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rsive Filtering with Non-Gaussian 
Wen-Rong Wu and Amlan Kundu 

Abstract- The Kalman filter is the optimal recursive filter, 
although its optimality can only be claimed under the Gaussian 
noise environment. In this paper, we consider the problem of 
recursive filtering with non-Gaussian noises. One of the most 
promising schemes, which was proposed by Masreliez, uses the 
nonlinear score function as the correction term in the state 
estimate. Unfortunately, the score function cannot be easily im- 
plemented except for simple cases. In this paper, a new method 
for efficient evaluation of the score function is developed. The 
method employs an adaptive normal expansion to expand the 
score function followed by truncation of the higher order terms. 
Consequently, the score function can be approximated by a 
few central moments. The normal expansion is made adaptive 
by using the concept of conjugate recentering and the saddle 
point method. It is shown that the approximation is satisfactory, 
and the method is simple and practically feasible. Experimental 
results are reported to demonstrate the effectiveness of the new 
algorithm. 

I. INTRODUCTION 

HE problem of estimating the state of a linear stochastic 
system when the plant and observation noise are non- 

Gaussian is a difficult problem. This problem is the main focus 
of this paper. Consider a linear system described as follows: 

X k , + l  4 k x k  + wk (1) 

(2)  Zk = H k Z k  + V k  

where zk. is the state vector, and wk and vk, represent white 
noise sequences and are assumed to be mutually independent. 
The basic problem is to estimate the state : ~ k  from the noisy 
observation zk. The probability density of the state conditioned 
on all the available observation data is called the a posteriori 
density. If this density is known, an estimation for any type 
of performance criterion can be easily found. Denote f (  .) as 
a density and Z" = {zo. z1, . . xk}. Then, the a posteriori 
density can be recursively determined as follows [l]: 

( 3 )  

f ( .Ek lZ " ' )  = .i' s(.k-llz'.-l)f(.rcl.k-1) d z k - 1  (4) 

where the normalizing constant f ( z k l Z " - ' )  is given by 
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The f (zk1zk)  in (3) is determined by the observation noise 
density f ( u k )  and (2). Similarly, f ( ~ k l . r k - ~ )  in (4) is deter- 
mined by the state noise density f ( w k )  and (1). Theoretically, 
knowing these densities, we can determine the a posteriori 
density f ( ~ k l 2 " ) .  However, it is often impossible to cany 
out the integration in (4). Consequently, the a posteriori 
density cannot be determined for most applications. The only 
exception is when the initial state and all the noise sequences 
are Gaussian. In this case, (3) and (4) lead to Kalman filter 
equations. 

In earlier approaches, attention was focused on the 
approximation of density functions. Sorenson and Stubberud 
[ 11 employed the Edgeworth expansion to approximate 
the a posteriori density. The Edgeworth expansions are 
characterized by the central moments of the approximated 
density. Recursive relations were established for a finite 
number of these moments [l). Although this approach 
has some advantages, the approximated densities tend to 
be negative for some values. To overcome the problem, 
Sorenson and Alspach [2] developed the Gaussian sum 
method. In this approach, all the densities are approximated 
by a mixture of Gaussian densities. Utilizing the properties 
of Gaussian densities, they were able to keep track of the 
evolution of the a posteriori density. However, the number 
of Gaussian components will grow exponentially as the filter 
propagates. The large number of Gaussian components often 
makes the whole algorithm unmanageable. By assuming that 
,f (21; IZkp1) is Gaussian, Masreliez derived the recursive 
estimation equations based on the concept of score function 
[3], [4]. This algorithm is conceptually attractive, and results 
are often nearly optimal. However, Masreliez had found 
difficulties in implementing score functions except for simple 
cases. 

To make the score function based filter applicable to wider 
class of problems, West [6] had tried to modify Masreliez' s 
method by using an ad hoc scheme. He expanded the a priori 
density f ( z k 1 . k )  around the state prediction by means of Tay- 
lor series and truncated it at the second-order term. By doing 
that, one can approximate the density f ( z k 1 . k )  by a Gaussian 
density. Although this approach does give better results, there 
is no guarantee that the appropriate Gaussian density should 
exist. Some of the most common distributions such as uniform 
and Laplacian distributions cannot be approximated by this 
method. 

Another method, which uses the nonlinear filtering theory, 
was developed by Makowski et al. [16], 1171. The idea here 
is to employ some probability measure transformation such 
that the transformed noise is Gaussian, and the standard 
Kalman filter can be applied. After that, the results are mapped 
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back to the original probability measure. This approach is 
mathematically involved and computationally expensive. It is 
shown that when the initial condition is the only non-Gaussian 
component, the filtering scheme is finite dimensional [18]. 
However, when the system is driven by non-Gaussian noise, 
the computation grows linearly with time. Thus, this method 
may not be suitable for practical implementation in many 
situations. Some other related nonlinear techniques are also 
described in the literature [SI, [7]. 

From the above discussions, it is clear that the score 
function-based filter could be useful in many situations if 
an efficient method to evaluate the score function is readily 
available. The focus of this paper is to make Masreliez' 
filter more applicable by simplifying the evaluation of score 
function using an approximation. To get this approximation, 
we have used a distribution expansion scheme. In this process, 
we need to transform the original distribution to a new one so 
that the new distribution has its mean at the point where the 
score function is to be evaluated. Then, we apply the normal 
expansion technique to this transformed distribution and its 
derivative. This transformed distribution is called the conju- 
gate distribution [ 101. The transformation procedure is called 
conjugate recentering [ 131. The approximated score function is 
then obtained by truncating the expansion. It is shown that the 
score function can be effectively approximated using only a 
few moments of the distribution under consideration. The main 
cost of the computation is to find the conjugate distribution that 
can be easily found by searching for the so-called saddle point 
[ l l ] .  A simple Newton method can be used to carry out this 
process. The approximation technique is objectively verified 
by detailed simulations. 

It is relevant to note here that in some special problems, the 
score function can be computed in a straightforward manner 
using the analytic expression. For instance, the Masreliez 
filter has been used in suppressing narrowband interference in 
direct sequence spread-spectrum signal [19]. In this case, the 
observation noise is highly non-Gaussian due to the presence 
of a chipped spread-spectrum signal. By assuming that the 
additive channel noise is Gaussian, analytical expressions of 
the score function are derived in [19]. Under non-Gaussian 
channel noise, the analytical expressions may not be easy to 
obtain. An approximation technique could be more effective 
and, often, the only alternative. The score function also appears 
in another important practical problem-locally optimum de- 
tection of a known signal in additive noise [20], [21]. The 
locally optimum detector test statistic is obtained as a linear 
combination of the score function of the noise distribution 
evaluated at various observations. In this problem, analytically 
tractable score functions are generally considered. Here again, 
the technique described in this paper could be useful when 
the score function under consideration is difficult to handle 
analytically. 

Our paper is structured as follows. A brief description of 
the Masreliez filter is given in Section 11. In Section 111, the 
evaluation of the 1-D score function and its derivative, as 
applied to the Masreliez filter, is described, The evaluation 
of the multidimensional score function and its derivative 
is described in Section IV. Section V contains a detailed 

description of simulations. Conclusions are also drawn in this 
section. 

11. THE SCORE FUNCTION APPROACH 

In this section, we briefly review Masreliez's algorithm [4]. 
Consider the linear system described in (1) and (2). Denote 
f ( x k ( 2 - l )  as the density of zk conditioned on the previous 
observations. We name f ( z k  12"') the observation prediction 
density (OPD) and assume it is twice differentiable. Similarly, 
f ( xk l2 " ' )  is the density of xk conditioned on the previous 
observations and is named the state prediction density (SPD). 
The filtering problem is to estimate the state vector xk from 
all the noisy observations Z k  up to the present time IC. Let 
E{wkw$} = Q k S k j .  Assume that f (xk l2" ' )  is a Gaussian 
density with mean 5 k  and covariance matrix Mk. Then, as 
Masreliez has shown, the minimum variance state estimation 
2 k  anditscovariancematrix l'k = E { ( x k - ~ k ) ( x k - 2 k ) t I Z k }  

can be recursively calculated as follows: 

2 k  = T k  + M k H ; g k ( % k )  (6) 
pk - M ~ H ; G ~ ( ~ ~ ) H ~ M ~  (7) 

Zk+l =&& (8) 
Mk+i = & P k d &  + Q k  (9) 

where SA( . )  is a column vector with components: 

and G k ( x k )  is a matrix with elements 

The function g k ( . )  is the so-called score function of 
f (zk: 12" ' ). Although the above result is an approximate 
solution, it suggests a way to modify the Kalman filter under 
a non-Gaussian environment. Assume that wk is Gaussian. 
The state estimate of the Kalman filter is given by 

zl, = rck + M ~ , H ; ( H ~ A & H ;  + R ~ ) - ~ ( ~ ~  - H ~ z ~ )  (12) 

where R k  = E { v ~ v ~ } .  We can see that ?k is a linear function 
of the residual xk - HkZk.  However, the score function 
g ( . )  is a nonlinear function of the residual. This nonlinear 
function de-emphasizes the influence of large residuals when 
the observation noise density is long tailed and, on the other 
hand, emphasizes the large residuals when the observation 
noise density is short tailed. It is easy to check that the 
Masreliez filter is reduced to the standard Kalman filter if ZO, 

wk,  and v k  (for all k ' s )  are all Gaussian. 
The following procedure summarizes the implementation 

of the filter. 
Step 0) Assume that at stage IC - 1, 2 k - 1  and 9 - 1  are 

Step 1) Calculate Z k  = q5k-12k-1 and Mk = 

Step 2) Approximate the SPD f ( z k l 2 " ' )  by a Gaussian 
distribution with mean Z k  and covariance matrix 

known. 

$ k - ~ J ' k - ~ $ ; - i  + Qk-1.  

M k .  
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Step 3 )  Find the OPD f ( z ~ , I Z - l )  by convolving 
f ( H k e k l Z k P 1 )  with .fv,(.). 

Step 4) Find gk(xk) and G k ( z k ) .  

Step 5) Apply (6) and (7) to find 21, and Pk. 
Step 6) Let k 3 k + 1, and start all over from Step 1. 
The procedure outlined above is straightforward in principle. 

However, the convolution operation in Step 3 is difficult to 
implement except for simple cases. In addition, in Step 4, 
the differentiation operations involved in the evaluation of the 
score function and its derivative are not trivial. 

If vk is Gaussian but wk is not, we can show that the 
filter described in (6)-(9) will be reduced to the standard 
Kalman filter. In order to deal with this problem, Masreliez has 
derived another filter for the case when wk is non-Gaussian 
and vk is Gaussian. Assume that the system is described as 
given by (1) and (2), and the observation noise density is 
Gaussian with zero mean and covariance matrix Rk. Let the 
matrix H t  R i l  HI,  be nonsingular for all k .  Then, the minimum 
variance estimation of z k  and its covariance matrix can be 
calculated recursively as follows: 

q1 = H ; R ; ~ H ~  (13) 

z k  = T ~ H : [ R , ~ z ~  - , g k ( z k ) ]  (14) 
PI, = T k  - T ~ H ~ G I , ( Z ~ ) H ~ T ~  

Mk+i = ( $ k P k ( $ L  + & k .  (17) 

(15) 
(16) 

- 
x k + 1  = 4 k z k  

Since we do not make the Gaussian assumption for the 
SPD, the score function can no longer be obtained from the 
convolution of the SPD and the observation noise density. 
Denote the convolution operation as “*.” We have shown 
elsewhere that if the density 

f(Hk&kzk-llZk-l) * f(.k) (18) 

is assumed to be Gaussian, the score function can be obtained 
easily. For a detailed discussion, see [15]. 

111. EVALUATION OF ONE-DIMENSIONAL SCORE FUNCTIONS 

In this section, we describe the derivation of the score 
function approximation scheme. The heart of this approx- 
imation procedure is a distribution approximation scheme. 
By using the concept of adaptive normal approximation of 
distributions, we find both f ( . )  and f ’ ( . ) .  From that, we find 
the expansion of f ’ ( . ) / f ( . )  and truncate it appropriately to 
obtain the approximation of the score function. 

A. Normal Approximation 

be a random variable with mean m and variance o2 
and g(x)  be the density of ( E  - m)/a .  It has been shown that 
g(z) can be expanded as follows [8]: 

Let 

where $(.) is a unit normal density, Hn(z)’s are Hermite 
polynomials, which are defined as 

and p n  = K n / K ; i 2  is the nth standardized cumulants where 
/in denotes the nth cumulant [8] of f c (x ) .  This is called the 
normal expansion. 

An approximation is made by retaining several terms in 
the expanded series given by (19). This is called the nor- 
mal approximation. If the distribution being approximated is 
Gaussian, we expect the normal approximation to be exact. 
This can be easily verified. The moment generating function 
(MGF) of a Gaussian distribution (zero mean) is eUzT2i2 .  
As a consequence, K~ = 0 for n 2 3 .  If a distribution is 
close to the Gaussian distribution, its cumulants must be small 
for n 2 3,  and the error is small when the approximation 
is made with only a few terms. In order to safely use the 
approximation, some conditions have to be imposed on the 
distributions being approximated. For example, the distribution 
has to be unimodal, continuous, and smooth. It is well known 
that the normal approximation is good around the mean. In 
the tail region, the approximation can be quite poor (even 
become negative). Based on this observation, we employ an 
adaptive expansion scheme which can greatly improve the 
approximation in the tail region. 

B. Adaptive Normal Approximation of Distributions 

Let f (.) be a distribution function whose MGF exists in 
some neighborhood of the origin. In addition, assume that 
f ( . )  is continuous and its first few derivatives exist. The basic 
idea is to use a low-order approximation at each point of the 
distribution instead of using a high-order approximation at a 
single point for the whole distribution. Suppose that we want 
to approximate the distribution at a point, say, 20. We first 
transform the original distribution to a distribution that has its 
mean at 20 ,  Then, we apply the normal expansion technique to 
expand the transformed distribution and evaluate it at XO. Since 
the normal expansion is good around the mean, this approach 
is expected to yield a better result than the straightforward 
normal expansion. The procedure for the transformation is 
called recentering [ 131, and the transformed distribution is 
called the conjugate density [lo]. We now formally state the 
definition. 

Dejinition: If there exist constants a and To such that 
g ( z )  = aeToZf(x  + 20)  is a density with zero mean, ,y(z) 
is called the conjugate density of f ( z )  at the point xo. 

If we assume that the conjugate density is known, g ( z )  can 
be normalized and expanded as in (19): 

+ f iHj (x)  + (p6 + 10p’) H6(x) + . . .} (19) where oz and p z ,  are, respectively, the standard deviation and 
the ith standardized cumulant of g ( z ) .  From the definition, 5 !  6! 
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we know that f ( z  + 2 0 )  = a-le-TOZg(z).  Then, f ( z o )  = 
a -19 (0). 

discussed in [ l l ] .  We assume that f ( x )  = 0 for z < a, z > b 
and M ( T )  converges for -dl < T < dZ. Note that a, b ,  d l  

Note that in (22), the odd terms are all equal to zero. If the 
distribution is close to a Gaussian one, only the first term in 

f(.o) = a - l g ( 0 )  

and 

(30) 

then a unique real root for K’(T) z exists, and as T 
increases from -dl to d 2 ,  K’(T) increases continuously from 
J: = a to z = b. The condition is easily satisfied for a wide 
class of distributions. 

be found. This is done by differentiating (26) n times and using 
(27) and (28). Denote the nth moments by p z  n, and then 

lim K’(T) = b  the series would provide a good approximation, i.e. T+& 

4(0) 
aoz 

zz -. (23) 

In order to use (23) ,  one has to find the conjugate density. 

and K ( T )  be In [ M ( T ) ] .  K ( T )  is called the cumulant MGF 
[9]. Then 

This is carried out as follows. Let the MGF of f ( $  be M ( T )  Once the conjugate density is its moments can 

J --oo 

Let T be real. Multiplying both sides of (24) by e -Tzo ,  chang- 
ing the variable z to s where s = z - 50,  and differentiating 
both sides with respect to T ,  we have 

Let us consider the infinite series expansion of the exponential 
function inside integral in (25). Since MGF exists for a range 
of T ,  within this range, each integral corresponding to one 
term should also exist. Thus, MGF becomes a power series 
in T .  This power series converges for a specific range of 
T values. Then, one can differentiate this power series with 
respect to T .  At the same time, one can differentiate eTs  under 
the integral sign and do tern-by-term integration. Both sides 
turn out to be equal. Therefore, one can interchange integral 
and differentiation [22] in this case. 

el<(T)--Tzo [K’(T) - 201 = /-” s e T S f ( s  + 20) d s .  (26) 

Now, if we choose TO and cy such that 

. -cc 

K’(T”) - 50 = 0 (27) 

and 

then 
+oo 

aeTOSf(s + 20) ds = 1 1, cm saeTO”f(s  + 50) ds  = 0. (29) 

Hence, g ( s )  = aeTOSf(s  + 20)  is the conjugate density. 
The solution of K’(T)  - i c g  = 0 is referred to as the saddle 

point of ecT”0M(T). The existence of the saddle point is 

The relation of moments and cumulants (denoted by K ~ , ” )  

can be found in [SI. In particular, we have K ~ , ~  = p z , n  for 

The MGF of a distribution is nothing but the Laplace trans- 
form of the distribution. One of the most important properties 
of the Laplace transform is that the convolution in the temporal 
or spatial domain can be transformed into multiplication in 
the frequency domain. This property is directly applicable to 
MGF’s. This is also the key concept that allows us to avoid 
the convolution operation involved in the estimation of the 
score function as required in Masreliez’s approach. This is 
discussed next. 

n = 1, 2 .  3. 

C. Adaptive Normal Approximation of Score Functions 

The distribution approximation technique discussed above 
can also be extended to find the approximation of score 
function. The idea is to find the expansion of f (  .) and f ’ (  .) via 
the conjugate recentering. From that, we find the expansion of 
f ’ ( . ) / f ( . )  and truncate it to obtain the approximation. Since 
f ( . )  is derivable at each point, we can obtain f ’ ( . )  through a 
term-by-term differentiation of the expansion of f (.). First, we 
construct the conjugate density g ( z )  at xo and express f ( x )  
in terms of g ( z ) .  

f(.) = f ( z  + 2 0 )  
(,-1 -Toz (32) e dz). - - 

Then 

The expansion of g ( z )  using (21) is given by 
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Then 
g / ( x ) = - - . ( ~ ) { H 1 ( ~ ) + ~ H 4 ( ~ )  1 

f l z  

+ % H s  (?) + . . . }  
4! f f z  

Retaining the first terms in (37) and (38), we obtain the 
approximation of the score function 

(39) 

To implement Masreliez's filter, we also need the derivative 
of the score function. To do this, we can differentiate (34) 
and truncate the expanded series [involving g"( . ) I .  Thus, this 
procedure would be similar to what we have done for the score 
function. Instead, we propose a simpler alternative that finds 
the derivative of the approximated score function. This is done 
in the following manner. The relationship between x and T is 
established through the equation K' (T)  = 2.  Thus 

1 
- 

dT 
dx K"(T) '  

Take the derivative of the score function in (39) with respect 
to x. Then 

The approximation results we have obtained here are closely 
related to some of the asymptotic approximation techniques 
in statistics. Elsewhere [15], we have shown the equivalence 
of our distribution and score function approximation schemes 
with Daniels' saddle-point method [ 113 and Hampel's small 
sample asymptotic method when the sample size is one [ 131. 
For detailed discussion, see [15]. 

D. Error Analysis 

The approximation scheme described above usually works 
very well for distributions not deviating too much from the 
Gaussian form. Since a general error analysis is very difficult, 
we show here only some analysis using the results in [ll].  As 
we know, the standard normal approximation becomes poor 
as .r approaches the ends of its admissible range. Therefore, 
we will investigate the error behavior of our approximations 
around the end points. From (30), we know that as x + a ;  b, 
the saddle point +-dl, d2. It is shown in [I 11 that for a wide 
class of distributions, their conjugate densities approximate 
either to the gamma form or to the normal form as the saddle 
point +-d1, d2. In the first case, the standardized cumulant 
pz,7L is bounded for a given n; in the second case, pZ.7,  + 0. 

In Appendix A, we define distributions with the gamma and 
the normal form and show that if conjugate densities belong 
to these kinds, approximations of score functions and their 
derivatives are also either bounded or zero. 

E. Implementation of the Score Function of the OPD 
Next, we apply the score function approximation technique 

derived above to the Masreliez algorithm. We assume that the 
MGF of f ( u k )  is known. Since f ( z k l Z k - ' )  is Gaussian with 
known mean and variance, the MGF of f (Hkxk lZk - ' )  can 
be easily found. Let the MGF's off(wk) and f ( H k z k l 2 " ' )  

be M,  ( T )  and Mz ( T ) ,  respectively. 
Find the MGF of f ( z k l 2 " ' ) :  Since f ( zk lZ ' " - ' )  
is obtained from the convolution of f ( ' l i k )  and 
f(Hkzk1Zk-'), the MGF of f ( z k l 2 " ' )  is 
ML (T) 1% (T) . 
Find the conjugate density of f (zklZ '"- ' )  at xk: Let 
K ( T )  = In (Mv(T)Mz(T)). The conjugate density 
of f (zklZ"- ' )  at xk is constructed as ,9(s) = 
c y k e T k s  f (s + z k ) ,  where Tk is chosen as the saddle 
point of {M,(T)Mr(T)e-'zk}, i.e., K/(Tk)  - z k  = 0, 
and l / a k  as { n ~ v ( T k ) ~ z ( T k ) e - T ' . Z ' . } .  
Find the second, the third, and the fourth moment of g ( s )  : 
a:, ps 3 ,  and ,us 4 can be found by 

0," =K/'(Tk)  

P s , 3  = @ ( T k )  

P,,4 =K'4'(Tk). (42) 

Approximate the score function of f ( x k l Z k - ' )  and its 
derivative by 

The density being approximated is the OPD. As we know, 
this density is obtained by a convolution of the SPD and the 
noise density. Since we assume that the SPD is Gaussian, if 
the noise density is well behaved and unimodal, the general 
shape of the OPD will not be very different from a Gaussian 
density. This is the rationale for using the adaptive normal 
approximation scheme in the filtering problem. If the noise 
density is not unimodal, we can first approximate it by a 
weighted sum of some well-behaved unimodal densities and 
apply the adaptive normal approximation to the individual 
OPD (SPD convolved with the individual unimodal density). 
By doing so, the score function can be easily found. This is 
elaborated upon in the next paragraph. 

If the noise distribution is composed of two of more 
distributions, i.e., a weighted sum of two or more distributions, 
the calculation of saddle points and moments can be very 
tedious. Here, we propose a simple method that can overcome 
this problem. Let the distribution f (  .) be a weighted sum of 
two distributions f l ( . )  and f * ( . )  with weights w1 and w2, 
where w 1  + w2 = 1. The score function and its derivative for 
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the distribution t i ( . )  are denoted by g;( .) and Gi(.) (i = 1, a), 
respectively. Define 

Consider a zero mean bivariate distribution f ( z ,  !/). If 
02 = 1, 05 = 1, and E(zy) = 0, f(z,  9 )  can be expanded 
as [12] 

W f l ( 2 )  

W l f l ( n : )  + w2f2(x)  

w2f2(2) 

W l f l ( X )  + W 2 f 2 ( 2 ) .  

w, = 
.fz,y(x;  Y) = 

1 
4(5)4(Y) { 1 + g ( H t d 3 ' ( 5 >  Y> 

and 

1 1 

1 

(45) wh = 
+ (HtP)[41(? w )  + 3 (Htp)[51(2> w )  

Then, it is simple to show that the score function of f (  .), and 
its derivative can be calculated as + 6! [ ( ~ t p ) [ 6 1 ( 2 ;  y) + 10{(~tp)[31}2(2,  ?,)I+ . . .} (48) 

Note that the method can be easily generalized to find the score 
function and its derivative for a distribution that is a weighted 
sum of more than two distributions. 

It is possible to include more terms in the expanded series 
to improve the approximation accuracy. However, to include 
the next available term in the expanded series, we have to 
use cumulants up to the sixth order. For a well-behaved and 
Gaussian-like distribution such as the OPD, the increase in the 
computation complexity is often not warranted. 

Iv. EVALUATION OF MULTIDIMENSIONAL SCORE FUNCTIONS 

In this section, we extend the results obtained in Section 
I11 to systems with multidimensional observations. In these 
kinds of systems, the OPD becomes multivariate, and the 
filtering problem becomes more complicated. We assume that 
all the necessary regularity conditions mentioned in Section I11 
also hold here. Using techniques similar to those developed 
in Section 111, we derive the approximation formula for the 
score function of a multivariate distribution. For the sake of 
clarity, we only consider the 2-D systems. For systems with 
more dimensions, the same procedure can be followed in a 
straightforward manner. 

A. The Bivariate Normal Expansion 

Using a procedure similar to that described in Section 111, 
we can find the expansion of a multivariate distribution. How- 
ever, since the expansion involves the multivariate Hermite 
polynomials, it is not appropriate to use this direct expansion. 
The reason is that in the multivariate Hermite polynomials, 
the variables are coupled with each other, and the expansion 
formula becomes very complex after differentiation. Here, 
we propose another approach that reduces the complexity 
of the operation. The main idea is to transform the original 
distribution to a distribution that has uncorrelated components 
such that univariate Hermite polynomials can be applied. The 
procedure can be described as follows: 

1) Perform a linear transformation that will make the 

2) Expand the distribution. 
3 )  Perform the inverse transform to obtain the expansion 

components of the distribution uncorrelated. 

of the original distribution. 

where $(.) is a unit normal density, ( H ' P ) [ ~ ]  is the expansion 
of [ H ( z ) p l  + H(y)p2Ii in which p i p i  (j + k = i) is replaced 
by p j k  and H(x)jH(y)' by Hj(z)Hh(y), and { (Htp ) [ i ] } '  is 
the expansion of (Htp ) [ i ]  in which H j ( ~ ) ~ H k . ( y ) ~  is replaced 
by HjxQL(n:)Hkxn(y) .  For example 

( H t p ) [ " ( x ,  v )  = p 3 0 H 3 ( 2 )  f 3 P 2 1 H 2 ( z ) H l ( w )  

+ 3 p 1 2 H l ( l t . ) H Z ( Y )  + po3H3(!/) (49) 

{ (HtP)[3 ' )2 (2 ;  Y) = PkHG(4 + 9PkH4(2)H2(Y)  

+ ' ' . + Pi3HG ( V I  (50) 

where HTL(jc) is the Hermite polynomial with degree n, and 
p;j is the normalized cumulant expressed as k i j / ( k z o  k,, ); 
kij 's  are the cumulants that are the expanded coefficients of 
the cumulant MGF. 

If n: and y are correlated, we apply the transformation proce- 
dure outlined above to obtain the expansion. The transforma- 
tion can be realized by the Gram-Schmidt orthogonalization 
procedure. Let xt = 2 and yt = y - ext. If we choose 
c = E ( z y ) / E ( z 2 ) ,  then E ( z f g t )  = 0. Then, f ( z t ,  yt) can 
be expanded using (48) 

i / 2  j / 2  

f z t  , yt (2;  Y) = 

where p t  is the normalized cumulant of the transformed 
distribution. Now, we can transform back to find the expansion 
of f r ,  Y (  .. .). Note that the Jacobian is one. Thus 

B. Adaptive Bivariate Normal Expansion 

The basic idea of applying the conjugate densities in the 
adaptation scheme can be used directly with a minor modifi- 
cation. Thus, we will omit the derivation whenever it is similar 
to that of the 1-D case. Let x = (ZI~ a = (al ,  Q)', and 
L = ( 2 1 ,  ~ 2 ) ~ .  We now define the bivariate conjugate density. 

Dejinition: If there exist a constant scalar 01 and a constant 
vector To such that g(x) = aeT;lzf(z + a) is a density with 
zero mean, g(x) is called the conjugate density of f ( x )  at a 
point a. 

Let x1  and x2 be uncorrelated. We then can express f ( . r )  
in terms of g ( z )  and perform the normal expansion on g ( z )  
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using (48). If we only retain the first term in the expansion, 
we obtain an approximation of f ( a ) ,  which is similar to (23) - 9(zl. z2) 

822 ' 

- - $(z1)$(z2 - cz1) f ( a )  = a- lg (0  
N (P(0)* OS1 OC? 

(53)  

By using the idea of the saddle point, we can find the bivariate 
conjugate density. Let the cumulant MGF of f (z)  be K ( T ) .  
The saddle point now becomes a vector, and we have to solve 

~ (Htpc)[31 (-. 21 -) 22 - cz1 + . . . } I  (61) 
N-. 

p c 1  OC2 2=0 
aaz, 0 2 2  

d 2 2  - cz1 
- (Htpc)[31 

2=0 

for two unknowns in two equations, i.e. 

d 
- K ( T )  - a1 = 0  
dT1 
d 

~ K ( T )  - a2 = 0. 
aT2 

Thus, To is chosen as the solution of 
e K (To 1 - G 0 .  

(54) 

(54), and l/ol = 

Under some regularity conditions, a unique solution to (54) 
exists. Detailed discussion can be found in [14]. The moments 
of the conjugate density are computed as in (31). Denote the 
i j th  moment of g ( z )  by pz, iJ .  Then 

(55)  

The relationship between bivariate moments and cumulants 
can be found in [9]. Particularly, we have tsZ %, = pz z J  for 
i + . j  = 3. 

C. Adaptive Approximation of Bivariate Score Functions 

Similar to the 1-D case, the distribution approximation 
scheme can be used for the score function approximation. 
Suppose that we want to evaluate the score function of f ( x )  
at a point a. First, we construct the conjugate density of f ( x )  
at the point a. Let x = z - a. The conjugate density is 
9 ( z )  = a e T i 2 f ( z  + U ) .  Then 

f ( . r )  = n - l e - T h ( z )  (56 )  
f ' ( z )  = -To"-le-T:".q(z) + a-'e-%J(x) (57) 

Next, we uncorrelate z~ and z2. Let <I = z1 and <2 = z2 - czl, 
where c = E ( z l z 2 ) / E ( z f ) .  Using (52), we have 

(59) 

Taking the derivative of (59) and noting that # ( ~ ) l , = ~  = 0, 
we have 

d I 

Similar to the 1-D case, we retain the first term in the 
expansion of 9 / (  0) / g  (0). Hence, we obtain the approximation 
of the score function as 

The ijth central moment of g ~ ( < )  denoted as pc,ij is not 
directly obtainable, but we can use the i j th  central moment of 
g ( z )  as computed by (55 )  to find it. For example 

By the same procedure, we find 

PJC. 20 = b 2 ~  2 0 ,  

I - L ~ .  02 = pz, 0 2  ~ 2cp2,  11 + 
LLc .  30 = I-1.2. 3 0 :  

P S .  03  = PZ. 03 - 3 v 2 ,  12 + 3c2pZ, 2 1  - c p2, 30 

(66) 

(67) 

(68) 

The last entity we have to calculate is the derivative of the 
score function. In the bivariate case, this gives in a 2 x 2 
matrix. We show the result in Appendix B. 

2 p Z ,  20 

3 

p<. 1 2  = b z ,  12  - 2cl*z, 2 1  + c2pz ,  3 0 ;  

p<. 2 1  = f i t .  21 - cbz ,  3 0 .  

D. Implementation of the Bivariate Score Function of the OPD 

Let the MGF of the SPD f ( z k l Z - - ' )  be M x ( T )  and 
the MGF of the observation noise f ( u k )  be M v ( T ) .  The 
implementation of the bivariate score function of the OPD 
f ( ~ k l Z ' - ~ )  can be summarized as follows: 

1) Find the MGF of f(zk.IZk-l) .  The MGF of 
f (Hk.zkl2" ' )  is found as Mx(HLT). Therefore, 
the MGF of f ( z k l Z ' - ' )  is M z ( H $ T ) M T j ( T ) .  

2) Find the conjugate density of f ( zk  IZkP1) at point zk by 
solving (54). 
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3 )  Find transform coefjcient c and the i j th moments of the 

4) Find the i j th moments of the transformed conjugate 

5 )  Find the score function and its derivative using (64) and 

In this section, we have discussed the bivariate score func- 
tion approximation scheme for the sake of simplicity. This 
scheme can be easily extended to more general multidimen- 
sional cases. In general multidimensional cases, however, one 
has to start with the appropriate equivalent formulae of (48). 
For the linear transformation and the expansion, the same 
procedure as used in the bivariate case can be used. 

conjugate density using (55). 

density using (65)-(68). 

the procedure outlined in Appendix B. 

v. SIMULATIONS AND CONCLUSIONS 

In the previous sections, we have discussed the new score 
function approximation technique. In this section, we present 
some simulation results. For non-Gaussian distributions, we 
have used a mixed model as shown below. 

The subscript of f (1; and j )  stands for type of distribution 
and 11, for the mean of the distribution. We only consider the 
two most common types of distribution, namely, “Gaussian” 
and “Laplacian,” which are denoted by g and 1, respectively. 
These distributions are defined as follows: 

We first show two examples of score function approxi- 
mation. The distributions used are obtained by convolving 
a Gaussian distribution with non-Gaussian distributions. This 
type of distribution is what we encounter often in the filtering 
problem. The non-Gaussian distributions are 1) Gaussian and 
Laplacian mixed distribution and 2) Laplacian and Laplacian 
mixed distribution. The Gaussian distribution is assumed to 
have zero mean and variance c?. Using the model in (69), we 
specify the parameters as follows: 

1) p = 0.99; i = 9, pLL = 0, 0; = 1; j = 1. pL3 = 0, Q = 5;  
(2 = 1). 

(a2 = 1). 
2) p = 0.5; 2 = J = I ,  / A c  = -pL3 = 3; 77% = vJ zz 1, 

Figs. 1 and 2 show the approximation results. It can be seen 
clearly that the approximation scheme is quite satisfactory. In 
particular, for case one, we can barely distinguish the real from 
the approximated one. This is because the major component 
of the distribution is Gaussian and the only approximation 
error is due to a small Laplacian component. In case two, 
two components are both non-Gaussian. The approximation 
error is consequently larger. It is also easy to find that the 
error is mainly concentrated on the areas where the slopes 
of the score function go through rapid changes. We have also 
compared the average squared error between the approximated 
and the exact score function for this case. We have found 

, I  , , I f  I , , ,  I , , )  -3.00 ’ 
-10.0 -5.0 0.0 5.0 10.0 

z 

Fig. 1. 
and Laplacian convolved with Gaussian distribution. 

Approximated and the exact score functions; the mixture of Gaussian 

1.50 , , I / , /  / I / ,  

I 
0.75 i. 

O . O 0 I  -0.75p4, , , , , ;, , , , .Esact , , , ,I 
- 1.50 

-10.0 -5.0 0.0 5.0 10.0 

Fig. 2. 
Laplacian convolved with Gaussian distribution. 

Approximated and the exact score Functions; the mixture of two 

that it is 1.1642 x lop3. This numerical figure shows that the 
approximation error is small. 

Next, we consider the random signal filtering problem. We 
assume that the random signal is a first-order autoregressive 
(AR) process and corrupted by additive white noise. This can 
be described by the following signal model: 

(72) 
(73) 

Zk+l = 4 X k  + W k  

~k = H x ~  + l ik  

where 
xk original signal 
zk observed signal 
wk driving noise 
vk observation noise 

H = 1. 
Two cases are simulated. We first consider the case where the 
driving noise is Gaussian and the observation noise is non- 
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f v  . : GaussiantLaplacian 
U! l 4 ,  U; = 1 0 0 , ~  = 7.07 

= 0.8, ,,, . : Gaussian 
ot = 3.6,; i i  lO,u& = 5 

U:/.: I U,” I p I Kalman Masreliez I Improvement 
0.5 I 5 11.042% I 2.514813 2.302512 1 8.442% 

TABLE I TABLE I1 
COMPARISON OF KALMAN AND MASRELIEZ FILTERS; GAUSSIAN DRIVING NOISE: COMPARISON OF KALMAN AND MASRELIEZ FILTERS; GAUSSIAN DRIVING 

GAUSSIAN+LAPLACIAN OBSERVATION NOISE; q = 7.07; d = 0.8 NOISE; GAUSSIANSLAPLACIAN OBSERVATION NOISE; q = 7.07; d = 0 

f,,( .): GaussianSLaplcian 
0,” = 4 ,  uf = 1 0 0 , ~  = 7.07 

.,‘/U: 1 U: 1 p 1 Kalman Masreliez I Improvement 
0.5 I 5 11.042% I 3.242469 2.955587 I 8.839% 

1.0 
1.5 
2.0 
2.5 

1 

10 6.250% 3.887884 2.717266 30.11% 1.0 10 6.250% 5.085141 3.721616 26.81% 
15 11.46% 4.613065 2.954992 35.94% 1.5 15 11.46% 6.139159 4.093556 33.32% 
20 16.67% 5.374556 3.235764 39.79% 2.0 20 16.67% 6.941551 4.653338 32.96% 
25 21.88% 5.628642 3.486571 38.06% 2.5 25 21.88% 7.218412 5.001915 30.71% 

in our experiments are 0.8 and 0, respectively. A Monte Carlo 

Fig. 3 .  Corrupted signal; Gaussian+Laplacian observation noise. 
[zy(i) - 2y( i ) ]2.  (74) 

1 
MSE = ___ 

10000 , 
J=1 i= l  

To show the effect of nonlinear filtering, we have compared 
the performance of the Kalman filter vis-a-vis the Masreliez 
filter. The improvement measure is obtained as follows: 

Tables I and I1 summarize the experimental results for the non- 
Gaussian observation noise. In terms of MSE, the Masreliez 
filter provides significant improvement. Figs. 3-5 show a 
sample run (Table I, p = 11.46%) of the experiment. From 
these figures, one can see that the standard Kalman filter fails 
to filter out the high variance Laplacian noise. In addition, the 
Kalman filter overestimates the variance of Gaussian noise, 
resulting in too much smoothing of the signal. On the other 
hand, the score-function based filter efficiently removes both 
Gaussian and Laplacian noises and restores the signal nicely. 
Similar procedures are used to test the performance of the 
filters for non-Gaussian driving noise. We have used the same 
system and the same type of noises, but the driving noise 
and the observation noise are interchanged. Tables I11 and IV 
summarize the experimental results. Figs. 6-8 show a sample 
run (Table 111, p = 11.28%) of the experiment. We can see 
that the standard Kalman filter uses a fixed gain and cannot 
retain the non-Gaussian signal. The score-function-based filter 
adaptively changes the gain and successfully restores the 
signal. 

To compare the computational complexities of the Masreliez 
algorithm with the Kalman filter, we consider the system 
model in (72) and (73). Let the dimension of xk be n x 1 and H 
be 1 x n. For one cycle, the Kalman filter requires 2n3 + 3n2 + 
2 n  + 3 multiplications and one division. If the distribution of 

Fig. 4. Kalman filtered signal 

Fig. 5. Masreliez filtered signal. 

observation noise is a Gaussian mixture (as Masreliez have 
used in [4]), the Masreliez filter requires 2n3  + 3n2 + 2n + 9 
multiplications and seven division, one exponential, and one 
square root operations. If the distribution of observation noise 
is a mixed GaussianLaplacian distribution (as we have used 
in previous simulations), then the Masreliez filter requires 
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f,( .): Gaussian+ Laplacian 
c? = 1 , u ?  = 40,n = 4.472 
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Q = 0.8,fu(.): Gaussian 
U? = 10 

TABLE 111 

NOISE; GAUSSIAN~LAPLACIAN DRIVING NOISE, q = 4 472, d = 0 
COMPARISON OF KALMAN AND MASRELIF7 FLLTERS, GAUSSIAN OBSERVATION 

1.0 
1.5 
2.0 
2.5 

10 6.667% 3.856439 2.948058 23.56% 
15 11.28% 4.593211 3.442713 25.05% 
20 15.90% 5.231454 3.978750 23.95% 
25 20.51% 5.713847 4.433931 22.40% 

1 g2 I p 1 Kalman I Masreliez 1 Improvement 
0.5 1 5 12.051% I 2.641439 I 2.120085 1 19.74% 

fw(.): Gaussian+Laplacian 
U? = l . ~ ?  = 40.n = 4.472 

4 = 0, f,,( .): Gaussian 
U? = 3.6 

1.0 
1.5 
2.0 
2.5 

Y I '  I ,  I 

U:/.; I U: I p I Kalman I Masreliez I Improvement 
0.5 I 1.8 12.051% I 1.252170 I 0.864422 I 30.97% 

3.6 6.667% 1.837671 1.141429 37.89% 
5.4 11.28% 2.165590 1.292514 40.32% 
7.2 15.90% 2.469167 1.476629 40.20% 
9.0 20.51% 2.646290 1.669427 36.92% 

f 
Fig. 6. Corruptcd signal; Gaussian observation noise. 

Fig. 7. Kalman filtered signal. 

2n3 + 3n2 + 2r1 + 61 multiplications and 34 divisions, two 
exponential, and two square root operations. Here, we use the 

Fig. 8. Masreliez filtercd signal. 

Newton's method to carry out the saddle point search, and the 
number of iteration is set to five, which is a typical value for 
the Newton's method to converge in these experiments. From 
these figures, we can see that the Masreliez filter requires more 
computations than the Kalman filter as expected. When the 
dimension of the system is small, the computational increase 
is more apparent. 

Finally, we present some simulation results for the 2-D 
filtering problem. We extend the non-Gaussian noise model in 
(69) in which f i  (.) and f, (.) of (69) now are 2-D distributions. 
To facilitate our simulations, we define a 2-D Laplacian-type 
distribution as follows: Let v1 and 712 be two independent 
Laplacian random variables with parameters ~1 and 712. In 
addition, let II = (111, ' u ~ ) ~  and Q = ( Q ~ ,  ~ 2 ) ~ .  Define a vector 
2 = ( T I .  ~ 2 ) ~  and r = &U, where 

is a rotation matrix, and 0 is the rotation angle. We then say 
that f ( z )  is a 2-D Laplacian-type distribution. To have a better 
understanding of our 2-D filtering scheme, we first show a 
2-D score function and its derivative. Similar to 1-D cases, 
we have considered the distribution obtained by convolving 
a Gaussian distribution with a non-Gaussian distribution. The 
non-Gaussian distribution is a mixed distribution composed of 
Gaussian and Laplacian-type distributions. Their parameters 
are specified as follows: 

p = 0.99 
I9 = O "  

V =  (;) 
E = ( ;  ;) 

where C is the covariance matrix of the Gaussian component 
in the mixed model, and E, is the covariance matrix of the 
convolving Gaussian distribution. Figs. 9 and 10 show the 
second component of the score function (S~(X) in (94)) and 



1464 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44. NO 6, JUNE 1996 

Fig. 9. Approximated 2-D score function 

Fig. 10. Derivative of the approximated 2-D score function 

its derivative with respect to 3:2 (G22 in (102)). From these 
figures, we can clearly see that the score function limits the 
influence of large observations. Note that the score functions 
of all Gaussian distributions are just planes. We have also 
compared the average squared error between the approximated 
and the exact score function (S2(z)). We have found that 
it is only 7.9341 x This figure clearly shows that the 
approximation error is indeed very small. The last experiment 
we have carried out is 2-D filtering. We still use the model 
in (72) and (73). The only change is that the dimension of 
both z k  and z k  is now 2 x 1. We have assumed that wk is 
Gaussian, and l ik is a mixed distribution composed of Gaussian 
and Laplacian-type distributions. We arbitrarily chose a 2-D 
system as follows: 

(2 = (;). 
p =0.9 

0: = (;). 
In (78), we implicitly assume that components of Gaussian 
distributions are independent; a:, and a? then denote the 
variances of 7i)k and the Gaussian part of ' u k ,  respectively. 
We have used the same criterion as that in (74) and (75). 

The only difference is that we run a single realization with 
2000 data points. To see the filtering results for different 
observation distribution shapes, we have rotated the Laplacian- 
type component of our mixed model by five angles, i.e., 0, 45, 
90, 135, and 180". The simulation results are shown in Table 
V. We can see that the performance improvements are similar 
to 1-D cases. To test the performance of the Masreliez filter 
in systems with low correlation, we have performed another 
experiment where 4 is set to zero. The results are shown in 
Table VI. The MSE improvements are less than those observed 
in highly correlated systems. This behavior is also similar to 
that in I-D cases. From these results, the following conclusions 
are drawn: 

1) The score function approximation scheme developed in 
this paper yields satisfactory results for a wide class 
of distributions, particularly for the distributions en- 
countered often in the filtering problems. From Figs. 1 
and 2, we can see that the approximation error is 
clearly bounded. It is simple to check that the conjugate 
densities in our simulations approach the gamma fonn 
when the Laplacian densities dominate and approach the 
normal form when the Gaussian densities dominate. This 
result is consistent with our error analysis described in 
Section 111. 

2) The score-function-based filters outperform the standard 
Kalman filter in the non-Gaussian noise environment, 
especially under the mixture-type noise environment. 

3) In case of non-Gaussian observation noise, the stronger 
the observation noise, the greater the improvement. This 
is because the OPD becomes more non-Gaussian under 
the influence of stronger observation noise. On the other 
hand, in case of non-Gaussian driving noise, the stronger 
the observation noise, the smaller the improvement. This 
is because the observation noise is Gaussian, and the 
OPD becomes more Gaussian under the influence of the 
stronger observation noise. 

4) In case of non-Gaussian observation noise, the Masreliez 
filter can perform better for signals with high correlation. 
For signals with low correlation, the Gaussian assump- 
tion of the SPD becomes less valid. On the other hand, in 
case of non-Gaussian driving noise, the Masreliez filter 
can perform better in signals with low correlation. In 
signals with low correlation, the Gaussian assumption 
of the density in (18) becomes more tenable. 

5 )  In the score function approach, we assume that the SPD 
is Gaussian. This assumption may not be valid in some 
situations. A straightforward extension is to replace this 
density by a Gaussian sum. We call this the extended 
Masreliez algorithm. Note that this is different from the 
approach of Sorenson et al. [l]. The Gaussian sum is 
only used to keep track of the SPD. Preliminary studies 
indicate that the extended Masreiliez algorithm may 
outperform the standard Masreliez filter if noises are 
of mixture-type distributions. Research in this direction 
is now underway. Finally, we comment that there is 
a growing interest in the area of non-Gaussian signal 
processing. Our method is simple and effective and may 
be used in many applications. 
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0 = 180” 
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2 2  3.2614 1.7478 46.41% 
21 3.5713 2.2008 38.38% 
2 2  2.9494 1.6246 44.92% 

e = 1800 
x2 5.793s 3.0484 47.39% 
x1 6.2548 4.3349 30.70% 
2 2  4.2355 2.7466 35.15% 

APPENDIX A 
Define the relative approximation error of the density ap- 

proximation as 

(79) 

where f ^ ( a o )  is the approximation of f ( x 0 ) .  It is shown in 
[ll] that ed is bounded for the gamma form and e,i i 0 for 
the normal form. The definitions and properties of the gamma 
and normal forms are described as follows. 

I )  Gamma Form: Let g(z) - Az“-lZ(x)e-c” for a > 0 
and c > 0, where I(2) is continuous, and Z(kx)/L(:x) 4 1 as 
x i oc for every IC > 0. Then, as T - c 

M‘j’(T) - A  

2) Normal Form: Let g ( x )  N e -h ( s )  for large x ,  where 
h ( i )  > 0 and 0 < h’/(z) < oc. Let U(.) and w ( x )  exist 

such that 

monotonically as 2 + oc, where 

w ( 2 )  > 0  
ili’(2)l l a  < 00 

1 
W ( X )  = J’ .(.) dz. 

Then, p,(T)  - 0 as T tends to its upper limiting value. 
Since all standardized cumulants are bounded or zero, we 

find that (35) and (36) have similar expressions. Thus, the 
relative approximation error of g’(0) is bounded or zero, and 
we can write 

where eg  and E$ are some bounded constants or zeros, and ,9(0) 
and g’(0) are approximations of g(0) and g’(0).  The relative 
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approximation error of , 9 ' ( O ) / g ( O )  is then 

.9'(0) 

(93) 

Let the score function be S(z) = [SI($), S2(z)lt and the 
MGF of ,9<(.. ,) be L(T - To). Then, from (64), we have 

aT2 - K20 which is bounded or zero. Thus, we conclude that the approx- - -  
K20K02 - imation error of the score function -To + ,9 ' (O)/g(O) is either 

bounded or zero. 
Next, let U S  consider the approximation error of the deriva- 

tive of score function. For the notational simplicity, we let the L30 L12 -+- score function be h(x) .  From the result above, we have 

h(:c) = (1 + &.) (86) 
(87) 

and 6 ,  are either bounded or zero. The relative 

h(z  + dL) = (1 + F,)fL(rr + dz )  

approximation error of the derivative of score function is then 

where L;j = [8L+j)/3T:aTi]L(T) and T = To for z = a. 
Note that in the case here 

(95) 

where 
K11 c =  7. 

- 1  dz F , ,  = A 

h ( x  + dz) - L(2) 
dx 

(I + &x + dz)  - (1 + t,)L(x) 

- 1. (88) drr - 

r;iz + d z )  - fL(z) 
dn: 

When z approaches the end of its admissible range, E ,  + c S .  
Then, e,, + es, which is either bounded or zero. It is interesting 
to note t h t  using our formulation, the approximation errors of 
the score function and its derivatives are equal when n: is near 
the end of its admissible range. 

APPENDIX B 

The relationship between T and z is established through the 
saddle point. Let the cumulant MGF of f (z) be K (7'). Then 

d 
~ K ( T )  =zz 
LIT, (89) 

Taking derivatives of the first and second equation in (89) with 
respect to 2 1  and 2 2 ,  we have 

zn 
From (94), the derivative of the score function with respect 
to TI can be found as 

where the superscript I denotes the derivative with respect to 
TI. For example, cr = i-)c/dTl. By the same way, we can find 
the derivative of the score function with respect to T2. The 
formula is identical to (96), except that the vector [l, OIT on 
the right-hand side is replaced by [O: 1IT, and all superscript 
1's are replaced with 11 that denote the derivative with respect 
to T2. Thus 
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/L30 . L12 

(97) 

c I I  - Y z , 1 2  Pz 2 1  
C L  

k . 2 0  Y z , 2 0  
I 1  

I*.<, 20 = P z ,  21 

We now summarize the evaluation of derivatives of the score 
function as follows: 

1) Substitute (66)-(68) and (l03)-( 106) into (107)-( 121). 
2) Substitute the results of Step 1 and (66)-(68) into (96) 

and (97). 
3) Substitute the results of Step 2 into (99)-(102). 
4) Use T = To in (92) and (93) and substitute the results 

into (99)-(102). 
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