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Abstract In hydrosystem engineering design and analy-
sis, temporal pattern for rainfall events of interest is often
required. In this paper, statistical cluster analysis of
dimensionless rainfall pattern is applied to identify rep-
resentative temporal rainfall patterns typically occurred
in Hong Kong Territory. For purpose of selecting an
appropriate rainfall pattern in engineering applications,
factors affecting the occurrence of different rainfall pat-
terns are examined by statistical contingency tables
analysis through which the inter-dependence of the
occurrence frequency of rainfall patterns with respect to
geographical location, rainfall duration and depth, and
seasonality is investigated. Furthermore, due to inherent
variability of rainfall mass curves or hyetographs within
each classified rainfall pattern, a practical procedure to
probabilistically generate plausible rainfall patterns is
described. The procedure preserves the inherent stochas-
tic features of random dimensionless rainfall hyetograph
ordinates, which in general are correlated non-normal
multivariate compositional variables.

Keywords Rainfall pattern Æ Cluster analysis Æ Johnson
distribution system Æ Contingency table Æ Constrained
Monte–Carlo simulation

Introduction

Information about rainfall events is often required in the
design, analysis, and performance evaluation of a

hydrosystem. Characteristics of a rainfall event are
describable by its total depth, duration, and temporal
variation of rainfall intensity within the event, which
could influence the design of hydrosystem infrastruc-
tures. For example, design inflow hydrographs of se-
lected frequencies required in dam safety evaluation are
often computed from a synthetic (design) rainfall events
in conjunction with the use of a proper rainfall–runoff
model.

Various methods have been developed to establish
synthetic rainfall events, which can be categorized into
following five types: (1) by subjective judgment (Ogro-
sky1964); (2) by way of an adopted rainfall intensity–
duration–frequency (IDF) relationship along with an
assumed temporal pattern (US Army Corp of Engineers
1948; Keifer and Chu1957; Bandyopadhyay1972;
Chen1976); (3) by relative ranking of rainfall hyetograph
ordinates (Pilgrim and Cordery1975); (4) by rainfall
mass curve (Hershfield1962; Huff 1967; Soil Conserva-
tion Service (SCS) 1972); and (5) by the statistical mo-
ments of rainfall hyetograph (Yen and Chow 1980,
1983). Rainfall IDF-based methods, which focus on in-
tense bursts within rainfall events, are based on the
maximum rainfall for a given duration from different
rainfall events, rather than from a particular event. The
resulting rainfall pattern is an envelope curve, which
tends to be conservative for general design of a hydro-
system infrastructure. The shapes of IDF-based rainfall
hyetographs, in general, do not resemble the rainfall
patterns that actually occur. For the remaining types of
methods, rainfall patterns are primarily established
through empirical analysis of actual rainfall events. A
detailed review of the methods for establishing design
rainfall patterns can be found elsewhere (Yen and Chow
1983). Often times, averaging process is applied to
rainfall events of varying patterns without prior classi-
fication. The incorporation of rainfall pattern informa-
tion has been shown to improve the current practice in
stochastic generation of rainfall events (Lambert and
Kuczera1996; Heneker et al. 2001) in which the rainfall
events are normally represented by rectangular pulses of
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various durations and intensities (e.g., Onof and
Wheater1993).

For the design and analysis of hydrosystems using
synthetic rainfall hyetographs, improvement can be
made from choosing appropriate rainfall pattern of
possible types that have occurred. As each actual rainfall
event is unique with respect to its duration, depth, and
pattern it is practical to be able to identify a few repre-
sentative rainfall patterns according to the shape of ac-
tual rainfall events. One of the objectives of this study is
to identify and categorize event-based hourly rainfall
patterns typically occurred in Hong Kong Territory by
statistical cluster analysis. Furthermore, realizing the
existence of inherent variability in rainfall pattern of
individual event within each type, the study describes a
practical procedure to stochastically generate plausible
rainfall hyetographs of the specified pattern for hydro-
system engineering applications.

Characterization of rainfall patterns

During a rainfall event, rainfall intensity varies with
time. As rainfall duration and total depth vary from one
event to another, characterization of similarity or dis-
similarity of different rainfall patterns can best be made
through the use of a dimensionless scale.

Non-dimensionalization of rainfall pattern can be
achieved by dividing the cumulative rainfall depths
at different times Dt by the total rainfall depth DT as
Fs=Dt/ DT and the time t by the rainfall duration (T) as
s=t/T. By using dimensionless rainfall mass curves or
hyetographs, the effects of rainfall duration and depth
are removed, leaving the temporal variation of rainfall
event as the only factor for differentiating events of
different patterns. After non-dimensionalization, rainfall
events with different depths and durations can be com-
bined, examined, and categorized for identifying repre-
sentative rainfall patterns.

A dimensionless rainfall mass curve shows the
cumulative fractions of rainfall depth, 0 £ Fs £ 1, over
the dimensionless time, 0 £ s £ 1. To characterize the
temporal pattern of a rainfall event, several time points
within the rainfall duration must be selected to extract
the corresponding rainfall mass curve ordinates. Note
that too few points might not accurately describe the
underlying rainfall pattern whereas, on the other hand,
too many points would capture unnecessary fine details
that might mask the essential time-varying feature of the
rainfall pattern. In this study, the entire duration of
rainfall event is divided into 12 equal intervals (DT = T/
12) and the corresponding dimensionless rainfall mass
curve ordinates Fs or hyetograph ordinates Ps = Fs �
Fs- 1 at s = k/12, k = 1, 2,..., 12, are extracted to define
the rainfall pattern.

To characterize rainfall pattern there are methods
which parametrically treat the dimensionless rainfall
mass curve as a cumulative distribution function (CDF)
of the dimensionless time, s. Hence, the temporal pattern

of rainfall events can be characterized by the statistical
moments of dimensionless time (Yen and Chow 1980;
Fang and Tung 1996). The dimensionless cumulative
rainfall mass curves can parametrically be fitted by a
suitable CDF model, such as the b distribution (Acr-
eman1990) and the Johnson distribution system (Stuart
and Ord1987; Fang and Tung 1996).

The advantage of describing a rainfall pattern by its
statistical moments or an analytical probability distri-
bution function is to use small number of attributes to
define the shape of a rainfall pattern. However, this
advantage could also be a handicap for its inability to
differentiate subtle difference among different rainfall
patterns that might be important for a particular
application due to the smoothing effect of adopting a
parametric distribution function. According to a study
on Wyoming hourly rainfall data (Fang and Tung 1996),
it was found that the use of a 4-parameter Johnson
distribution system, as expected, fits the rainfall pattern
better than a 2-parameter b distribution.

Database for Hong Kong rainfall events

Hourly rainfall data from 16 automatic raingauges in
Hong Kong Territory shown in Fig. 1 are used to extract
pertinent rainfall events for analysis. The station num-
ber, location, elevation, and record length of each sta-
tion are listed in Table 1. In data retrieval, the key
decision is the definition based on which a rainfall event
is extracted. Yen and Chow (1983) as well as Yen et al.
(1993) reviewed various ways of defining a rainfall event
for hydrological engineering applications from different
perspectives. As watersheds in Hong Kong Territory are
generally small and many are situated in mountainous
terrains, the flow time-of-concentration is relatively
short (in the order of 1–2 h). Hence, this study defines
that two consecutive rainfall events are separated by a
dry spell of more than 2 h. Also, as the study focuses on
potentially flood-causing rainfalls, events with a total
rainfall depth larger than 50 mm or hourly rainfall
intensity larger than 10 mm/h in any hour within the
event will be extracted.

Since the hourly based rainfall duration is not nec-
essarily equal to the multiples of 12, the values of rainfall
mass curve ordinates, Fs at s = k/12, k = 1, 2,...,12, are
generally not directly available. Hence, an uniform
rainfall intensity within each hour is assumed to com-
pute the cumulative rainfall fractions–an equivalence to
a linear interpolation of dimensionless rainfall mass
curves. The assumption of uniform intensity within each
hour may not distort the basic shape of a rainfall pattern
when the rainfall duration is relatively long. Without
demanding a fine detail on rainfall pattern for estab-
lishing a design rainfall hyetograph, rainfall events with
duration of at least 3 h might be adequate to reflect the
overall temporal variation of hyetograph. Hence, hourly
based rainfall events with duration less than or equal to
2 h are excluded from the database. In total, 8289
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rainfall events are extracted from 16 automatic rainga-
uges to identify representative hourly based rainfall
patterns in Hong Kong Territory. The contributions of
each station to the total number of rainfall events in the
database are given in the last column of Table 1.

Cluster analysis for identification representative rainfall
patterns

The principle component analysis and cluster analysis
have been used to classify hyetographs and hydrographs
(Zurich 1971; Fang and Tung 1996; Hannah et al. 2000;
Lana et al. 2001; Lin et al. 2004). In addition, Michae-
lides et al. (2001) used artificial neural network approach
to classify 1-year and 2-year rainfall events. The basic

aim of cluster analysis is to find the ‘natural grouping‘ of
a set of individuals (Collins 1990) characterized by a list
of relevant attributes. In other words, cluster analysis
allocates a set of individuals to a set of mutually exclu-
sive and exhaustive groups such that individuals within
the group are similar to one another whereas individuals
between different groups are dissimilar. To remove the
scale effects of the attributes used in the cluster analysis,
attributes are standardized resulting in a zero mean and
a unit standard deviation. In general, the divisive
(K-means method) and hierarchical (average and
Ward’s methods) clustering techniques can be applied to
perform the cluster analysis and each method defines the
similarity and the distance measurement somewhat
differently. The results from different applications (Fang
and Tung 1996; Ramos2001) revealed that the effects of

Table 1 List of raingauge stations used in the study

Station no. Location Elevation
(m)

Region Record
period used

No. of rainfall
events used

R01 Hong Kong Observatory 32 Kowloon 1884–1939, 1947–1996 4359
R11 Ngong Ping Tea Farm 440 Islands 1984–1996 180
R12 Discorvery Bay Water Treatment Works 75 Islands 1984–1996 297
R18 Sam Yuk Middle School 105 Kowloon 1985–1996 284
R19 Quarry Bay Tide Gauge House 10 HK Island 1992–1996 132
R21 Tap Shep Kok Power Station 25 NT West 1984–1996 328
R22 Tsim Bei Tsui Meteo. Station 5 NT West 1984–1996 222
R23 Wong Shiu Chi Middle School 25 NT East 1984–1996 417
R24 Sha Tau Kok Police Station 35 NT East 1984–1996 324
R25 Pak Tam Au Country Park 105 Kowloon 1984–1996 305
R26 Shek Kong RAF Airfield 10 NT West 1985–1996 332
R27 Yuen Long R.G. Filters 90 NT West 1985–1996 211
R28 Au Tau Fish Farm 5 NT West 1985–1996 215
R29 Lok Ma Chau Police Station 50 NT West 1985–1996 241
R31 Tai Mei Tuk Pumping Station 10 NT East 1985–1996 358
R42 Fire Dept. Training School, Yuen Long 10 NT West 1992–1996 84

Fig. 1 Map showing the
locations of raingauges used
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using methods of K-means, Ward, and others on the
final classification result were insignificant. Moreover,
Ramos (2001) also indicated that K-means method
seems to be powerful enough to classify the observation.
Hence, the Euclidean distance-based K-means clustering
method (MacQueen1967) is adopted herein to classify
8289 rainfall events into a few representative rainfall
patterns typically occurred in Hong Kong Territory. The
K-means clustering algorithm is performed by using a
statistical software Minitab (Minitab Inc., 1996).

According to the study on the relative performance of
using different attributes to classify rainfall patterns in
Wyoming (Fang and Tung 1996), the parametric way of
using statistical moments or fitted distribution parame-
ters as the attributes resulting in a less desirable classi-
fication of rainfall patterns when compared with a direct
use of dimensionless rainfall mass or hyetograph ordi-
nates. Hence, the latter is considered herein by which
dimensionless rainfall mass curves ordinates F1, F2, ...,
F11, denoted as F-based ordinates, and dimensionless
rainfall hyetograph ordinates P1, P2, ..., P12, denoted as
P-based ordinates, are used to identify representative
rainfall patterns in Hong Kong.

Since the appropriate number of representative rainfall
patterns is not known in advance, it is commonly deter-

mined by a trial-and-error process. The proper number of
rainfall patterns can be determined by visually examining
the averaged dimensionless mass curves for each group
resulting from the cluster analysis. In this study, 3–7
groups of rainfall patterns are examined using the ordi-
nates of both dimensionless rainfall mass curve and hye-
tograph. Figures 2, 3, and 4 show the averaged rainfall
mass curves under 5, 6, and 7 groups of classification. It is
clearly observed that the 6-group classification produced
a distinct uniform-like rainfall pattern, not revealed in a 5-
group classification. Comparing 6-group and 7-group
classification results (Figs. 3, 4), the difference is that the
central-peaked pattern in the 6-group classification is
further splitted into two patterns with slightly advanced
and slightly delayed peaking times. Such a fine distinction
of rainfall patterns is judged unnecessary and, therefore,
six patterns are considered representative of typical rain-
fall temporal distribution profiles occurred inHongKong
Territory. By comparing the results of F-based and P-
based classifications, the results are similar. However, the
rainfall patterns obtained by theF-based classification are
more desirable, according to a subjective visual judgment,
because the vertical spacing between the resulting
mass curves is somewhat wider than the P-based classifi-
cation.
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Fig. 2 Classification of
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In summary, Fig. 3a is recommended as the repre-
sentative rainfall patterns (for T ‡ 3 h) typically oc-
curred in Hong Kong Territory. They consist of four
basic types of rainfall patterns: advanced type (A1 and
A2), central-peaked type (C), delayed type (D1 and D2),
and uniform type (U). The advanced patterns have rel-
atively high rainfall intensity during early part of the
rainfall event, whereas the delayed type is just the
opposite. The central-peaked pattern has relatively high
rainfall intensity in the center part of the rainfall event
and the intensity tapers off towards the beginning and
ending of the rainfall event, while the uniform type re-
veals relatively constant rainfall intensity throughout the
rainfall period. The mean values of dimensionless rain-
fall mass curve and hyetograph ordinates of the six
rainfall patterns are given in Table 2.

Factors affecting the occurrence frequency of rainfall
patterns

Note that the six representative rainfall patterns shown
in Fig. 3a are derived from the pool of dimensionless
rainfall mass curves of many rainfall events with dif-
ferent durations and depths that have occurred in dif-
ferent seasons at various locations in Hong Kong

Territory. To facilitate proper selection of rainfall
patterns in the design and analysis of hydrosystem
infrastructures or in stochastic generation of rainfall
events, it is important to investigate whether the
occurrence frequency of one particular rainfall pattern
might be affected by the season, geographical location,
or rainfall duration/depth.

To examine the possible inter-dependence between
the occurrence frequency of rainfall pattern and geo-
graphical location, rainfall depth and depth, and sea-
sonality, statistical contingency table analysis can be
performed. The objective of the statistical contingency
table analysis is to decide whether the occurrence of
various rainfall patterns is affected by or is independent
of the different factors under consideration (Conov-
er1980). The contingency tables for the six representative
rainfall patterns in Hong Kong Territory are shown in
Table 3a–d. This table shows the occurrence frequency
of various rainfall patterns with respect to different
levels of the various factors under consideration. In the
study, the chi-square test is conducted by the statistical
software Minitab to compute the p-value, which indi-
cates the probability that the occurrence of various
rainfall patterns is independent of the specific factor
under consideration. Information on occurrence fre-
quencies summarized in the contingency tables and the
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results from such analysis can help proper selection of
rainfall profiles for various engineering studies.

Three numbers are shown in each cell of Table 3a–d,
namely, frequency count, row percentage, and column
percentage. At the bottom of each table, it presents the
values of chi-square test statistic for the data, the degree
of freedom associated with the chi-square test, which
equal to (nc � 1) (nr � 1) with nc and nr being the
numbers of column and row, respectively, and the p-
value. In practice, the significance level of 5% is used for
decision-making. If the p-value is lower than 5%, the
factor under consideration is considered to have signif-
icant effect on the occurrence frequency of various
rainfall patterns.

Referring to the computed p-values shown in the
bottom row of Table3a–d, it can be concluded that the
occurrence frequency of various rainfall patterns in
Hong Kong Territory are affected by the season, rainfall
duration and depth, but not by the geographical loca-
tion. In all contingency tables, it is clearly shown that
the distribution of the occurrence frequency of the six
rainfall patterns (indicated by the row percentages) do
not vary uniformly from one level to another for the
factor under consideration. Table 3a and b shows the
general trend that the occurrence frequency for all
rainfall patterns, except the uniform type, decreases with
rainfall duration and depth. For seasonality effect,
Table 3c shows that it is five to six times more likely to
have a rainfall event of any pattern in wet season than in
dry season. Table 3d shows that there is a much higher
occurrence frequency in Kowloon and this is because
Hong Kong Observatory (Station R01) contributes
more than half of the retrieved rainfall events in the
database.

For rainfall duration, depth, and seasonality,
Table 3a–c reveal that the distribution of the occurrence
frequency across different levels of the three factors (see

column percentages) varies from one rainfall pattern to
another. On the other hand, Table 3d shows that the
distribution of column percentages of the six rainfall
patterns stays rather constantly within a geographical
region.

The results from the contingency tables analysis im-
ply that the choice of selecting or generating a particular
rainfall pattern for engineering application in Hong
Kong should not be arbitrary as the occurrence fre-
quency of different rainfall patterns is dependent on the
rainfall depth and duration. Information on the occur-
rence frequency of different rainfall patterns provides
the basis for choosing rainfall types that are most likely
to occur or for conducting risk-based analysis consid-
ering uncertainty in the occurrence of various rainfall
patterns.

Stochastic generation of rainfall patterns

In the stochastic generation of realizable rainfall
events, once the depth and duration of rainfall event
are specified the follow-up task is the generation of
time distribution of rainfall intensities, i.e., rainfall
hyetograph, conditioned on the rainfall duration and
depth. From the results of rainfall pattern classifica-
tion, it is observed that individual rainfall event of a
particular pattern is unique by itself, meaning tempo-
ral patterns of individual rainfall events are similar but
not identical. The representative rainfall patterns
shown in Fig. 3a are the averaged rainfall mass curves
for each pattern and there exists intrinsic variations in
rainfall shapes within each type. To generate proba-
bilistically plausible rainfall patterns of a certain type,
one must recognize two important features: (1) ordi-
nates of the dimensionless rainfall mass curve are
bounded, 0 £ Fs £ 1, and non-decreasing; (2)

Table 2 Mean values of dimensionless rainfall mass curve and hyetograph ordinates for the six representative rainfall patterns in Hong
Kong Territory

Rainfall patterna Dimensionless rainfall mass

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

A2 0.247 0.476 0.646 0.757 0.803 0.843 0.875 0.906 0.934 0.958 0.981 1.000
A1 0.072 0.180 0.360 0.558 0.708 0.808 0.867 0.911 0.940 0.962 0.982 1.000
C 0.032 0.067 0.115 0.196 0.347 0.539 0.713 0.846 0.912 0.950 0.977 1.000
U 0.123 0.243 0.347 0.424 0.483 0.538 0.602 0.678 0.759 0.846 0.932 1.000
D1 0.029 0.057 0.086 0.118 0.163 0.226 0.336 0.501 0.704 0.868 0.952 1.000
D2 0.039 0.077 0.110 0.141 0.172 0.203 0.236 0.278 0.350 0.504 0.756 1.000
Rainfall pattern Dimensionless rainfall hyetograph

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

A2 0.247 0.229 0.170 0.111 0.046 0.040 0.032 0.031 0.028 0.024 0.023 0.019
A1 0.072 0.108 0.180 0.197 0.150 0.100 0.058 0.045 0.029 0.022 0.020 0.018
C 0.032 0.035 0.048 0.081 0.151 0.191 0.175 0.132 0.066 0.038 0.027 0.023
U 0.123 0.120 0.103 0.077 0.060 0.055 0.064 0.076 0.081 0.086 0.086 0.068
D1 0.029 0.028 0.028 0.032 0.045 0.063 0.110 0.165 0.203 0.163 0.085 0.048
D2 0.039 0.037 0.033 0.031 0.031 0.031 0.034 0.041 0.072 0.154 0.252 0.244

A advanced type, C central-peaked type, U uniform type, D delayed type
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Table 3 Contingency tables showing occurrence frequency of six typical rainfall patterns by different factors in Hong Kong Territory

Rainfall duration (h) Rainfall patterns Column total

A1 A2 C D1 D2 U

3–6 714a 760 833 480 345 201 3333
21.42b 22.80 24.99 14.40 10.35 6.03 100.00
39.96c 58.28 40.42 31.33 50.29 21.94 40.22

6–9 403 252 377 324 109 172 1637
24.62 15.39 23.03 19.79 6.66 10.51 100.00
22.55 19.33 18.29 21.15 15.89 18.78 19.76

9–12 217 116 250 209 73 107 972
22.33 11.93 25.72 21.50 7.51 11.01 100.00
12.14 8.90 12.13 13.64 10.64 11.68 11.73

12–18 257 127 295 245 88 175 1187
21.65 10.70 24.85 20.64 7.41 14.74 100.00
14.38 9.74 14.31 15.99 12.83 19.10 14.33

>18 196 49 306 274 71 261 1157
16.94 4.24 26.45 23.68 6.14 22.56 100.00
10.97 3.76 14.85 17.89 10.35 28.49 13.96

Row total 1787 1304 2061 1532 686 916 8286
21.57 15.74 24.87 18.49 8.28 11.05 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00

v2 = 570.27 DF = 20 p value = 0.00

Rainfall depth (mm)
0–20 631a 757 687 543 395 239 3252

19.40b 23.28 21.13 16.70 12.15 7.35 100.00
35.31c 58.05 33.33 35.44 57.58 26.06 39.24

20–40 555 334 670 458 169 333 2519
22.03 13.26 26.60 18.18 6.71 13.22 100.00
31.06 25.61 32.51 29.90 24.64 36.31 30.40

40–80 384 170 425 330 84 216 1609
23.87 10.57 26.41 20.51 5.22 13.42 100.00
21.49 13.04 20.62 21.54 12.24 23.56 19.42

80–120 120 30 124 108 17 70 469
25.59 6.40 26.44 23.03 3.62 14.93 100.00
6.72 2.30 6.02 7.05 2.48 7.63 5.66

>120 97 13 155 93 21 59 438
22.15 2.97 35.39 21.23 4.79 13.47 100.00
5.43 1.00 7.52 6.07 3.06 6.43 5.29

Row total 1787 1304 2061 1532 686 917 8287
21.56 15.74 24.87 18.49 8.28 11.07 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00

v2 = 471.09 DF = 20 p value = 0.00

Season
Dry 266a 143 310 259 55 112 1145

23.23b 12.49 27.07 22.62 4.80 9.78 100
14.89c 10.97 15.04 16.91 8.02 12.21 13.82

Wet 1521 1161 1751 1273 631 805 7142
21.30 16.26 24.52 17.82 8.84 11.27 100
85.11 89.03 84.96 83.09 91.98 87.79 86.18

Row total 1787 1304 2061 1532 686 917 8287
21.56 15.74 24.87 18.49 8.28 11.07 100
100 100 100 100 100 100 100

v2 = 46.84 DF = 5 p value = 0

Region
HK Island 25a 23 30 25 12 17 132

18.94b 17.42 22.73 18.94 9.09 12.88 100
1.40c 1.76 1.46 1.63 1.75 1.85 1.59

Islands 101 58 110 88 53 68 478
21.13 12.13 23.01 18.41 11.09 14.23 100
5.65 4.45 5.34 5.74 7.73 7.42 5.77

Kowloon 1059 786 1266 923 387 527 4948
21.40 15.89 25.59 18.65 7.82 10.65 100
59.26 60.28 61.43 60.25 56.41 57.47 59.71

NT East 234 168 263 197 103 130 1095
21.37 15.34 24.02 17.99 9.41 11.87 100
13.09 12.88 12.76 12.86 15.01 14.18 13.21
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ordinates of the dimensionless rainfall mass curve or
hyetograph are possibly correlated and most likely
they do not have normal distributions.

Hence, the problem of synthesizing rainfall patterns
in essencoe is the one to generate multivariate non-
normal random variables subject to the following two
constraints:

unit - sum : P1 þ P2 þ � � � þ PK ¼ 1:0 ð1aÞ

Non - negativity: Ps>0, s ¼ 1,2, . . . ,K ð1bÞ

in which K is the number of ordinates defining the
dimensionless rainfall hyetograph (K = 12 in this
study). The random variables in vector P = (P1 + P2

+ ... + PK)
t satisfying the above constraint Eqs. 1a

and b are called compositional variables. Aitchison
(1986) presents many examples and problems related to
compositional data analysis in different disciplines. The

Table 3 (Contd.)

Rainfall duration (h) Rainfall patterns Column total

A1 A2 C D1 D2 U

NT West 368 269 392 299 131 175 1634
22.52 16.46 23.99 18.30 8.02 10.71 100
20.59 20.63 19.02 19.52 19.10 19.08 19.72

Row total 1787 1304 2061 1532 686 917 8287
21.56 15.74 24.87 18.49 8.28 11.07 100
100 100 100 100 100 100 100

v2 = 23.20 DF = 20 p value = 0.279

a Frequency counts
b Row percentage
c Column percentage
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generation of compositional variable with prescribed
statistical properties, such as statistical moments and
correlations, is not a trivial task due to the presence of
the constraints. As the constrained Monte–Carlo
simulation involves generation of unconstrained,
non-normal random variables, the following two sub-
sections provide a brief overview of the procedures for
normal transform and stochastic generation of uncon-
strained as well as constrained multivariate non-normal
random variates.

Generation of non-negative multivariate random variates
under unit-sum constraint

Procedures for constrained multivariate normal
Monte–Carlo simulation are available. Borgman and
Faucette (1993) presented a practical method to con-
vert a linearly constrained multivariate Gaussian sim-
ulation into a conditional multivariate Gaussian
simulation (Borgman1990). Zhao (1992) applied the
method to generate random unit hydrographs and to
evaluate the reliability of hydraulic structures due to
uncertainty in unit hydrograph (Zhao et al. 1997).
Lambert and Kuczera (1996) alternatively proposed a
procedure by which ordinates of dimensionless rainfall
hyetographs, Ps, are treated as conditionally truncated
log-normal random variables.

To generalize the procedure for simulating non-neg-
ative, non-normal, correlated random variables subject
to unit-sum constraint, Fang and Tung (1996) examined
three procedures, namely, the acceptance–rejection
method, the CDF method, and the log-ratio method. It
was found that the log-ratio method is flexible and
computational robust than the other two. For this rea-
son, the log-ratio method is adopted in this study to
generate dimensionless rainfall hyetographs.

The method is developed by Aitchison (1986), which
involves the log-ratio transform as

Ys ¼ log Ps=Ps�ð Þ for s ¼ 1; 2,:::,K; s 6¼ s� ð2Þ

where Ps can be any element in the compositional var-
iable vector. Since 0 £ Ps £ 1 for s = 1, 2,..., K, the
transformed variable Ys would range from �¥ to ¥.
Note that in the above transform, the sample values of
neither Ps nor Ps can be 0 to avoid numerical problem.
The inverse transform of the log-ratio method yields the
following logistic functional relationship between Ys and
Ps,

Ps ¼ expðYsÞ

1þ
PK

r¼1
r 6¼s�

exp Yrð Þ
; 16s6K; s 6¼ s�

Ps� ¼ 1

1þ
PK

r¼1
r 6¼s�

exp Yrð Þ

ð3Þ

It is obvious that 0 £ Ps £ 1 and P1 + P2 + ... +
PK=1.

After performing the log-ratio transform, the prob-
lem of generating constrained multivariate non-normal
variatesPss is converted to the problem of generating
unconstrained multivariate non-normal random vari-
atesYss. In Aitchison (1986), a multivariate normal dis-
tribution is assumed for Yss, which results in a logistic-
normal distribution. However, the normality condition
for the log-ratio, Ys, is not satisfied in this study.
Therefore, the Johnson distribution system is selected to
describe the marginal distribution of random variables
in vector Y ¼ ðY1; Y2; . . . ; Ys��1; Ys�þ1; . . . ; YKÞt:

The computational steps of the log-ratio method for
generating dimensionless rainfall hyetographs are as
follows:

Step 1. Choose s* and the corresponding Ps* to carry
out the log-ratio transform on compositional
data by Eq. 2.

Step 2. Calculate sample moments and correlations of
random log-ratio Ys, s = 1, 2,..., s* � 1, s* +
1,..., K.

Step 3. Fit Ys individually to the Johnson distribution
system for all s „ s*.

Step 4. Generate Ys for all s „ s * using the procedures
for simulating unconstrained multivariate non-
normal random variates described in Sect. 6.2.

Step 5. Obtain dimensionless rainfall hyetograph ordi-
nates P1, P2, ..., PK by Eq. 3.

Generation of unconstrained multivariate non-normal
random variates

In dealing with problems involving multivariate non-
normal random variables, the main difficulty is the
availability or derivation of the joint probability density
function. Based on many efficient procedures developed
for generating multivariate normal random variates, the
common approach to simulate unconstrained multivar-
iate non-normal random variates involves three basic
steps: (1) transformation of non-normal random vari-
ables into the normal space; (2) generation of multi-
variate normal random variates; (3) inverse
transformation back to the original space. Tadikamalla
(1980) provided an good review on transforming uni-
variate non-normal random variables to the normal
space in step 1. A practical way to transform multivar-
iate non-normal-to-normal can be made through pre-
defined marginal distributions and correlation structure
(Liu and Der Kiureghian1986; Chang et al. 1997). As
marginal distributions of random variables are often
unknown in practice, normal transform for a non-nor-
mal random variable is made parametrically by assum-
ing an appropriate distribution or non-parametrically on
the basis of data or derived statistical properties (Chen
and Tung 2003). In this study, the parametric approach
using the Johnson distribution system is adopted for its
flexibility of covering a wide variety of distribution
types.
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Johnson (1949) introduced a system of frequency
functions consisting of four parameters:

Z ¼ g X jc; d; n; kð Þ ¼ cþ df
X � n

k

� �

ð4Þ

where Z is a standard normal variable, X the original
non-normal variable, c, d, n, k are model parameters.
There are three special types of the Johnson distri-
bution:

SL : Z ¼ cþ d lnðX � nÞ; X > n ð5Þ

SU : Z ¼ cþ d sinh�1
X � n

k

� �

; X > n ð6Þ

SB : Z ¼ cþ d ln
X � n

nþ k� X

� �

; n\X\nþ k ð7Þ

in which SL is a log-normal distribution, SU the un-
bounded distribution, SB is a bounded distribution. Hill
et al. (1976) provided an algorithm to estimate model
parameters by matching the first four product-moments
of X and attempted to identify one of the best-fitted
Johnson distribution type.

To obtain the correlation structure in the normal
space as required in step 2 of normal transform, the
Johnson distribution system can be extended to the
multivariate setting using the Nataf bivariate model
(Nataf1962) as

qxi;xj
¼
Z1

�1

Z1

�1

 
xi�li

ri

! 
xj�lj

rj

!

/2ðzi;zj;qzi;zj
ÞdzidzjðzjÞ

¼
Z1

�1

Z1

�1

 
g�1xi
ðziÞ�li

ri

! 
g�1xj
ðzjÞ�lj

rj

!

�/2ðzi;zj;qzi;zj
Þdzidzj ð8Þ

where qxi;xj
and qzi;zj

are correlation coefficients in the
original and normal spaces, respectively, li and ri

the mean and standard deviation of the random variable
Xi, g�1xi

ðziÞ the inverse function of the Johnson frequency
function, /2 (zi, zj) is a bivariate standard normal proba-
bility density function. Empirical formulas similar to
those developed by Liu and Der Kiureghian (1986) have
been derived which relate the correlation coefficient in the
normal space qzi;zj

to that in the original parameter space
qxi;xj

; the distribution parameters, and the first two mo-
ments of some combinations of the Johnson distribution
types (Fang and Tung 1996). For the combinations of
more complicated distribution types, one has to resort to
Eq. 8 for each individual evaluation.

As a practical alternative to Eq. 8, correlation coef-

ficients in the normal space Rz ¼ qzi;zj

h i
can be esti-

mated by transforming sample observations in the
original space {xi} to the standard normal space {zi}
through the use of Eq. 4 with the distribution parame-
ters estimated from the sample moments. Upon the

availability of the correlation structure of involved
random variables in the normal space, Rz, random va-
riates of unconstrained multivariate non-normal ran-
dom variables can be generated by the following steps:

Step 1. Based on the covariance or correlation matrix in
an m-dimensional multivariate normal space,
determine an m · m orthogonal transformation
matrix T that decomposes the correlated stan-
dard normal random variables Z into uncorre-
lated ones Z¢ as Z¢ = T� 1Z. Such an
orthogonal transformation matrix can be ob-
tained by the well-known Chelosky factorization
or spectral decomposition (Tung and Yen 2005).

Step 2. Generate mindependent standard normal ran-
dom variates z¢ = (z¢1, z¢2, ... z¢m)t by an
appropriate algorithm, from which the corre-
sponding correlated standard normal variates
can be obtained as z = Tz¢.

Step 3. Multivariate non-normal random variates can
be computed by the inverse transform through
xi ¼ F �1i U zið Þ½ � for i = 1, 2,..., mwith F �1i ðxÞ
being the inverse CDF of the original random
variable Xi; U (.) is the standard normal CDF.

Numerical example

Based on the results of classifying more than 8000 rainfall
events in Hong Kong Territory shown above, the statis-
tical features of dimensionless rainfall hyetograph ordi-
nates for each pattern can be summarized. For example,
Table 4 lists the first four moments of the dimensionless
rainfall hyetograph ordinates and their correlations for
rainfall patterns of advanced type A2based on 1787 indi-
vidual rainfall events in the category. Figure 5 shows the
mean and 95% confidence bands envelope curves for
advanced type A2.

To generate statistically realizable rainfalls of this
pattern by the log-ratio method, Eq. 2 is applied, after
selecting a base ordinate Ps*, to compute the log-ratio
values Ys = ln (Ps/ Ps*) for s „ s of each rainfall event
within the group. By taking s* = 3, the sample statistics
of Ysbased on rainfall events containing nonzero hye-
tograph ordinates among the 1787 type-A2 cases are
computed (see upper part of Table5).

For a given rainfall pattern, from the first four sample
statistical moments of log-ratios Ys, the best fit Johnson
distribution type and the corresponding parameters for
eachYs are determined (see lower part of Table 5 for type
A2 rainfall as an example). According to the distribution
type and parameters for eachYs, sample values (z’s) in the
standard normal space corresponding to sample log-ratio
values (y’s) are computed via Eqs. 5, 6, 7 based on which
the correlation matrix among normally transformed log-
ratio random variables is calculated. By following the
procedure described in Sect. 6.2, a sequence of the corre-
lated standard normal random vector zs can be obtained
from which the corresponding log-ratio value can be
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computed as ys ¼ g�1s zsj c; d; n; kð Þ inwhich g�1s zsj c;ð
d; n; kÞ is the inverse Johnson distribution function
associatedwith the random log-ratio variableYs.With the
vectors of random log-ratio variates available, Eq. 3 can
be applied to compute the ordinates of dimensionless
rainfall hyetographs. For example, according to the sta-
tistical features of the dimensionless rainfall hyetograph
ordinates for rainfall patternA2 (Table 4) and those of the
corresponding log-ratio variates (Table 5), a sample of 15
plausible rainfall mass curves of pattern-A2 are shown in
Fig. 6.

Summary and conclusions

The temporal rainfall pattern often is a required input to
rainfall–runoff modeling for producing flow hydro-

Table 4 Summary statistics of dimensionless rainfall hyetograph ordinates for advanced rainfall pattern A2

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Mean 0.247 0.229 0.170 0.111 0.046 0.040 0.032 0.031 0.028 0.024 0.023 0.019
SD 0.071 0.070 0.079 0.078 0.039 0.032 0.028 0.024 0.030 0.020 0.023 0.016
Skewness 1.146 1.272 �0.380 0.196 2.079 2.055 3.350 1.874 3.911 1.818 2.606 2.453
Kurtosis 5.958 8.389 2.665 1.442 9.213 8.568 22.078 8.292 24.740 6.813 11.585 11.734
P1 1.000
P2 �0.195 1.000
P3 �0.457 0.160 1.000
P4 �0.484 �0.320 0.261 1.000
P5 �0.105 �0.165 �0.356 �0.042 1.000
P6 0.032 �0.273 �0.359 �0.224 0.479 1.000
P7 0.059 �0.251 �0.382 �0.214 0.020 0.294 1.000
P8 0.046 �0.239 �0.329 �0.190 �0.010 0.034 0.671 1.000
P9 0.195 �0.296 �0.373 �0.323 �0.030 0.118 0.236 0.439 1.000
P10 0.143 �0.173 �0.468 �0.258 0.022 0.134 0.071 0.041 0.404 1.000
P11 0.208 �0.066 �0.390 �0.220 �0.087 �0.054 �0.041 �0.103 0.075 0.536 1.000
P12 0.190 �0.128 �0.291 �0.161 �0.133 �0.145 �0.067 �0.022 0.113 0.415 0.677 1.000

Table 5 Summary statistics of log-ratios, P s/ P3, for advanced rainfall pattern A2

Y1 Y2 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12

Mean 0.536 0.449 �0.611 �1.409 �1.540 �1.764 �1.765 �1.966 �2.092 �2.191 �2.289
SD 0.962 0.806 1.100 1.297 1.296 1.302 1.231 1.378 1.362 1.314 1.233
Skewness 1.507 2.036 �1.102 0.553 0.697 0.827 0.797 0.821 0.607 0.634 0.690
Kurtosis 5.325 8.068 4.106 3.322 4.634 5.057 5.159 4.332 3.287 3.198 3.578
Y1 1.000
Y2 0.817 1.000
Y4 0.335 0.281 1.000
Y5 0.722 0.683 0.500 1.000
Y6 0.748 0.630 0.381 0.859 1.000
Y7 0.744 0.657 0.352 0.692 0.778 1.000
Y8 0.729 0.635 0.357 0.673 0.686 0.873 1.000
Y9 0.770 0.637 0.242 0.611 0.639 0.726 0.771 1.000
Y10 0.793 0.675 0.345 0.637 0.654 0.685 0.661 0.851 1.000
Y11 0.747 0.673 0.314 0.569 0.547 0.585 0.558 0.712 0.864 1.000
Y12 0.745 0.660 0.344 0.577 0.541 0.574 0.580 0.745 0.850 0.915 1.000
Distribution SU SU SU SU SB SB SB SB SU SU SU
c 1.727 2.114 �1.712 3.135 �1.196 �1.278 �1.057 �4.237 2.207 1.688 3.261
d 0.886 0.846 1.135 2.618 2.357 2.236 2.126 3.331 2.034 1.672 2.342
k 6.588 6.816 8.041 19.006 2.437 2.218 2.048 2.243 14.775 11.450 17.843
n �0.583 �0.345 �6.941 �5.945 �2.951 �3.243 �2.950 �5.822 �5.978 �5.416 �5.990

Note: Ys = ln (Ps/Pz3) for s „ 3
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graphs in design and analysis of hydrosystems. In this
study, event-based representative temporal rainfall pat-
terns throughout Hong Kong Territory have been
identified using statistical cluster analysis. Through non-
dimensionalization, ordinates of rainfall mass curves
and hyetographs are used as the attributes in statistical
cluster analysis. In this study, it is judged that the use of
dimensionless mass curve results in a better classification
of six rainfall patterns.

In this study, statistical contingency table analysis is
applied to determine whether the occurrence frequency
of the various rainfall patterns in Hong Kong Territory
are affected by factors such as the rainfall duration,
depth, seasonality, and geographical location. It was
found that the occurrence frequency of the six repre-
sentative rainfall patterns in Hong Kong Territory are
affected by the rainfall duration, depth, and seasonality,
but not affected by the geographical location. Informa-
tion such as this is useful for proper selection of rainfall
patterns in the stochastic generation of rainfall events
and rainfall–runoff modeling.

Since the rainfall pattern is one of important rainfall
characteristics often required in hydrosystem engineer-
ing study, this paper also presents a practical procedure
for generating probabilistically plausible rainfall hye-
tographs of a particular pattern. The procedure in-
volves the log-ratio transform of compositional
variables and normal transform of non-normal multi-
variate random variables, which can be straightfor-
wardly implemented.
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