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Abstract: A method to construct an optimal finite impulse response (FIR) approximate inverse for
discrete-time causal FIR periodic filters in the presence of measurement noise is proposed. The
objective function to be minimised is the sum-of-mean-square errors over one period. On the
basis of the matrix impulse response of the multi-input multi-output time-invariant representation
of periodic filters, the optimisation problem is formulated as one that minimises the summed
equation errors of a set of over-determined linear equations. It is shown that the problem is equivalent
to a set of least-squares problems from which a simple, closed-form solution is obtained. Numerical
examples are used to illustrate the performance of the proposed FIR approximate inverse.

1 Introduction

Periodic filters have found various applications in signal pro-
cessing and communications, for example, in sub-band
coding [1, 2], in modelling and design of transmultiplexers
[3–5], in speech scrambling [6, 7], in spread spectrum
multiple access communications [8, 9] and in blind channel
identification and equalisation [10–12]. The inverse, or
approximate inverse, of a periodic filter is used for recovering
scrambled signals [7] and for equalisation of periodically
modulated communication channels [12]. Inversion of peri-
odic filters has been discussed by Kazlauskas [13], Lin and
King [14] and Vetterli [15] for the noiseless case and by
Wu and Lin [16], Wang et al. [17] and Zhou et al. [18]
when measurement noise is present.

There are many different descriptions of single-input
single-output (SISO) linear periodic digital filters [2, 19,
20], either in the time domain via periodic state equation
and periodic difference equation or in the frequency
domain using the poly-phase model. In terms of time-
domain block signals, it is well known that associated
with each SISO N-periodic filter, there is an N-input
N-output linear time-invariant (LTI) system that exhibits
an input–output relation identical to that of the filter
[2, 20]. For general study of periodic systems, in particular,
in the inverse filtering problem, this multi-input multi-
output (MIMO) representation is often adopted because
the LTI nature would allow considerable simplification in
analysis and design. It is known that such an equivalent
MIMO system must satisfy certain structural constraints
due to causality [20]. As a result, the design of causal per-
iodic inverse filter based on the MIMO LTI framework
would amount to finding an appropriate inverse LTI
system subject to this constraint. Lin and King [14]

proposed a method for finding the inverse transfer matrix
in the noiseless case. Recently, the MIMO LTI formulation
was also used by Wu and Lin [16] and Wang et al. [17] for
approximate inverse design in the presence of noise. For a
given periodic filter, either infinite impulse reponse (IIR)
or FIR, the solution reported by Wu and Lin [16] is in
general IIR. In Wang et al. [17], the problem of FIR
approximate inverse design for FIR periodic filters is inves-
tigated via the linear matrix inequality (LMI) framework.
All the aforementioned works on inverse design use the per-
iodic state equation as the filter model because there is a
well-known formula for computing the transfer matrix of
the associated MIMO LTI system [20].

This paper proposes a method to construct an FIR
approximate inverse for a given FIR periodic filter in the
presence of measurement noise. Unlike the previous
studies [16, 17], we use the difference equation filter
description. This allows a simple way of specifying the
associated MIMO LTI system, in terms of the matrix
impulse response. The cost function is the steady-state
mean-square approximation errors summed over one
period, as considered by Wu and Lin [16]. On the basis of
the matrix impulse response of the MIMO LTI model, the
problem is naturally formulated as minimisation of the
summed equation errors of a set of over-determined linear
equations. The causality constraint, in this case, is seen to
impose a certain zero-padded structure in the unknown
filter coefficient vector. There is a very simple way of resol-
ving this constraint and the problem is shown to be reduced
as a set of least-squares problems. An FIR approximate
inverse, on the other hand, can be obtained by truncating
the matrix impulse response of an IIR solution reported
by Wu and Lin [16]. To tackle the causality condition in
the general, possibly IIR, case, the problem formulation
by Wu and Lin [16] builds on an infinite-dimensional
space of matrix sequences and a related z-transform
domain analysis; the computations involved are factoris-
ations of rational matrices, followed by a QR decomposition
for fulfilling the causality requirement (cf. [16, Section IV–
V]). In the light of these points, the advantages of the
current approach are 2-fold. First, the alternative formu-
lation via difference equation, and hence the matrix
impulse response in the MIMO LTI setting, leads to a
simple linear equation analysis framework. Secondly, the
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resultant least squares based solutions would offer a reduc-
tion in algorithm complexity when compared with the trun-
cation-based approach shown in Wu and Lin [16]. Also, in
contrast with the iterative LMI method [17], in which essen-
tially the same objective function is considered, the proposed
approach can yield appealing, closed-form solutions.

Notation: We denote by<l�m the set of all l � m real matrices.
The notations 0l�m and Il, respectively, stand for the l � m
zero matrix and the l � l identity matrix. Denote by d
the N � N matrix unit-impulse sequence, that is,
dn ¼ 0N�N for all n . 0 and d0 ¼ IN. Let z2k be the
k-step delay operator such that for any sequence s,
(z2ks)n ¼ sn2k. Let Hl�m be the space of all causal sequences
of matrices X ¼ fXn [ <l�m, n � 0g. Given a positive integer
K, define the subspace of Hl�m as HK

l�m :¼fX [ Hl�m:
Xn ¼ 0l�m for all n � Kg. The norm of X [ HK

l�m is defined

by kXk :¼ (
P

n¼0
K21
kXnkF

2)1/2, where k . kF is the Frobenius

norm [21, p. 55]. For X [ Hl�m
K1

and Y [ Hl�m
K2

, let the
augmented sequence [X Y] [ Hl�2m

K3
be such that

[X Y]n ¼ [Xn Yn] and K3 ¼ maxfK1, K2g. Denote by
X � Y the convolution of X [ Hl�m

K1
and Y [ Hm�n such

that (X � Y)n ¼
P

k¼0
minfn,K121gXkYn2k.

2 Problem statement and preliminary

2.1 Problem statement

Consider the discrete-time causal FIR N-periodic filter with
input u and output z described by

zn ¼
XM
k¼0

gn;kun�k; n � 0 ð1Þ

where un and zn are, respectively, the input and output at
time n, and the filter coefficient gn,k satisfies

gn;k ¼ gnþN ;k; 8n � 0; 0 � k � M ð2Þ

Consider the block diagram shown in Fig. 1, where r is the
observed signal, which is the sum of filter output z and a
measurement noise v, that is

r ¼ zþ v ð3Þ

and û is the d-step delay of the input u to filter (1), that is

ûn ¼
un�d; n � d

0; 0 � n , d

�
ð4Þ

An approximate inverse of filter (1) is a causal FIR
N-periodic filter with input r and output y described by

yn ¼
XM1

k¼0

fn;krn�k ð5Þ

where for each 0 � k � M1

fn;k ¼ fnþN ;k; 8n � 0 ð6Þ

such that the output y is close to û, that is, the error signal

e ¼ û� y ð7Þ

is small for the input signal u of interest.
The following assumptions are made in the sequel.

1. The input u ¼ fun [ <, n � 0g to filter (1) is a white
sequence with zero mean and unit variance.
2. The noise v ¼ fvn [ <, n � 0g is a white sequence with
zero mean and variance sv

2 and is uncorrelated with the
input u.

In this paper, we propose a method to construct an FIR
approximate inverse of the form (5), with which the sum
of error variances over one period is minimised.

2.2 Matrix impulse response of FIR periodic filters

Consider again the filter (1). Define the block input �u and
output �z as

�un :¼ ½unN unNþ1 � � � unNþN�1�
T [ <N ; n� 0 ð8Þ

and

�zn :¼ ½znN znNþ1 � � � znNþN�1�
T [ <N ; n� 0 ð9Þ

It is well known that associated with filter (1), there is an
N-input N-output (FIR) time-invariant system, with input
�u and output �z, which exhibits an input–output relation
identical to that of filter (1) [2, 20]. The matrix impulse
response of the associated MIMO LTI system, which will
be used in our subsequent discussions, can be directly
determined from (1) as follows.

Write the ith component of �zn as (see (1))

znNþi ¼
XM
k¼0

gnNþi;kunNþi�k

¼
XM
k¼0

gi;kunNþi�k; 0� i � N � 1 ð10Þ

where the second equality follows from (2). Let m :¼M
modulo N, thus 0 � m � N 2 1, and choose

L¼
M

N

� �
þ 1 ð11Þ

where dM/Ne is the smallest integer that is greater than or
equal to M/N. Collecting znNþi in (10), 0 � i � N 2 1,
into a vector and by rearrangement, we can express �zn in
(9) as the following product form

�zn ¼ GU ð12Þ

where G [ <N�LN is the filter coefficient matrix whose ith
row, 0 � i � N 2 1, is

½01�i gi;M � � � gi;0 01�ðN�1�iÞ�; if m¼ 0

½01�ðN�mþiÞ gi;M � � � gi;0 01�ðN�1�iÞ�; ð13Þ

if 1� m � N � 1
Fig. 1 Schematic description of FIR periodic inverse filtering
problem
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and U [ <LN is the vector containing the input samples
having contributions to �zn and is given as

U ¼

½unN�M � � � uuN�1 unN � � � unNþN�1�
T; if m¼ 0

½unN�M�ðN�mÞ � � � unN�M � � � unN � � � unNþN�1�
T;

if 1�m�N �1

8<
:

ð14Þ

We note that the leading zero entries in the row vectors
given in (13) result from the fact that filter (1) is FIR with
order M; the tailing zero entries are due to the causality
of filter (1). In terms of block input �un in (8), it can
be checked that the vector U in (14), for each
0 � m � N 2 1, is equal to

U ¼
�
�uT

n�ðL�1Þ � � � �uT
n�1 �uT

n

�T
ð15Þ

Partition the matrix G in (13) as

G¼ ½GL�1 � � � G0� ð16Þ

where Gl [ <N�N, 0 � l � L 2 1. With (15) and (16), the
product expression of �zn in (12) can be written in the con-
volutional form as

�zn¼
XL�1

l¼0

Gl �un�l ð17Þ

Hence, the MIMO LTI system associated with filter (1) is
described by �z¼G � �u, where the matrix impulse response
G is given as

G¼
XL�1

l¼0

Glz
�1d [ HN�N

L ð18Þ

As a result, an Mth order FIR N-periodic filter of
the form (1) is represented by a G [ HL

N�N as in (18),
where L is given in (11), and Gl [ <N�N is defined
through the filter coefficient matrix G as in (16).
Conversely, given a G [ HL

N�N, if we form the G matrix
according to (16) and if its rows are of the form (13), then
G can be implemented as an SISO FIR N-periodic filter of
the form (1). In particular, the Mþ 1 non-zero entries in
the ith row of G, 0 � i � N 2 1, yield the filter coefficients
gi,k for 0 � k � M. In the sequel, we will simply call G the
matrix impulse response of filter (1). The matrix impulse
response of the d-step delay is given as follows.

Proposition 1 [14]: The matrix impulse response associated
with the d-step delay, when regarded as an N-periodic
system, is

D ¼
Xqþ1

n¼q

Dnz�nd [ HN�N
qþ2 ð19Þ

where d ¼ pþ qN, p and q are non-negative integers with
0 � p � N 2 1

Dq ¼
0 0

IN�p 0

� �
[ <N�N

and (20)

Dqþ1 ¼
0 Ip

0 0

� �
[ <N�N

3 Optimisation problem

In this section, formulation of the optimisation problem is
given. We first introduce the optimality criterion. The

resultant cost function is then expressed via matrix
impulse responses of periodic filters.

To proceed, we shall first characterise the error variance
Ejenj

2. As periodic filters will produce cyclostationary
outputs when inputs are stationary [22], it is expected that
Ejenj

2 will exhibit certain periodic behaviour. Indeed, as
both the input u and noise v considered in this paper are
causal white sequences, Ejenj

2 can be shown to be N-peri-
odic for n large enough. To see this, we first note that the
cascade connection of filters (1) and (5) is an FIR filter of
order MþM1: the reconstruction error e will be in the
‘steady state’ whenever n � MþM1 [23, Chapter 4].
With such n, and by linking en with un and vn via (1), (3)
and (5), it can be directly verified that

Ejenj
2 ¼ EjenþN j

2; 8n � M þM1 ð21Þ

From (21), the sum of Ejenj
2 over an arbitrary block of N

samples for n � MþM1 is thus a constant independent of
the blocks chosen for summation. This suggests the follow-
ing objective function

J :¼
XMþM1þN�1

n¼MþM1

Ejenj
2 ð22Þ

If J is small, then Ejenj
2 is small for each

MþM1 � n � MþM1þ N 2 1. From (21), it follows
that Ejenj

2 is small for all n � MþM1. The block invariant
property of the steady-state block approximation error J
will also enable us to analyse the optimisation problem by
using the MIMO LTI representation of periodic filters.
Moreover, as the objective function J is quadratic in
nature, the optimisation problem, potentially, could be rela-
tively easy to solve. Hence, we propose to find an approxi-
mate inverse by minimising the objective function J.

Before we proceed, we shall first express the objective
function J in (22) in terms of the matrix impulse responses
of filters (1) and (5). As we will see in the next section, this
will allow a formulation of the optimisation problem in
terms of a set of linear equations, based on which a
closed-form optimal solution can be obtained. Let the
matrix impulse response of filter (5) be

F ¼
XL1�1

l¼0

Flz
�ld [ HN�N

L1
ð23Þ

where L1 ¼ dM1/Ne þ 1 and Fl [ <N�N, 0 � l � L1 2 1,
contain the unknown filter coefficients fi,k for
0 � i � N21 and 0 � k � M1. Then, we have the
following proposition.

Proposition 2: Let G [ HL
N�N, F [ HN�N

L1
and D [ Hqþ2

N�N

be, respectively, the matrix impulse responses of filters
(1), (5) and the d-step delay. Define L2 :¼ Lþ L1 2 1.
Assume that L1 is chosen so that L2 � qþ 2. Then, the
objective function J defined in (2) can be expressed as

J ¼ kD� F � Gk2 þ s2
vkFk

2 ð24Þ

Proof: As D [ Hqþ2
N�N # HN�N

L2
and F �G [ HN�N

L2
,

we have D 2 F �G [ HN�N
L2

. Let �e and �v be the block
error signal and noise, defined in an analogous way as (8).
Then, in terms of block signals, we have

�e ¼ D � �u� F � ðG � �uþ �vÞ

¼ ðD� F � GÞ � �u� F � �v ð25Þ
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Let k0 be a positive integer such that

k0N � M þM1 þ 4N ð26Þ

From (21), we can thus express the objective function J

as J ¼
PK0NþN�1

n¼k0N Ejenj
2. This implies that

J ¼ Ek�ek0
k2F ¼ E �eT

k0
�ek0
¼ E Tr

�
�eT

k0
�ek0

�

¼ E Tr
�
�ek0

�eT
k0

�
¼ Tr

�
E �ek0

�eT
k0

�
ð27Þ

With (25), we have

�ek0
¼
XL2�1

l¼0

ðD� F � GÞl �uk0�l �
XL1�1

m¼0

Fm �vk0�m ð28Þ

We note from (26) that k0 thus chosen satisfies k0 �

M/NþM1/Nþ 4 � Lþ L1 ¼ L2þ1 and hence no block
input samples with negative time instants are involved in
the summation in (28). Substituting �ek0 in (28) into (27)
and as �u and �v are uncorrelated white vector processes, it
can be verified that

J ¼
XL2�1

l¼0

kðD� F � GÞlk
2
F þ s2

v

XL1�1

l¼0

kFlk
2
F ð29Þ

and the result follows. A

The optimisation problem, in terms of matrix impulse
response, is formulated as follows: Given G [ HL

N�N

and D [ Hq+2
N�N as in (18) and (19), find an F [ HN�N

L1
,

which can be implemented as an SISO FIR N-periodic
filter of the form (5), to minimise the objective function
defined in (24).

Remarks:

(a) From (24), it appears that an optimal F [ HN�N
L1

, if it
exists, will tend to keep the quantity kD 2 F �Gk2 small
[i.e., (F �G)n ’ Dn for n ¼ q and n ¼ qþ1 and
(F �G)n ’ 0N�N for the other values of n] and, at the
same time, kFk2 is maintained small (i.e. Fn ’ 0N�N) for
0 � n � L1 2 1).
(b) The assumption L2 � qþ 2, that is, the duration of the
sequence F �G is no less than that of D, is necessary, since
otherwise the quantity kD 2 F �Gk2, in general, cannot be
made small. This is because, if L2 , qþ 2, we have
(F �G)qþ1 ¼ 0N�N, which is impossible to be kept close

to Dqþ1 by choosing any F [ HN�N
L1

.
(c) As F �G is the matrix impulse response of the cascade
connection of filters (1) and (5) [14], the first term in the
right-hand side of (24) thus measures the goodness of
signal resolution (filter inversion), whereas the second
term is the cost incurred by noise with respect to a
desired signal resolution quality attained by F.
(d) Note from (24) that large noise variance sv

2 tends to
emphasise large noise reduction. However, this is done at
the expense of the signal resolution quality. On the other
hand, small sv

2 leads to better signal resolution quality but
with smaller noise reduction. Hence, there is a trade-off
between signal resolution quality and noise reduction.
(e) The problem of designing FIR approximate inverse for
FIR periodic filter in the presence of noise is also addressed
by Wang et al. [17]. By regarding the signals u and v as the
input to the signal reconstruction system shown in Fig. 1
and the error e as the corresponding output, the optimality
criterion adopted by Wang et al. [17] is to minimise the
squared H2-norm of the input–output map from the

augmented signal [u v]T to error e. In terms of block
signals, such an objective function is shown to be equal to
[17, p. 2698]

k½D� F � G F�k2 ð30Þ

By definition of norm k.k, it can be easily checked that the
quantity in (30) is a special case of the proposed objective
function (24) with noise variance fixed at s v

2 ¼ 1. The resul-
tant minimisation problem in Wang et al. [17] is formulated
in terms of state equations of the augmented system
[D 2 F �G F] and is solved by using the iterative LMI
approach.

4 Optimial solution

If the approximate inverse (5) is allowed to be, in general,
IIR, the objective function (24) then accounts for the
asymptotic block mean-square error as considered by Wu
and Lin [16]. The optimisation problem therein is formu-
lated in the z-transform domain and is solved through fac-
torisation of rational matrices. An FIR inverse, as a result,
can be obtained by truncating the inverse z-transform of
the constructed optimal IIR rational matrix. On the basis
of the time-domain problem formulation in terms of the
matrix impulse responses as in (24), this section presents
a simple and elegant alternative to constructing an FIR
inverse. As one will see, the problem amounts to computing
a set of least-squares solutions: this is relatively simple when
compared with the ‘indirect’ truncation-based approach.

4.1 Linear equations formulations

We shall first rewrite J in (24) as the ‘matching error’ of
two augmented sequences. More precisely, by definition
of norm k.k, it follows immediately from (24) that

J ¼ k½D� F � G svF�k2 ð31Þ

Associated with the matrix impulse responses G and D [see
(18) and (19)], we define the respective augmented sequences

~G :¼ ½G �svd� [ HN�2N
L ð32Þ

and

~D :¼ ½D 0N�N � [ HN�2N
L2

ð33Þ

In (33), it is noted that as D [ Hqþ2
N�N, by definition of

augmented sequence, we thus have ~D [ Hqþ2
N�2N # HN�2N

L2
.

As [D 2 F �G svF] ¼ D̂ 2 F � Ĝ and from (31), we have

J ¼ k ~D� F � ~Gk2 ð34Þ

On the basis of (34), the objective function J in (24) can be
directly expressed in terms of the N rows of the filter
coefficient matrix associated with filter (5). As we will
see, this will lead to a very simple procedure for computing
the optimal filter coefficients. From (34) and by definition of
Frobenius norm, it follows that

J ¼
XL2�1

n¼0

k ~Dn � ðF � ~GÞnk
2
F

¼ kDT � ½ðF � ~GÞ0 � � � ðF � ~GÞL2�1�k
2
F ð35Þ

where

DT :¼ ½ ~D0 � � � ~DL2�1� [ <
N�2L2N

ð36Þ
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As (F � ~G)n ¼
P

l¼0
L121 F ~Gn2l, with some manipulations, it

can be checked that

�
ðF � ~GÞ0 � � � ðF � ~GÞL2�1

�
¼ XTAT ð37Þ

where

X T :¼ ½FL1�1 � � � F0� [ <
N�L1N

ð38Þ

AT [ <L1N�2L2N is the N � 2N-block Hankel matrix with

h
02N�N � � � 02N�N

~G
T

0

iT

[ <L1N�2N
ð39Þ

as the first block column and

�
0N�2N � � � 0N�2N

~G0 � � � ~GL�1

�
[ <N�2L2N

ð40Þ

as the first block row. We should note that as the sequence
F in (23) is the matrix impulse response of filter (5), for
each 0 � i � N 2 1, the ith row of XT in (38), say, Xi

T, is
thus of the form (13), viz., for m1 ¼ M1 modulo N

XT
i ¼

½01�i fi;M1
� � � fi;0 01�ðN�1�iÞ�; if m1¼ 0

½01�ðN�m1þiÞ; fi;M1
� � � fi;0 01�ðN�1�iÞ� ;

if 1�m1�N �1

8<
: ð41Þ

With (35) and (37), we immediately have

J ¼kDT�XTATk2F¼kD�AXk2F ð42Þ

where the last equality follows because the Frobenius
norms of a matrix and its transpose are the same. The
expression of the objective function J in (42), which
involves the matrix X of the form (41) as unknown, can
be further decomposed as a sum of equation errors of N
groups of linear equations, each with one column of X as
unknown. More precisely, write the matrix D 2 AX
column by column as

D�AX ¼ ½D0 � AX 0 � � � DN�1 � AX N�1� ð43Þ

where Di [ <2L2N and Xi [ <L1N are, respectively, the ith
columns of the matrices D and X [in (36) and (38)].
From (42), (43) and by definition of the Frobenius norm,
it follows that

J ¼
XN�1

i¼0

kAX i � Dik
2
F ð44Þ

With (44), the objective function J is thus minimised if, for
each 0 � i � N 2 1, we can find an Xi of the form (41), or
equivalently, M1þ 1 unknown filter coefficients, fi,k
(0 � k � M1) because the remaining entries in Xi are
zero, which minimise kAXi 2 DikF

2. This is done in the
next section.

4.2 Optimal solution

As Xi defined in (41) has only M1þ 1 non-zero entries, the
product AXi simplifies to a linear combination of M1þ 1
columns of A. As a result, each group of equations
AXi ’ Di contains a set of 2L2N scalar equations in
M1þ 1 unknowns. On the basis of this observation,
the optimisation problem can be reduced to a set of N
least-squares problems, whose solutions are very easy to
compute.

To be specific, for 0 � i � N 2 1, let

Yi :¼ ½ fi;M1
� � � fi;0�

T [ <M1þ1
ð45Þ

be the ith filter coefficient vector. For 0 � i � N 2 1, let
Ai [ <2L2N�(M1þ1) [Note 1] be the matrix obtained from A
by deleting its first i (or first N 2 m1þ i, if m1 = 0)
columns and last N 2 1 2 i columns. Then, for any Xi of
the form (41), it follows that

AX i ¼ AiY i; 0 � i � N � 1 ð46Þ

With (46) and as Yi is arbitrary, the optimisation problem is
thus equivalent to

min
Y i

kAiY i � Dik
2
F; 0 � i � N � 1 ð47Þ

Assume that each Ai is of full column rank. The optimal
filter coefficient vector ~Y i is then computed as

~Y i ¼
�
AT

i Ai

	�1
AT

i Di; 0 � i � N � 1 ð48Þ

Remarks:

(a) We note that as each Ai is obtained from A by deleting
its columns, a sufficient condition for each Ai to be of full
column rank is that the matrix A itself is so. With the
block Hankel structure of the matrix A [see (39) and
(40)], it can be easily checked that the condition holds in
general.
(b) When compared with the study [17] for FIR inverse
design, in which the resultant solution is obtained via the
iterative LMI method, the proposed approach leads to a
relatively simple closed-form solution: computing N least-
squares solutions as in (48).

4.3 Selection of the reconstruction delay

The proposed FIR solution (48) is optimal for an arbitrary,
but fixed, reconstruction delay d. Different choices of delay,
however, will lead to different approximation errors (42).
Given an allowable inverse filter order M1, the values of
delay must be restricted to 0 � d � MþM1 for effective
error reduction. Among the candidate choices, the optimal
one yielding the smallest mean-square error can be deter-
mined as [cf. (42)]

dopt ¼ argmin
d

kD� AXdk
2
F ð49Þ

where Xd contains the computed filter coefficients in (48)
for the prescribed d. We note that in constructing FIR
inverse for FIR SISO LTI filters when there is noise, that
is, the so-called spiking filter design, a similar strategy as
(49) is suggested by Orfanidis [24, Section 5.14] for delay
selection. On the basis of simulations (Simulation 3),
there is a quite different solution tendency of dopt in (49),
depending on the zero location of the transfer matrix of
filter (1). If all the associated zeros are inside the unit
circle, that is, the minimum-phase case, the best choice
seems to be dopt ¼ 0; otherwise, a positive number of
delay must be allowed to minimise the mean-square error.
However, for non-minimum-phase transfer matrices, an
unlimited increase in the delay d, and hence M1, can
hardly improve the performance; the error floor tends to
converge towards a lower bound attained by the IIR solution
[16] (Simulation 3).

Note 1: As A [ <2L2N�L1N, we have Ai [ <2L2N�(L121)Nþ1 (or
Ai [ <2L2N�(L122)Nþm1þ1 if m = 0). For either case of m1, it can be checked
that the respective Ai matrix has a total number of M1þ 1 columns.
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Remark: When IIR approximate inverse is allowed, the
selection of delay for improving the signal reconstruction
performance is discussed in Wu and Lin [16, Section V].

4.4 Implementation complexity

The proposed method calls for computing N least-squares
solutions in (48). Using the Housholder QR-based
algorithm [21, p. 240], the number of flop counts,
counting both addition and multiplication, is about
[4L2N

2(M1þ 1)2 2 2N(M1þ 1)3]/[3þ 26L2N
2(M1þ 1) 2 9

(M1þ 1)2]/2, where L2 is defined in Proposition 2. For the
truncation-based approach via the IIR solution [16], the
computations required are mainly a QR decomposition of
an N � N matrix and an inner–outer (or all pass and
minimum phase) factorisation of a 2N � N rational
matrix. The number of flop counts of the QR stage is
4N3/3. A typical algorithm for an inner–outer factorisation
is the Riccati-equation-based approach [25, p. 555]. The
solution can be obtained by using the dare software
packet in the Control System Toolbox of MATLAB,
which relies on a QZ decomposition [21, p. 375] of a sym-
plectic matrix pencil and the required flop cost is about
528M3 [M is the order of filter (1)]. It can be seen that the
proposed solution (48) leads to less computational cost
when M is large.

5 Simulation results

In this section, we use several numerical examples to illus-
trate the performance of the proposed optimal approximate
inverse. In our simulations, we estimate the variance of the
error signal at time n, viz., Ejenj

2, via the time average

ên :¼
1

I

XI

i¼1

jei
nj

2 ð50Þ

where I is the total number of independent Monte Carlo
realisations and en

i is the nth sample of the computed error
signal in the ith realisation. The estimated value of the
objective function J in (22) is computed as

Ĵ :¼
1

bS=Nc

XMþM1þS�1

n¼MþM1

ên ð51Þ

where S is the total number of data samples and b.c denotes
the integer floor. For each Monte Carlo realisation, the input
to filter (1) and the noise are uncorrelated white Gaussian
sequences. In all simulations, the number of input samples
is 100; the number of independent trials is I ¼ 1000.

5.1 Simulation 1: approximation to optimal
IIR solution [16]

In this simulation, we will see that an optimal FIR approxi-
mate inverse with M1 large enough can achieve a perform-
ance very close to that obtained by the optimal IIR solution
reported in [16]. Consider the following two-periodic filter

gn;0 ¼ 1:2; gn;1 ¼ 2; gn;2 ¼ �0:1555;
gn;3 ¼ 0:3318; for even n

gn;0 ¼ 0:8; gn;1 ¼ �2:4; gn;2 ¼ �0:1037;
gn;3 ¼ 0:4976; for odd n

ð52Þ

We fix reconstruction delay at d ¼ 6 and consider the two
cases SNR ¼ 0 and 10 dB. We compute the optimal IIR
approximate inverse based on Wu and Lin [16] for these
two SNRs. The resultant minimal Ĵ for the two SNR

levels are, respectively, 24.2 and 212.3 dB. For each
3 � M1 � 20, an FIR approximate inverse is designed
using (48). Fig. 2 shows the computed Ĵ against M1, with
respect to the two SNRs. The respective theoretical values
of the objective function J computed using (44) are also
shown. It appears that the experimental values are almost
identical to the theoretical values. Also, as long as
M1 � 9, the performances are almost identical to those
obtained by the optimal IIR solutions.

5.2 Simulation 2: comparison with previous
works [16, 17]

In this simulation, we compare the proposed approach with
the truncation-based solution reported in Wu and Lin [16]
and the LMI method [17]. We consider the two-periodic
filter in Wang et al. [17]

gn;0 ¼ 5; gn;1 ¼ 1; gn;2 ¼ 2; gn;3 ¼�1; for even n

gn;0 ¼ 3; gn;1 ¼ 2; gn;2 ¼�2; gn;3 ¼ 1; for odd n

ð53Þ

We set the reconstruction delay d ¼ 0 as adopted in Wang
et al. [17]. For each SNR level, the three comparative
methods are respectively used for approximate inverse
design (with M1 ¼ 19). It is noted that although the LMI
method [17] considers the sv

2 ¼ 1 case, it can directly incor-
porate different noise variance through scaling the

Fig. 3 Comparisons of three methods

Fig. 2 Approximation error against filter order, delay d ¼ 6
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parameter ~Dk in (11) in Wang et al. [17, p. 2698]; this strat-
egy is adopted in Wu and Lin [16], and in our simulation as
well, to reflect the actual noise levels. Fig. 3 shows the
respective computed Ĵ at various SNRs, and the resultant
performances are seen to be almost the same. This is not
unexpected because all the three methods tend to minimise
the same objective function, even though the underlying
approaches are quite different.

5.3 Simulation 3: effect of reconstruction delay

In this simulation, we illustrate the effect of reconstruction
delay on performance. In the first experiment, we consider
filters (52) and (53), and fix SNR at 15 dB. Associated
with each filter, the approximate inverse (48) is
implemented with two prescribed orders M1 ¼ 3 and 11.
Figs. 4 and 5 show the computed J at various selections
of delay, respectively, for filters (53) and (52). It can be
seen that for filter (53) (with a minimum-phase transfer
matrix), d ¼ 0 results in the best performance. For filter
(52), whose transfer matrix has a zero at z ¼ 24.6937,
the minimal mean-square error is attained with positive
delays: dopt ¼ 2 for M1 ¼ 3 and dopt ¼ 6–8 for M1 ¼ 11.
In the SISO LTI spiking filter design, a similar phenomenon
is also observed by Orfanidis [24, p. 297] and is believed to
reflect the minimum-energy-delay property [26, Chapter 5]
of the impulse responses of minimum-phase transfer

functions. It is noted that there is such an analogue charac-
terisation in the MIMO case [27]: this would therefore
account for our simulated outcome. In the second exper-
iment, we consider filter (52) and the approximate inverse
(48) is designed for each 0 � d � 11 (SNR ¼ 10 dB). The
filter order is set to be M1 ¼ dþ 6; through simulation,
this turns out to be the smallest choice rendering the perform-
ance almost identical to that of the IIR solution [16] at each
delay. Fig. 6 shows the resultant Ĵ and the theoretical sol-
ution J. As we can see, the performance is improved as d,
and hence M1, increases. However, there seems to be an
error lower bound (212.3 dB in our case), no matter how
large d is used. Our simulation shows that this bound is
very close to the performance achieved by the IIR solution
[16].

6 Conclusions

We have proposed a method to construct an FIR approxi-
mate inverse for an FIR periodic filter in the presence of
measurement noise. The presented study addresses the
FIR case of our previous work [16]. The adopted optimality
criterion, which minimises the sum of error variances over
one period, allows us to formulate the problem in time
domain in terms of the matrix impulse responses of
MIMO time-invariant representation of periodic filters.
There is a simple procedure for obtaining the matrix
impulse response directly from the filter coefficients. The
resultant optimisation problem is equivalent to solving a
set of least-squares problems and a closed-form solution
is obtained. The underlying computations are simply
solving for a set of least-squares solutions but do not
involve numerical optimisation as required in the LMI-
based method [17]. The proposed method can also be
used to obtain an FIR approximation to the optimal IIR
solution in Wu and Lin [16].

7 Acknowledgment

Research sponsored by National Science Council under
grant NSC-91-2219-E-009-049. This paper was presented
in part at ICASSP 2004.

8 References

1 Min, X.W., and Ishii, R.: ‘An overall analysis of periodically time
varying digital filters’, IEICE Trans. Fundam., 1993, E76-A, (3),
pp. 425–437

Fig. 4 Approximation error against delay [filter (53)]

Fig. 5 Approximation error against delay [filter (52)]

Fig. 6 Approximation error against delay, SNR ¼ 10 dB

IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 2, April 2006 147



2 Vaidyanathan, P.P.: ‘Multirate systems and filter banks’ (Prentice-
Hall, 1993)

3 Prater, J.S., and Loeffler, C.M.: ‘Analysis and design of periodically
time-varying IIR filters, with applications to transmultiplexing’,
IEEE Trans. Signal Process., 1992, 40, (11), pp. 2715–2725

4 Tanai, H., and Ishii, R.: ‘A modem implementation using a
periodically time varying digital filter’, IEICE Trans., 1991, E74,
(11), pp. 3569–3574

5 Yang, X., Kawamata, M., and Hihuchi, T.: ‘Implementation of TDM-
FDM transmultiplexers by using periodically time-varying digital
filters’, IEICE Trans., 1994, J77-A, (4), pp. 626–634

6 Ishii, R., and Kakishita, M.: ‘A design method for periodically time
varying digital filters for spectrum scrambling’, IEEE Trans. Acoust.
Speech Signal Process., 1990, 38, (7), pp. 1219–1222

7 King, C.W., and Lin, C.A.: ‘A unified approach to scrambling filter
design’, IEEE Trans. Signal Process., 1995, 43, (8), pp. 1753–1765

8 Chauvet, W., Cristea, B., Lacaze, B., Roviras, D., and Duverdier, A.:
‘Design of orthogonal LPTV filters: applications to spread spectrum
multiple access’, Proc. ICASSP, 2004, vol. II, pp. 645–648

9 Gelli, G., Paura, L., and Tulino, A.M.: ‘Cyclostationarity-based
filtering for narrowband interference suppression in direct-sequence
spread-spectrum systems’, IEEE J. Sel. Areas Commun., 1998, 16,
(9), pp. 1747–1755

10 Gelli, G., and Verde, F.: ‘Two-stage interference-resistant adaptive
periodically time-varying CMA blind equalization’, IEEE Trans.
Signal Process., 2002, 50, (3), pp. 662–672

11 Orozco-Lugo, A.G., and Mclernon, D.C.: ‘An application of linear
periodically time-varying digital filters to blind equalization’. Proc.
IEE Colloq. on Digital Filters: An Enabling Technology, no. 1998/
252, London, 20 April 1998, pp. 11/1–11/6

12 Serpedin, E., and Giannakis, G.B.: ‘Blind channel identification and
equalization with modulation-induced cyclostationarity’, IEEE
Trans. Signal Process., 1999, 47, (7), pp. 1930–1944

13 Kazlauskas, K.: ‘Inversions of periodically time-varying digital
filters’, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.,
1994, 41, (2), pp. 173–175

14 Lin, C.A., and King, C.W.: ‘Inverting periodic filters’, IEEE Trans.
Signal Process., 1994, 42, (1), pp. 196–200

15 Vetterli, M.: ‘Invertibility of linear periodically time-varying filters’,
IEEE Trans. Circuits Syst., 1989, 36, (1), pp. 148–150

16 Wu, J.Y., and Lin, C.A.: ‘Optimal approximate inverse of linear
periodic filters’, IEEE Trans. Signal Process., 2004, 52, (9),
pp. 2371–2382

17 Wang, S., Xie, L., and Zhang, C.: ‘H2 optimal inverse of periodic
FIR digital filters’, IEEE Trans. Signal Process., 2000, 48, (9),
pp. 2696–2700

18 Zhou, H., Xie, L., and Zhang, C.: ‘A direct approach to H2 optimal
deconvolution of periodic digital channels’, IEEE Trans. Signal
Process., 2002, 50, (7), pp. 1685–1698

19 Mclernon, D.C.: ‘One-dimensional linear periodically time-
varying structures: derivations, interrelationships, and properties’,
IEE Proc.-Vis. Image Signal Process., 1999, 146, (5),
pp. 245–252

20 Meyer, R.A., and Burrus, C.S.: ‘A unified analysis of multirate and
periodically time-varying digital filters’, IEEE Trans. Circuits Syst.,
1975, CAS-22, pp. 162–168

21 Golub, G.H., and Van Loan, C.F.: ‘Matrix computations’ (Johns
Hopkins University Press, 1996, 3rd edn.)

22 Akkarakaran, S., and Vaidyanathan, P.P.: ‘Bifrequency and bispectrum
maps: a new look at multirate systems with stochastic inputs’, IEEE
Trans. Signal Process., 2000, 48, (3), pp. 723–736

23 Orfanidis, S.J.: ‘Introduction to signal processing’ (Prentice-Hall,
1996)

24 Orfanidis, S.J.: ‘Optimal signal processing: an introduction’
(McGraw-Hill Book Company, 1990, 2nd edn.)

25 Zhou, K., Doyle, J.C., and Glover, K.: ‘Robust and optimal control’
(Prentice-Hall, Englewood Cliffs, NJ, 1996)

26 Oppenhiem, A.V., and Schafer, R.W.: ‘Discrete-time signal
processing’ (Prentice-Hall, 1989)

27 Inouye, Y.: ‘Notes on minimum-energy delay property of impulse
response sequences of minimum-phase transfer functions’, IEEE
Trans. Circuits Syst., 1987, CAS-34, pp. 189–190

IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 2, April 2006148




