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ABSTRACT

It is a common practice to test a network device by replaying network traffic onto it and observe its reactions. Many replay
tools support Transmission Control Protocol/Internet Protocol stateful traffic replay and hence can be used to test switches,
routers, and gateway devices. However, they often fail if the device under test (DUT) is an application level proxy. In this
paper, we design and implement ProxyReplay to replay application-layer traffic for network proxies. As many application
proxies have built-in security functions, the main purpose of this tool is to evaluate the security functionalities of DUTs
using payloads constructed from real network traces. ProxyReplay modifies requests and responses and maintains queues
for request-response pairs to resolve the issues of protocol dependency, functional dependency, concurrent replay, and error
resistance. The solution provides two replay modes, that is, the preprocess mode and the concurrent mode. Depending on
the benchmark scenario, we show that the preprocess mode is better for benchmarking the performance capability of a
DUT. In contrast, the concurrent mode is used when the replayed trace file is extremely large. Our experiments show 99%
accuracy. In addition, the replay performance exceeds 320 Mbps by running the benchmark with an off-the-shelf personal
computer in the preprocess mode. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is common to benchmark network devices with manually
generated network traces. There are two major approaches
to generating network traces manually. One is the model-
based approach, and the other is the trace-based approach.
The model-based approach generates simulated network
traces based on mathematical properties of analyzed real
network traces. In contrast, the trace-based approach uses
traffic replay techniques to replay previously captured
network traces. There are limitations on model-based
approaches. First, the correctness of simulated network
traces depends on the mathematical model used to gener-
ate the traces. However, it is difficult to prove that a model
is completely correct. Second, a mathematical model is
often created based on well-identified network traces.
Hence, it is also difficult to simulate unexpected condi-
tions, especially when an anomaly has not been revealed.
Third, model-based approaches often focus only on numer-
ical properties; it is difficult to simulate the involved
application content. Finally, simulated network traces
almost never act exactly the same as real network traces,

especially when payloads are considered. Therefore, it is
important to benchmark network devices using replay tech-
niques so that developers and users are able to know the
performance of the devices in real world.

The motivation of this work is to evaluate security func-
tions implemented in application proxies. Therefore, one
key objective is to reconstruct application payloads pre-
cisely. This is quite important because the implemented
security functions may be triggered only when a proxy
receives specific payloads.

Take a web application firewall (WAF) as an example.
A WAF is able to inspect common web attacks such as
structured query language injection, cross-site-scripting,
and insecure direct object references. While such types
of attacks could be embedded in any part of an HTML
session, evaluating the security functions would require a
complete transaction between the protected web server and
its clients.

Similarly, to protect end users from being compromised
by attackers, an advanced security gateways often imple-
ment a proxy to find out malware and viruses hidden in
user downloads.
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In these two scenarios, evaluating the functionalities is
much more critical than evaluating the performance. How-
ever, generating workloads without real exploits and real
attacks do not enable us to understand the full story.

Therefore, it would be better� to evaluate a security
device by using replay techniques, which reproduce real
exploits and attacks identified from real network traces.

Replaying network traces can be either stateless or
stateful. A stateless traffic player replays network traces
based only on timestamps of packets. The content of
replayed network packets is exactly the same as that stored
in the captured network traces. In contrast, a stateful traffic
player is much more complicated. The content of replayed
network packets may need to be altered to fit the network
configuration.

For example, the NATReplay tool [1] supports state-
ful traffic replay for network address translation (NAT)
devices. Hence, it must at least maintain the mapping
between private Internet Protocol (IP) and public IP
addresses.

The SocketReplay tool [2] supports stateful traffic
replay for layer 4 firewall devices. It must maintain firewall
responses to prevent replaying blocked connections.

Compared to the aforementioned replay tools, it would
be easier to replay the reconstructed payloads at the con-
nection level instead of replaying at the packet level. To
do this, payloads of Transmission Control Protocol (TCP)
packets are reassembled and then delivered in TCP con-
nections established between a replay tool and a network
device.

Therefore, the replay tool must be able to maintain
states of each TCP connection and to resume a connection
if the evaluated network device breaks the connection.

Although there are already numerous replay tools, to
our knowledge, none of them are able to work with proxy
devices. In general, a complete replay scenario for a proxy
contains three players: the traffic originator (the client), the
intermediate device (the device under test (DUT)), and the
traffic responder (the server). In the scenario illustrated in
Figure 1, the DUT is usually transparent to the originator
and the responder. Therefore, the replayed traces sent from
the traffic originator are able to pass through the DUT and
reach the responder, and vice versa. It is a must that the
originator and the responder synchronize the replay states
with each other so that the responder is able to know what
should be sent back to the originator. For the ease of state
synchronization, the originator and the responder are often
implemented on the same machine.

However, when the DUT is not transparent, an unmod-
ified replay process could fail. Because a nontransparent
proxy device only accepts inbound connections to self, the
proxy rejects a connection that attempts to establish with

� Although trace-based approach has many benefits, one limi-
tation of working with this approach is that a user has to collect
sufficient amounts of diverse traces. This is also why we have
set up our large-scale trace collection networks, as introduced
in [3].

Figure 1. A regular replay scenario. The example replays a TCP
flow between the traffic originator and the traffic responder.

Figure 2. Replay with an intermediate proxy device. The replay
fails because the connection cannot be established with the
proxy. Even if the connection can be established successfully,

the proxy may not understand the unmodified requests.

the responder, as shown in Figure 2. Even if the proxy
accepts a connection, the proxy might still not be able to
handle the replayed traces because the proxy could not
understand the requests. For example, a nontransparent
web proxy often has to read the application protocol and
the target host name from the first line of an HTTP request.
However, a normal HTTP request that is sent directly to
a web server does not contain these information in the
request.

Most existing replay tools only maintain the states of
layer 2, layer 3, or up to layer 4 [1,2,4–6]. Although
research has shown the demands on stateful application-
layer replay, these tools fail in the face of application level
proxies [7–9].
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In order to design a replay tool that is able to accu-
rately replay network traffic to application level proxies,
four issues should be considered:

(1) Protocol dependency: To replay smoothly, a con-
nection should be established with a proxy before
sending application traffic. In addition, the protocol
messages may need to be modified accordingly so
that the proxy is able to understand and forward the
replayed content.

(2) Functional dependency: Different proxies could have
different behaviors, e.g., caching and content filter-
ing [10,11]. If a replayed content is cached or altered,
the behavior must be detected and handled properly
so that the replay process is not blocked.

(3) Concurrent replay: Since a trace file may contain
multiple concurrent connections, a replay tool must
be able to replay these connections simultaneously.

(4) Error resistance: Captured network traces may
include a number of flaws such as packet losses,
duplicated packets, and out-of-order deliveries [12].
To replay a maximum possible number of network
flows, the traffic player must try to patch all identified
flaws.

The proposed ProxyReplay tool is different from previ-
ous works in two manners. First, the goal of our proposed
tool is to evaluate functionalities of application proxies. It
must reconstruct the payloads as completely as possible,
even if an application message contains errors. Although
there are workload generators such as Surge [13] and Har-
poon [14,15], they are independent of web applications,
and hence, the HTTP data payloads are filled with dummy
data. Second, compared with existing replay tools, the
proposed tool handles up to layer 7 protocols. Therefore,
it is able to interact with an intermediate proxy device
to smoothen replay processes. The proposed tool is also

different from systems like [16] or [17], which provide
only static content on emulated servers.

In this paper, we propose a framework to replay
traffic for application level proxies. Based on the frame-
work, an HTTP traffic replay tool named ProxyReplay
is implemented to show its effectiveness and efficiency.
The rest of this paper is organized as follows. Related
work regarding traffic capture and traffic replay is intro-
duced in Section 2. The design and the implementation of
the proposed solution are introduced in Sections 3 and 4,
respectively. Evaluation of the proposed solution is per-
formed in Section 5. Finally, a concluding remark is given
in Section 6.

2. RELATED WORK

2.1. Type of application proxies

We can classify application level proxies into two types,
that is, nontransparent and transparent proxies. The major
difference between the two types of proxies is the client
awareness of the intermediate proxy. Figure 3 shows
the application scenarios for the two types of proxies.
In the two scenarios, there are three roles, that is, the client
A, the proxy P, and the server B.

With a nontransparent proxy, the client A has to know
the address of the proxy P. When A is going to interact
with a remote server B, it sends a request to P instead of
B. The proxy P then forwards the request received from A
to B. After server B has processed the request, B sends a
response back to the proxy P, and then the proxy forwards
the response to A as well.

In this scenario, as shown in Figure 3(a), the com-
munication channel between A and B is split into two
independent connections. One is established between A
and P and the other is established between P and B.

Figure 3. Application scenarios for nontransparent and transparent proxies.
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In contrast, with a transparent proxy, the client A does
not need to know the address of the proxy P. As shown in
Figure 3(b), although the communication channel between
A and B is also split into two independent connections,
A does not know that the intermediate proxy P intercepts
its request. The connection established between P and B
is exactly the same as that in the nontransparent scenario.
However, before P forwards the response from B to A, it
has to masquerade as B.

Modern application level proxies such as Squid [18] can
be configured as either a nontransparent proxy or a trans-
parent proxy. However, existing replay tools may not work
with application level proxies even if a proxy is configured
as a transparent one. For the ease of comparison, both the
functional and the performance evaluations of each type
of proxy will be made with the open source squid proxy
software.

2.2. Existing replay tools

“Capture and then replay" is one efficient strategy for test-
ing and evaluating network applications [19]. There are
numerous tools developed for traffic replay. The TCPRe-
play [4] tool replays packets based only on timestamps.
It does not interact with the intermediate device. In con-
trast, the Tomahawk [5] tool replays packets in a sequential
manner. It replays the next packet right after the response
for an earlier replayed packet is received. The two afore-
mentioned tools are representatives of stateless traffic
replay tools. To speed up packet-level replay, researchers
also attempt to develop hardware-based replayers such as
ITester [20].

There are also several stateful traffic replay tools. State-
ful replay tools may handle states at different network lay-
ers. TCPopera [6] is a stateful replay tool that emulates the
TCP/IP stack. Hence, it ensures zero “ghost packet" gener-
ation, which is a critical feature for the test environments
where the accuracy of protocol semantics is of fundamen-
tal importance. The SocketReplay [2] tool retrieves partial
TCP payloads from captured network flows and replays
through self-established connections. The SocketReplay
tool has to store all identified TCP flows in its own format.
To save storage spaces, the authors did not store the entire
payloads. Instead, only the first several bytes of a flow are
preserved. The NATReplay [1] tool maintains the map-
ping state between private IP and public IP addresses so
that traffic can be replayed smoothly through NAT devices.
The three aforementioned tools maintain only layers 3 and
4 network states. They are not able to work with proxy
devices.

There are replay tools that handle layers 3, 4, and 7
network states. RolePlayer [8] identifies specific network
protocol attributes such as IP addresses and host names
using machine-learning algorithms. It then modifies these
identified attributes accordingly to replay application pro-
tocols. Replayer [9] uses binary analysis and program
verification techniques to solve the problem of replaying
at the application layer. The system is able to guaran-

Table I. Comparison of existing replay tools and the proposed
solution.

Name Replay Is Supported
broken trace stateful? devices

TCPReplay Yes No non-proxy
NATReplay No Layer 4 non-proxy
SocketReplay Yes Layer 4 non-proxy
Monkey Yes Layer 7 non-proxy
RolePlayer No Layer 7 non-proxy
Replayer No Layer 7 non-proxy
ProxyReplay Yes Layer 7 proxy

tee accurate responses to requests received based on the
result of protocol state analysis. Monkey [7] focuses on
testing web servers. Two programs, Monkey See and Mon-
key Do, are used to capture and replay HTTP network
traffic, respectively. TCP connections are established by
emulated web clients and web servers to perform stateful
traffic replay.

Although the aforementioned replay tools handle layer
7 states, they cannot replay smoothly in the presence of
proxy devices. As we have discussed in Section 1, a tool
that is designed for transparent network devices cannot be
used with proxies. Therefore, in this paper, we design and
implement ProxyReplay, a tool that aims to replay cap-
tured access traffic through proxies. A brief comparison of
existing replay tools and the proposed ProxyReplay tool is
shown in Table I. Note that ProxyReplay is not designed to
replace other tools. It is used to complement the demand
for benchmarking proxy devices.

3. THE DESIGN OF THE
PROPOSED SOLUTION

3.1. Architecture with queues for
request-response pairs

Figure 4 shows the system architecture of ProxyReplay.
There are two major components, namely the parser and
the replayer. The parser is used to parse raw packet traces
into internal formats, and the replayer replays the traces
based on the parsed information. At the beginning, the
parser loads a pcap [21] trace file as the input and converts
the trace into internal data structure. Based on a five-
tuple�, packet payloads are assembled into streams first.
Each stream is segmented into several request-response
pairs. The request-response pairs are labeled and appended
into the client queue and the server queue of the replayer.
In addition to generate request-response pairs, all domain
names involved in the requests are stored in a domain name
service database for future use.

� The five-tuple consists of source IP address, destination IP
address, source TCP/UDP port number, destination TCP/UDP
port number, and the transport layer protocol.
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Figure 4. The system architecture of ProxyReplay.

To replay the parsed data, the replayer iteratively picks
up a request from the client queue, establishes connec-
tions with the DUT, and replays the request to the DUT.
When the request is sent out from the originator, passes
through the DUT, and reaches the responder, a correspond-
ing response is then replayed back to the DUT. The parser
and the replayer work concurrently until packets in the
pcap trace file are all processed, and all the identified
request-response pairs are replayed.

Readers should note that, to be memory efficient, the
replay tool allocates a fixed-size memory pool to store
identified request-response pairs. When a new request-
response pair is identified, required memory spaces are
allocated from the memory pool. Once a request-response
pair is replayed, the memory spaces used by that pair
should be returned to the pool.

The proposed solution has two different replay modes
(introduced later in Section 3.2.3). In the concurrent mode,
required memory spaces depend on the request arrival rate,
request departure rate, process time, and request sizes.
These parameters are different from trace to trace.

In contrast, when flows are replayed in the preprocess
mode, all the parsed data must be able to be stored in the
memory pool. Therefore, a trace file that is greater than the
size of the memory pool cannot be replayed.

3.2. Solutions to application level proxy
replay issues

3.2.1. Protocol dependency: request/response

modification with Domain Name

System emulation.

We solve the protocol dependency issue by replay-
ing requests and responses in a stateful manner. When
a request-response pair has been identified from a trace,
the destination IP address and the port number are mod-
ified to meet the configuration of the proxy under test

first. Then, parts of the request may need to be altered
so that the request can be recognized and forwarded
by the proxy. For example, suppose a client sends a
request to a web server www.sample.com on port
80 and retrieves the welcome page using the GET /
HTTP/1.1 request. The request must be changed to GET
http://www.sample.com/ HTTP/1.1 so that a
nontransparent proxy is able to understand the request.

Finally, when a proxy decided to forward the request, it
may make a domain name lookup by contacting a Domain
Name System (DNS) server. For example, looking up the
IP address of the domain name www.sample.com in the
earlier example. Hence, we need to emulate a DNS server
as well to answer requests sent by proxies. The responded
IP address is always set to the server-side address of the
replayer.

A complete scenario of a stateful replay is given in
Figure 5. Note that the emulated hosts A, B, and D are
parts of ProxyReplay, and they are all implemented on the
same machine. The host P is the device (proxy) under test.
Therefore, there are only two machines in the benchmark
scenario.

Although there are tools, such as Bro [22], that are
able to extract request-response pairs, we still implement
our own parser for the following three reasons. First, most
existing tools have to store parsed results in files. This
would slow down the replay performance and increase the
costs of storage spaces. To be more efficient, the proposed
solution stores parsed intermediate data only in memory.
Second, even if third-party tools are able to decode the
HTTP request, responses, and payloads, we still have to
parse the decoded results again to retrieve the data used
to build DNS databases. With our own parser, we can fin-
ish both parsing and DNS database construction in one
shot. Finally, some existing tools parse application proto-
cols using scripts. Although they provide great flexibilities,
they may not run as efficiently as a parser written in native
C/C++ codes.
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Figure 5. A scenario of stateful proxy replay. Readers should note that all components are implemented in a single machine with
multiple network interfaces.

3.2.2. Functional dependency: on the fly

content modification.

A proxy under test could apply any arbitrary policies to
the replayed traffic; thus, to guarantee that the traces can be
smoothly replayed to the proxy, the replay tool may have
to interact with the proxy or modify the replayed content
on-the-fly. Here, we provide two scenarios to illustrate the
problems and the solutions.

(1) Replay to a filter proxy. A filter proxy is often used
to check whether a request or a response is allowed
or not. If a request or a response is disallowed,
it is blocked, and an error message is sent to the
requesting client. The problem of such behavior is
that, when a replayed request sent by the origina-
tor (client side) does not reach the responder (server
side), the memory occupied by the request-response
pair will never be released. Although it is possible to
release the memory spaces by using an expiry timer,
available memory spaces could be depleted quickly
when a large number of requests are blocked in a
short period.

To avoid this problem, the replay tool has to read
responses from the proxy and verify whether the
responder or the proxy itself returns the response.
When the proxy itself returns a response, it is most
likely that the request is rejected or blocked by
the proxy. On receipt of the rejection, the replayed
request-response pair should be removed from the
queue as well.

(2) Replay to a cache proxy. A cache proxy is often used
to save the outbound bandwidth consumed by iden-
tical requests. However, similar to the problem of
replaying with a filter proxy, memory spaces could
be depleted if requests cannot reach the responder
due to cache hits.

In addition to the memory management problem,
replaying with a cache proxy has another issue. Sup-
pose that a user plans to benchmark the performance
of a cache proxy when cache always misses. The
replay tool must guarantee that the proxy caches no
responses even if a trace contains identical request-
response pairs. In the HTTP protocol, the replay
tool can prevent responses from being cached by
setting the “Expires" header to a past time or using
the “Cache-Control" header to disable the cache
function.

It is not possible to enumerate all policies implemented
by a proxy. To maximize the extensibility of the proposed
solution, the implementation should allow users to develop
their own plug-ins to verify and modify requests/responses.

3.2.3. Concurrent replay: replay at a relative or

full speed.

The issue of concurrent replay is an implementation
issue. To support diverse benchmarking scenarios, the
proposed solution provides two modes to schedule how
identified requests are replayed. First, an identified request
can be replayed at a relative time to the first identified
request. Thanks to the multiplex design of network socket
implementation, by using system calls like select and
poll, one replayer should be enough to replay all requests
at the scheduled replaying time. We call this mode the con-
current mode. The replay performance of the concurrent
mode depends on how powerful the CPU and the network
interface is. If a single replayer cannot meet performance
requirements, we can run more replayers concurrently on
different CPUs, and let all replayers share the same client
queue and server queue. Note that the proxy replay tool
does not control the timing of the replayed requests, but
it guarantees that the order of the replayed requests is
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exactly the same as the captured requests. This is because
the purpose of this tool is to evaluate the functionalities
of security devices. The timing usually does not affect the
detection of an anomaly event, but the order of requests
would significantly affect the detector. Note that the timing
granularity of the concurrent mode is in seconds. However,
the occurrence order of requests is kept the same if the rel-
ative time is less than 1 s. Readers should also note that
the timing is controlled in a per-connection basis instead
of a per-packet basis because payloads of packets of the
same TCP connection are reassembled as a stream before
they are replayed. Hence, a reassembled stream starts to
be replayed at the relative time of seeing the first packet
of a connection. For example, suppose a request is cap-
tured at time T and replayed at time t, a subsequent request
captured at time T+�t would be scheduled to replay at
time t+�t. However, if the parser were not able to finish
the parsing before time t+�t, the parsed request would be
replayed immediately.

Alternatively, a user may plan to replay all identified
data streams at full speed to benchmark the performance
of a proxy. With this mode, requests are replayed back-
to-back. To make sure that requests can be replayed back-
to-back, all requests must be identified and then stored
in the memory so that they can be replayed without any
delay. We call this mode the preprocess mode. The replay
performance of the preprocess mode depends more on
the I/O performance of the replay machine. In addition,
because all identified requests have to be stored in the
memory, there must be enough memory spaces to store all
the data.

One technique to improve the replay performance for
both the concurrent mode and the preprocess mode is to
convert a pcap trace file into a preprocessed intermedi-
ate file format. Then, the replayer is able to replay the
intermediate file directly without parsing the pcap file
again. This would be a good trade-off between storage
costs and computation costs. However, we do not store
intermediate results because we have an extremely large
dataset of network traces stored in pcap format. Stor-
ing intermediate formats would double the storage spaces,
and hence, the proposed solution only supports on-the-fly
replay mode.

3.2.4. Error resistance: handling packet

retransmission, out-of-order delivery, and

packet loss.

As the system architecture shows, replayed requests
and responses are parsed and extracted from packet traces.
However, several common network issues could affect the
correctness of reconstructing network flow. These issues
include packet retransmissions, out-of-order deliveries,
and packet losses. These issues must be handled prop-
erly so that the request-response pairs can be parsed and
extracted correctly.

It is easier to handle packet retransmissions and out-
of-order deliveries than packet losses. By inspecting the
sequence numbers, if there are duplicated packets, they

can be simply ignored. If packets are delivered out-of-
order, they can be reordered based on sequence numbers
as well. Packet retransmission and out-of-order delivery
can be easily handled by leveraging open source codes
like libnids [23]. However, if there is an unrecover-
able packet loss in a TCP connection, we simply ignore
all the packets belonging to the connection. Although it is
possible to estimate the length of payloads by inspecting
the TCP sequence numbers or reading from the applica-
tion protocol’s content length header, it is not possible to
reconstruct the payloads in the lost segment. In this case,
we choose not to reassemble the flawed flow.

4. IMPLEMENTATION

Figure 6 shows the software components of ProxyRe-
play. ProxyReplay is implemented on the Linux operating
system. The components are implemented in the user space
with an additional controller to configure kernel configura-
tions on demand. The components include the parser, the
replayer, and the emulated DNS server. To allow a single
machine emulating both clients (originators) and servers
(responders) simultaneously, we have to make sure that
communications between the server and the client are sent
on the wire instead of sending via the loop back path.
ProxyReplay controls the policy routing component and
the netfilter NAT module to achieve the goal. The issues
related to these components are discussed in the following
subsections.

4.1. The parser

The parser is implemented in 1+n threads. One thread is
dedicated to read packets from the input pcap trace file.
The other n threads are used to reassemble packet pay-
loads. To guarantee that packets belonging to the same
connection are processed by the same worker thread, we
use client source port number as the key to dispatch jobs.
The parsed request-response pairs are stored in the mem-
ory pool. If all memory spaces in the memory pool are
depleted, the parser pauses and waits until more memory
spaces become available. The parser stops when an entire
pcap file is processed.

In addition to reassemble packet payloads into data
streams, the parser has to update the DNS database and

Figure 6. The software components of the ProxyReplay tool.
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configure the kernel properly. The domain name of a web
server can be retrieved from the HTTP request header,
and the server address can be obtained from the IP packet
header. If the domain name were available, a correspond-
ing DNS entry would be created in the database of the
emulated DNS server. The IP address of the server is
updated into the kernel accordingly to make sure the replay
process would not be blocked. Please refer to Section 4.3
for the details of on-demand kernel configurations.

4.2. The replayer

There are two issues related to the replayer. First, a sin-
gle replayer must have the ability to manage a number
of concurrently replayed connections. In the Linux oper-
ating system, each network connection is represented by
a file descriptor. To have a better performance, we use
the epoll system call to handle multiple descriptors
within a single thread. Compare with the select and the
traditional poll system call, epoll has no limit on the
number of file descriptors. In addition, the performance of
epoll is independent of the number of file descriptors.

Another issue for the replayer is the timing of replay.
The replayer is able to replay request-response pairs imme-
diately when a pair is available in the client queue and the
server queue. Alternatively, the replayer can choose to wait
until an entire pcap file is processed, or the available mem-
ory spaces for the client queue and the server queue are
depleted. The benefit of the former choice is that there is
no size limitation on the replayed trace file. However, the
replay performance is bounded by the performance of the
parser, that is, the number of requests that can be parsed
per second. In contrast, the benefit of the latter choice is
that the replayer is able to replay at its maximum perfor-
mance. Nevertheless, the size of the trace file is limited by
the total available memory spaces. If a benchmark scenario
only plans to validate functionalities of a proxy, choosing
the former one would be fine. However, if a benchmark
scenario is intended to understand the best throughput of
a proxy, the latter one would be a better choice. ProxyRe-
play implements both the aforementioned two choices. In
the implementation, we call the former one the concurrent
mode and the latter one the preprocess mode.

4.3. Kernel configurations

Because ProxyReplay emulates clients and servers on the
same machine, the operating system kernel has to be
configured properly to make sure that the replay can be
performed on the wire, not through the loopback path. The
host machine running ProxyReplay must install two net-
work interface cards. One is used to emulate the client side,
and the other is used to emulate the server side. To prevent
these addresses from conflicting with Internet addresses,
the two network interfaces are configured with private IP
addresses residing in two different subnetworks. For the
ease of discussion, we name the two IP addresses IP_c

and IP_s for client side interface and server side interface,
respectively.

Readers should note that when a reassembled request-
response pair is replayed, the client side does not use the
client IP address of the request; instead, the server side
is emulated with the server address of the request. Sup-
pose a parsed request-response pair has a client address of
RIP_c and a server address of RIP_s. The replayed TCP
connection would have a client address of IP_c and a server
address of RIP_s. The domain name and the IP address of
the server should be preserved during the replay process
because many security mechanisms identify anomalies by
using black and white lists, which are built upon domain
names and IP addresses of remote servers.

To preserve server IP addresses, one naïve solution is
to use IP aliases on the replay machine. However, this is
not practical because adding and deleting IP aliasing on
demand is relatively cost-ineffective.

To be more efficient, we use policy routes and NAT
techniques to achieve the same effect. The policy routing
is used to guarantee that all requests sent from the client
side are placed on the wire. In a nontransparent replay sce-
nario, this can be performed by simply routing all unknown
targets to the default gateway or the proxy. In a trans-
parent replay scenario, it can be performed by creating
pseudo-gateways using static ARP binding.

For the NAT part, in both nontransparent and transpar-
ent replay scenarios, each retrieved server address must
have a corresponding destination NAT rule to map the
server address, RIP_s, to the address of the server side
interface, IP_s. Compared to IP aliasing, operating NAT
rules are much more cost-effective.

A complete configuration for replaying in a transpar-
ent scenario is given in Figure 7. We use equivalent Linux
command line tools to illustrate the configuration. The
notations used in the scenario are listed in the succeeding
text:

� eth1 and eth2: The interface names of the client
side and the server side interface.

� IP_c and IP_s: The IP addresses of the client side and
the server side interfaces, respectively.

� MAC_c and MAC_s: The hardware addresses of the
client side and the server side interfaces, respectively.

Figure 7. The configuration used to replay a parsed request-
response pair for a transparent proxy.
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� GW_c and GW_s: The pseudo-gateway addresses of
the client side and the server side interfaces, respec-
tively.

� RIP_s: The server address of a replayed request.

Note that only Line 7 of the configuration is required for
each identified server IP address during a replay process.
The other configurations can be performed only once at the
very beginning of the benchmark. If a server address is no
longer referenced, it can be removed from the NAT rule.

5. EVALUATION AND DISCUSSION

We evaluate the functionality, performance, and scalability
of ProxyReplay using HTTP traces. The evaluation envi-
ronment is introduced first in Section 5.1. The scenarios
and results for evaluating its functionality, performance,
and scalability are given in Sections 5.2, 5.3, and 5.4,
respectively. Each experiment conducted in this section is
repeated for 10 times, and the results are the average per-
formance of the proposed solution. A comparison between
the solution and other well-known replay tools is given in
Section 5.5. Finally, the availability and the extensibility of
ProxyReplay is discussed in Section 5.6.

5.1. Evaluation environment

Figure 8 and Table II show the environment, the soft-
ware specifications, and the hardware specifications of host
machines used to evaluate the implemented ProxyReplay
tool. There are three roles: the HTTP proxy server, the
replay machine, and the network sniffer. The HTTP proxy
server runs the open source squid software. The replay
machine runs the ProxyReplay tool. All machines run the
Linux operating system.

In addition to the hardware and software configuration,
we need an HTTP trace file to perform all the evaluations.

Table II. The hardware and software specifications of
machines used in the evaluation environment.

Proxy under test Replay machine

CPU AMD Athlon 64 Intel Core 2 Quad
3000+ Q8200 2.33 GHz

RAM 1 GB 4 GB
OS Linux x86_64� Linux x86_64�

Network Two interfaces eth0: emulated client
Interfaces in bridged mode eth1: emulated server
Software Squid 3 series The ProxyReplay tool

�: The Linux kernel version we work with is 2.6.35.

Table III. Statistics of the major pcap trace file.

Item Statistics

Size 2.6 GB
Elapsed time 20 min
# of packets 3 168 672
# of connections 10 964
# of clients 363
# of servers 916
# of request-response pairs 21 166
# of requests for jpg files 7 134
# of requests for non-jpg files 14 032

The trace is collected from BetaSite network [3]. It is a 20-
minute HTTP-only packet trace, and the size is 2.6 GB. A
summary of statistics about the trace is given in Table III.

We choose a relatively small pcap file because the file
can be completely stored in memory. This would be easier
for us to compare the performance of the concurrent mode
and the preprocess mode.

Figure 8. The evaluation environment for ProxyReplay.
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Figure 9. Results of replaying to a cache proxy and a filter proxy.

5.2. Functionality

To understand whether the proposed ProxyReplay tool
works well with proxies with different functionalities, we
configure the squid proxy server as a cache proxy and
a filter proxy. Then, we use a network sniffer to capture
the replayed traffic and compare the captured trace against
the original trace to verify the correctness of the replay
process.

We assume that the proxy under test is a black box.
When testing with a cache proxy, we use the default con-
figuration provided in the squid software. Similarly, when
testing with a filter proxy, in addition to the default config-
uration, we simply add a customized rule to filter requests
to jpeg files.

Figure 9 shows the results of replaying to the prox-
ies. Independent of the use of a proxy, the number of
messages exchanged between the client and the proxy
is always identical to the number of all parsed request-
response pairs.

When the cache feature is enabled, we can see that
the proxy forwards all requests, except the 1%. Similarly,
when the traces are replayed through a filter proxy, we
can also observe that the proxy forwards only non-jpg
requests. Note that the number of forwarded non-jpg
requests is slightly lower than the number of detected non-
jpg requests because the intermediate proxy caches those
missing requests.

5.3. Performance

We evaluate both the performance of the preprocess
mode and the concurrent mode in terms of the replayed
throughput and the replayed request rate. Table IV shows
the statistics for the performance benchmarks. We can
see that the best replay throughput in the given environ-
ment is 320 Mbps using the preprocess mode. Note that
the parser performance in the concurrent mode dominates
the replayed throughput and the request rate. The request
rate depends on the parsing rate, that is, the number of
request-response pairs that can be parsed by the parser
in one unit of time. However, the request rate is non-
deterministic because a parser cannot determine when a
response terminates. A response can be transmitted within

Table IV. Replay performance of the two different replay
modes.

Preprocess mode Concurrent mode

Parse time Depends on 2 s
size of traces (initial setup)

Average
throughput 320 Mbps 120 Mbps*

File size By memory
limits spaces Not limited
Test #1 (800 MB) Passed Passed
Test #2 (2.6 GB) Passed Passed
Test #3 (5.2 GB) Failed Passed
Test #4 (2.2 TB) Failed Passed
Benefits Good performance Short parse time

No size limits
Drawbacks Long parse time Low performance

Size limits

*: The average throughput of the input trace is 150 Mbps.

one packet, and it is also possible to be transmitted using
a number of packets. When a response lasts longer, the
parsing time becomes longer and hence the parsing rate
decreases.

The replayed throughput depends on the payload
length of the replayed requests and responses. It is
also nondeterministic because payload lengths are not
predictable. Suppose a replayed connection is used to
replay only a single request-response pair. If the total
payload length of the request and the response were
shorter, the throughput would decrease because most of
the time is spent on establishing new connections. If the
total payload length were longer, the throughput would
be higher.

5.4. Scalability

We further evaluate the scalability of the proposed Prox-
yReplay tool. In addition to the major pcap trace file, we
use another two different sizes of pcap trace files to bench-
mark the scalability of the proposed tool. Table IV also
shows a comparison of replayed results using the two dif-
ferent replay modes. We show that even a sizeable (2.2 TB)
dataset can be replayed smoothly in the concurrent mode.
Note that the installed physical memory on the replayer is
4 GB. If a trace file size exceeds that value, it cannot be
replayed. Readers should note that although it is possible
to install more than 4 GB of physical memory on a 32-bit
machine, the address space available to a user space pro-
cess is still limited to 4 GB. Therefore, to replay a really
large trace file using the preprocess mode, it would be bet-
ter using a 64-bit machine and a 64-bit operating system.
Otherwise, we suggest using the concurrent mode to replay
large trace files.
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Table V. Throughput comparison of the proposed solution
against other publicly available replay tools.

TCP NAT Socket Proxy
replay replay replay replay

Direct 363 Mbps – 40 Mbps –
Router 288 Mbps – 12 Mbps –
NAT – 320 Mbps – –
Proxy – – – 320 Mbps

5.5. Comparison with other replay tools

We also compare the proposed ProxyReplay tool with
other well-known replay tools. We select the tools based
on two criteria. First, the tool must be able to handle
at least layer 4 protocols, and second, the tool must be
able to replay captured payloads instead of emulated or
dummy payloads. All the tools are benchmarked using the
same hardware environment and the same trace. However,
because a replay tool may only work for some specific net-
work configurations, the configurations are slightly differ-
ent between each test. Because the targeted applications of
each replay tool are diverse, we focus only on the replayed
performance. The comparison of the performance between
ProxyReplay and other tools can be found in Table V. It is
straightforward that TCPReplay and NATReplay have the
best performance. This is because they maintain a mini-
mal set of state,s and the modifications can be performed at
the packet level. SocketReplay and ProxyReplay are both
replayed by establishing real network connections. The
performance gap between SocketReplay and ProxyReplay
could be due to implementation problems.

5.6. Availability and extensibility

We have released the source codes of ProxyReplay and
relevant our developed benchmark tools to the public since
2012. The codes are hosted on OpenFoundry, the
repository of our domestic open source promotion project.
Interested readers are able to access the source codes
of ProxyReplay from http://www.openfoundry.org/of/
projects/2026/download. Although ProxyReplay is cur-
rently designed for web application proxies, it can be
easily extended for other types of application proxies. In
short, the handling of packet I/O, connection setup, mem-
ory management, and DNS emulation can be reused, and
a developer or a researcher can focus more on the parsing
and mangling of layer 7 content if necessary.

6. CONCLUSION

We design and implement ProxyReplay to statefully replay
network traces to application level proxies. The proposed
tool provides two replay modes, the preprocess mode
and the concurrent mode, that can be used to bench-
mark the functionality and the performance of a proxy

device, respectively. The proof-of-concept implementation
of ProxyReplay shows that it works well with real-world
traces and proxies. Although we only discuss the case
of replaying HTTP traffic, the proposed architecture can
be applied to other application protocols. We believe
that ProxyReplay is able to complement the demanding
requirements for benchmarking complicated application
level proxy devices.
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