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Memory-Efficient Architecture for JPEG 2000
Coprocessor With Large Tile Image

Bing-Fei Wu and Chung-Fu Lin

Abstract—. The experimental results show that using a larger tile
size to perform JPEG 2000 coding results in better image quality
(i.e., greater than or equal to 256 x 256 tile image). However, pro-
cessing large tile images also requires relatively high memory for
the hardware implementation. For example, it would require tile
memory of 256 K words to support the process of a 512 x 512 tile
image in the straightforward architecture. To reduce hardware re-
sources, we have proposed the quad code-block (QCB) -based dis-
crete wavelet transform method to reduce the size of tile memory
by a factor of 4. In this paper, the remaining 1/4 tile memory can
be further reduced through two approaches: the zero-holding ex-
tension with slight image degradation and the QCB-block size ex-
tension without any image degradation. That is, it only requires
12 K words tile memory to support the process of 512 x 512 tile
image by using zero-holding extension, and 13.58 K words memory
through QCB-block size extension. The low memory requirement
makes the on-chip memory practicable.

Index Terms—Code-block, discrete wavelet transform (DWT),
embedded block coding (EBC), JPEG 2000, quad code-block
(QCB), tile size.

I. INTRODUCTION

PEG 2000 provides higher compression ratio (CR) and
J more functions than traditional JPEG. It takes various
functions (i.e., lossless, lossy, resolution, quality, ROI etc.) into
a single coding stream. In general, the main coding stream has
to be performed by discrete wavelet transform (DWT), context
formation (CF), and MQ-coder, which can be regarded as the
core blocks of JPEG 2000 standard [1]. After getting the main
compressed data, the rate-distortion optimization is applied to
decide the optimal truncation points of the main codestream.
Using a large tile size to perform JPEG 2000 coding gains
higher CR than using a small tile size [2], but it also requires
more memory in the hardware implementation.

Considering these three core blocks, the DWT process re-
quires an entire tile memory to carry out the subband transfor-
mation [3]. Afterward, the CF process divides each subband into
several code-blocks and performs the bit-plane coding (BPC).
Several architectures are proposed to speedup the high-compu-
tation BPC [4]-[7]. The MQ-coder then compresses the con-
text-based information in a lossless way [8]. Many studies have
devoted to optimize the individual components. However, the
overall system suffers performance degradation and requires
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Fig. 1. Block diagram of JPEG 2000 encoder.

more memory to process larger tile images [9]-[11]. These bot-
tlenecks are mainly caused by various coding flows between
DWT and embedded block coding (EBC) processes [12], [13].
Based on the quad code-block (QCB)-based DWT [13], the in-
ternal buffer can be reduced by a factor of 4 but, it still requires
high internal memory while processing large tile images (i.e.,
64 K words are required for 512 x 512 tile size). In this paper,
we propose two methods with QCB-based DWT to further re-
duce the internal tile memory. The first one is using zero-holding
extension for LL; band to process each QCB block. With slight
image degradation, the internal tile memory can be reduced
from 256 K words to 12 K words, for a 512 x 512 tile image.
The second method is increasing the QCB-block size to re-
cover the original DWT data path, instead of zero-holding pre-
diction. Without any image degradation, the QCB-block exten-
sion method requires tile memory of 13.58 K words to process a
512 x 512 tile image. The low memory requirement makes the
on-chip memory practicable, and the parallelism between DWT
and EBC processes can be enhanced.

The paper is organized as follows. Section II describes brief
concepts of the core blocks of JPEG 2000. In Section I1I, we dis-
cuss the QCB-based DWT architecture with zero-holding exten-
sion and QCB-block size extension. The simulation results are
shown in Section I'V. In Section V, we compare the proposed ar-
chitecture with other related works. A brief summary is given
in Section VI.

II. JPEG 2000 BASIC BLOCKS

Fig. 1 shows he basic coding flow of JPEG 2000. First, an
image is split into several rectangular tiles and each tile is coded
independently. The 2-D DWT decomposes a tile image into sev-
eral subbands LLq, LHq, HL(, and HH( and the LL; subband
can be decomposed into next resolution, recursively. DWT coef-
ficients in each subband are partitioned into several code-blocks
and processed by EBC independently. The EBC process carries
out CF and MQ coding. The CF algorithm codes each code-
block bit-plane by bit-plane and generates the context-based in-
formation. Then, the context data are coded by MQ-coder in a
lossless way to generate main codestream. After getting all main

1057-7130/$20.00 © 2006 IEEE
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Fig. 2. PSNR of different tile sizes of JPEG 2000. (Lenna: 512 X 512 size,
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Fig. 3. Straightforward implementation of JPEG 2000 coprocessor.

TABLE 1
ARCHITECTURAL MODEL OF DIFFERENT METHODS FOR EBC.
(L: CODE-BLOCK WIDTH, N: NUMBER OF CODING BIT PLANE, 8: 0 TO 1)

Architecture Ave.ragve“ Number of Processors
Processing Time CF processor MQ processor
Sample Skip [4] 13xNxL? 1 1
Pass parallel [5] Nx L2 1 1
Bit-plane parallel [6]|  (I+5)x L? 10 5

compressed data, the rate-distortion optimization is applied to
decide the optimal truncation points for lossy compression.

In general, using the large tile size parameter to perform
JPEG 2000 compression achieves better image quality than
choosing the small tile size mode [2]. Fig. 2 shows the peak
signal-to-noise ratio (PSNR) with different tile sizes. Compared
with small tile images, the large tile image provides more pos-
sible truncation points for rate-distortion optimization and has
less tile block effects. Thus, it can provide better image quality
even at higher CRs. Based on the better coding efficiency for
processing large tile images, it is a reasonable demand to design
the hardware architecture to support large tile sizes.

The straightforward implementation of JPEG 2000 copro-
cessor is shown in Fig. 3 [9]-[11]. It uses an entire tile memory
to carry out the 2-D DWT process and to provide the coefficients
to code-block memories for EBC. Multiple EBC processors are
used to execute the code-blocks in parallelism [7], [9]-[11].
Several EBC architectures are also proposed to realize the high
computation BPC. Table I classifies into three speedup methods.
These methods greatly decrease the computation cycle with ap-
propriate hardware resources.

Although each component is optimized individually, the
overall system may still require large internal memory and
suffer performance degradation while performing the large tile
image. As shown in Table II, the tile memory size of straight-
forward architecture is proportional to the size of tile image.
For example, it requires 256 K words (512 x 512 X 16 bits)
memory to process a 512 x 512 tile image, which makes the

TABLE 1II
MEMORY CONSTRAINT OF STRAIGHTFORWARD ARCHITECTURE
[ Tile size [ 128x128 [ 256x256 | s512x512 |
| Tile memory (Word) | 16 K | 64 K 256 K
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Fig. 4. QCB-DWT process in a tile image (tile size: N x N, code-block
size: N/8 x N/8,QCBsize: N/4 x N/4).

on-chip memory impracticable. Moreover, processing the large
tile image also causes latency between DWT and EBC.

III. PROPOSED QCB-DWT ARCHITECTURE

To reduce the size of internal tile memory, we divide a tile
image into several QCB blocks in advance of DWT procedure
[13]. As shown in Fig. 4, the QCB block( carries out the
QCB-DWT process and generates four code-blocks—three
for EBC, and one for next DWT decomposition, recursively.
Thus, three EBC processors can individually process three
code-blocks at the same time and the size of internal tile
memory can be reduced by a factor of 4. The broken DWT
data path can be solved by processing parts of previous data to
recover the original data path [13], [15].

Althought the tile memory can be reduced by a factor of 4,
it still requires high internal memory to process the large tile
image (i.e., 64 K words are required for 512 x 512 tile image).
Thus, we propose two approaches: the zero-holding extension
and QCB-size block extension, to further reduce the 1/4 tile
memory. By partially performing higher DWT decompositions,
the remaining tile memory can be reduced effectively.

A. Zero-Holding Extension

To reduce the 1/4 tile memory, a simple prediction method
is applied to predict the unavailable data belonging to the
neighbor QCB blocks. Fig. 5 shows the data flow of the L1,
band. Once the QCB blockyg of LL; band is obtained, it
can be decomposed into next DWT resolution immediately
and produce three complete code-blocks. Since some QCB
blocks near to the QCB blockyg are not available, we use
zero-holding extension to predict the unavailable data based on
the continuous property of image. Fig. 6(a) shows the periodic
symmetric extension defined in JPEG 2000 standard applied to
the start and the end of each complete data path. To predict the
unavailable data, we use the zero-holding extension method, as
shown in Fig. 6(b). Based on the zero-holding prediction, parts
of coefficients in LL,; band can be decomposed once the QCB
block;¢ is completely obtained. Although it would suffer slight
image degradation through the zero-holding prediction simu-
lated in Section IV, the size of internal tile memory is reduced
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to proportional to the number of DWT decompositions, i.e.,
only two QCB-size memories are required in this case—one
is for LL; band, and the other one is for LLs band. For an
N x N tile image with 32 x 32 code-block size, the number
of DWT levels is defined as J = 1 + logév/ 64, and the internal
tile memory size requires 4096.J words. Compared with the
traditional DWT, the zero-holding prediction requires the same

memory access number because of zero-holding prediction.

B. QCB-Block Size Extension

To fully comply with JPEG 2000 standard, we can carefully
increase the QCB-block size of each DWT level to recover the
original DWT data path. As shown in Fig. 7, the original DWT
data path of the 5/3 and 9/7 filters can be restored by reading two
and four previous data to produce the precise coefficients. To
generate the last coefficient, it requires one and three additional
data for the 5/3 and 9/7 cases. Thus, instead of zero-holding
prediction, one can increase the QCB-block size to recover the
data path and generate the precise coefficients. Fig. 8 shows the
QCB-block size extension for the 5/3 filter at different DWT
levels. If the QCB-block size at the final DWT levely is 64
x 64, we add two valid input data at the start and the end of
the QCB-block for the previous DWT level ;_; . The additional
valid data then preserves the original data path and produces the

Code blocks in HLg, LHg, HHg subband are
executed by EBCOT processors directly

QCB block4gin LL4subband can be
decomposed into LL, subband

QCB size Level J-1

QCB size Level J-2

QCB size Level 1

Fig. 8.  QCB blocks for different DWT levels for the 5/3 filter.

TABLE III
MEMORY SPECIFICATIONS WITH DIFFERENT CHOSEN CODE-BLOCK SIZES

Tile size: 512x512, DWT: 5/3 filter (P=2)

Chosen code-block size 8x8 16x16 | 32x32 | 64x64
QCB-block size at final DWT level; | 16x16 | 32x32 | 64x64 [128x128
Final DWT level, 5 4 3 2
Tile memory (word) 297K | 572K | 13.58K | 33.02K

300% | 89% |266% | 63%

Additional memory access ratio

precise coefficients for the current QCB block. Compared with
the zero-holding extension, the size of internal tile memory is
defined as Z;-]:l (64+2P(i—1))2, where P is 2 or 4 to preserve
the additional valid data for the 5/3 or 9/7 filters. Table III shows
the memory specifications for different code-block sizes for 512
x 512 tile size. It can be found that choosing small code-blocks
can greatly reduce internal memory size. However, the penalty
of QCB-block size extension, 2P (i — 1), would cause heavy
memory accesses relative to the original QCB-block with small
size. Since the number of memory access dominates the pro-
cessing time of traditional DWT, it would be a tradeoff be-
tween the internal memory size and the additional memory ac-
cess number of QCB-based DWT.

C. Proposed QCB-Based DWT Architecture

Fig. 9 shows the QCB-based DWT architecture. The tile
memory is composed by several QCB-size memories. Table IV
specifies the internal memory size of the proposed architec-
ture for 512 x 512 case. To process a 512 x 512 tile image
with greater than or equal to four-level DWT decompositions,
one needs three memory units (i.e., MEMpp;, MEMyppo
and MEMy,3) to store the coefficients of three QCB blocks
belonging to LLq, Lo and LLj3 bands. Fig. 10 describes the
flowchart of QCB-based DWT for the JPEG 2000 coprocessor.
Once MEMi1,1, MEMy1> and MEMy 3 are selected, the
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TABLE IV

MEMORY REQUIREMENT OF THE PROPOSED ARCHITECTURE

| Distortion
| __controller

stream formatting |

Tile size= 512x512, code-block size= 32x32, DWT 5/3 filter, 16-bit wordlength

Memory type Zero-holing extension QCB-size extension
Tile memory 3x64x64x16 (bits) (64x64+68x68+72x72)
(QCB-DWT) (K bytes) =24 x16 (bits) = 27.16

Code-block Memory

2x3x32x32x16 (bits)

2x3x32x32x16 (bits)
=12

(CBM) (K bytes) =12

Input a
tile image

Yes

Select MEM,  ;input

ile image i
finished?

Select tile image input

Fig. 10. Flowchart of QCB-based DWT for JPEG 2000 coprocessor (tile
image: 512 x 512, 4-level DWT).

zero-holding extension or QCB-block size extension can be
used to perform QCB-based DWT.

IV. SIMULATION RESULTS

To simulate the image quality of QCB-based DWT with
zero-holding extension, we use 512 x 512 tile images to
perform 4-level DWT decompositions of the 5/3 filter. It only
requires 16 K and 24 KB tile memory to process the 256 x
256 and 512 x 512 tile image. As shown in Figs. 11 and 12,
the PSNR of QCB-based DWT approaches to the traditional
DWT used in JPEG 2000, especially in the medium and low
bit rates. However, it may suffer more image degradation in
low CRs. As shown in Fig. 13, the process of QCB512 induces
slight blur and quality sacrifice along the boundaries of QCB
blocks (i.e., the left eye winker). Thus, we can choose 128 x
128 tile size to support high bit rates or lossless coding without
any image degradation. That is because the size of LL; band is
just the QCB-block size (i.e., 4 K words) and the zero-holding
prediction do not apply to the QCB-based DWT.
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We also use a software version to evaluate the overall perfor-
mance of JPEG 2000 coprocessor. Several testing images are
chosen to assess the performance of the proposed architecture
with 32 x 32 code-block size. The throughput of line-based
DWT can be approximated by the number of memory access
[15], as shown in Fig. 14(a). For the QCB-based DWT, each
QCB block requires (64 + P;)? cycles to access the memory,
where P; is the number of additional data for recovering the
original DWT data path at the first level of DWT decomposi-
tion. The throughput of EBC is based on the pass-parallel ar-
chitectural model [5]. The computation cycle of each bit-plane
is approximated by the maximal number of context-decision
pairs among three coding passes. The context-decision pairs are
coded by the pipeline MQ-coder [8]. As shown in Fig. 14, the
traditional DWT method requires N2 cycles to carry out the first
level of DWT decomposition and 0.5N? cycles are overlapped
with EBC.
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Fig. 13. PSNR for CR =
(b) QCB512: 41.54 dB.

4. (a) Default JPEG2000 [14]: 46.47 dB.
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Fig. 14. Timing diagram of traditional DWT and QCB-based DWT. (a) Total
processing time based on traditional DWT. (b) Total processing time based on
QCB-based DWT.

TABLE V
PERFORMANCE OF QCB-BASED JPEG 2000 COPROCESSOR
WITHOUT ZERO-HOLDING EXTENSION. (TILE SIZE:
128 x 128, 2-LEVEL DWT, 5/3 FILTER)

Computation cycles Bit plane number | Reduced
Testing images | Traditional | QCB-based | Maximal | Average | cycle ratio
Lennal28 54896 50172 8 7.1875 | 8.61%
Baboon128 53282 48558 7 6.8125 8.87 %
Pepper128 58154 53430 8 6.875 8.12%
Airplanel28 56762 52038 8 7 8.32%
TABLE VI

PERFORMANCE OF QCB-BASED JPEG 2000 COPROCESSOR WITH QCB-BLOCK
EXTENSION. (TILE SIZE: 512 x 512, 4-LEVEL DWT, 5/3 FILTER)

Computation cycles Bit plane number | Reduced

Testing images | Traditional | QCB-based | Maximal | Average | cycle ratio
Lenna512 790520 663544 8 5.63 16.06 %
Baboon512 847882 720906 8 6.86 14.98 %
Pepper512 845560 718584 8 6.06 15.02 %
Airplane512 829908 702932 8 5.86 15.30 %

Table V shows the computation cycles for the 128 x 128 tile
image. Since QCB-based DWT has higher parallelism than tra-
ditional DWT, it reduces about 8% computation cycles. If the
tile size becomes larger, it can reduce more computation cycles
since the latency between DWT and EBC is still dominated by
the process of one QCB-block. As shown in Table VI, it reduces
about 15% computation cycles. Finally, it is reasonable to ap-
proach the same throughput between QCB—DWT and EBC pro-
cessors to achieve high hardware utilization and parallelism.

V. COMPARISON

Table VII compares several architectures for JPEG 2000 co-
processor. For 128 x 128 tile size, the straightforward architec-
tures require internal memory of 32 KB to store entire tile data
[9]-[11]. However, for 512 x 512 case, the internal memory
would become 512 KB. Based on the QCB-based architecture,
we can reduce the internal tile memory by a factor of 4 and it
only requires 8 KB to perform a 128 x 128 tile image. For 512

TABLE VII
COMPARISONS OF DIFFERENT ARCHITECTURES (16-BIT WORDLENGTH)

Tile size 128x128 (bytes)
ANDRA | AMPHI

512x512 (bytes)
Proposed Proposed
ct.al. [9] [ ON [10] (Zero-holding)|(QCB-extension)
Tile memory | 32K 32K 8K 24 K 27.16 K
CB memory 6K 12K 12K 12K 12K
EBC pairs 3 3 3 3 3

Architecture Proposed

x 512 tile size, the zero-holding extension is further applied to
decrease the remaining tile memory. It reduces the internal tile
memory to 24 KB with slight image degradation. Moreover, by
increasing the QCB-block size at different DWT levels to pre-
serve the original data path, the QCB-based DWT can fully obey
JPEG 2000 standard.

VI. CONCLUSION

In this paper, we propose two methods for QCB-based
DWT to decrease the internal memory size for JPEG 2000
coprocessor. Based on the QCB-based DWT, it can save the tile
memory by a factor of 4.The remaining tile memory storing
LL; band can be further reduced through the zero-holding
extension or QCB-block size extension method. The proposed
architecture can process a 512 x 512 tile image by using only
24 K (27.16 K) bytes of tile memory with slight (without any)
image degradation, it makes the on-chip memory practicable.
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