is somewhat surprising as one
would expect rate-splitting to provide some rate advantages.
On the other hand, rate-splitting is usually not necessary to
achieve the convex hull of the achievable region. The key
intuition here is provided by (45): outside the “very strong
interference” regime there is a rate penalty in decoding the
primary message at the cognitive decoder at some rates. When
such a penalty exists, the best thing to do is to set the rate of
the private cognitive message to zero. Note that this may not
be the case when considering an assignment different from
(35). In [10] it is shown that partial interference cancellation,
i.e. setting λ �= λCosta 1 in (45), can yield larger achievable
regions then full interference cancellation.

VIII. NUMERICAL RESULTS

We now numerically illustrate capacity results of the previ-
ous sections for the G CIFC. Since this model is parameterized
by two values, a and |b|, the classes of channels for which
capacity is known, exactly or approximatively, can be conve-
niently represented on the plane a×|b|. We begin by plotting
the result of (42) in Fig. 8(a): in this figure we plot the region
where (40) holds for α = 0 , (39) holds for α = 1 and finally
where (42) holds. Both conditions (40) for α = 0 and (39)

for α = 1 are necessary but not sufficient conditions for (42)
to hold. Unlike for the “weak interference” and “very strong
interference” capacity results, the conditions in (42) cannot
be intuitively interpreted. More importantly, it is not straight
forward to determine where (42) holds and instead numerical
simulations are need to determine that region.

In Fig. 8(b), we present the improvement on the known
capacity region that is provided by Th. VII.6. The capacity
result in Fig. 8(a) is plotted along side the other regimes
in which capacity is known in strong interference, the “very
strong interference” and the “primary decodes cognitive”
regimes of Th. III.6 and of Th. III.7 respectively. Note that the
result in (42) is not necessarily contiguous to any of the above
regions, although this can be often observed in the numerical
evaluations. In Fig. 8(b), the gap between the “very strong
interference” region and the new capacity result is most likely
due to numerical precision issues.

Fig. 9(a) is analogous to Fig. 8(a) but for the condition in
8(b): in this figure we plot the region where (40) holds for
α = 1 , (39) holds for α = 0 and finally where (43) holds.
Note that this region is much smaller than the region in Fig.
8(a) and that the choice of the powers P1 is different among
the two figures. From the numerical simulation, one gathers
the impression that indeed the condition in (43) holds for a
smaller set of channels than (42). Unfortunately, this intuition
cannot yet be shown analytically.

In Fig. 9(b) the new capacity result of Fig. 9(a) is plotted
along-side the capacity result in the “very strong” and the
“primary decodes cognitive” capacity regions.

IX. CONCLUSIONS

We have studied the capacity of the general cognitive
interference channel, a variation of the classical interference
channel where one of the transmitter, the cognitive transmitter,
is provided with the message of the other user, the primary
user. We derive the capacity of this channel to within a finite
additive gap which relates to the ability of the cognitive
transmitter to emulate the channel output at the cognitive
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(a) The region where (40) for α = 0 (single hatched) holds, where
(39) for α = 1 (cross hatched)

(b) The “very strong interference” capacity region (blue), The
“primary decodes cognitive” capacity region (green), holds and
where (42) holds (purple)

Fig. 8. The result of Th. VII.6 for the G CIFC with P1 = 10, P2 = 1 and
a×|b| ∈ [−5,5]× [1,5]

receiver. We specialize this result to the multiple antenna
cognitive interference channel and show that, for this model,
the gap between the inner and outer bounds is equal to the
number of antennas at the cognitive receiver. This result well
characterizes the capacity at high SNR; for the low SNR
regime we show that the ratio between the inner and the outer
bound is at most two. We also derive a new capacity result
for the sub-class of the multiantenna cognitive interference
channel. This new capacity result is obtained by generalizing
the capacity proof for the “very strong interference” regime,
in which superposition coding achieves capacity, and for the
“primary decodes cognitive” regime, in which binning is
optimal. Although this result improves on the class of channels
for which capacity is known, the complete characterization
of the capacity of this channel is still an open problem. Our
results show how cognition benefits both the primary and the
cognitive user. The primary user is able to attain much larger
rates thanks to the cooperation with the cognitive transmitter.
On the other hand, the knowledge of the primary message at
the cognitive encoder, allows it to remove the effect of the
interference at the cognitive receiver.

(a) The region where (40) for α = 0 (single hatched) holds, where
(39) for α = 1 (cross hatched)

(b) The “very strong interference” capacity region (blue), The
“primary decodes cognitive” capacity region (green), holds and
where (42) holds (purple)

Fig. 9. The result of Th. VII.6 for the G CIFC with for P1 = 10−3 with
P2 = 1 and a×|b| ∈ [−1.1,−1]× [3,3.1].

APPENDIX

A. Proof of Th. IV.1

The original expression of scheme (F) in [20, Sec. IV.F]
contains a rate bound for R1 which can be shown redundant
with rate-sharing. Let R2c be the rate of the public primary
message, R2p that of the private primary message, and R1c
the rate of the public cognitive messages, then the original
achievable region is expressed as

R2c +R1c ≤ I(Y1;U1c,U2c)− I(U1c;X2|U2c) (46a)
R1c ≤ I(Y1;U1c|U2c)− I(U1c;X2|U2c) (46b)

R2c +R1c+R2p ≤ I(Y2;X1,X2) (46c)
R1c +R2p ≤ I(Y2;X2,U1c|U2c) (46d)

R2p ≤ I(Y2;X2|U2c,U1c). (46e)

Notice now that if the rate vector [R1c R2c R2p] is achievable,
then the rate vector

[R1c −Δ1 R2c −Δ1 R2p +Δ1 +Δ2], (47)
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for Δ1 ≤ R1c and Δ2 ≤ R2c is also achievable. The quantity Δ1
represents the part of the primary private message transmitter
through the public cognitive codeword while Δ2 is the part of
the private primary message embedded in the public primary
message. By performing the Fourier-Motzkin elimination of
the Δ1 and Δ2 and successively setting the rate R2c, one obtains
the region in (18).

B. Proof of Th. V.3

The desired result is shown by considering the outer bound
in Th. III.1 and the inner bound in Th. IV.2 and bounding the
distance between the two bounds for any fixed distribution.
We do so by choosing a particular assignment of the RVs
in the outer bound for a given distribution of PU,X1,X2 in the
outer bound. In particular, we choose [X1 X2 U2pb] in Th. IV.2
to equal [X1 X2 U ] respectively in Th. III.1. Additionally, we
choose U1b to have the same distribution as Y1|X1,X2: this
is obtained by passing X1 and X2 through the test channel
PY1|X1,X2 to generate the RV Ỹ1. This can be done because the
cognitive transmitter has knowledge of both messages and can
thus reconstruct both channel inputs. With this assignment, the
inner bound becomes

R1 ≤ I(Y1;X1|X2)− I(Y1;X1,X2|Ỹ1) (48a)
R2 ≤ I(Y2;U,X2) (48b)

R1 +R2 ≤ I(Y2;U,X2)+ I(Y1;X1|X2,U)− I(Y1;Ỹ1), (48c)

since the RHS of (48a) can be obtained as

I(Y1;U1pb)− I(U1pb;X2)

= H(Y1)−H(Y1|Ỹ1)−H(Ỹ1)+H(Ỹ1|X2) (49a)

= H(Ỹ1|X2)−H(Y1|Ỹ1) (49b)

= H(Y1|X2)−H(Y1|X1,X2)+H(Y1|X1,X2)−H(Y1|Ỹ1) (49c)

= I(Y1;X1|X2)− I(Y1;X1,X2|Ỹ1), (49d)

and (48c) can be obtained as

I(Y1;U1pb)− I(U1pb;X2,U)

= I(Y1;Ỹ1)− I(Ỹ1;X2,U) (50a)

= H(Y1|X2,U)−H(Y1|Ỹ1) (50b)

= H(Y1|X2,U)−H(Y1|X1,X2,U)+H(Y1|X1,X2,Ỹ1)−H(Y1|Ỹ1)
(50c)

= I(Y1;X1|X2,U)− I(Y1;X1,X2|Ỹ1), (50d)

where, in (50c), we have used the Markov chain Y1 −X1,X2−
UỸ1. The largest additive gap between the inner and outer
bounds corresponds to the largest gap between the two bound
for a fixed distribution PU,X1,X2 .

C. Proof of Th. VI.2

First of all notice that we can express Rout as

Rout =
⋃

PX1,X2

Conv

⎧⎨⎩Rout−A ∪
⎛⎝ ⋃

PU |X1,X2

Rout−B

⎞⎠⎫⎬⎭ , (51)

where Conv(A) indicates the convex closure of A, Rout−A is
defined as

R1 ≤ I(Y1;X1|X2) (52a)
R2 ≤ I(Y2;X2,U sum) (52b)

R1 +R2 ≤ I(Y2;X2,U sum)− I(Y1;X1|X2,U sum), (52c)

for

U sum ∼ argmax
PU |X1,X2

I(Y2;U,X2)+ I(Y1;X1|X2,U), (53)

and Rout−B is defined as

R1 ≤ I(Y1;X1|X2,U) (54a)
R2 ≤ I(Y2;U,X2). (54b)

The argument of the convex closure in the RHS of (51)
contains all the points Aout and Bout which are obtained from
(9) when considering the union over PU|X1,X2 for a fixed PX1,X2 .
Since the bound in (52a) does not depend on U , the largest
RA−out

2 is obtained by maximizing the sum rate bound (52c).
On the other hand, the coordinates of the point Bout depend on
PU|X1,X2 and the region Rout−B corresponds to all the points
Bout generated by varying PU|X1,X2 . Since Rout−A contains all
the points Aout and Rout−B contains all the points Bout, the
equivalence in (51) is shown by considering the convex closure
of these two regions.

Consider now the region
⋃

PU |X1,X2
Rout−B: the points on the

convex hull of this region can be expressed as

μR1 + μR2 =

max
PU |X1,X2

μI(Y1;X1|X2,U)+ μI(Y2;X2,U) (55a)

≤ μH(Y2G)− μH(Z1)

+ μ

(
max

PU |X1,X2

H(Y1|X2,U)−ρH(Y2|X2,U)

)
(55b)

for μ ∈ [0,1] and ρ = μ/μ and where Y2G indicates the
zero mean Gaussian vector having the same covariance as
Y2. Equality is achieved in (55b) by showing that choosing
jointly Gaussian [X1 X2 U ] is optimal. Note that the opti-
mization in (55) for μ = .5 is attained by U sum in (53).
Values of μ ∈ (.5 . . .1] need not be considered for (55): these
points are already contained in the region Rout−A given that
(52c)R ≥ (54a)R+ (54b)R and (52a)R ≥ (54a)R. For this reason
we can write the argument of the convex closure in the RHS
of (51) as

μR1 + μR2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
maxPU |X1,X2

μ(54a)R + μ(54b)R

for 0 ≤ μ ≤ .5
(52c)R

for .5 < μ ≤ 1

(56)

For the range 0 ≤ μ ≤ .5, we have ρ ≥ 1 and thus we can
apply the extremal inequality of [25, Th. 8] to conclude that
the maximum of (55b) is attained by Gaussian X1,X2 and
U and that (55b) holds with equality. By the same token,
(53) is also maximized by Gaussian inputs and U , since it
corresponds to (55b) for ρ = 1. This shows that all the points
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Fig. 10. A graphical representation of the proof of Th. VI.2 which shows
the region (52) union over PU |X1,X2 for a fixed PX1 ,X2 .

on the boundary of the region Rout−A∪
(⋃

PU |X1,X2
Rout−B

)
are

maximized by jointly complex Gaussian [X1 X2 U ].
A graphical representation of the proof is provided in Fig.

10: the region Rout−A and the region
⋃

PU |X1,X2
Rout−B intersect

for μ = .5 in (55b). For μ ≤ .5, points of
⋃

PU |X1,X2
Rout−B

are on the boundary of the region while for μ > .5 points
of Rout−A a re. The maximum sum rate is achieved by the
assignment in (53) and for complex Gaussian [U X1 X2]
according to the extremal inequality of [25].

D. Proof of Th. VII.1

The condition (10) for MIMO CIFC can be rewritten as Eq.
57.

From the conditional version of the extremal inequality of
[25, Th. 1], we conclude that the maximization in (57) is
attained by jointly complex Gaussian X1 and X2.

To further simplify the expression in (57) we require the
following lemma:

Lemma A.1. For A,B positive semi-definite

|I +A| ≤ |I+B| ⇐⇒ |A| ≤ |B|, (58)

Proof: Since A and B are positive semi-definite, |A| =
∏i λ A

i , where λi is the ith eigenvalue of A. The eigenvalues of
A+ I are therefore

|I+A|= ∏
i
(1+λ A

i ), (59)

and thus

|I +A| ≤ |I+B| ⇐⇒ (60a)

∏
i
(1+λ A

i )≤ ∏
i
(1+λ B

i ) ⇐⇒ (60b)

∏
i

λ A
i ≤ ∏

i
λ B

i ⇐⇒ (60c)

|A| ≤ |B|. (60d)

From the extremal inequality we have

max
pX1|X2

H(X1 +Z1|X2)−H(H21X1 +Z2|X2)− (n1 − n2) log(2πe)

(61a)

= log |I+H11(K11 −K12K−1
22 K21)HH

11|+ (61b)

− log |I +H21(K11 −K12K−1
2 K21)HH

21| (61c)

and, using the Lemma A.1, we can conclude that

log |I+H11(K1 −K12K−1
2 K21)HT

11| ≤
log |I+H21(K1 −K12K−1

2 K21)HT
21| ⇐⇒ (62a)

|I+H11(K1 −K12K−1
2 K21)HT

11| ≤
|I+H21(K1 −K12K−1

2 K21)HT
21| ⇐⇒ (62b)

|H11||K1 −K12K−1
2 K21||HT

11| ≤
|H21||K1 −K12K−1

2 K21||HT
21| ⇐⇒ (62c)

|H11| ≤ |H21|. (62d)

The expression in (34) is obtained by noticing that the region
in (10) is maximized by jointly complex Gaussian inputs.
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