
PHYSICAL REVIEW B 91, 115310 (2015)

Mechanically encoded single-photon sources: Stress-controlled excitonic 
fine structures of droplet epitaxial quantum dots

Shun-Jen Cheng, Yu-Huai Liao, and Pei-Yi Lin
Department o f Electrophysics, National Chiao Tung University, Hsinchu 30050, Taiwan, Republic o f China 

(Received 10 January 2014; revised manuscript received 8 March 2015; published 20 March 2015)

We present numerical investigations based on the Luttinger-Kohn four-band k ■ p  theory and, accordingly, 
establish a quantitatively valid model of the excitonic fine structures of droplet epitaxial GaAs/AlGaAs quantum 
dots under uniaxial stress control. In the formalisms, stressing a photoexcited quantum dot is equivalent creating 
a pseudomagnetic field that is directly coupled to the pseudospin of the exciton doublet and tunable to tailor 
the polarized fine structure of exciton. The latter feature is associated with the valence-band mixing of exciton, 
which is especially sensitive to external stress in inherently unstrained droplet epitaxial GaAs/AlGaAs quantum 
dots and allows us to mechanically design and prepare any desired exciton states of QD photon sources prior to 
the photon generation.

DOI: 10.1103/PhysRevB.91.115310 PACS number(s): 78.67.Hc, 03.67.Bg, 77.80.bn, 78.55.-m

I. INTRODUCTION

Excitonic fine structures (FS’s) of semiconductor quantum 
dots (QDs) have been realized as an essential feature of 
advanced photonic applications, such as entangled photon pair 
emitters [1-5] and exciton-qubit gates [6,7], The realization 
of entangled photon pair emitters based on QDs has been 
for a long time a challenging task because it needs to 
retain the degeneracy of exciton doublet states, which is, 
however, likely lift by any slight symmetry breakings of QD 
structure [8-12], By contrast to the application of entangled 
photon pair generation, an efficient operation of exciton qubit 
gate yet needs an energy level anticrossing in the FS that is 
coherently tunable so that any desired superposition states can 
be deterministically prepared and controlled [13].

Technologically, Trotta et al. have recently demonstrated 
an efficient way to retain, universally, the degeneracies of 
exciton doublet states of asymmetric QDs by electrical and 
mechanical means [4], The success in the exploitation of 
mechanical stress control paves an inspiring way to extend 
the usefulness of QD photon emitters with the potential inte­
grations with micro-electro-mechanical systems (MEMS) [ 14] 
and nanoacoustics [ 15,16]. In the realization of those scaled-up 
hybrid quantum systems, a crucial issue is if whether and to 
what extent the quantum nature of a QD device can be affected 
by the applied mechanical stresses.

This work presents numerical investigations based on 
the Luttinger-Kohn four-band k ■ p theory and, accordingly, 
establishes a quantitatively valid model of excitonic fine 
structures of droplet epitaxial (DE) GaAs/AlGaAs QDs under 
uniaxial stress control. As a main feature elucidated by our 
studies, imposing an external stress onto a QD is shown not 
only to alter the magnitude of fine-structure splitting (FSS) 
but also rebuild the coherent superposition of exciton states 
significantly [8,11], The latter feature is associated with the 
valence-band mixing (VBM) of exciton that is especially 
sensitive to external stress in inherently unstrained DE-QDs 
and allows us to design and prepare, mechanically, desired 
exciton states of a QD photon source prior to phonon emission. 
In the model, we formulate an uniaxial stress applied on a 
photoexcited quantum dot as a pseudomagnetic field that is 
directly coupled to the pseudospin of the exciton doublet

and tunable to change the level splitting and the coherent 
superposition of the exciton states. The concept of such 
a stress-induced pseudomagnetic field has been explored 
extensively in two-dimensional monolayer materials, e.g., 
graphenes [17,18]. Furthermore, photon pairs emitted from 
stress-controlled vanishing fine structure splitting (FSS) are 
predicted to be always nonmaximally entangled (also referred 
to as hyperentanglement), an useful feature for loophole-free 
tests of Bell inequality [19,20]. Those revealed features that 
are beyond the most existing schemes simply based on pure 
heavy-hole exciton are well captured by our improved model 
with the thorough consideration of the VBM nature of exciton.

II. THEORETICAL FRAMEWORK

We begin with the Hamiltonian for an interacting exciton 
in a QD, which is expressed in the language of second 
quantization as Hx =  £ , e £ ?c jc ,. +  E^h+hih -

Y l i e, jh,ki,,le Vie, jh,kk,leCi ' h j hh k hc lt +  Y l i e,jh,kh,le ^ie,ji,,kh,leCir ^ j h
hkhcie [21], where ie 07,) represents a composite index 
composed of the labels of orbital and spin of a single-electron 
(single-hole) state, c,+ and cie (h f  and hih) are the particle
creation and annihilation operators, kh ^ — f  f d 3re

/  /  J 3n  d h 2f>ei *(f2)frhjh (r2) ^k* (fi Wi, ( o )) are
the matrix elements of conventional electron-hole (e-h) 
Coulomb interactions (e-h exchange interactions), r,- 
denotes the coordinate position of particle, f \ 2 = ?\ — r2, 
eo is vacuum permittivity, €b = £b(\rn\) is the dielectric 
function of material, which is generally dependent on the 
interparticle distance, E‘ and E* (i/A and rfrf1) are the 
eigenenergies (wave functions) of a single electron and single 
hole in the QD, respectively. For the wide-band-gap 
GaAs/AlGaAs QDs studied in this work, we study 
the single-electron (single-hole) spectra, {£7} ({£?}), 
of a QD in the framework of the single-band model 
(four-band k ■ p model), and the single-electron (-hole) 
wave functions are written as i/A(rc) =  g - fte)u* f t e)
(. f i f th) = H j:=±i,±§ 8i„,jfth)uhjfth )), a product of slowly 
varying envelope functions g? ({g^7.}) and microscopic
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Bloch functions, ues (uhj ), o f spin sz =  ± 2  (of angular

momenta j z =  ± | ,  ±  | )  for a conduction electron (valence 
hole).

In the theoretical framework, the envelope wave function, 
gft , o f a single electron in a stressed QD satisfies the 
Schrodinger equations, Heg^ = E f  g?, where

h2(k2x +  k2 +  k2)
He =   ̂ I- V qD(re) +  ac(exx +  eyy +  €zz)

(1)

is the single-electron Hamiltonian in the single-band effective 
mass approxim ation, eap are the tensor elements o f strain 
(a,p = x , y , z ), ka = —i ±  is the operator o f the a  com ponent 
of wave vector, VqD(re) is the position-dependent confining 
potential for an electron in the dot, m* — 0.067m0 is the 
effective mass of electron, mo is the free electron mass, and 
ac =  —8.013eV for GaAs [22],

W ithin the four-band Luttinger-Kohn k ■ p  model, the 
Ham iltonian for a single hole in the same stressed QD is 
form ulated as a 4 x 4 matrix, Hh = Hk +  if*  +  VqD/4x4, 
that is com posed of the kinetic energy-, strain-, and po­
tential parts, respectively. The single-hole spectrum of 
a QD is calculated by solving =  E* IV^)- In
the basis ordered by {|m| ) , | m i) , |m_ i ) , |« _ 3)}, the single­

hole wave functions are expressed as 4-vectors, |ifr^) = 
(gk' 3 ( h ) , gf i(rh),g? 1 (rh)g- 3(?/,)), and the kinetic en- 
ergy part o f the Hamiltonian is expressed as

* Pk ±  Qk - s k Rk 0 ^

H hk = - S t
K

Pk -  Qk 
0

0
Pk -  Qk

Rk
sk

\  0 Rt s+J k pk +  QkJ

(2)

where pk =  ^ ( k 2x + k 2 + k2), Qk =  ^ {k2x + k 2y - 2 k 2z ), 

Rk =  4  [ - V 3 Yi{k2x -  k2) + i2 V 3 y2kxky], Sk =

j ^ V 3 ( k x — iky)kz. The m atrix of the strain part of the 
Hamiltonian, H *, is in the same form of Eq. (2) but with 
the replacements o f the operators {Pk, Rk, Sk. Rk) by {Pe, 
Re, S( , Rf } that are generated by the rules o f transformation: 
k&kp > f i n  , O n  _ b  & n  ___d_

2mo v ’ 2mo 2 ’ 2m0 2yT
[22], The param eters y\ — 7.1, y2 =  2.02, y3 =  2.91, 

=  1.16 eV, & =  - 1 .7  eV, and <7 =  - 4 .5 5  eV are taken for 
a valence hole in a stressed GaAs material [22,23],

III. NUMERICAL COMPUTATIONS

A. Methods

1. Single-particle spectra

Numerically, the single-electron (-hole) energy spectrum 
E eie (E?)  and the envelope functions ges ({g£}) are calculated 
using finite difference m ethod for a GaAs/Al0.35Gao.65As DE- 

QDs shaped by a Gaussian profile 0 ^  z ^  H  -  j j ) ,
characterized by the height of QD (H ) and the parameters o f 
lateral characteristic length of QD along the x / y  direction 
(A*/),) [24]. Accordingly, one can define the characteristic

(b) xiipio] (d)
(T

£
' - V J  Jiinro] 5]

/ =/..i
LIG. 1. (Color online) (a) Schematics of a quantum dot (QD) 

photon source mounted on a piezoelectric actuator (PMN-PT) under 
a controlled uniaxial stress a along the direction with a angle 4>a to 
the elongation axis (x axis) of the QD. Throughout this work, we 
consider 0° < <pc < 45°. (b) Polarized fine structures of exciton of a 
stressed QD without and with valence-band mixing (VBM). (c) Polar 
plot of optical polarization and (d) polarized emission spectrum of a 
VBM exciton in a uniaxially stressed QD.

function for a QD, Y qd(?), that is equal to one (zero) as the 
coordinate position r in (out of) the QD. Thus the confining 
potential o f a G aA s/A lo jjG ao jj As QD for an electron (a hole) 
can be expressed as Vq{^(re/h) = Vk /h X qD(re//,) with the 
band offset V eb =  300 meV (V/1 =  200 meV) [22], Through­
out this work, we choose the Cartesian coordinate frame 
with the axes along the specified crystalline directions, i.e., 
x  || [110], y  || [110], and z || [001], and study the asymmetric 
QDs that are elongated along the x axis with A x > A v, as 
depicted in Fig. 1. Besides, a QD might be considered to 
be under an uniaxial stress o f strength a  in the direction of 
ha =  (co s(j)a , sin</>cr,0), as depicted in Figs. 1(a) and 1(b), 
which yields the strain tensor elements given by exx =  
(iu±£i2)or +  (atjo - cos 2cj)a , =  ( ^ ) a  -  ( f  )<r cos2</»CT,

ezz — Si2<x, exy =  ( J"~Sl2 )a  sin 2cpa , where the elastic com pli­
ance constants are j h  =  0.0082 G Pa_ 1, 5i2 =  -0 .0 0 2  G Pa-1 , 
and X44 =  0.0168 GPa-1 for GaAs [22],

2. Electron-hole exchange interactions

In zinc-blende (ZB) semiconductor com pounds such as 
GaAs studied in this work, the valence-band extrema at the 
f  point are split, by the intrinsic spin-orbital coupling (ISO) 
that couples spin and (5 =  1/2) and orbital angular momenta 
(/ =  1) o f Bloch function, into the fourfold degenerate heavy- 
(.j z — ± 3 /2 )  and light-hole ( j z =  ± 1 /2 )  states o f total angular 
momentum j  = 3 / 2  (where j  = s + l ) and the twofold de­
generate split-off states o f j  — 1 / 2  with the energy separation 
A So o f hundreds of meV, as depicted in Fig. 2(a). In contrast, 
for conduction electrons, the lowest conduction-band states 
remain doubly spin degenerate, w ith two possible projections 
o f spin, sz =  + 2 /  — 1 =  \ e/ i e. Thus a low-lying electron- 
hole pair in a ZB-sem iconductor m ight consist o f a  valence 
hole in one of the topm ost heavy-hole (HH) and light-hole 
(LH) valence states and an electron in one o f the doubly
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o f notation, label them simply with the spin indices, i.e., 

W £=t .A.> =  I te A * ) . ( I ~  H ere> we ne­
glect the effects from other excited energy levels and consider 
only the two lowest bright exciton (BX) configurations; this is 
based on the fact that the excited levels of conduction electrons 
and valence holes o f DE-QDs are energetically higher than 
the lowest ones by tens of and several meV, respectively, 
both of which are much greater than the energy scale o f e-h 
exchange interactions, usually merely <SC 10_1meV [see the 
schematics o f Figs. 2 (b) and 2(c) for illustrations]. In the 
reduced basis o f the direct products o f the single-electron and 
single-hole states, l t e)NJ-J,) and II*) Ift/,), being the two lowest 
BX configurations, the Hamiltonian for a VBM BX in a QD 
is written as a 2 x  2 matrix,

H x (3)

s y m m e tr ic  Q D  e lo n g a te d  Q D  s tressed  Q D

FIG. 2. (Color online) (a) Schematics of the band structure of 
a zinc-blende semiconductor, where the intrinsic spin-orbital (ISO) 
coupling splits the valence topmost states into fourfold degenerate 
heavy-hole (HH) and light-hole (LH) states of angular momentum 
j  = 3/2 and a twofold degenerate split-off state of j  =  1/2 by a 
energy separation ASo of hundreds of meV. (b) Schematics of the 
energy scales and spin structure of the bound state levels of a quasi-2D 
QD. Note that, owning to the reduced symmetry of QD geometry, the 
topmost valence states of a quasi-2D QD are pseudospin doubly 
degenerate HH-like states with j ,  =  ±3/2 . (c) Based on the spin 
doubly degenerate lowest electron and hole level states, four exciton 
fine structure states result in a quasi-2D QD. Owning to the intrinsic 
e-h exchange interactions, the BX and DX doublets are energetically 
separated. Reducing the symmetry of QD geometry gives rise to a fine 
structure splitting (FSS) in the BX doublet, typically lO '-lO2 ^eV. 
Further stressing a QD brings additional VBMs of the HH and LH 
components into the exciton states and impacts the magnitude of the 
FSS, the optical intensity and polarization orientations as well.

spin degenerate conduction states. However, in a quasi-2D 
QD of ZB semiconductor, the reduced symmetry of QD 
geometry further lifts the degeneracy of the HH and LH 
quartet, and makes the HH-like doublet the sole topmost 
valence states with two possible pseudospin projections, j z =  
+  § / — § =  Hy /JJ./,. as depicted in Fig. 2(b). Consequently, the 
com bination o f a conduction electron and a HH-like valence 
hole in a quasi-2D QD forms four exciton configurations, 
being two bright exciton ones of total angular momentum 
M  =  sz +  j ,  — ±1 and two dark ones of M  — ± 2 . Note that, 
owning to the reduced symm etry o f QD geometry, the topmost 
valence doublet states are to some extent coupled to the LH 
com ponents o f j z — + ^ /  — ^ =  \ h/ \ h, and referred to as 
HH-like states. Hereafter, we denote the pseudospin o f those 
HH-like states by or \y'h as their main components are the 
pure HH ones, f|'/! or JJ./,, respectively, with an attachment of 
prime to the arrow symbols to indicate the VBM nature.

Since our interest is in the fine structures o f the lowest 
exciton doublet, we take into account only the relevant 
lowest single-electron and single-hole orbitals and, for brevity

where

V eh ,

£ (v0) =  E i
X  te 11/, tell/,1!/, t e L

denotes the energy o f exciton regardless of the e-h

V,eh =  E e, + 4
exchange interactions, and A*£ =  is the off-diagonal
matrix element o f e-h exchange interaction that couples the 
two VBM bright exciton (BX) configurations of opposite 
angular momenta and results in the FSS o f the exciton doublet, 
|S | =  2|A ££|. One should note that the off-diagonal matrix 
element in general is complex and can be written as

A xc — A xc 4- i A xc =  A
e ft, 2 i e f fe

- iO c  ff (4)

where A ££ , (A*£>2) is the real (imaginary) part and A*£ is 
the magnitude. As will be shown later, the phase angle 0eff is 
essential in the determination of the orientations of the optical 
polarizations, the pseudospins, and the Bloch vectors o f the 
resulting exciton eigenstates.

In the numerical calculation, the matrix elements o f e- 
h exchange interactions are divided by the short-ranged 
and long-ranged parts according to the averaged Wigner- 
Seitz radius, and computed separately [25], The form er is 
treated in the dipole-dipole interaction approximation and 
numerically integrated using trapezoidal rules and graphics 
processing unit (GPU) parallel com puting technique for 
numerical acceleration. The latter is considered for the 
matrix elements involving the exciton basis o f same angular 
momenta and evaluated using the formalism of Eq. (2.17) 
in Ref. [26], in terms of the energy splitting between the 
bright- (BX) and dark-exciton (DX) states o f a QD, E% =  
K h ,bulk [7rK ) 3 / ^ 3' ‘l£ "_ ± i l2|g'l 3 |2] (see also Eq. (2) in 
Ref. [24]), which is extrapolated from the BX-DX splitting 
A ^' bulk =  20 /zeV of a pure HH exciton with the effective 
Bohr radius a*B in GaAs bulk [27], W hile the screening in the 
e-h exchange interactions is known as a subtle problem, here 
we follow Ref. [28] and assume that the long-ranged electron- 
hole exchange interactions are screened by the static dielectric 
constant e<, =  12.9 of host material GaAs. By contrast, we 
consider that the screening in the short ranged interactions has 
been implicitly merged in the empirical param eter o f A xech bulk, 
as discussed by Kadantsev and Hawrylak [25], and do not 
include the background dielectric constant in the formalism.
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compressive un-stressed
t ,=JL

a =  0cr = -0.15GPa

tensile 

a  = +0.15GPa

FIG. 3. (Color online) (a) [(c)] Numerically calculated polarized emission spectra and the corresponding polar plots of a x-elongated 
QD under uniaxial stresses with (j>a =  0°[<?V =  30°] and strength a =  0, ±  0.15 GPa. (c) [(d)]: same as (a) [(b)] but without the consideration 
of VBM.

B. Stress-dependent polarized fine structures

By solving the Schrodinger equation, Hx \ =  E* |W*),
we obtain the eigenstates and the energies of the BX doublet, 
E± — E f  ±  Agg. Accordingly, the intensity of the emitted 
light, I„(e ,co) a  |{0 |Pr|'P ,f ) \2S(ha> — £ * ) ,  of the frequency 
co and polarization along the e direction from a stressed QD can 
be calculated using the formalism of Fermi’s golden rule [29], 
where P f  is the polarization operator as defined in Eqs. (18) 
and (19) in Ref. [24]. For the maximum intensity of the 
emitted light from an exciton state that is polarized along 
the optical axis, eo, we simplify its notation as /„(eo;co =  
E xJ h )  =  i eo.

In the presence of stress, the optical axes of the exciton 
states of a QD might be re-directed and not any more aligned 
to the x o r y  axis. Here, we specify the redirected optical axis 
of a stressed QD that is directionally close to the x axis (y 
axis) as the x' axis (y ' axis) [see Fig. 1(c)], To characterize 
a polarized fine structure of a stressed QD, the parameter of 
degree of polarization,

h' -  IyDOP =  -------t , (5)
ly  + 1?

and that of fine structure splitting,

S = E x, — E*  (6)

are defined. Here, the subscript x' iy') indicates the direction 
of the optical axis of an exciton state, |'P^} (I'P^)), and is also 
used to label the corresponding energy and emission intensity. 
Note that the signs of the defined DOP and S depend on the 
relative intensities and the order of the energies of the emission 
lines in the FS.

1. Aligned stresses

Figure 3(a) shows the numerically calculated polarized 
emission spectra of the x-elongated GaAs/AlGaAs QD of 
A x = 14 nm, A y = 12.7 nm, and H — 9 nm, applied by 
uniaxial stresses, aligned to the x axis, of different strengths 
and types of a  =  0 (stress-free), —0.15 GPa (compressive) 
and +0.15 GPa (tensile), respectively. In the stress-free case, 
the FS spectrum of the x-elongated DE-QD is featured by 
the low-energy x-polarized and the high energy y-polarized 
lines that are split by |S| ~  7 /xeV and slightly differing in 
the intensities, characterized by DOP ~  3%. The x-polarized 
emission line lying at a lower energy in the excitonic FS of 
the QD results from the dominance of the long-ranged e-h 
exchange interactions in the large QD that are essentially 
dipole-dipole interactions and energetically favor the exciton 
state, which is optically x polarized, along the elongation axis 
of QD [30].

Applying an x-aligned stress onto a QD substantially affects 
the FS feature described above. In Fig. 3(a), we observe the 
obvious changes of the magnitude of the FSS of the QD 
caused by applying the stresses of cr =  —0.15 and +0.15 GPa. 
Remarkably, the types (compressive or tensile) of stress also 
affect the order of the x- and y-polarized emission lines of the 
stressed QD.

Figures 5(a) and 4(b) present the numerically calculated 
DOP and S of the stressed QD of Fig. 3(a), respectively, against 
the x-aligned uniaxial stress of the strength continuously 
varied from a — —0.2 to +0.2 GPa. More clearly, it is shown 
that overall the magnitudes of the S and DOP are increased 
by increasing the strength of the applied stress with |er| > 
0.1 GPa, but the signs of the S and DOP change from positive 
to negative as the applied compressive stress is changed to be 
tensile. The sign change of the S and DOP reflects the reversal 
of the order of the x- and y-polarized emission lines in energy.
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FIG. 4. (Color online) Schematics of Bloch vectors of exciton 
eigentates of stress-free and stressed QDs. (a) As an example, the 
high energy (HE) exciton eigenstates 4A =  4>* are x-polarized and 
geometrically specified to the north poles of the Bloch sphere. As a 
counterpart, the low-energy (LE) y-polarized state 4>f =  is at 
the south pole, (b) [(c)] Applying an compressive [tensile] uniaxial 
stress to the QD makes the exciton eigenstates mixed by 'P* and 
4'*, the HE one of which, 4'*, is represented by a Bloch vector 
positioned between the north and south poles on the longitude of 
<Px =  0° \_4>x =  180°].

As known from previous studies, the stress-dependent DOP 
of a stressed QD is associated with the stress-enhanced VBM, 
so is the FSS [31]. To highlight the VBM effect, Fig. 3(b) 
presents the emission spectra of the same stressed QD that 
are calculated regardless of the VBM (by artificially setting

Sk = Se = 0 and Rk =  R — e =  0 in the k ■ p  Hamiltonian), 
showing completely different features from that of Fig. 3(a). 
More detailed analysis of the stress-induced VBM effects in 
Fig. 3 will be presented in the next section.

2. Misaligned stresses

Next, let us consider the applied uniaxial stress misaligned 
to the elongation axis (the x axis) of QD. Figure 3(c) shows 
the numerically calculated polarized emission spectra of the 
x-elongated QD under the misaligned uniaxial stresses of 
magnitudes a = 0, ±0 .15  GPa that are counter-clockwise 
rotated from and misaligned to the x axis by tj>a =  30°. 
Figure 5(c) and 5(d) present the calculated DOP and S of 
the QD under the misaligned uniaxial stresses as function of 
the magnitude of the stress. As compared with the cases of 
aligned stress (</>a = 0°), the FSS’s of the QD with misaligned 
stresses are shown always nonvanishing, with a lower bound of 
|5| ~  6 i-icW at a — —0.02 GPa, as observed and predicted by 
Refs. [8,31,32], Another obvious observation is that the optical 
polarization axes of the QD under the misaligned uniaxial 
stresses are no longer aligned to either the x or the y axis, but 
directed in between and accompanied with significant changes 
of the magnitudes of the FSS and DOP. As will be elucidated 
more in the analysis of the next section, the rotation of the 
optical axes is understood as a resulting optical feature from

f a  =  0" fa  = BO’
cr = -0.15GPa

1 1
<7 = 0 cr = +0.15GPa <7 = -0.15GPa5GPa <7 = 0 <7 = +0.

w ..... ^ ......y
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FIG. 5. (Color online) (a) The excitonic fine structure splitting, S, defined by Eq. (6) and (b) the degree of polarization, DOP, defined by 
Eq. (5) of the bright exciton doublet of an x-elongated QD under an uniaxial stress of varied strength cr along the x-axis as considered for 
Fig. 3(a). Solid (dotted) lines: numerically calculated results obtained by k ■ p theory (results yielded by the formalisms based on the model 
presented in Sec. IV B). (c) and (d) The numerical and analytical results for the same dot but with the uniaxial stress misaligned to the x axis 
with cpa =  30° as considered for Fig. 3(c).

115310-5



SHUN-JEN CHENG, YU-HUAI LIAO, AND PEI-YI LIN PHYSICAL REVIEW B 91, 115310 (2015)

the superposition of exciton eigenstates of the stressed QD, 
mixed with the stress-free x- and ^-polarized exciton states by 
a misaligned stress.

IV. MODEL ANALYSIS

A. Pseudospin representation

To elucidate the effects of uniaxial stress, we take the opti­
cally x- and y-polarized exciton configuration, ^ (l4 -e)IH'J1) +

=  and ^
basis for expanding the undetermined exciton states and 
constructing an effective Hamiltonian matrix of a QD with 
an uniaxial stress along an arbitrary direction. In the chosen 
basis {|'J>*),|'I'*)}, the 2 x 2 matrix of Hamiltonian for a 
VBM exciton in a stressed QD can be expressed in a compact 
form as

— a  ‘ ^eff > (7)

where H'x  =  Hx — E{x is the exciton Hamiltonian offset by 
the spin-independent averaged energy of BX doublet, a  =  
(crj ,0 2 ,0 3 ) is the vector with the components of Pauli matrices,

0 1 o3

and

< P m  =  ( - t1—  )1/2 exp +  (£ )2 +  (^ )2]}, in terms ofjr I z ‘x V ‘z
the parameters, lx, ly, and lez , of the wave function extents in 
the x, y, and z directions, respectively. By contrast, the energy 
spectrum and wave function of a single hole in a QD are hardly 
solved analytically even within the simplified parabolic model 
because of the off-diagonal elements in the Hamiltonian of 
Eq. (2) that make the mixture of HH and LH components, i.e., 
the VBM. Regardless of the VBM [by setting 5* =  S€ =  0 
and Rt =  R( = 0 in Eq. (2)], the eigenstates of a pure HH 
or LH in QD in the parabolic model can be described by the 
same formula of wave function as that of an electron, 0oOo/LH, 
with the substitution of the length parameters for an HH or an 
LH, Z™/LH Throughout this work, we consider x-elongated 
QDs with r] = lx/ l y >  1. For brevity of notation, hereafter, we 
denote the lowest pure HH(LH) states as | =  |lT/,/-U-/,) %

i € < f H ) (iV't/j) =  iu / k ) «
Following Ref. [33], one can treat the HH-LH coupling 

terms {R]i ,R€,Sk, and S( ) in the hole Hamiltonian as per­
turbations and, in the lowest-order approximation, write the 
expanded VBM hole states of a QD as

l f l * >  «  I 1 W  -  & J 4 * > ,
(14)

1 4 1 )  «  I4J-a > -  /S h l I I a )  ,
where the (complex) coefficient for the most leading LH 
component is

f2eff =  (^21, ^ 3) =  A'^(sin0eff>O, cos0eff) (9)

acts as a pseudomagnetic field that is coupled to the pseudospin 
of the exciton doublet represented by a  and orientated to the 
direction of (sin 0eff ,0, cos 0eff)-

Next, by solving Eq. (7), we obtain that the energies 
of exciton eigenstates I'l'*) are given by E± =  E(x ±  A ^ , 
split by the FSS |5| =  2A££ =  2|Qeffl- In the generalized 
Bloch vector representation, the high-energy (HE) and the 
low-energy (LE) exciton eigenstates can be expressed as

l^+) =  ^ c o s y , e _i0Jts i n y ^  , (10)

1^5) =  ^ sin y , — e~‘̂ x cos y  ̂  , (11)

respectively, characterized by the phase angles 0X and <px- 
Comparing Eqs. (10) and (11) with the solved exciton 
eigenstates from Eqs. (7)-(9), one can relate the phase angles 
of Bloch vector to 0eff:

Ox = 0eff, 4>x = 0° as 0eff -  (0°, 180°) (12)

and

Ox = 360° -  0eff, 4x =  180° as (9eff =  [180°,360°}. (13)

B. 3D parabolic model
For more analysis, we take the three-dimensional (3D) 

parabolic model for the confining potential of DE-QD [24], 
yielding the solvable single-particle wave functions and energy 
spectra. Within the model, the envelope wave function of the 
lowest single-electron state of a QD is explicitly given by

Pel
PHL.k +  PHL.e

Ahl
(15)

determined by the ratio of the matrix element of 
the HH-LH coupling operator R = R^ + R( , Phl.vo — 
(<Z>™|Rr(ol0oooK and the energy difference between the 
HH- and LH levels, AHL =  (0ooo|R ~ Q  + %>l0ooo> “  
(0 ™ l^ +  Q +  VqdI</® , where P = Pk + P( and Q = 
Qk + Qt [30]. Taking into account Eq. (14), the matrix 
element of the e-h exchange interaction for a VBM-exciton 
is denved as A £  S  *  V # -  -  2 / W V ^ U , ,  ° r
equivalently expressed, in a similar form presented in Ref. [30], 
as

A ^  =  — A] +  AVbm > (16)

where the first term — A] =   ̂ is the matrix element of
the long ranged e-h exchange interaction that couples the two 
pure-HH exciton configurations of opposite angular momenta, 
| | e'fl‘fc) and Ite-ll/i). and the second term is

Avbm
2E sx _ 

X-Ph l ,
V3

(17)

that originates from the (short ranged) interaction E * =
r̂̂ i..(=-V3 veh,xc eh,xc

=  -V 3V .eh,xc

that makes the BX-DX splitting and is involved in the FSS of
an exciton via VBM. The right-hand side (r.h.s) of Eq. (16) 
is formulated in such a way to stress the attractive nature 
of the long-ranged interaction (—AQ with respect to the 
x-polarized exciton FSS state and the repulsive VBM-induced 
interaction (Avbm)! which might energetically compensates 
or even overwhelms the attractive interaction (—AQ.
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In the parabolic model, one can derive all the terms used 
in Eqs. (15)—(17) explicitly in terms of the QD and material 
parameters, which are

\/3  h2y3
PHL,* =  PHL.k —  — ---------

PHL.e =  —
|c/|S44

cr COS 2<pa .V ^ IP K in  - 5 12)

AHL ~  Ji2)<u Es

a sin 2(f>a,

(19)

n*3A xc UB ^gft.bulk

3 ■JWlfn
[26,30], and A| = 1 3fWe2h2Ep rt(r]-\) 

4ttso 16V2m0Eg2 ( I f ) 3 erfc( 3̂ /Wlf 
4 I f

[12], where a*B = 11 nm (A*£bulk =  20 /zeV) is the effective 
Bohr radius (the BX- and DX-level splitting) of exciton in bulk 
GaAs,£p =  28.8 eV, and Eg =  1.519 eV is the energy gap of
GaAs [22,23], Here, Z™ =  Z“  -  /* and leah = f l°l°

x 'y 'z x ’y 'z x -y 'z a VooW
are assumed for the compactness of formalisms [12], From 
Eqs. (16)—(19), the magnitude of FSS defined by Eq. (6) is
given by |5| =  2|A*£ 

Aeff.l =  - A ,  +

2| A;eff, I i A

2 E sx
x/3A hl

PHL.k ~

eff,2 1 ’ w h e r e  

\d\s44
a cos 2<pa I (20)

and

A;eff, 2
2E sx VIlPlGn - 5 i2) 

V 3 A hl 2
cr sin 20a . (21)

Notably, only a misaligned stress (a  ^  0,(pa #  0,7r) can yield 
a nonvanishing imaginary part, A ^ 2, and, according to 
Eq. (4), gives rise to a phase angle 8eff /  0.

Itis indicated from Eq. (21) that A J^2 < 0 ( A ^ 2 > 0)and, 
according to Eq. (4), the resulting phase angle 9eff falls into the 
range, Peff =  {0°,180°} (0eff =  [180°,360°}), as a compressive 
(tensile) uniaxial stress with 0 < <pa < 45° is applied to a QD. 
Accordingly, Eq. (12) can be used to determine the possible 
range of the orientation of an exciton Bloch vector on the 
Bloch sphere for QDs with compressive stress while Eq. (13) 
is for QDs with tensile stress. Figures 4(a)-4(c) depict the 
Bloch vectors of the HE exciton states I'l'*) of stress-free, 
compressively, and tensile stressed QDs on the Bloch spheres, 
respectively.

Using the formalism of the Fermi’s golden rule in Ref. [24] 
and Eqs. (4), (10)—(13), and (14)—(17), one can derive the 
intensities of the e-polarized (e =  (cos 0, sin0,0)) emitted 
lights from the exciton eigenstates, 14'*), of a uniaxially 
stressed QD as

and the angle of the optical axis for /+ ( / _)  with respective to 
the x (y) axis is

<t>± = + s4>± ~  ~ Y  > (25)

where 8<t>± =  Thus the magnitude of
the DOP of the emission lines from the exciton doublet is 
given by |DOP| =  | |_ Equati0n (25) shows that the'-)-,max~i'-.max
orientation of the optical polarization of an exciton state in the 
FS of a QD is along the direction rotated from the x or y axis 
by the angle ~  Peff/2, which is specified by the new x ’ or y' 
axis as depicted in Fig. 1. Using the above simplified model, 
the S’s and DOP’s of the stressed QD considered in Figs. 3 
and 5 are calculated [34] and show qualitative agreements with 
the numerical results, as seen in Fig. 5.

V. DISCUSSIONS

Below, we discuss three remarkable photonic and fine 
structure features of stressed QDs that are revealed by the 
established model.

A. Stress-dependent polarized fine structures

Figure 6(a) presents the calculated S’s versus DOP’s of the 
exciton fine structures of x-elongated QDs under an uniaxial 
stress, along the elongation axis of the QDs, with the varied 
stress strength from a = —0.3 to 0. lGPa. It is clearly seen that 
the S ’s are correlated with and show quasilinear dependencies 
on the DOP’s for a asymmetric QD with a specific elongation 
(r] =  1,1.05,1.1, or 1.2). Such a S-DOP correlation has been 
noticed and inferred from the previous experiments on strained 
self-assembled QD systems (see Ref. [30]). Here, with stress 
as an additional tunable parameter, the underlying physics 
in the correlated S’s and DOP’s of unstrained DE-QDs can 
be more clearly recognized. From Eqs. (22)-(24), the degree 
of polarization for an exciton FS doublet of a QD under 
an uniaxial stress is derived as |DOP| =  I --ei!:- ^ .G0S0cH \ —

DOP(%)

/+(<£) oc /+,max cos2((j) -  (p+) (22)

and

I-((/)) a  /-.max Sin2((/> -<!>-), (23)

respectively, where the maximum intensities are determined 
by

/± ,max (l ± +  A l  C 0 S ^ V  I ( A ‘ sin 6> effV  (24)V 2 E sx ) \  2E \  )  ’

FIG. 6. (Color online) (a) S vs DOP of the polarized emission 
lines from the bright exciton doublets of the x -elongated QDs 
with r) = lx/ l y = 1,1.05,1.1,1.2 under uniaxial stresses of cr = 
0 .1 ,0 .0 5 ,..., — 0.3 GPa along the elongation axis of QD. The areas 
of the empty (filled) symbols reflect the magnitudes of the applied 
tensile (compressive) stresses. Note that the resulting DOP’s ( ^  0) of 
the stressed QDs with S = 0 are nonzero and lead to the nonmaximal 
entanglement of the emitted photon pairs (e < 1). (b) Degree of 
entanglement e of emitted photon pairs from the elongated QDs with 
stress-controlled vanishing 5 as a function of the QD elongation, 77.
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| ,v|+2̂ f )s8eff |, explicitly showing the 5-DOP relationship and 
explaining the linear dependencies of the 5”s on the DOP’s.

Furthermore, we proceed with the analysis for the effects 
of stress that is misaligned to the elongation axis of a QD 
(tj>a 7  0). If the misaligned stress is so significant that the last 
stress-dependent term on the r.h.s. of Eq. (20) is dominant 
(a >0 .1  GPa in the cases studied here), one can show that the 
phase angle is (for 0° < cf>a < 45°)

8eff ~  tan
/ 273161(511 - 5 i2) 
V \d \S44

(26)

In other words, following Eq. (25), the direction of optical 
polarization of a QD under a high uniaxial stress roughly 
follow (not exactly aligned to) the stress axes since <f>± ~
\  tan-1( —  tan2<f>a) ~  2 tan_I(O.8tan20CT). Thus a
misaligned stress with ±  0 leads to the optical polarization 
axes (with </>± /  0) that are misaligned to the x or y axis as 
well, as seen in Fig. 3(c). Equation (25) and the expressions 
for S(p± therein further predict that the two major optical axes 
of the exciton doublet of a QD might not be perpendicular to 
each other, i.e., S<j>+ ^  which happens as 0eff 7  e.g.,
as an elongated QD is subjected to a misaligned uniaxial stress 
to the elongation axis. Such a stress-induced nonorthogonality 
of the optical axes of stressed QDs has been observed in the 
recent study of Ref. [31].

B. Nonmaximally entangled photon pairs from stressed QDs

Using QDs as entangled photon pair emitters was firstly 
proposed by O. Benson et al. in the pioneering paper of 
Ref. [1], Because of exciton spin, there exits two intermediate 
exciton states with opposite spins in the biexciton-exciton- 
vacuum cascade decays. Thus a pair of photons can be emitted 
successively from a QD by taking one of the two possible 
radiative biexciton-exciton-vacuum decay paths, via one of the 
intermediate single-exciton states. In the proposed scheme LI], 
the generation of a polarization entangled photon pair from 
a QD was predicted achievable if the intermediate exciton 
states can be ideally degenerate and the two cascade emission 
paths become energetically indistinguishable. The degeneracy 
of the intermediate exciton states, however, relies on the perfect 
symmetry of QD structure. In reality, semiconductor QDs 
are inevitably subjected to symmetry breakings (e.g., shape 
deformation, strain, and defects, etc.) and, in addition to the 
intrinsic e-h interactions, the degeneracy of those intermediate 
exciton states is usually broken [8]. Technically, the generation 
of entangled photon pairs from QDs can be realized as long as 
the fine structure splitting of the intermediate exciton states can 
be tuned to be smaller than the intrinsic broadening of exciton 
emission line, typically at the scale of only ~1 yueV [2-5]. 
Thus how to control and further diminish the FSS between the 
intermediate exciton states of a QD has been a long existing 
challenging issue for the realization of QD-based entangled 
photon pair emitters.

Besides the e-h exchange interaction and the resulting 
nonzero FSS, the intrinsic VBMs in excitons were also 
disregarded in the early model of QD. In the absence of 
VBM, the intermediate exciton states are predicted as the 
pure-HH exciton states, 'I'f oc ^ ( l t e> I-()•*) ±  IWIlUJI.from

which a horizontally (H ) polarized photon or a vertically 
(V) polarized one with the equal probability of occurrence 
or light intensity are emitted. Under the ideal condition, 
the two-photon state of the polarization entangled photon 
pairs emitted from a QD with vanishing FSS is written 
as \n =  2)ph =  ( \HH)ph +  \VV)ph)/^/2,  being maximally 
entangled [ 19]. Experimentally, it has been nevertheless shown 
that the intensities of the exciton emission lines with H 
and V polarizations from the two different biexciton-exciton- 
vacuum cascade decay paths are usually different [30,31], The 
observations hint the impacts of VBM on the polarized fine 
structure of exciton and the resulting photon-pair states, as 
discussed below.

Following Eq. (4), the magnitude of the FSS of a QD is given 
by 15] =  2|A*ff| =  2V A ;^ , +  A^ff 2 and never vanishing as 
long as the imaginary part, Aeff,2[oc a  sin0a according to 
Eq. (21)] of the effective interaction remains nonzero. 
This happens as a ̂  0 and 0 ,7t / 2, i.e., as an uniaxial 
stress applied to an elongated QD is neither parallel nor 
perpendicular to the elongation axis.

In other words, as a prerequisite for the generation of 
entangled photon pair, making the FSS of a QD vanishing (5 — 
0) is achievable only if the applied stress is exactly parallel or 
perpendicular to the axis of elongation. In the situation, the 
imaginary part of A££ is surely vanishing, and the resulting 
phase angles are 0 ^  =  0 ,it. Thus according to Eqs. (22)—(24), 
one derives DOP =  7™- and 151 =  2|Aeff i| =  2| -  Aj +

AvbmI, where A Vbm =  E sy — D 0P Z 7 [30], Accord- 
ingly, a FSS is vanishing, i.e., 5 =  0, only as the attractive 
long ranged part of e-h exchange interaction, (—A (), is 
canceled out by the VBM-involved repulsive interaction, 
A vbm =  =  DOP £ 7  Re-examining Fig. 6(a), one
can find that the DOP’s of the stress-controlled elongated 
QDs that are in coincidence with vanishing 5’s are always 
nonzero. Therefore a pair of entangled photons emitted from 
an elongated QDs with stress-tuned vanishing FSS should have 
unequal intensities and be in the so-called nonmaximally entan­
gled two-photon state, described by |n =  2)ph =  ( |H H ) ph + 
£ \ W ) ph) / J \  +  e2, with the degree of entanglement,

1 -  DOP 
1 +D O P ’

(27)

where |n)pf, denotes a n-photon state, and H (V) indicates a 
x- (y-) polarized photon. Such a nonmaximally entanglement 
(f /  1) has been shown to be advantageous for reducing 
the required detector efficiencies for loophole-free tests of 
Bell inequalities [19,20], Figure 6(b) plots the degree of 
entanglement € as a function of the elongation q of the stressed 
QDs, which can be as low as e ~  0.6 for q =  1.2. One notes 
that the maximal entanglement {e =  1) is achievable only as 
the QD that emits the photons is perfectly symmetric so as to 
have DOP =  0 [5],

C. Mechanically prepared exciton superposition states

Experimentally, it has been demonstrated that an exciton 
superposition state, =  Ce+ 4 7  +  Ce_ 4 7 , in the FS of a 
QD can be created by a quasiresonant laser pulse with 
appropriate polarization denoted by e, and then evolves,
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- 0.2  - 0.1 0.0  0.1 0.2 
cr(GPa)

FIG. 7. (Color online) (a) Optical polarization angles <p±, with 
respect to the x or y axis as depicted in the inset, of the excitonic fine 
structure states of a stressed QD with <pa =  45° as a function of the 
stress strength a, which follow nearly the same a dependence as that 
of 0eff/2 [see Eq. (4) for the definition of 0eff]. (b) Phase angles 9X 
and <px used to characterize the Bloch vectors of the exciton states 
of the stressed QD, against the strength and orientation, a and <pa, of 
the applied stresses, and show highly tunable by stressing the dot.

within the coherence time, in a free precession, which can 
be geom etrically represented by a circular motion on a Bloch 
sphere about the axis connecting the exciton eigenstates [7,35]. 
Uniaxially stressing a QD moves an exciton eigenstate from 
the north or south poles o f the Bloch sphere towards the equator 
by an angle 9X with a fixed 0*  [see Eqs. (12), (13), and (26)]. 
Consequently, the plane of the circular motion corresponding 
to the free precession of the exciton state is tilted. Thus any 
superposition exciton state o f a QD could be optically prepared 
or accessed by appropriately stressing the QD prior to the 
optical excitation.

Figure 7(a) shows the optical polarization angles 0 ± of the 
emission lines from the LE and HE excitonic fine structure 
states 4>+ o f the QD stressed uniaxially along the [100] 
direction (0 a =  45°) as a function of the stress strength a. 
One can see that, even with a fixed direction of uniaxial 
stress, the polarization axes rotates over a wide angular range 
(alm ost 90°) with varying the magnitude o f stress strength. 
Correspondingly, Fig. 7(b) shows the phase angles, 9x and 
<px, o f the Bloch vector for the HE exciton eigenstate, 0 * ,  as 
form ulated by Eq. (10). One sees that the phase angles o f the 
exciton superposition states can be related to the orientations 
of the optical polarizations and are roughly equal 9X ~  20+ 
(9X ~  360° — 20+) for a <  0 (for a > 0), as inferred from 
Eqs. (12), (13), and (25).

The dynamics o f such mechanically encoded exciton 
states can be monitored by optically measuring the 
polarization projection using the techniques presented in 
Refs. [6,7], Figure 8(c) shows the time evolution o f the x 
polarization (or referred to as the H polarization) projection 
Pft(t) =  |(0 |P /j j ' l '^ ( f ) ) |2 o f the exciton superposition state 
that is optically initialized by a right-handed circular (R ) 
polarized laser [ | ^ f  (t =  0)) =  C + |'I '+ ) -  iC * I 'I 'f ) ,  where 
C |  =  ((0 |F ,̂ |'F + ))* ]  o f the QD uniaxially stressed in the 
fixed direction with 0 a =  45° as considered in Fig. 7 (ideal 
coherence is assumed) [7], Analytically, one can show that 
PH = i [ ( l  +  DOP)2 cos2 0+  +  (1 -  DOP)2 sin2 0_  — 2(1 — 
DOP2) cos 0 a sin 0,3 s i n ( ^  —0+ +  0_)], where 0+  (0_) is 
the angle of the optical axis for |'P+) ( |'F * )).

In the absence of stress, the exciton eigenstates o f the 
* -elongated QD are x- and y-polarized (also referred to as

PHYSICAL REVIEW B 91, 115310(2015)

t (ns)

FIG. 8. (Color online) Time-dependent horizontal(//)-polar- 
ization projection P of the superposition exciton state initialized by 
a right-handed circularly (R-)polarized light for an elongated QD that 
is stress-free, mechanically stretched with uniaxial compressive or 
tensile stresses (cr =  ±0.2GPa) along the [100] direction (0„ =  45°). 
Note that the same initialized exciton state of the QD evolves in time 
along distinctive paths on the Bloch spheres (see the insets) and 
develops very different dynamics of Pjtd) as the applied stress is 
changed.

H and V polarizations) and represented by the Bloch vectors 
pointing at the north and south poles o f the Bloch sphere as 
depicted by Fig. 4(a). Thus a /(-polarized initial superposition 
state evolves on the equator around the axis connecting the 
north- and south-poles and the //-polarization  projection of 
the temporally evolved state remains constant. Applying a 
compressive stress o f a = -0 .2 G P a  to the QD tilts the plane 
of the free-precession circular motion by 9X = 110° with 
cpx = 0 ° ,  as depicted by the schematics in the left inset of 
Fig. 7(b) and the upper inset o f Fig. 8. It turns out that the 
/(-polarized initial state evolves along another different path 
(see the inset of Fig. 8), which starts from the /(-polarized state 
at the equator, moves upwards but not pass the north-pole, and 
then turn downwards to com plete the circle. Correspondingly, 
the //-polarization  projection of the exciton superposition 
state o f the com pressed QD oscillates temporally at the 
angular frequency equal \S\/h as shown in Fig. 8. Similarly, a 
/(-polarized initial superposition exciton state for the QD under 
tensile stress evolves on another circular path whose enclosed 
plane orientated in different direction that is titled from the 
north pole towards the equator by 9X — 100° with <px = 180° 
(see the lower inset o f Fig. 8). As a result, the temporal 
oscillation of the //-polarization  projection of the same initial 
exciton superposition state prepared for the same QD but with 
tensile stress shows to be in the opposite phase. The distinct 
dynamical features in Fig. 8 for the same QD but under 
different stresses indicates the possibility o f the free access 
o f any desired exciton superposition states by appropriately 
stressing a QD prior to an optical polarized excitation.

VI. SUMMARY

In summary, we present numerical investigations based on 
the Luttinger-Kohn four-band k ■ p theory and, accordingly, 
establish a valid simplified model o f excitonic fine structures of
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droplet epitaxial GaAs/AlGaAs quantum dots under uniaxial 
stress control. In the formalisms, an applied uniaxial stress 
to a quantum dot along a specific direction acts as a pseudo- 
magnetic field that is directly coupled to the pseudospin of 
exciton doublet in the fine structure of the dot, and highly 
tunable to tailor the level splitting and orientation of the 
exciton pseudospin. As main results, photon pairs emitted from 
stressed DE-QDs are predicted always nonmaximal entangled 
(referred to as hyperentanglement), and a prior mechanically 
preparation of any desired exciton fine structure states of a 
QD photon source is shown feasible. The both features are 
associated with the valence-band mixings in the exciton states

that are especially sensitive to and controllable by external 
stresses for inherently unstrained droplet epitaxial quantum 
dots.

ACKNOWLEDGMENTS

The authors gratefully acknowledge O. G. Schmidt, A. 
Rastelli, and K. Santosh (IFW Dresden) for inspiring this 
theoretical work. This work is supported by the Ministry of 
Science and Technology of Taiwan (Contract No. NSC-100- 
2112-M-009-013-MY2), and the National Center of Theoret­
ical Sciences.

[1] O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, Phys. Rev. 
Lett. 84, 2513 (2000).

[2] A. J. Bennett, M. A. Pooley, R. M. Stevenson, M. B. Ward, R. B. 
Patel, A. Boyer de la Giroday, N. Skold, I. Farrer, C. A. Nicoll,
D. A. Ritchie, and A. J. Shields, Nat. Phys. 6, 947 (2010).

[3] A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and
E. Kapon, Nat. Photon. 4 , 302 (2010).

[4] R. Trotta, E. Zallo, C. Ortix, P. Atkinson, J. D. Plumhof, J. van 
den Brink, A. Rastelli, and O. G. Schmidt, Phys. Rev. Lett. 109, 

147401 (2012).
[5] T. Kuroda, T. Mano, N. Ha, H. Nakajima, H. Kumano, 

B. Urbaszek, M. Jo, M. Abbarchi, Y. Sakuma, K. Sakoda, I. 
Suemune, X. Marie, and T. Amand, Phys. Rev. B 88, 041306(R) 
(2013).

[6] Y. Benny, S. Khatsevich, Y. Kodriano, E. Poem, R. Presman, 
D. Galushko, P. M. Petroff, and D. Gershoni, Phys. Rev. Lett. 
106, 040504(2011).

[7] Y. Kodriano, I. Schwartz, E. Poem, Y. Benny, R. Presman, 
T. A. Truong, P. M. Petroff, and D. Gershoni, Phys. Rev. B. 
85, 241304(R) (2012).

[8] R. Singh and G. Bester, Phys. Rev. Lett. 104, 196803 (2010).
[9] G. W. Bryant, M. Zielinski, N. Maikova, J. Sims, W. Jaskolski, 

and J. Aizpurua, Phys. Rev. Lett. 105, 067404 (2010).
[10] R. Seguin, A. Schliwa, S. Rodt, K. Potschke, U. W. Pohl, and 

D. Bimberg, Phys. Rev. Lett. 95, 257402 (2005).
[11] M. Gong, W. Zhang, G.-C. Guo, and L. He, Phys. Rev. Lett. 

106, 227401 (2011).
[12] H. Y. Ramirez, C. H. Lin, C. C. Chao, Y. Hsu, W. T. You, S. Y. 

Huang, Y. T. Chen, H. C. Tseng, W. H. Chang, S. D. Lin, and 
S. J. Cheng, Phys. Rev. B 81, 245324 (2010).

[13] M. A. Pooley, A. J. Bennett, I. Farrer, D. A. Ritchie, and A. J. 
Shields, Appl. Phys. Lett. 103, 031105 (2013).

[14] S. H. Baek, J. Park, D. M. Kim, V. A. Aksyuk, R. R. Das, 
S. D. Bu, D. A. Felker, J. Lettieri, V. Vaithyanathan, S. S. N. 
Bharadwaja, N. Bassiri-Gharb, Y. B. Chen, H. P. Sun, C. M. 
Folkman, H. W. Jang, D. J. Kreft, S. K. Streiffer, R. Ramesh, X.
Q. Pan, S. Trolier-McKinstry, D. G. Schlom, M. S. Rzchowski,
R. H. Blick, and C. B. Eom, Science 334, 958 (2011).

[15] M. V. Gustafsson, P. V. Santos, G. Johansson, and P. Delsing, 
Nat. Phys. 8, 338 (2012).

[16] M. Kataoka, R. J. Schneble, A. L. Thorn, C. H. W. Barnes, C. J. 
B. Ford, D. Anderson, G. A. C. Jones, I. Farrer, D. A. Ritchie, 
and M. Pepper, Phys. Rev. Lett. 98, 046801 (2007).

[17] F. Guinea, M. I. Katsnelson, and A. K. Geim, Nat. Phys. 6, 30
(2010).

[18] F. de Juan, A. Cortijo, M. A. H. Vozmediano, and A. Cano, Nat. 
Phys. 7,810(2011).

[19] P. H. Eberhard, Phys. Rev. A 47, R747 (1993).
[20] A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, 

Phys. Rev. Lett. 83, 3103 (1999).
[21] H. Y. Ramirez and S.-J. Cheng, Phys. Rev. Lett. 104, 206402

(2010).
[22] S. L. Chuang, Physics o f Photonic Devices (Wiley, Hoboken, 

2009).
[23] A. Schliwa, M. Winkelnkemper, and D. Bimberg, Phys. Rev. B 

76, 205324 (2007).
[24] Y. H. Liao, C. C. Liao, C. H. Ku, Y. C. Chang, and S. J. Cheng, 

M. Jo, T. Kuroda, T. Mano, M. Abbarchi, and K. Sakoda, Phys. 
Rev. B 86, 115323 (2012).

[25] E. Kadantsev and P. Hawrylak, Phys. Rev. B 81, 045311
(2010).

[26] T. Takagahara, Phys. Rev. B 62, 16840 (2000).
[27] W. Ekardt, K. Losch, and D. Bimberg, Phys. Rev. B 20, 3303 

(1979).
[28] G. Allan and C. Delerue, Phys. Rev. B 86, 165437

(2012).
[29] J. Kumar, S. Kapoor, S. K. Gupta, and P. K. Sen, Phys. Rev. B 

74, 115326 (2006).
[30] C. H. Lin, W. T. You, H. Y. Chou, S. J. Cheng, S. D. Lin, and 

W. H. Chang, Phys. Rev. B 83, 075317 (2011).
[31] S. Kumar, E. Zallo, Y. H. Liao, P. Y. Lin, R. Trotta, P. Atkinson, 

J. D. Plumhof, F. Ding, B. D. Gerardot, S. J. Cheng, A. Rastelli, 
and O. G. Schmidt, Phys. Rev. B 89, 115309 (2014).

[32] J. D. Plumhof, V. Krapek, F. Ding, K. D. Jons, R. Hafenbrak, 
P. Klenovsky, A. Herklotz, K. Dorr, P. Michler, A. Rastelli, and 
O. G. Schmidt, Phys. Rev. B 83, 121302(R) (2011).

[33] Y. Leger, L. Besombes, L. Maingault, and H. Mariette, Phys. 
Rev. B 76, 045331 (2007).

[34] For the model calculations throughout this work, we take the 
parameters of QD, lex =  5.9 nm, ley =  5.6 nm, 1‘ = 2.9 nm, Ix =  
6.6 nm, lhy = 6 .1  nm, and /* =  2.3 nm, which are extracted 
by fitting the numerically calculated wave functions of the QD 
considered in Fig. 3.

[35] E. Poem, O. Kenneth, Y. Kodriano, Y. Benny, S. Khatsevich, 
J. E. Avron, and D. Gershoni, Phys. Rev. Lett. 107, 087401 
(2011).

115310-10



Copyright of Physical Review B: Condensed Matter & Materials Physics is the property of
American Physical Society and its content may not be copied or emailed to multiple sites or
posted to a listserv without the copyright holder's express written permission. However, users
may print, download, or email articles for individual use.


