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Abstract

in aluminum.

We have successfully grown ultrathin continuous aluminum film by molecular beam epitaxy. This percolative
aluminum film is single crystalline and strain free as characterized by transmission electron microscopy and atomic
force microscopy. The weak anti-localization effect is observed in the temperature range of 1.4 to 10 K with this
sample, and it reveals that, for the first time, the dephasing is purely caused by electron-electron inelastic scattering
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Background

Weak localization (WL) is the quantum correction to
the conductance which occurs in weakly disordered sys-
tems due to coherent backscattering of electrons (or
holes). As a results of spin-orbit coupling, weak anti-
localization (WAL) may be observed in a weakly disor-
dered electron (or hole) system [1]. The theoretic deriv-
ation and experimental proof of WAL were extensively
developed since 1980s, and the investigation on various
materials in all dimensions has been a central topic in
condensed matter physics for decades. In particular, a
wide variety of experimental results of WAL were ob-
tained in two-dimensional (2D) systems. 2D system is
suitable for experimental study of WAL because of its
stronger WAL contribution than three-dimensional (3D)
ones and its easier sample fabrication than one-
dimensional (1D) ones. Recently, due to its sensitivity to
the electron dephasing and spin dephasing, WAL has
been widely applied to studying the spin-orbit inter-
action in new materials, such as graphene, topological
insulator, magnetic-doped semiconductor, and narrow-
gap semiconductor, to evaluate the potential for spintro-
nics devices [2-7].
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In addition, the interplay between superconducting ef-
fect and WAL also attracts much attention and has been
investigated extensively. Ebisawa et al. derived the rela-
tionship between the superconducting pair-breaking par-
ameter  and the inelastic scattering rate 7' by & = (71//
8kgT)7; * [8]. Their results have been used to study ex-
periments of WAL in aluminum thin films [9-11]. How-
ever, it is a chanting challenge to grow an ideal 2D
superconducting metallic sample. As the thickness of
evaporated metal goes thinner, the discontinuity of the
metal film un-avoidably appears due to large lattice mis-
match between the template and metallic material as
well as the surface non-uniformity of the bottom tem-
plate. Previously, the reported metallic films were in the
thickness of ten to a few tens of nanometers [9-14]. Al-
though plenty of the theoretic works of WAL in two-
dimensional systems have been published in the past few
decades, the experimental proof toward WAL in an ideal
two-dimensional metallic system is still lacking. In this
work, we have used molecular beam epitaxy (MBE) sys-
tem as the deposition technique to prepare ultrathin Al
films. By using gallium-rich GaAs as the epi-template,
we are able to successfully deposit ultrathin percolated
Al film for studying WAL toward the 2D limit. Interest-
ingly, we have observed a pure electron-electron dephas-
ing in this sample over the whole temperature range
that WAL effect exists. Note that all of our characteriza-
tions including structural and electrical assessments
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were fulfilled ex situ, and the continuity of the Al film
remains even after the post-processing for the Hall de-
vice fabrication. Even though our sample is not thin
enough to reach the ultimate two-dimensional limit such
as monolayer graphene, our results still provide an ex-
perimental proof that Nyquist scattering becomes the
dominant inelastic scattering mechanism at all tempe-
ratures when the system approaches an ideal two-
dimensional one.

Theory

Magneto-resistance measurements are commonly used
to study WAL. The theoretical calculation of 2D WAL
in a perpendicular magnetic field was derived by Hikami,
Larkin, and Nagaoka [1]. The difference of conductance
induced by applied magnetic field can be expressed as:

Agyar = ggB)—g(O)
SREEL o

where B is the applied magnetic field. Y(x) represents
Y(1/2 + x) — In(x), By =B;+3/4Bs, ¥(x) is the digamma
function. Here, B; and By, represent the strength of elec-
tron dephasing and spin-orbit interaction, respectively. For
a superconducting material near its critical temperature
T., superconducting fluctuations must be considered. Maki
has calculated the effect of superconducting fluctuations
in a 2D system (Agyr) [15]. Later, Thompson has modi-
fied the model by introducing the superconductor pair-
breaking parameter § to avoid the unphysical divergence
at temperature near 7, [16]. The Maki-Thompson correc-
tion term was modified by Abrahams et al. that can be ap-
plied to higher field [17]:

w5 EE)

where /5 represents the interaction strength between the
electron pair [18]. Accordingly, f~1/[In(7/T.) - 4] at
temperature close to 7T, [17]. By = 2kgTIn(T/T.)/mDe and
D is the diffusion coefficient, D = 1/3vgl,. Here, vg is the
Fermi velocity and [ is the mean free path.

Bergmann experimentally studied WAL in various me-
tallic thin films [19] and confirmed that the Maki-
Thompson correction gives the most contribution of
superconducting fluctuations and cannot be neglected
even for temperatures far above 7,. Therefore, in our fol-
lowing analysis, both WAL effect and Maki-Thompson
term will be taken into account.

Methods

Sample fabrication

The epitaxial aluminum thin film was fabricated on a
semi-insulating gallium arsenide (SI-GaAs) substrate in
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our Varian Gen II MBE system equipped with an arsenic
cracking cell. First, a GaAs wafer was heated to 620°C
for 20 min for de-oxidation under As flux, and then a
300-nm-thick undoped GaAs buffer layer was deposited
at 590°C as the epitaxial template. The sample surface
was turned into Ga-rich at 620°C in the absence of As
flux. We kept the sample in high vacuum (approximately
3x107'° Torr) until the background As vapor was
pumped out. The Al film with an intentional thickness
of 3 nm was then deposited at room temperature with a
growth rate of 0.366 um/h.

The 50-um-wide Hall devices were processed using con-
ventional lithography technique. Al was etched by 2% tetra-
methylammonium hydroxide (TMAH) for 20 s to transfer
the Hall bar pattern from photoresist to our Al film. Ti/Au
(30/300 nm) was deposited using e-gun evaporation as the
contact electrode. The finished devices were wire-bonded
on a ceramic carrier and loaded into *He cryogenic system
equipped with a superconducting magnet. A DC four-
terminal electrical measurement has been performed in this
work for studying WAL. We have used a Keithley 2602
multi-meter (Keithley Instruments Inc., Cleveland, OH,
USA) as a constant current source as well as a voltage
meter. Electrical current was set at 3 pA for clear signals
and was low enough in order to avoid possible current
heating effect. Voltage noise level was at about 5 puV.

Results and discussion

We have used cross-sectional high-resolution transmission
electron microscopy (TEM) and atomic force microscopy
(AFM) for the investigation of film crystal quality and
surface morphology. Figure 1 shows the TEM image of
our epitaxial Al film taken with electron beam along the
< 011>@gaas zone axis. A clear interface between the GaAs
template and deposited Al can be seen in the middle of
the picture. At the bottom of Figure 1, we can see an
amorphous layer which may be amorphous carbon from
TEM specimen preparation. The thickness of Al layer is
about 8 nm which is thicker than the deposited amount
because our Al film is percolative as we shall see later in
the AFM images. A detailed examination of the TEM
image at the interface can show the existence of misfit dis-
locations, implying that most of the strain in the Al film
caused by lattice mismatch between Al and GaAs is re-
leased. The inset of Figure 1 is the fast Fourier transform
diffraction pattern taken around the interface between
GaAs and Al Clear diffraction spots can be seen. The
inner hexagon is the diffraction spots of the bottom GaAs
template, and the outer one is for epi-aluminum film,
indicating that the epitaxial relationship of Al with
GaAs is (100)gaas // (111) o1, <011 > Gans // < 21141, and
< 011>Gans // < 011>,;; the last axis is also the obser-
vation plane of the TEM image. The axis arrangement is
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Figure 1 Cross-sectional TEM image of the Al sample. GaAs/Al interface in the middle and the native oxide of Al at the bottom are clearly
spotted. The upper left inset is the diffraction pattern showing the GaAs (Al) diffracted spots in the inner (outer) hexagon.

Aluminum

amo_rphous carbon

different from the previous works [20-22] probably due to
the different surface conditions used. Clear spots indicating
good crystal quality and no deformation of the diffraction
spots are observed even the strain accumulation due to
lattice mismatch could occur in our sample. Figure 2 shows
a 1x1 um*> AFM image of our Al film. Obviously, a

percolating but continuous morphology has been seen. This
kind of morphology was generally observed when metal
films are deposited onto a semiconductor or dielectric tem-
plate because of poor affinity between them [23]. Although
the bi-polarized atomic bonding of the bottom GaAs tem-
plate or inhomogeneous surface atomic deformation could

10.0 nm

1.00

Figure 2 The 1x 1 um? AFM image of the Al sample showing the sample roughness is about 4.9 nm.
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also play a role here, we have used a smooth Ga-rich sur-
face as the epitaxial template to minimize these two issues.
The roughness of the film is about 4.9 nm which is thicker
than the deposited thickness and is possibly caused by the
Al oxidation after the exposure to the air.

We have measured the sheet resistance R, of our sample
in the temperature range of 1.4 to 10 K. At temperatures
higher than 10 K, the signals became noisy and WAL is
barely observable. We noted that the Hall resistance Ry is
small compared to R and remained unchanged even in-
creasing the magnetic field to 1 T. Thus, we neglected the
effect of Ry in all the calculation and theoretical fitting. In
Figure 3, the measured Ry is plotted against the applied
magnetic field at various temperatures, together with the fit
to the theoretical model. Around zero magnetic field, clear
WAL in our Al film occurs as R increases with increasing
magnetic fields. In addition, R, decreases dramatically when
the temperature goes below 4.5 K, indicating that the
superconducting fluctuation plays an important role here.
Therefore, when fitting our data to the theoretical model,
we have considered the WAL theory stated in Equation 1
with the first Maki-Thompson term in Equation 2. The
later term of Equation 2 vanishes because Br is always
much larger than B; and By, The contribution of this term
is much less. So, the used fitting formula is given by:

IR PO o

In our fitting procedure, B; and § were temperature-
dependent fitting parameters. By, was chosen as a
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temperature-invariant constant because it is commonly
accepted that the electron configuration in the half-filled
conduction bands is insensitive to the temperature, so
the angular momentum and the spin-orbit interaction
remains unchanged at all temperature in metals [10-13].
In Figure 3, the solid lines represent theoretic fits of our
experimental data at three temperatures as an example.
It is clear that the theory can only be applied to small
magnetic field. At higher temperatures, the fits can be
extended to higher magnetic fields. This is because the
Maki-Thompson term is only valid at B« kg(T - 1)/
4eD [15-17].

With the fitted B; and Bs,, the inelastic scattering time 7;
and spin-orbit scattering time 7, can be derived by ;= //
(8meDB;) and r,, = h/(8meDBy,), as well as the phase co-
herent length /; and spin-orbit interaction length I, by /; =
(h/87eB)"? and I, = (h/8meB.,)""*. We used Al bulk con-
centration 71, =1.81x 10* (m™>) to estimate the Fermi
velocity (vg =2.03 x 10° m/s) and Fermi wavelength (Ap =
0.36 nm) for our sample. Figure 4a shows the extracted
parameter 1/7; as a function of temperature. The solid
horizontal line indicates the level of spin orbit interaction
rate 1/7,,, and the dashed line represents the theoretic cal-
culation of electron-electron scattering (Nyquist scatter-
ing) rate based on the work of Altshuler et al. [24]:

2
4 eR b1 7/3
=——kgTIn|——]. 4
o T n(est) (4)

In our 3-nm-thick aluminum sample, weak anti-
localization changes into weak localization when the

1620 |

field of the Al film at 1.639, 2.248, and 4.650 K.
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Figure 3 Measured and calculated sheet resistance. Measured (symbols) and calculated (solid lines) sheet resistance as a function of magnetic
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Figure 4 Temperature-dependent dephasing rate and interaction strength. (a) Temperature-dependent dephasing rate (1/7) (symbol) of
the Al sample. The horizontal solid line represents the level of spin-orbit interaction rate (1/15,) and the dashed line represents the theoretic
Nyquist scattering rate (1/1). (b) Temperature dependence of the interaction strength S.

temperature goes above 10 K. In the temperature range for
existing WAL (7 < 10 K), we found that 1/7; is proportional
to T, which agrees with the theoretic prediction of Nyquist
scattering (dashed line) in the same order.

We would like to emphasize that our ultrathin Al film
has a very high carrier concentration (1~ 10> m™), so
it is actually in mixed dimensions. That is, considering
the density of states and diffusive motion, it is treated as
a 3D system because the film thickness 4 is much larger
than the Fermi wavelength Ap (d > Ap ~ 107! nm) and its
mean free path of electrons Iy (d > lo~10"" nm in our
sample). However, in terms of electron dephasing, the

film thickness is much less than the dephasing length
l; (d < [; ~ few tens of nanometers) so the system is two-
dimensional. Previous experimental studies on clean and
dirty Al thin films demonstrated that, only for the
temperature near 7., Nyquist scattering was the major
dephasing mechanism. When the temperatures were
higher than about 4 K, electron-phonon scattering domi-
nated the dephasing process [9-14]. In contrast, our re-
sults show a pure electron-electron dephasing all the
way up 10 K. For a type I superconducting material,
there is only one experimental result on clean titanium
film exhibiting a full 7~' dependence of dephasing rate
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[25]. However, our sample is in the dirty limit as the
sheet resistivity of our sample is over 1.6 kQ, at least
one order higher than those all of their samples. On the
other hand, for type II superconductors such as ZrRh
and TaN, most experimental works did not observe the
pure 7' dependence of dephasing rate [26,27]. It is
worth mentioning that the observation of Giannouri
et al. [28] with their NbTa film is very similar to ours
except that the sudden drop of dephasing rate at
temperature approaching 7, has not been seen even at
1.4 K in our experiment.

Dephasing process which purely comes from electron-
electron scattering observed here is unusual but is rela-
tively easy to be obtained in semiconductor-based 2D
systems, such as 2D electron or hole gases (2DEG and
2DHG), formed by modulation-doped heterostructures.
The carriers (electrons or holes) are confined by the tri-
angular potential well caused by remote ionized dopants
and limited in the few monolayers next to the hetero-
structure interface. The carrier concentration of 2DEG
or 2DHG is controlled in the range of 109~ 102 cm™2,
so the Fermi wavelength A easily exceeds the size of the
confinement potential well and the system is quantized
in this dimension to become two-dimensional. However,
for metallic materials even down to a few nanometers,
the carrier concentration is still as high as 10*° ecm™2,
which makes the Ay is much smaller than its thickness.
Recently, the experimental results of WAL in various
semiconductor heterostructures were published, including
AlGaN/GaN, GaAs/InGaAs, InP/InGaAs, and AlGaAs/
GaAs [29-35]. Most of these works demonstrated a full
T dependence of the dephasing rate up to 10 K and con-
sidered as consistent with the theoretic calculation of
Nyquist scattering because of their 2D nature. In our Al
film, the observed pure 2D-like dephasing indicates that
the superconducting metallic film can be an ideal 2D sys-
tem in inelastic process.

We wish to address the issue of zero-temperature sat-
uration rate (1/7°) that is the dephasing rate in the zero
temperature limit. The origin of the saturation rate is
still under debate for the time being [36]. Some of the
reported experimental works on superconducting metal-
lic materials revealed a divergence dephasing rate when
the temperature approached 7, [9,10,13,26,27]. In con-
trast, such situations have not been observed in our
sample that exhibits a full Nyquist scattering rate from
liquid helium temperatures to 10 K, thus could be help-
ful for developing the related theory.

In Figure 4b, the electron-electron interaction strength
parameter 8 in the Maki-Thompson correction term is
plotted as a function of temperature. It is clear that /3
has a trend to diverge at temperature approaching T,
as expected with Larkin’s theory [18]. The value of
our sample decreases dramatically with the increasing
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temperature because the superconducting effect be-
comes less significant. It is noted that 5 does not vanish
but converge to about 0.9 instead. A similar result was
observed in ZrRh films [26]. Further investigations on
this non-zero f5 are certainly needed.

We note that the sheet resistivity of our sample is
about 1.6 kQ. The mean free path [, actually is 0.082
nm estimated by the Drude model, which is slight
shorter than Ap. This appears to contradict to the basic
assumption of the WAL theory that WAL occurs in a
weakly disordered system (/o> Ap). In a strongly disor-
dered system, WAL should not be observed. We believe
that, due to the percolative morphology of our sample,
the actual electron path is much longer than the Hall
bar size; therefore, the mean free path [, has been
underestimated.

Similar to the WAL effect, the universal conductance
fluctuations (UCFs) due to the electron (or hole) inter-
ference between two classical paths is closely related to
the phase coherent length /; [37-40]. We have also exam-
ined the conductance fluctuations in our measured data,
but no clear UCFs are observed, which could be due to
the large size of our device and the limit of the measure-
ment system noise (approximately 5 puV).

Conclusions

We have presented the structural and electrical characte-
rization of the ultrathin percolating aluminum film grown
by MBE. The TEM results indicate a superior crystal qual-
ity of the epitaxial aluminum film. WAL revealed by low-
temperature magnetoresistance measurement showed its
unusual dephasing mechanism. At all temperatures that
WAL exists, a pure electron-electron scattering was ob-
served, so the aluminum film behaves as an ideal two-
dimensional system in this aspect. Based on this, we
conclude that the MBE-grown aluminum films could
achieve the two-dimensional limit of a superconducting
metallic material.
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