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Abstract

In this paper, we consider inventory models for periodic-review systems with replenishment cycles, which consist of a
number of periods. By replenishment cycles, we mean that an order is always placed at the beginning of a cycle. We use
dynamic programming to formulate both the backorder and lost-sales models, and propose to charge the holding and
shortage costs based on the ending inventory of periods (rather than only on the ending inventory of cycles). Since peri-
ods can be made any time units to suit the needs of an application, this approach in fact computes the holding cost
based on the average inventory of a cycle and the shortage cost in proportion to the duration of shortage (for the back-
order model), and remedies the shortcomings of the heuristic or approximate treatment of such systems (Hadley and
Whitin, Analysis of Inventory Systems, Prentice-Hall, Englewood Cliffs, NJ, 1963). We show that a base-stock policy
is optimal for the backorder model, while the optimal order quantity is a function of the on-hand inventory for the lost-
sales model. Moreover, for the backorder model, we develop a simple expression for computing the optimal base-stock
level; for the lost-sales model, we derive convergence conditions for obtaining the optimal operational parameters.
� 2004 Elsevier B.V. All rights reserved.

Keywords: Inventory; Lost sales; Dynamic programming
1. Introduction

Despite the attractiveness of continuous-review inventory systems, periodic-review models are still ap-
plied in many situations, especially for inventory systems where many different items are purchased from
the same supplier and the coordination of ordering and transportation is important. See, e.g., Chiang
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and Gutierrez [5] and Silver et al. [16] for other reasons of adopting periodic-review systems. Often,
periodic-review systems have the review periods that are one or few weeks (or months) long and the supply
lead-time is shorter than a review period.

Studies on the periodic-review inventory models (see, e.g., Porteus [15] and references therein) often as-
sume that the supply lead-time is a (integer) multiple of a review period, and develop optimal policies (for
backorder models) that are of either the base-stock type or the (s,S) type (i.e., whenever the inventory is
reviewed or drops to s at the beginning of a period, an order is placed to raise the inventory to a predeter-
mined level S), depending on whether or not a fixed cost of ordering is present. Efficient procedures are also
developed to find the optimal s and S (see, e.g., Zheng and Federgruen [18]) or near-optimal solutions for
the lost-sales model with positive lead times (see, e.g., Morton [11], Nahmias [13], van Donselaar et al. [6],
and Johansen and Hill [9]). As Chiang [1] and Chiang and Gutierrez [4,5] point out in the two-supply-mode
setting, such periodic models could be regarded as an approximation of continuous-review inventory sys-
tems, for the review periods are typically modeled as small as one day and the holding and shortage costs
are computed based on the ending inventory of periods.

For periodic inventory systems where the review periods are one or few weeks long, it is appropriate to
compute the holding and shortage costs based on respectively, the average period inventory and the dura-
tion of shortage (for the backorder model). Exact analysis of such systems assumes the (R,T) policy and
derives the average annual cost expression (for specific cases only) that is difficult to compute, especially
for the lost-sales model (see, e.g., Hadley and Whitin [7, Sections 5–6 and 5–13]). Consequently, the heu-
ristic or approximate treatment of such systems is often used by standard textbooks (see, e.g., [7, Section 5–
2] and [16, Section 7.9.4]) and research papers (see, e.g., Chiang [3] and Moses and Seshadri [12]) to obtain
easy-to-implement solutions.

There are many shortcomings for the approximate treatment of periodic inventory systems with one-
or-few-weeks-long review periods. First, the average on-hand inventory is derived by assuming that back-
orders or lost sales are incurred in very small quantities. This approximation is poor if backorders or lost
sales are not an insignificant portion of demand, or if demand is highly volatile as discussed by Nahmias
and Smith [14] for the lost-sales model. To overcome this shortcoming, van der Heijden and de Kok [17]
propose an improved approximate method to estimate the mean physical stock given a target fill rate. Sec-
ond, for the backorder model, the shortage cost is charged per unit of shortage irrespective of the duration
of shortage [7, p. 238], while for the lost-sales model, the effect of lost sales occurring between the time an
order is placed and the time it arrives is ignored [7, p. 241]. Third, the lost-sales model assumes the base-
stock policy, which is in general not optimal, as demonstrated by Karlin and Scarf [10]. In this paper, we
study periodic inventory systems with one-or-few-weeks-long review periods, and use dynamic program-
ming to formulate both the backorder and lost-sales models.

To be somewhat consistent with the periodic-review literature, we will rename the one-or-few-weeks-
long review periods as replenishment cycles (or simply cycles), and let a cycle consist of a number of
periods. By replenishment cycles, we mean that an order is always placed at the beginning of a cycle
(i.e., at a review epoch), as in the (R,T) policy. This assumption is reasonable if the fixed cost of ordering
is small or negligible, which is especially true if an order for a specific item is part of a joint order and the
ordering cost for a joint order (which is incurred every time a joint order is placed) is irrelevant to individual
items. We assume that the length of cycles is handled outside our models (e.g., determined by the need of
coordinating replenishments of many different items), as in Chiang [1] and Chiang and Gutierrez [4,5]. The
holding and shortage costs will be computed based on the ending inventory of periods (rather than only on
the ending inventory of cycles). As periods can be defined to be any time units for the purpose of an appli-
cation, this approach actually computes the holding cost based on the average inventory of a cycle and the
shortage cost in proportion to the duration of shortage (for the backorder model), and thus remedies the
shortcomings mentioned above for the approximate treatment of periodic systems with replenishment
cycles.
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It should be noted that Chiang and Gutierrez [5] and Chiang [2] also consider periodic inventory systems
with replenishment cycles that consist a number of periods. However, periods in their models are defined to
be such that an emergency order can be placed at the beginning of them. Also, they develop only the back-
order models.

We notice that the proposed dynamic programming approach to computing the holding and shortage
costs has several economic implications. First, the proposed backorder and lost-sales models that minimize
the expected discounted cost over a planning horizon consider the time value of money, while the approx-
imate models [7, Section 5–2] that minimize the expected annual cost do not take it into account. Second, as
we discuss above, periods can be defined to suit the needs of an application. For example, if customers con-
sider the level of disservice in proportion to its time expressed in days (or even hours), periods are defined as
days (or hours). This is often true of inventory systems for the service parts of equipment or cars and com-
puter products. Customers usually escalate their unhappiness as their waiting for service parts to arrive con-
tinues. In such situations, the shortage cost should be charged in proportion to the duration of shortage (in
addition to the amount of shortage). By contrast, the approximate backorder model computes the shortage
cost irrespective of the duration of shortage and may not be applicable to these situations.

We will show that a base-stock policy is optimal for the backorder model. This agrees with the periodic-
review inventory literature. We also develop a simple expression for computing the optimal base-stock
level. Moreover, we show that the optimal order quantity is a function of the on-hand inventory for the
lost-sales model. This generalizes Theorem 4 of Karlin and Scarf [10] for the one-period-lag inventory prob-
lem. We also derive the convergence conditions of stopping dynamic programming computation and
obtaining the optimal operational parameters for the infinite-horizon lost-sales model. As computational
results indicate that it takes only a few cycles for operational parameters to converge, we advocate that
firms use the proposed method (of computing the holding and shortage costs) and implement the optimal
policy.
2. The backorder model

Suppose that a replenishment cycle, whose length is exogenously determined, consists of m periods. As-
sume first that all demand not immediately satisfied is backordered. Let c denote the unit item cost. The
inventory holding and shortage costs will be charged at the end of each period. Let h be the inventory cost
per unit held per period, and p the shortage cost per unit per period. Also let u(n) denote the probability
density function of demand n during a period with mean l. Demand is assumed to be non-negative and
independently distributed in disjoint time intervals.

Suppose the net inventory (i.e., inventory on hand minus backorder) at the beginning of a period is X;
then the expected holding and shortage costs incurred in that period are given by
L0ðX Þ ¼
Z Xþ

0

hðX � nÞuðnÞdn þ
Z 1

Xþ
pðn � X ÞuðnÞdðnÞ; ð1Þ
where X+ denotes max{X, 0}. Other functional forms of L0(X) are allowed; however, for our analysis we
need L0(X) to be a convex and differentiable function. Let s be the (deterministic) supply lead-time that
is a non-negative integer and allowed to be larger than m, and Li(X) � EnLi � 1(X � n) for any positive inte-
ger i P 1. Denote Vn, 0(X) as the expected discounted cost with n cycles remaining until the end of the plan-
ning horizon when the starting inventory position (i.e., net inventory plus inventory on order) is X and an
optimal ordering policy is used at that review epoch. Vn, j(X) for j5 0 denotes the expected discounted cost
with n cycles and j periods remaining when the inventory position is X. Note that Vn,0(X) excludes the fixed
cost of ordering (if any), for an order is always placed at the beginning of a cycle. For simplicity of formu-
lation, it also does not include the holding and shortage costs during the next s periods, because these costs
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are not affected by the decision made at a review epoch. Consequently, Vn, j(X) for j5 0 excludes these costs
as well. Vn, j(X) satisfies the functional equations
V n;0ðX Þ ¼ min
X 6R

ascRþ asLsðRÞ þ aEnV n�1;m�1ðR� nÞf g � ascX ; ð2Þ

V n;jðX Þ ¼ asLsðX Þ þ aEnV n;j�1ðX � nÞ; j ¼ 1; . . . ;m� 1; ð3Þ
where V0,0X � 0, a is the discount factor (0 < a 6 1) and R (the decision variable) is the inventory position
after an order is placed at a review epoch. Note that the item cost c(R � X) (paid upon delivery) and the
one-period holding and shortage costs Ls(R) in (2) and Ls(X) in (3) for the upcoming (s + 1)th period are
discounted to the present time. As we see from (3), the holding and shortage costs are charged virtually on a
continuous basis. The length of periods actually can be made arbitrarily small, if justified in practice. Then
the number of periods in a cycle will increase.

Assume that V0,1(X) = asLs(X) attains its minimum (this assumption is satisfied if h and p are both
positive). Define the function Gn,0(R) as
Gn;0ðRÞ ¼ ascRþ asLsðRÞ þ aEnV n�1;m�1ðR� nÞ: ð4Þ

Then Vn,0(X) can be expressed by
V n;0ðX Þ ¼ min
X 6R

fGn;0ðRÞg � ascX : ð5Þ
We show in the following lemma that Vn,j(X) is convex.

Lemma 2.1. Vn,j(X) for each (n, j) is a convex function.

Proof. V0,1(X) is convex. Assuming that V0,j�1(X) is convex, it follows from (3) that V0,j(X) is convex.
G1,0(R) is thus convex. Hence V1,0(X) is convex by Proposition B-4 of Heyman and Sobel [8]. Convexity
is established by induction for the remaining Vn,j(X). h

Denote by Df the first derivative of the function f. Let Rn be the (smallest) value of R that minimizes
Gn,0(R). It follows from (5) that the optimal policy with n cycles remaining is to order up to Rn. The fol-
lowing theorem shows that if two consecutive order-up-to levels are equal to each other, the sequence
{Ri} has converged.
Theorem 2.2. If Rn = Rn � 1, then Ri = Rn for i P n + 1.

Proof. We show that if Rn = Rn � 1, then Rn + 1 = Rn and thus the convergence property holds for all
i > n + 1. If Rn = Rn � 1, it follows from (5) that DVn,0(X) = DVn � 1,0(X) = �asc for X 6 Rn. Hence, it
can be seen from (3) that DVn,j(X) = DVn � 1,j(X) for X 6 Rn, j = 1, . . ., m � 1. It then follows from (4)
that DGn + 1,0(R) = DGn,0(R) for R 6 Rn. As Rn minimizes Gn,0(R), it also minimizes Gn + 1,0(R), i.e.,
Rn + 1 = Rn. h

As we see from Theorem 2.2, if for some n, Rn = Rn � 1, the sequence {Ri} converges to a level R* = Rn,
i.e., Ri = R* for all i P n + 1. R* is then the optimal base-stock level for the infinite-horizon problem (see
Chiang [2] for a similar result in the two-supply-mode setting). The condition of Rn = Rn � 1 for some n is
expected to hold, if we rule out the bizarre ‘‘never to order’’ policy explained below. The reason is that in
most cases in practice there exists a minimum divisible quantity and demand occurs in a multiple of this
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quantity. Since demand in a period is non-negative and bounded, it follows that the state space for X is
finite. Note that even if demand can occur in any finite non-negative real amount, the state space must
be discretized when implemented on a digital computer. Moreover, the action space for R is also finite, since
in practice the order quantity is also bounded and orders will be placed in a multiple of the above divisible
quantity. Computational results indicate that it takes only 2 or 3 cycles for the sequence {Ri} to converge
for a lot of problems we solve (some of which are described below).

We next derive a simple procedure of computing R*. It follows from (5) that DVn,0(X) = �asc for
X6R*. Thus it is seen from (3) that DVn,1(X) = asDLs(X) � as + 1c for X6R* and DVn,2(X) =
as + 1DLs + 1(X) + asDLs(X) � as + 2c for X6R*. By repeating this logic, we can show that for X6R*,
DV n;m�1ðX Þ ¼ asþm�2DLsþm�2ðX Þ þ 
 
 
 þ asþ1DLsþ1ðX Þ þ asDLsðX Þ � asþm�1c:
Hence, it follows from (4) that for R 6 R*,
DGnþ1;0ðRÞ ¼ asþm�1DLsþm�1ðRÞ þ 
 
 
 þ asþ1DLsþ1ðRÞ þ asDLsðRÞ þ ð1� amÞasc: ð6Þ

As R* minimizes Gn + 1,0(R), R* can be obtained by solving DGn + 1,0(R) = 0. Let Uk( Æ ) be the complement
of the cumulative distribution function of k-period�s demand. Noticing that DL0(R) = h � (h + p)U1(R),
DL1(R) = h � (h + p)U2(R), and in general DLi(R) = h � (h + p)Ui + 1(R), we can simplify DGn + 1,0(R) =
0 to
ðhþ pÞ½asUsþ1ðRÞ þ 
 
 
 þ asþm�1UsþmðRÞ� ¼ ashð1þ a þ 
 
 
 þ am�1Þ þ ð1� amÞasc: ð7Þ

Note that for R 6 0, the left-hand side of (7) is equal to as(h + p)(1 + a +
 
 
+ am � 1) which is greater than
the right-hand side of (7). This is because p(1 + a +
 
 
+ am � 1) > (1 � am)c; otherwise if
p(1 + a + 
 
 
 + am � 1) 6 (1 � am)c (which means that it is more economical to incur the shortage cost
for m periods plus the discounted cost of a unit than to purchase a unit at cost c), the optimal policy is never
to order, i.e., go out of the business. For R > 0, the left-hand side of (7) is a decreasing function of R. As R
approaches infinity, it approaches zero which is less than the right-hand side of (7). Hence, for continuous
demand distributions, R* can be obtained by a simple search procedure. For discrete demand distributions,
we find the largest R such that the left-hand side of (7) is greater than or equal to the right-hand side of (7).

To illustrate, consider the base case (where periods are defined as days): c =$10, m = 10 (i.e., a cycle con-
sists of 10 days), a = 0.999, s = 6 days, l = 2 units per day (with Poisson demand), h = $0.01, and p = $20
(i.e., the holding and shortage costs are charged at $0.01 and $20 per unit per day, respectively). By using
(7), we find that R* = 45, which implies a safety stock of 13 units. It can be verified from (7) that R* is
non-decreasing in p or s (other things being equal) and non-increasing in h.

Suppose that the period length is defined as half a day (4 working hours) and the data in the base case are
changed as follows: c = $10, m = 20, a = (0.999)0.5, s = 12, l = 1 unit per half-a-day, h = $0.005, and
p = $10. We find from (7) that R* = 45. If the period length is further reduced to 2 hours (or even 1 hour)
and the data are changed similarly, R* is found to be 44. This result that R* is the same or lower as the
period length becomes smaller is explainable, though we cannot prove it rigorously. [However, if all periods
in a cycle are associated with the same discount factor, i.e., as,as + 1, . . . , and as + m � 1 respectively for
Ls(R), Ls + 1(R), . . . , and Ls + m � 1(R) in (6), are all replaced by as, the above result can be easily proved.]
The proposed dynamic programming approach charges the holding and shortage costs based on the ending
inventory of periods. The shorter the periods, the more continuously in time these two costs are computed.
In the above example, any inventory held in the morning but sold in the afternoon of a day is charged at
0.005 per unit if the period length is half a day, while it will not be charged any holding costs for that day if
the period length is one day. Also, if shortage occurs in the morning of the last day of lead-time, its cost is
$20 per unit whether the period length is one day or half a day. However, if shortage occurs in the after-
noon, its cost is $20 (respectively, only $10) per unit if the period length is one day (respectively, half a day).
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As discussed in Section 1, the period length can be defined to suit the needs of an application. It should be
determined especially from the perspective of customers, as the satisfaction of customers has become one of
the top-rated goals of a company. As a note, we do not compare the solutions above to those from the
approximate model. This is because the shortage cost is assumed to be linear in both the amount and dura-
tion of shortage, while it is linear only in the amount of shortage in the approximate model (where choice of
the unit shortage cost regardless of the period length, given the unit holding cost per cycle, decides the
order-up-to level when applying expression (5–9) of Hadley and Whitin [7]).

Thus far we have assumed that the supply lead-time s is constant. If s is stochastic (integer-valued), all
results obtained above are valid, provided that lead-times are generated by an exogenous, sequential supply
process that is independent of demand and with the property that orders are received in the same sequence
as they are placed, as in the ordinary periodic-review models where an order can be placed at each period
and s is a multiple of a period (see, e.g., Zipkin [19, pp. 408–409]). Then asc and asLs(Æ) in (2) and (3) are
replaced by Es[a

sc] and Es[a
sLs(Æ)], respectively, and (7) would be replaced by its expectation taken over the

lead-time distribution, i.e.,
ðhþ pÞEs½asUsþ1ðRÞ þ 
 
 
 þ asþm�1UsþmðRÞ� ¼ Es½as�fhð1þ 
 
 
 þ am�1Þ þ ð1� amÞcg: ð8Þ
The solution procedure of obtaining the optimal R* described above for constant lead-time case holds here.
For example, in the base case above (other things being equal) if s is stochastic and distributed as follows:
Pr(s = 4) = Pr(s = 8) = 0.1, Pr(s = 5) = Pr(s = 7) = 0.2, and Pr(s = 6) = 0.4 (the mean of s is still equal to
6 days), after solving we find that R* = 46. Comparing this level to that of the base case, we see that intro-
duction of the lead-time variability into the model makes the base-stock level higher. This agrees with our
common knowledge that more uncertainty may lead to higher safety stocks.
3. The lost-sales model

Suppose now that all demand not immediately satisfied is lost. Use the notation in Section 2. Assume
that the (deterministic) supply lead-time is less than or equal to the length of replenishment cycles, i.e.,
s 6 m. Assume for the time being that s P 2. Let L(X) be the one-period�s holding and shortage costs
when the starting on-hand inventory is X. L(X) is expressed by
LðX Þ ¼
Z X

0

hðX � nÞuðnÞdn þ
Z 1

X
pðn � X ÞuðnÞdn: ð9Þ
Note that p (the shortage cost per unit) has a different meaning in the lost-sales model. It should be larger
here, for it now includes the sales price and also a lost sale is worse than a delayed one.

Let Vn,0(X, 0) denote the expected discounted cost with n cycles remaining until the end of the planning
horizon when the starting on-hand inventory is X and an optimal ordering policy is used at that review
epoch. Vn,j(X,Y) for j 5 0 denotes the expected discounted cost with n cycles and j periods remaining when
the starting on-hand inventory is X and on-order inventory is Y. Vn,j(X,Y) is simply Vn,j(X, 0) for
j = 1, . . . ,m � s. Vn,j(X,Y) satisfies the functional equations
V n;0ðX ; 0Þ ¼ min
Z P 0

ascZ þ LðX Þ þ a
Z X

0

V n�1;m�1ðX � n; ZÞuðnÞdn þ aV n�1;m�1ð0; ZÞ
Z 1

X
uðnÞdn

� �
;

ð10Þ
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V n;jðX ; Y Þ ¼ LðX Þ þ a
Z X

0

V n;j�1ðX � n; Y ÞuðnÞdn þ aV n;j�1ð0; Y Þ
Z 1

X
uðnÞdn;

j ¼ 1; . . . ;m� 1 and j 6¼ m� s þ 1; ð11Þ

V n;m�sþ1ðX ; Y Þ ¼ LðX Þ þ a
Z X

0

V n;m�sðX � n þ Y ; 0ÞuðnÞdn þ aV n;m�sðY ; 0Þ
Z 1

X
uðnÞdn; ð12Þ
where V0,0(X, 0) � 0 and Z (the decision variable) is the quantity ordered at the beginning of a cycle which
becomes inventory on order thereafter. As we see from (11) and (12), the holding and shortage costs are
computed virtually on a continuous basis (as in the backorder model). If s = 1, there is only one state var-
iable X and (10)–(12) reduce to
V n;0ðX Þ ¼ min
Z P 0

acZ þ LðX Þ þ a
Z X

0

V n�1;m�1ðX � n þ ZÞuðnÞdn þ aV n�1;m�1ðZÞ
Z 1

X
uðnÞdn

� �
: ð13Þ

V n;jðX Þ ¼ LðX Þ þ a
Z X

0

V n;j�1ðX � nÞuðnÞdn þ aV n;j�1ð0Þ
Z 1

X
uðnÞdn; j ¼ 1; . . . ;m� 1: ð14Þ
In addition, if s = 0, Eq. (13) further simplifies to
V n;0ðX Þ ¼ min
X 6R

cRþ LðRÞ þ a
Z R

0

V n�1;m�1ðR� nÞuðnÞdn þ aV n�1;m�1ð0Þ
Z 1

R
uðnÞdn

� �
� cX : ð15Þ
Using the same reasoning as in Section 2, we can show that a base-stock policy is optimal for the zero-lead-
time case, and the optimal base-stock level R* (for the infinite-horizon model) is obtained by solving the
following equation:
ðhþ pÞfU1ðRÞ þ 
 
 
 þ am�1UmðRÞg � pfaU1ðRÞ þ 
 
 
 þ am�1Um�1ðRÞg � amcUmðRÞ
¼ hð1þ a þ 
 
 
 þ am�1Þ þ ð1� amcÞ: ð16Þ
We assume s P 2 throughout the rest of this section (the analysis is similar and simpler when s = 1).
Define
JnðX ; ZÞ ¼ ascZ þ LðX Þ þ a
Z X

0

V n�1;m�1ðX � n; ZÞuðnÞdn þ aV n�1;m�1ð0; ZÞ
Z 1

X
uðnÞdn: ð17Þ
Then (10) is expressed by
V n;0ðX ; 0Þ ¼ min
Z P 0

fJnðX ; ZÞg: ð18Þ
We show in the following lemma that the cost function Vn,j(X,Y) is convex. Denote by Di f the first deriv-
ative of the function f with respect to its ith variable.
Lemma 3.1. Vn, j(X,Y) for each (n, j) is a convex function.

Proof. Please see Appendix A.
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Let Zn(X) be the (smallest) value of non-negative Z that minimizes Jn(X,Z) for a given X. Then it follows
from (18) that the optimal policy at a review epoch with n cycles remaining is to order the amount Zn(X).
The following property regarding Vn,j(X,Y), j = m�s + 1, . . . ,m�1, is useful for establishing Theorem 3.3.
Let D be a positive number.

Lemma 3.2. The mixed second derivative of Vn,j(X, Y), j = m�s + 1, . . . ,m � 1, is non-negative, i.e.,

D1Vn,j(X,Y) 6 D1Vn,j(X,Y + D), or D2Vn,j(X � D,Y) 6 D2Vn,j(X, Y). Moreover, D1Vn,j(X � D,Y + D) 6

D1Vn,j(X,Y), and D2Vn,j(X,Y) 6 D2Vn,j(X � D,Y + D).

Proof. Please see Appendix A.

The following theorem states that the quantity ordered at a review epoch is non-increasing in the starting
on-hand inventory; moreover, if the quantity ordered decreases as the starting on-hand inventory increases,
it decreases by an amount that is less than or equal to the amount by which the starting on-hand inventory
increases. This result generalizes Theorem 4 of Karlin and Scarf [10] for the lost-sales periodic-review prob-
lem with one-period lag (lead-time).
Theorem 3.3. Zn(X) is non-increasing in X, i.e., Zn(X) 6 Zn(X � D). Moreover, Zn(X � D)�D 6 Zn(X).

Proof. Please see Appendix A.

Let Rn be the minimum value of X for which Zn(X) = 0. It follows from Theorem 3.3 that for X 6 Rn,
X + Zn(X) 6 Rn + Zn(Rn) = Rn. This implies that Rn is the maximum possible order-up-to level at a review
epoch with n cycles remaining. We show in Theorem 3.4 that if two consecutive maximum order-up-to lev-
els are equal to each other and the first derivatives of the two corresponding cost functions are equal, then
the sequence {Zi(X)} has converged.
Theorem 3.4. If there exists some n such that

(a) Rn = Rn � 1

(b) D1Vn,0(X, 0) = D1Vn � 1,0(X, 0) for X 6 Rn, then Zi(X) = Zn(X), X 6 Rn, and Ri = Rn, for all

i P n + 1.

Proof. Please see Appendix A.

As we see from Theorem 3.4, if conditions (a) and (b) are satisfied, the sequence {Zi (X)} converges to
Z*(X) = Zn(X) ({Ri} also converges to R* = Rn), and thus the dynamic programming computation can be
stopped (see Chiang and Gutierrez [5] for a similar result that is applied to a backorder model in the two-
supply-mode setting). Condition (a) that is similar to the condition of Theorem 2.2 is expected to hold. To
facilitate the computation, we say that the first derivatives of two consecutive cost functions (at review
epochs) could be regarded as equal when
max
X 6Rn

j D1V n;0ðX ; 0Þ �D1V n�1;0ðX ; 0Þ j 6 e; ð19Þ
where e is set to 0.02 for all the problems we solve, which are described below.
Consider the base case in Section 2: c = $10, m = 10, s = 6 days, a = 0.999, h = $0.01 (i.e., the holding

cost is charged at $0.01 per unit per day), p = $20 (i.e., the shortage cost is charged at $20 per unit), and
l = 2 units per day (with Poisson demand). After solving the model expressed by (10)–(12), we find that the
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sequence {Zi(X)} converges to Z*(X) = Z3(X), i.e., it converges after only 3 cycles, and Z*(X) = 29 for
X 6 12, Z*(13) = Z*(14) = 28, Z*(15) = Z*(16) = 27, Z*(17) = 26, Z*(18) = 25, Z*(X) = 44�X for
19 6 X 6 44 (and thus R* = 44).

In addition, we vary the value of p and s in the base case to investigate the speed of convergence of the
sequence {Zi(X)} and their effect on the optimal solutions. There are a total of 25 problems solved. Com-
putational results indicate that it takes no more than 5 cycles for convergence to occur. Also, as we see from
Table 1, that R* is non-decreasing in p or s (other things being equal). This result is intuitively reasonable,
though we cannot prove it rigorously. Let X* be the minimum starting on-hand inventory for which the
order-up-to level is R*. For example, X* = 19 in the base case above. The level of X* for each problem
is also recorded in Table 1.

Moreover, we compute the optimal order-up-to level, denoted by S, of the approximate model for each
of the 25 problems (note that the holding cost per unit per cycle is $0.1 when applying expression (5–13) of
Hadley and Whitin [7]). As we see from Table 1, S is, in general, higher than R*. This is because the approx-
imate model ignores the effect of lost sales occurring between the time an order is placed and the time it
arrives [7, p. 241]. A larger order placed now by the approximate model cannot save possible lost sales
in the near future. The difference between S and R* tends to be larger as p decreases (other things being
equal), i.e., a much smaller order than that yielded by the approximate model is actually enough as p be-
Table 1
A comparison of solutions of the proposed lost-sales model and the approximate model

Parameters The proposed model The approximate model

s p X* R* S

4 $12 13 35 41
16 13 38 42
20 12 39 42
24 13 40 42
28 16 41 43

5 12 15 37 44
16 15 40 44
20 20 42 45
24 15 42 45
28 16 43 45

6 12 17 39 46
16 17 42 47
20 19 44 47
24 20 45 47
28 18 45 48

7 12 19 41 48
16 23 45 49
20 21 46 50
24 21 47 50
28 23 48 50

8 12 21 43 51
16 24 47 51
20 29 49 52
24 23 49 52
28 24 50 53

Data: c = $10, h = $0.01, a = 0.999,m = 10, and l = 2 (Poisson demand).
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comes lower. Hence, we recommend the use of the proposed lost-sales model, especially for the items with
low shortage costs.

4. Conclusions

This paper considers inventory models for periodic-review systems with replenishment cycles (which con-
sist of a number of periods). We use dynamic programming to formulate both the backorder and lost-sales
models, and propose to charge the holding and shortage costs based on the ending inventory of periods.
Since periods can be made any time units to suit the needs of an application, this approach in fact computes
the holding cost based on the average inventory of a cycle and the shortage cost in proportion to the dura-
tion of shortage (for the backorder model), and remedies the shortcomings of the approximate models
found in many textbooks. We show that a base-stock policy is optimal for the backorder model, while
in general it is not for the lost-sales model. Moreover, for the backorder model, we develop a simple expres-
sion for computing the optimal base-stock level; for the lost-sales model, we derive convergence conditions
for stopping computation and obtaining the optimal operational parameters.

There are several possible directions for future research. One is to allow the lead-time to be greater than
the length of a replenishment cycle for the lost-sales model. The state space would then increase from two to
multiple dimensions. This conceivably reduces the feasibility of the optimal policy and makes the approx-
imate (lost-sales) model more attractive. Another is to consider stochastic lead-times for the lost-sales mod-
el. The dynamic program then seems difficult to formulate, making the approximate model again more
practical.
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Appendix A

Proof of Lemma 3.1. V0,1(X, 0) = L(X) is convex and D1V0,1(X, 0) P �p. By examining the second
derivative of V0,2(X, 0), the convexity of V0,2(X, 0) is established and D1V0,2(X, 0) P �p, and similarly for
V0,j(X, 0), j = 3, . . . ,m � s. Thus V0,m � s + 1(X,Y) is jointly convex in X and Y by examining its Hessian.
Noting that the second derivative of V0,m � s + 1(X,Y) with respect to either X or Y is greater than the mixed
second derivative of V0,m � s + 1(X,Y), the convexity of V0,m � s + 2(X,Y) can be established. Likewise,
V0,j(X,Y) is jointly convex in X and Y, j = m � s + 3, . . . ,m � 1, and J1(X,Z) is jointly convex in X and Z.
Hence, V1,0(X, 0) is convex by Proposition B-4 of Heyman and Sobel [8]. Convexity is established by
induction for the remaining Vn,j(X,Y).

Proof of Lemma 3.2. We show only D1Vn,m � s + 1 (X � D,Y + D) 6 D1Vn,m � s + 1(X,Y) 6 D1Vn,m � s + 1

(X,Y + D) and D2Vn,m � s + 1(X � D,Y) 6 D2Vn,m � s + 1(X,Y) 6 D2Vn,m � s + 1(X � D,Y + D); similarly,
the properties hold for Vn,j(X,Y), j = m � s + 2,. . .,m � 1. It follows from (12) that
D1V n;m�sþ1ðX ; Y Þ ¼ DLðX Þ þ a
Z X

0

D1V n;m�sðX � n þ Y ; 0ÞuðnÞdn: ðA:1Þ
Hence, it is easily seen by Lemma 3.1 and convexity of L(X) that D1Vn,m�s + 1(X � D,Y + D) 6

D1Vn,m � s + 1(X,Y) 6 D1Vn,m � s + 1(X,Y + D). In addition,
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D2V n;m�sþ1ðX ; Y Þ ¼ a
Z X

0

D1V n;m�sðX � n þ Y ; 0ÞuðnÞdn þD1V n;m�sY ; 0
Z 1

X
uðnÞdn

� �

¼ a
Z X�D

0

D1V n;m�sðX � n þ Y ; 0ÞuðnÞdn þ
Z X

X�D
D1V n;m�sðX � n þ Y ; 0ÞuðnÞdn

�

þD1V n;m�sðY ; 0Þ
Z 1

X
uðnÞdn

�
6 a

Z X�D

0

D1V n;m�sðX � n þ Y ; 0ÞuðnÞdn

�

þ
Z X

X�D
D1V n;m�sðY þ D; 0ÞuðnÞdn þD1V n;m�sðY þ D; 0Þ

Z 1

X
uðnÞdn

�

¼ a
Z X�D

0

D1V n;m�sðX � n þ Y ; 0ÞuðnÞdn þD1V n;m�sðY þ D; 0Þ
Z 1

X�D
uðnÞdn

� �

¼ D2V n;m�sþ1ðX � D; Y þ DÞ: ðA:2Þ
Similarly, it can be verified that D2Vn,m � s + 1(X � D,Y) 6 D2Vn,m � s + 1(X,Y).

Proof of Theorem 3.3. It follows from (17) and Lemma 3.2 that
D2JnðX � D; ZÞ ¼ ascþ a
Z X�D

0

D2V n�1;m�1ðX � D � n; ZÞuðnÞdn þ aD2V n�1;m�1ð0;ZÞ
Z 1

X�D
uðnÞdn

¼ ascþ a
Z X�D

0

D2V n�1;m�1ðX � D � nÞ; ZuðnÞdn þ aD2V n�1;m�1ð0;ZÞ
Z X

X�D
uðnÞdn

�

þ
Z 1

X
uðnÞdn

�
6 ascþ a

Z X�D

0

D2V n�1;m�1ðX � n; ZÞuðnÞdn

þ a
Z X

X�D
D2V n�1;m�1ðX � n; ZÞuðnÞdn þ aD2V n�1;m�1ð0; ZÞ

Z 1

X
uðnÞdn

¼ ascþ a
Z X

0

D2V n�1;m�1ðX � n; ZÞuðnÞdn þ aD2V n�1;m�1ð0; ZÞ
Z 1

X
uðnÞdn

¼ D2JnðX ; ZÞ:
This implies that Zn(X) 6 Zn(X � D). Moreover, by Lemma 3.2,
D2JnðX ;ZÞ ¼ ascþ a
Z X�D

0

D2V n�1;m�1ðX � n;ZÞuðnÞdnþ a
Z X

X�D
D2V n�1;m�1ðX � n;ZÞuðnÞdn

þ aD2V n�1;m�1ð0;ZÞ
Z 1

X
uðnÞdn6ascþ a

Z X�D

0

D2V n�1;m�1ðX �D� n;ZþDÞuðnÞdn

þ a
Z X

X�D
D2V n�1;m�1ðD;ZÞuðnÞdnþ aD2V n�1;m�1ð0;ZþDÞ

Z 1

X
uðnÞdn6asc

þ a
Z X�D

0

D2V n�1;m�1ðX �D� n;ZþDÞuðnÞdnþ a
Z X

X�D
D2V n�1;m�1ð0;ZþDÞuðnÞdn

þ aD2V n�1;m�1ð0;ZþDÞ
Z 1

X
uðnÞdn

¼ ascþ a
Z X�D

0

D2V n�1;m�1ðX �D� n;ZþDÞuðnÞdnþ a2D2V n�1;m�1ð0;ZþDÞ
Z 1

X�D
uðnÞdn

¼D2JnðX �D;ZþDÞ:



C. Chiang / European Journal of Operational Research 170 (2006) 44–56 55
As D2Jn(X, Z) P 0 for Z P Zn(X), D2Jn(X � D, Z + D) P 0 for Z P Zn(X) or equivalently
Z + D P Zn(X) + D. This implies that Zn(X � D) 6 Zn(X) + D.

Proof of Theorem 3.4. We show that if for some n, conditions (a) and (b) are satisfied, then
Zn + 1(X) = Zn(X) for X 6 Rn + 1 = Rn, and D1Vn + 1,0(X, 0) = D1Vn,0(X, 0) for X 6 Rn + 1. Thus by induc-
tion the convergence property holds for all i P n + 2.

If Rn = Rn � 1 and D1Vn,0(X, 0) = D1Vn � 1,0(X, 0) for X 6 Rn, then it follows from (11) that
D1Vn,1(X, 0) = D1Vn � 1,1(X, 0) for X 6 Rn, . . . ,D1Vn,m � s(X, 0) = D1Vn � 1,m � s(X, 0) for X 6 Rn. Also,
due to (A.1) and (A.2),
D1V n;m�sþ1ðX ; Y Þ ¼ D1V n�1;m�sþ1ðX ; Y Þ for X 6Rn � Y ;

D2V n;m�sþ1ðX ; Y Þ ¼ D2V n�1;m�sþ1ðX ; Y Þ for Y 6Rn � X :
Hence, it is seen from (11) again that
D1V n;jðX ; Y Þ ¼ D1V n�1;jðX ; Y Þ for X 6Rn � Y ; j ¼ m� s þ 2; . . . ;m� 1; ðA:3Þ

D2V n;jðX ; Y Þ ¼ D2V n�1;jðX ; Y Þ for Y 6Rn � X ; j ¼ m� s þ 2; . . . ;m� 1: ðA:4Þ

Hence, it follows from (17) that D2Jn + 1(X,Z) = D2Jn(X,Z) for all Z 6 Rn � X. Also, for X 6 Rn,
Zn(X) 6 Rn � X. As Zn(X), X 6 Rn, minimizes Jn(X,Z), it also minimizes Jn + 1(X,Z), i.e.,
Zn + 1(X) = Zn(X) for X 6 Rn. Since Rn is the minimum value of X for which Zn(X) = 0, it is also the min-
imum value of X for which Zn + 1(X) = 0, i.e., Rn + 1 = Rn.

Finally, it follows from (17) and (18) that for X 6 Rn,
D1V n;0ðX ; 0Þ ¼ D1JnðX ; ZnðX ÞÞ þD2JnðX ; ZnðX ÞÞDZnðX Þ ¼ D1JnðX ; ZnðX ÞÞ

¼ DLðX Þ þ a
Z X

0

D1V n�1;m�1ðX � n; ZnðX ÞÞuðnÞdn:
The second equality is due to the fact that for all X < Rn, Zn(X) > 0 and D2Jn(X,Zn(X)) = 0. Similarly, for
X 6 Rn + 1
D1V nþ1;0ðX ; 0Þ ¼ DLðX Þ þ a
Z X

0

D1V n;m�1ðX � n; Znþ1ðX ÞÞuðnÞdn:
Hence, it follows from (A.3) that for X 6 Rn + 1 [thus X + Zn + 1(X) 6 Rn + 1], D1Vn + 1,0(X,
0) = D1Vn,0(X, 0).
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