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Abstract: A liquid crystal lens array with a hexagonal arrangement is 
investigated experimentally. The uniqueness of this study exists in the fact 
that using convex-ring electrode provides a smooth and controllable applied 
potential profile across the aperture to manage the phase profile. We 
observed considerable differences between flat electrode and convex-ring 
electrode; in particular the lens focal length is variable in a wider range 
from 2.5cm to infinity. This study presents several noteworthy 
characteristics such as low driving voltage; 30 μm cell gap and the lens is 
electrically switchable between 2D/3D modes. We demonstrate a hexagonal 
LC-lens array for capturing 3D images by using single sensor using integral 
imaging. 
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1. Introduction

Liquid crystals (LCs) have unique electro-optical characteristics that make them useful for 
studying and fabricating practical optical devices. There is a consensus among researchers 
that liquid crystal lenses can be used as an alternative to mechanically adjustable solid lens 
systems [1–6]. More recently, the properties of LC lenses [7–9] have received much attention. 
They are thin, tunable in focus, and electrically switchable to 2D/3D modes. Rather than 
controlling light by varying the thickness and shape of a polished material, an LC lens system 
tunes the refractive index of the LC by applying a voltage. 

LC lenses are thus suitable for enhancing endoscope imaging systems [10], which usually 
have a solid lens having a few millimeters in diameter. It is advantageous to have an 
endoscope with smaller lens and a short focal length with 3D imaging capabilities. It is also 
advantageous for the device to work at low voltages (i.e., less than 20V) so that it can be used 
in an integrated circuit, which cannot tolerate high voltages. The advantages of 3D endoscopy 
are to improve the speed and accuracy of surgery. 3D imaging also helps surgeons learn to 
control the instrument more quickly [11]. Numerous types of LC lenses have been proposed, 
such as a 3D sensing system [12] a 3D imaging system [13–16], and an optical tunable LC 
lens [17, 18]. These systems have been investigated for research and were not in clinical use. 

There are several challenges to making an improved LC lens. For instance, photo-
polymerized LC lenses have short focal lengths but require high applied voltage [19] and have 
a complicated structure that is costly to manufacture [20]. An optical system for a 200μm 
aperture size based on an LC lens array has been developed but suffered from distortion. 
Although this can be reduced, it is impossible to extract a 3D image as a result [21]. Other LC 
lens systems use low applied voltage [22–25], a patterned lenticular LC lens [26–28], and a 
liquid lens actuated by LC pistons [29]. 

A careful study of the literature reveals that the liquid crystal lens array for three 
dimensional capturing images in particular the acquisition of medical images has not been 
thoroughly investigated. A clear understanding of LC lens array is very essential for taking 
3D images. Therefore, the goal of this study is to develop a more rigorous understanding of 
LC lens array especially in an endoscope. To demonstrate the potential of this approach and 
its suitability for medical imaging, an array of LC lens in a hexagonal arrangement is 
investigated. Among the plausible explanations for these findings is that a convex-ring 
electrode indicates better performance compared with a flat electrode as it is shown at [30, 
31]. The convex- electrodes avoid stack overflow of the electric field at the center of the lens 
and permit shorter focal lengths. Such electrodes make it possible to work on a wider range of 
applied voltages, which gives more precise control over focusing. 

The primary goal of this study is to determine a convex-ring electrode not as a lens itself 
as it is reported in [32] but as a surrounding electrode which makes better transparency and 
tunability for LC lens. A large birefringence change can be achieved by a relatively small 
voltage such as a few volts. Focal length can vary from 2.5 cm to infinity and aperture size for 
each lens is 350 μm. We successfully demonstrate a hexagonal LC-lens array for capturing 
3D images by using single image sensor using integral imaging. Experimental procedures, 
apparatus, and results are shown in following sections. 

2. Convex-ring electrode fabrication

The fabrication process and operating principles of our LC lens array are schematically 
illustrated in Fig. 1. First, we take a glass substrate and coat it with AZ 40XT photoresist with 
a spin coating machine at 2000rpm for 25 seconds. This is then gently baked for 5 minutes at 
60°C: see Fig. 1(a) and Fig. 5 minutes at 80°C to avoid bubbles in the resist film after 
photolithography using hexagonal mask see:Fig. 1(b), and finally for 7 minutes at 130°C. As 
the photoresist reaches the softening point, it curves [see Fig. 1(c)]. Next, we coat the AZ 
40XT photoresist on the indium tin oxide (ITO, a transparent conductor) and etch the pattern 
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as shown in Fig. 1(e), 1(f) and 1(g).We used the Karl Suss aligner for aligning the mask. 
Then, a layer of the UV-curable adhesive [Norland Optical Adhesive NOA81] is added, 
which is a photosensitive conductive prepolymer with good optical performance over the 
substrate, photoresist, and ITO [see Fig. 1(c)]. Finally, we solidify this layer by polymerizing 
it with UV light [see Fig. 1(h)]. 

Fig. 1. Fabrication of the convex circular electrode. (a) Exposure with a UV lamp through the 
mask after spin-coating and soft bake, (b) Development, (c) heat treatment at 130°C (softening 
point), (d) 100 nm ITO is sputtered, (e) Mask alignment and exposure with a UV a lamp 
through the mask after spin-coating on ITO and soft bake, (f) Development, (g) Wet etching is 
performed, (h) Polymer (NOA81) is coated to cover the electrodes. 

2.1 Device structure 

Schematic of the liquid crystal is shown in Fig. 2. It consists of two layers of ITO as 
electrodes, one is the patterned electrode on the top and other one is as ground electrode, two 
glass substrates of thickness 550 μm, a 35 μm thick layer of NOA81 as an insulating layer, an 
LC layer with cell gap of 30 μm, and two alignment layers are coated with PVA (poly-vinyl 
alcohol) and mechanically rubbed for homogeneous LC alignment. The rubbing directions of 
the two alignment layers are antiparallel, and the lens diameter for each one is 350 μm. 

Fig. 2. Schematic of the liquid crystal (LC) lens array structure with convex-ring electrode, 
including a voltage source. 
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Fig. 3. Indium tin oxide (red) on a hexagonal pattern. Each lens can be applied with different 
voltages or same voltage. 

The electrode pattern is shown in Fig. 3. Each lens can be applied with different voltages. 
The photo of the fabricated LC lens is shown in Fig. 4(a) and a microscopic image of the 
hexagonal convex curved electrodes is shown in Fig. 4(b). There are three other ways to make 
a curved photoresist; soft reflow process with a solvent vaporing technique [33], HBr/O2 
Plasma treatment [34], and Gray-scale optical mask [35]. 

Fig. 4. (a) Photo of the fabricated Hexagonal LC micro- lens array, (b) Microscopic image of 
the hexagonal convex curved electrodes. 

3. Convex-ring electrode for Micro LC-lens

Most LC microlenses developed thus far employ nematic LCs, which offer a large 
birefringence to achieve a short focal length and flat electrode which is a commonly used to 
approach this matter. Although this is the most comprehensive account of LC lens produced 
so far, it does suffer from a number of flaws. However, the main weakness of the approach is 
the failure to approach a short focal length. Due to a small cell gap of the liquid crystal 

(30 m) the electric torque will be quickly balanced by the elastic torque exerted by the 
surrounding LC directors. Therefore, the LC director rotation becomes stable before the LC 
lens can reach its minimum focal length. By changing the shape of ITO electrode to a convex-
ring electrode, we can control the phase profile to approach parabolic shape thus the spherical 
aberration could be suppressed. To utilize the maximum intrinsic birefringence of the LC 
material and present the shortest possible focal length we propose a convex-electrode. We 
measured the focusing properties of the LC lens, the image quality, interference patterns, and 
focal length under different applied voltages. When a voltage (V) is applied to the electrodes, 
the LC layer experiences an inhomogeneous electric field because the top ITO electrode is 
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hole-like. When a voltage is applied, the convex- ring electrode makes a gradient electric field 
distribution in the LC layer. The electric field is the largest at the center of electrode and is 
smallest at the edge of the electrode. The direction of the LC directors from near the edge of 
the convex-ring electrode to the center of the lens varies more smoothly than the flat-electrode 
does. 

In many liquid crystal devices, the liquid crystal director configuration cannot be 
calculated analytically and must be numerically computed. Under a given external field and 
boundary condition, when a liquid crystal is in the equilibrium state, the total free energy is 
minimized. If the system is initially not in the equilibrium state, it will relax into a state with 
lower free energy. As the liquid crystal director configuration evolves, the free energy 
decreases. The change of the director configuration stops when the minimum free energy is 
reached. The dynamic equation for the change of the liquid crystal director can be used to 
numerically calculate the equilibrium director configuration, which is referred to as the 
relaxation method. A liquid crystal medium prefers a uniform director distribution. A 
variation of the director in space induces an increase of the free energy. According to the 
elastic theory for liquid crystals, the elastic energy related to the variation of the director 'n' in 
space can be written as 

2 2 2
11 22 33

1 1 1
( ) ( ) ( )

2 2 2
= ∇ ⋅ + ⋅∇ × + × ∇ ×elasticf k n k n n k n n  (1) 

This equation is known as the Oseen-Frank distortion energy. The liquid crystal director n 
can be specified by its three components x y zn (n , n , n )= , with the three elastic constants 11k , 

22k  and 33k . The three terms in the equation are related to deformations due to splay, twist 

and bend respectively. The effect of an electric field when voltage is applied to ITO 
electrodes can be described using a free energy density term which is related to the interaction 
of the applied electric field and the director of the liquid crystal molecule. 

2 21
[ ( ) ]

2 ⊥= − + Δ ⋅electricf E n Eε ε (2)

The total free energy of the nematic LC directors in the presence of the static electric field can 
be written as [36, 37]: 

2 2 2 2 2
11 22 33

1 1 1 1
( ) ( ) ( ) [ ( ) ]

2 2 2 2 ⊥

= + =

∇ ⋅ + ⋅∇× + ×∇× − + Δ ⋅

total elastic electricF f f

k n k n n k n n E n Eε ε
(3) 

The simulated director configuration using commercial software 2DiMOS is shown in Fig. 5 
for a flat and convex-ring electrode. The parameters of the nematic mixture E7 used for 
simulation are: 11 33k / k 1.54= , 22 11k / k 0.93= ;for 0 435nm,λ = 1.8208=en and 1.544=on  

[38] The rubbing directions were arranged to be anti-parallel (~2 degrees) and the two slides 
were separated with 30 µm thick spacers. The voltage applied across the LC cell 
is rmsV 5V= . A gap between the patterned-electrode and liquid crystal layer is necessary not 

only to avoid confining the gradient field around the edge of the patterned electrode but also 
to allow electric field distributes to the center of the lens to make an LC cell works like a lens. 
Due to this NOA81 layer from the top glass substrate to the LC layer is required. Figure 6 
shows the experimental setup we used to probe the voltage-dependent focal length of the lens. 
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Fig. 5. Simulated results for the same applied voltage, An LC using a flat electrode (left) and 
convex-ring electrode (right). 

It is noted that ITO electrode is not used as a lens itself and the lens forms between the 
convex-ring electrodes. The convex- ring electrode differs from flat electrode in a number of 
important ways. This can be which permits to have smaller inactive areas. Furthermore, 
experimental results show more homogeneous and symmetrical field surrounding convex-ring 
electrode compared to a flat electrode. Therefore, the lens has less distortion as well. Within 
the LC layer, the electric field at the border of electrode bE  and the electric field at the center 

of electrode cE  [see Fig. 5 (right)] can be calculated as follows: 

 
)(

ins

ins

lc

lc

lc
b dd

V

E

εε

ε

+
=  (4) 

 
lc

c d

V
E =  (5) 

The device was filled with nematic LC material E7 (Merck) with the following properties: 
extraordinary and ordinary dielectric constants 

p 1 9 .0ε = and s 5 .2ε =  of the LC, 

respectively, and the birefringence refractive index of the LC, nΔ , is 0.225. The effective 
dielectric constant of the LC, lcε , is 9.74. The LC and glass layers ( lcd and

gd ) are 30 μm 

and 550 μm thick, respectively. The glass dielectric constant 75.7g=ε , the dielectric constant of 

NOA81 ~ 5in sε at a frequency of 1 kHz, and the insulator thickness in sd  is 35 μm. 

Substituting the values into Eq. (4) and Eq. (5) [36] gives VE 33.33c = V/μm and VE 18.10b =  

V/μm. Although the electric field is lower at the border than at the center, which practically 
reduces the electric field gradient from the center to the border. 

 

Fig. 6. Experimental setup for 3D endoscopy using Hexagonal LC lens array. 
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Based on the measured interference fringes at different voltages, the focal length of the 

lens cell can be calculated using the equation δλπ Δ= 4/)( 2DVflc , where D is aperture width 

of the lens, λ is the wavelength of incident laser beam, and δΔ  is the phase difference 
between the central region and the border region of the aperture in the interference patterns 
[5]. The total focal length of the LC lens can then be expressed as following, where )(Vf ins  is 

the fixed focal length of the Insulating layer (NAO81). 

)(

1

)(

1

)(

1

VfVfVf inslc

+= (6)

Figure7 shows the comparison of flat electrode and convex-ring electrode It can been seen 
that the flat electrode has a very short range of focal length variation. The focal length varies 
as voltage changes from 1 volt to 2.2 volts and after which there is no variation and the focal 
length stays the same value. The convex-ring electrode has a wider range of variation 
compare with flat electrode. The focal length can change as voltage changes from 1 volt to 3.9 
volts. This is not the only advantage of this type of lens. This specific convex-ring electrode 
design can lower the focal length up to 2.5 cm which is impossible for the flat electrode to 
achieve. 

Fig. 7. Focal length variation vs. voltage for flat electrode (pink squares) and convex-ring 
electrode (green squares). 

The phase retardation was changed when liquid crystals were rotated by applying a 
voltage to the convex-ring electrodes. Phase retardation of an LC lens is given by: 

2
n

dlcϕ π
λ
Δ

= (7)

where λ is the wavelength, 225.0=Δn , md μ30lc = and nm632=λ . Therefore, the maximum 

phase difference is πϕ 210 ×=Δ which means we can observe 10 rings. To evaluate the optical 

properties of this hexagonal LC lens array, we recorded the interference fringes between the 
ordinary and extraordinary rays that is, rays polarized perpendicular and parallel to the plane 
of incidence, respectively using a helium-neon (He-Ne) laser beam (λ = 632 nm) that passes 
through the LC lens placed between two crossed polarizers. Figure 8 shows the recorded 
interference fringes at various applied voltages. When the voltage is applied, the appearance 
of the interference fringes changes as the LC directors reorients themselves in the applied 
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electric field. The retardation difference of two adjacent constructive or destructive 
interference rings indicates a phase change of 2π, and the variation in phase retardation 
induced by the applied voltage shows how the electrical field alters the lens properties. 

A liquid crystal lens can produce a phase shift across the incident beam by 
electrically tuning the refractive index. The phase difference between each 
constructive interference ring based on their positions is marked. Therefore, if we count 
the interference rings in direction of the rubbing direction from the edge of ITO electrode 
toward the center of the LC lens we can define the phase variation in different positions 
according to cumulative phases in each ring. This means that phase difference increases 
from the edge toward the center of the LC lens. A trend line through a set of data is 
plotted in Fig. 9. Solid curves are the fitting curves at various values of Vrms. 

Fig. 8. Interference patterns for proposed LC lens. 

Fig. 9. Phase shift profiles comparison for flat-electrode and convex-ring electrode with 
different applied voltages. 

It shows that the fabricated convex-ring electrode LC lens not only has a better 
performance as a micro-lens, but it also has the potential of being able to lower focal length in 
the proposed 2D/3D endoscope. For flat electrode in the high voltage regime above 5 V, 
because a bell-shaped distribution for the LC phase profile is not produced therefore no lens 
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effect exists. However the phase profile of the incident plane light wave polarized for convex-
ring electrode is more similar to bell-like phase profile. 

4. 3D Optical imaging using LC lens endoscope 

Current research indicates that there are three reasons a 3D endoscope will improve the speed 
of surgery. These are 1) the average time to complete a suturing task in 3D imaging is shorter 
than 2D; 2) 3D imaging provides greater precision with significantly lower error rates in 
grasping tasks; and 3) 3D imaging reduces training time for new surgeons [11]. We use an 
integral imaging system [39–45] to capture the elemental images, that is, the perspective 
images of the object formed by each LC lens[see Figs. 6 and 10]. 

 

Fig. 10. (a) An endoscope with the embedded hexagonal convex-ring electrode LC lens placed 
in front of the endoscope, (b) captured image in each LC lens. 

 

Fig. 11. (a) Schematic of reconstructing a 3D image from 2D images obtained by LC lens 
array. (b) 3D image extracted from 2D elemental image array captured by the hexagonal LC -
lens array and the endoscope. 
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The focal length of the convex-ring electrode LC lens array can be electrically varied by 
changing the effective refractive index of the LC region in each lens independently. Therefore 
we can implement 3-D imaging without moving the image sensor or the CCD sensor of 
endoscope. The LC lens can focus on the various depths or slices of the 3D object as the 
applied voltage varies. The sectional 2D images of under study can obtained at arbitrary depth 
positions by changing the focal length of the convex-ring electrode LC lens array for each 
lens. 3D image data may be constructed by capturing multiple 2D images of the 3D object and 
extracting the depth information according to various approaches [44, 46]. In our experiments, 
each lens can capture a 2D perspective image of the 3D scene from different viewing angles 
at tunable depths as shown in Fig. 10. Thus, the system can record the depth-sampled image 
by properly synchronizing the 2D image to be captured by varying the focal length, as it 
shown in Fig. 11(a). 3D image data is reconstructed using several 2D images captured by LC 
lens. We investigated the imaging properties of this LC lens when it was placed 2 mm from 
the objective lens of a side-view endoscope with a 20 × 25 2mm  test object a sponge placed 
73 mm from the LC lens. Figure 10(a) demonstrates a convex-ring electrode LC lens array 
that is mounted to a front view endoscope. We took images of the test object as shown in Fig. 
10(b). We captured images of an object from different viewing angles and processed them 
using integral imaging to reconstruct the 3D image of the object. Figure 11(b) is a 
reconstructed 3D image using the seven elemental images taken using the hexagonal convex-
ring electrode LC lens array. 

5. Conclusion 

Conventional 3D endoscopes consist of two lenses and two sensors, which enlarged the size 
of the instrument and have limitations imposed by stereo systems. We have successfully 
developed a hexagonal LC-lens array for capturing 3D images by using a single sensor using 
integral imaging. The diameter of developed 3D endoscope is less than 1.4mm, which is close 
to conventional 2D endoscope. Another significant finding from this study is that we propose 
convex-ring electrode to produces parabolic-like electric field distribution, thus lowering the 
focal length to less than 2.5 cm. which enables the endoscope to capture closer objects for 
medical applications. Finally, a hexagonal convex-ring electrode LC lens array with single 
senor endoscope for 2D/3D switching and easy mounting is successfully demonstrated. 
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