Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM J. DISCRETE MATH. (© 2015 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 586-614

THE WIENER INDEX OF RANDOM DIGITAL TREES*

MICHAEL FUCHST AND CHUNG-KUEI LEE}

Abstract. The Wiener index has been studied for simply generated random trees, nonplane
unlabeled random trees, and a huge subclass of random grid trees containing random binary search
trees, random median-of-(2k+1) search trees, random m-ary search trees, random quadtrees, random
simplex trees, etc. An important class of random grid trees for which the Wiener index was not
studied so far is random digital trees. In this work, we close this gap. More precisely, we derive
asymptotic expansions of moments of the Wiener index and show that a central limit law for the
Wiener index holds. These results are obtained for digital search trees and bucket versions as well as
tries and PATRICIA tries. Our findings answer in the affirmative two questions posed by Neininger.

Key words. Wiener index, random trees, digital trees, moments, central limit theorem
AMS subject classifications. 05C05, 05C80, 60C05, 68W40, 68R10

DOI. 10.1137/140977989

1. Introduction and results. Topological indices of molecular graphs are of
great importance in combinatorial chemistry, and many papers have been dedicated
to them. One of the most well-known indices is the so-called Wiener index, which is
defined as the sum of distances of all unordered pairs of nodes of a graph. This index
was proposed by Wiener in [52] in order to investigate the boiling point of alkanes.
It has been intensively studied, in particular for trees, since trees arise as molecular
graphs of acyclic organic molecules; see the survey paper of Dobrynin, Entringer, and
Gutman [8] for many results and references.

Here, we are interested in the Wiener index of random trees. The first class of
random trees for which the Wiener index was studied was simply generated random
trees. In [10], Entringer et al. showed that the mean of the Wiener index in a simply
generated random tree of size n is of order n®/2. The mean for families of random
trees more relevant in chemistry has been investigated by Dobrynin and Gutman in
[9] and Wagner in [49], [50].

As for deeper stochastic properties, Neininger in [38] was the first who considered
variance and limit laws. More precisely, he showed for random binary search trees and
random recursive trees that the mean of the Wiener index is of order n?logn and the
variance is of order n*. Moreover, he also proved a bivariate limit law of the Wiener
index and the total path length (which is defined as the sum of distances of all nodes to
the root). Janson in [25] then carried out a similar study for simply generated random
trees whose Wiener index has variance of order n® and again satisfies a bivariate limit
law with the total path length (however, the limiting distribution is quite different
from the one found by Neininger for random binary search trees and random recursive
trees). The same results were very recently also proved to hold for nonplane unlabeled
trees by Wagner [51] (he considered both rooted and unrooted cases).

Finally, also very recently, Munsonius in [35] extended the above results of Nein-

*Received by the editors July 17, 2014; accepted for publication (in revised form) January 20,
2015; published electronically March 24, 2015. This work was partially supported by the NSC project
under grant NSC-102-2115-M-009-002.

http://www.siam.org/journals/sidma/29-1/97798.html

TDepartment of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan
(mfuchs@math.nctu.edu.tw).

Hnstitute of Statistical Science, Academia Sinica, Taipei 115, Taiwan (enix45@Qgmail.com).

586

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

http://www.siam.org/journals/sidma/29-1/97798.html
mailto:mfuchs@math.nctu.edu.tw
mailto:enix45@gmail.com

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

THE WEINER INDEX OF RANDOM DIGITAL TREES 587

inger to the class of random split trees which was introduced by Devroye in [5]. The
class of split trees is a very large class of random trees containing many important
types of random trees as special cases, e.g., binary search trees, m-ary search trees,
median-of-(2k + 1) search trees, quadtrees, simplex trees, and digital trees, among
others. Munsonius proved in [35] that for a huge subclass of the class of random split
trees, the variance of the Wiener index has order n* and a bivariate limit law with
the total path length holds. The subclass he considered includes most of the classes
of random trees mentioned above but not the important class of digital trees. It is the
purpose of this work to fill this gap. Moreover, our work will answer in the affirmative
two questions of Neininger from [38] who asked whether or not periodic oscillations are
present in the moments of the Wiener index for digital trees and whether or not the
Wiener index is asymptotically normally distributed, in contrast to all other classes
of random trees studied before whose limit law was nonnormal.

Before recalling the definition of digital trees and discussing our results in more
detail, we want to mention that apart from limit laws, results about tail probabilities
of the distribution of the Wiener index have been proved as well; see Janson and
Chassaing [26], Ali Khan and Neininger [3], Fill and Janson [11], and Munsonius [36].
Moreover, a quantity which is closely related to the Wiener index is the distance of
two random nodes in a graph which was also extensively studied for many classes
of random trees (including digital trees); see Meir and Moon [34], Dobrow [7], Mah-
moud and Neininger [33], Devroye and Neininger [6], Panholzer [42], Panholzer and
Prodinger [43], Christophi and Mahmoud [4], Aguech, Lasmar, and Mahmoud [1], [2],
and Munsonius and Riischendorf [37].

Now, we turn to digital trees, which are fundamental data structures in computer
science; see, for instance, the textbooks of Mahmoud [32] or Szpankowski [48]. They
are built from data whose keys are infinite 0-1 strings. We equip them with the
so-called Bernoulli model, which assumes that every bit is independent and has a
Bernoulli distribution with the probability of 0 equal to p. For the sake of simplicity,
we consider in this paper only the unbiased Bernoulli model for which p = 1/2. The
resulting random trees are called symmetric random digital trees.

One important subclass of digital trees is digital search trees. Here, the tree is
constructed as follows. The first key is placed in the root. Then all other keys are
distributed to the left or right subtree according to whether their first bit is 0 or
1, respectively. Finally, the first bit of every key is removed and the subtrees are
constructed recursively using the same principle; see Figure 1. Digital search trees,
although less important from a practical point of view, are the most mathematically
challenging class of digital trees; see the paper of Hwang, Fuchs, and Zacharovas [20]
and references therein. We will discuss results for the Wiener index and give detailed
proofs for this class first. Then, in section 3, we will briefly discuss similar results
for variants of digital search trees, namely, bucket digital search trees, tries, and
PATRICIA tries (the definitions of these classes of digital trees will be postponed to
this section).

Now, fix a random digital search tree of size n and denote by T, its total path
length and by W,, its Wiener index. Then we have the following result for first and
second moments.

THEOREM 1. We have for the mean of the total path length and the Wiener index
of digital search trees

E(T,) = nlogy n + nP;(logyn) + O(logn),
E(W,,) = n?logyn + n?Py(logy n) — n? + O(nlogn),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

588 MICHAEL FUCHS AND CHUNG-KUEI LEE

Ry =000001---
Ry =000110- - -
R3 =110111---
R4 =011011---
Rs = 100001 ---
Rg =111110---

Fic. 1. A digital search tree built from 6 keys with total path length = 8 and Wiener indexr = 32.

where Py(z) is a one-periodic function given in Remark 1 below. Moreover, variances
and covariances of the total path length and the Wiener index of digital search trees
are given by

Var(T},,) = nPy(logyn) + O(1),

Cov(Ty, Wy,) = n?Py(logy n) + O(nlogn),

Var(W,,) = n®Py(log, n) + O(n?logn),

where Py(z) is again a one-periodic function given in Remark 2 below.
Remark 1. The result for the mean of the total path length is not new and was

obtained first by Knuth in [30]; see also Flajolet and Sedgewick [14]. The periodic
function is given by

v-1 1 1 1 -

- - - I‘ _1 _ N4

log2 | 2 ZZk—1+logZZ (=1 =2a)e™™,
k>1 k0

Pl (Z) =

where v is Euler’s constant and xx = 2kwi/ log2.

Note that the result for the mean of the Wiener index is also not new since it can
be derived from the result in [1].

Finally, we want to remark that with our method of proof, it is straightforward
to compute longer asymptotic expansions of the means.

Remark 2. Similar to the mean, the result about the variance of the total path
length is also not new; see Kirschenhofer, Prodinger, and Szpankowski [29]. In [20],
the following explicit expression was given for the periodic function:

1 G2(2 + Xk) eZkTriz

P =
2(2) = {02 — T2+ xx)

where
(—1)i2- (%)

o—i—h 4 o—j—
W¢(2+Xk72 27T,

3, 120
Here, Q; = ngzgj(l — 27, Qoo = lim;_,o @;, and

a(l+2¢2((w—-2)x+1-w))

p(w;) = (z — 1)2 sin(7w) if 7 # 1;
| e ife=1
2 Sin(ﬂw) '

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

THE WEINER INDEX OF RANDOM DIGITAL TREES 589

Moreover, it was proved in [29] that Ps(logyn) > 0 for all n; see also Schachinger [46]
for a more elementary proof of this fact.

As for the covariance between total path length and Wiener index and the variance
of the Wiener index, these results are new. In particular, note that the variance is
of order n3, which is different from the order obtained for other random split trees;
see [35]. This smaller order is actually not too surprising since it has been observed
many times that random digital search trees are “less random” than other random
split trees (and this result gives further confirmation of this fact).

Again it is straightforward to obtain more terms in the asymptotic expansions of
the variances and covariance.

As a corollary of Theorem 1, we obtain the following result.

COROLLARY 1. For the correlation coefficient of the total path length and the
Wiener index of digital search trees, denoted by p(T,,W,), we obtain that
limy, 00 p(Th, W) = 1.

This will allow us to prove the following result.

THEOREM 2. We have

T —E(L) Wo—EWa)) a o
(VVar(T,) " /Var(W,)) — &%),

where X is a standard normal distributed random variable and —» denotes weak
convergence.

Remark 3. Again the central limit theorem for the total path length is not new;
see Jacquet and Szpankowski [23] and the discussion in section 5 in [20]. In fact, our
result will follow from Jacquet and Szpankowski’s result and Corollary 1.

Next, we give a brief description of the method we will use in order to prove our
results. First, note that from the definition of the total path length and the Wiener
index, we immediately get the following distributional recurrences: for n > 0, we have

(1.1)
Tpir 2 Tp, + T +n,
(1.2)
W1 2 Wa, + Wi_p + (Bu+1)(TF_p. +n— By) + (n— By + 1)(Ts, + By),

where B,, = Binomial(n,1/2), (T;*,W}) denotes an independent copy of (T, W,),
and (T,,, W) and (B,,) are independent. Also, note that initial conditions are given
by TO = WO =0.

This system of distributional recurrences will be the starting point of our analy-
sis. In order to obtain the moments, we will use the Poisson-Laplace-Mellin method
from [20], which was a refinement of a previous approach that used only two ingre-
dients, namely, analytic depoissonization and the Mellin transform; see Jacquet and
Szpankowski [24] for the former and Flajolet, Gourdon, and Dumas [13] for the lat-
ter. We will give a brief review of this method at the beginning of the next section.
Another key ingredient of our proof is the use of poissonized variances and covari-
ances which will also be explained in the next section (this was also one of the key
contributions in [20]).

It is interesting to point out that Schachinger in [47] studied a general distribu-
tional recurrence which is very similar to the two recurrences above. More precisely,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

590 MICHAEL FUCHS AND CHUNG-KUEI LEE
he investigated the distributional recurrence
d
Xn =X, +X;§,Bn + T,

where the notation is as above and T, is a general random variable called the toll
function (this recurrence is actually the same as that encountered in the analysis of
shape parameters in tries which behave similarly to digital search trees; see our results
in section 3). For the case T, = n®, « > 0, he proved that the limit law is normal if
and only if @ < 3/2. In view of this result, it might come as a surprise that the Wiener
index is asymptotically normally distributed because the toll sequence in (1.2) should
be roughly of order n?logn (since the mean of T, is of order nlogn and the random
variable B, is highly concentrated at n/2). However, note that in Schachinger’s result
T, is deterministic and hence independent of X,,, whereas in our situation we have
strong dependence.

We conclude the introduction with a sketch of the paper. In the next section,
we will recall the Poisson-Laplace-Mellin method from [20] and use it to prove The-
orems 1 and 2. In section 3, we will look at variants of digital search trees and state
similar results for the Wiener index for these variants. Proofs are also similar to the
digital search tree case, and consequently we will not give details. However, we will
list necessary differential-functional equations (or functional equations in the cases of
tries and PATRICIA tries) for the proofs in an appendix. Finally, in section 4, we
will give some concluding remarks.

2. Wiener index for digital search trees. Here, we will prove Theorems 1
and 2 from the introduction. We will start with the result on the moments. As
explained in the introduction, we will use the method from [20]. Note that the total
path length was already analyzed in [20]. In fact, we will heavily rely on results from
this analysis in our derivation below (all these results will be carefully reviewed below;
for more details see sections 2.5 and 2.6 in [20]).

As promised in the introduction, we will first recall the Poisson—Laplace—Mellin
method from [20]; see Figure 7 in [20] for a flowchart depicting the method and
a comparison with a closely related approach of Flajolet and Richmond [12]. The
method consists of the following steps.

— We first use Poisson-generating functions of means and second moments,
where the Poisson-generating function of a sequence f, is given by

fe)=e Y fuly

n>0

All Poisson-generating functions satisfy a differential-functional equation of
the form

(2.1) F2)+ J'(2) = 2f(2/2) + 1(2),

where #(z) is a suitable function.

— Next, we carefully define “poissonized” variances and covariances. This was
also one of the crucial steps in the analysis of [20] (see the explanation in
the introduction of [20]). Poissonized variances and covariances also satisfy a
differential-functional equation of type (2.1).

— The next task is to asymptotically solve (2.1). Therefore, we first apply the
Laplace transform to (2.1) to get rid of the differential operator. This yields

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

THE WEINER INDEX OF RANDOM DIGITAL TREES 591

the following functional equation:
(14 5)ZL1f(2); 5] = 4Z[f(2); 28] + Z[E(2); 5].

— Next, set

and

LU g 2l
Qs o R =g

Dividing the functional equation from the previous step by Q(—2s) yields the
slightly simplified functional equation

L[(2);8] = 4L[f(2); 28] + L1i(2); 5].

— An asymptotic expansion of Z[f(2);s] as s — 0 is derived by a standard
application of the Mellin transform; see [13].
— The inverse Laplace transform then yields an asymptotic expansion of f (2)
as z — 00.
— Finally, depoissonization is used in order to get an asymptotic expansion of
fn from that of f(z); see [23] and section 2.3 in [20].
Now, we will start with our analysis. Therefore, set

fl 0 Z E and f071(z) =e 7 Z E(Wn)z—

n>0 n>0

ZLf(2);5] =

Then, from (1.1), (1.2), and a straightforward computation, one obtains
Fro(2) + fio(2) = 2f10(2/2) + 2,
2
s s 5 ; z
(2.2) Joi(2) + fo.1(2) = 2f01(2/2) + (2 + 2) f1,0(2/2) + 5 T

with f10(0) = fo.1(0) = 0. Similarly, set

Faolz) = e S E(T2)2 ,,fll e Y E(T, W)~ |,f02 ZIEW2

n>0 n>0 n>0

Then, again from (1.1), (1.2) with a slightly more involved computation,

F20(2) + f3.0(2) = 2f2,0(2/2) + 2f20(2/2) + 42f1.0(2/2) + 221 o (2/2) + 2° + 2,

Faz) + fi1(2) = 2f1.1(2/2) + 2f1.0(2/2) fo (2 /)+ 2f10(2/2) f1 0(2/2)
+ (24 2)f20(2/2) + (2 +2) fL0(2/2) + (22° + 52) f1,0(2/2)

3 2
F I R 2) 4 22 fan(ef) + 2o ef2) ¢ T

~ ~ ~ 2’3 ~ ~
on(e) 4 Foale) =2oa /24 (G 32 +2) Fan a/2) + (22 + i (72

+ (22 +4) fr0(2/2) fo (2/2) + 22f1,0 (2/2) fo.1 (2/2) + 2fo,1 (2/2)°

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

592 MICHAEL FUCHS AND CHUNG-KUEI LEE
+ (222 + 4z)f0,1 (2/2) + (222 + 2z)f671 (2/2)
22 : - ;
+ <7 + 2z + 2) fl,O (2/2)2 + (22 + 2Z)f170 (2/2) f{,O (2/2)
2 ~ ~
+ S Fi0(2/2)° + (2 + 62+ 62) i (2/2)
B 4
+(2° +52° +22) f1 o (2/2) + % +22% + 422 + 2,

where f270(0) = le(O) = fo,g(O) =0.
Next, we define poissonized variances and covariances. In our context, it turns
out that a good choice is given by

V(2) = fao(2) — fr0(2)? — 2] o(2)%,
(2) = fl,l(z) - f170(z)f071(2) - Zf{,o(z)f6,1(z)a
W(z) = fo(2) = for(2)? — 2f5,1(2)%.

(O}

The reason we define them in this way will become clear in the depoissonization
step; see also the detailed description in the introduction of [20]. Using the above
differential-functional equations, a long computation (which can be done with Maple)
gives the following differential-functional equation for V(z), C(z), and W (2):

V(2) +V'(2) = 2V (2/2) + 2f{0(2)%,

(2.3)

C(2) +C'(2) = 2C(2/2) + (2 + 2)V(2/2) + 2f{o(2) f51 (2),

~ ~ ~ 2;2 ~ ~
W(z)+ W' (z) =2W(z/2) + (22 + 4)C(2/2) + (3 + 3z + 2) V(2/2) + 2° 1 o(2/2)*
(2.4) + 2z2f{70(z/2) + zfé’)l(z)z + 22

with V(0) = C(0) = W(0) = 0.
We will now apply the above approach to these differential-functional equations.
We will start with the mean value.

Mean value of Wiener index. We will start from (2.2). According to the
above method, we first apply the Laplace transform, which yields

1+s

(14 8)ZL[for1(2); 5] = 4L fo1(2); 2] — 2; ZLf10(2);25] + 4L f1.0(2); 25] + 3

ds
Next, dividing by Q(—2s) and setting

j[fo,l(z);s] = %a j[fm(z)%s] =

gives
(2.5)
ZL(fon(2); 8] = 4L fo(2); 2s]— f10(2); 281442 f1.0(2); 28]+£~

d
Q(—zs)@g[$3Q(—2s)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

THE WEINER INDEX OF RANDOM DIGITAL TREES 593
Observe that

d_1 R
025 T Qs a5 Hro(2): 28]

Moreover, logarithmic differentiation yields

(2.6) %j[fl,o(z);zs] — Pl o(2): 2]

d d d s 1
5 Q(-25) = - exp{log(Q(-2))} = Q(-25) =D log (14 57) = Q(-29) D 57—
Jj=20 =0
Set A(s) = .5 ﬁ, whose Maclaurin series is given by
(_S)k 2k+1 .
A(S) - ZZ 2(k+1)j = Z 2k+1 _ 1 (_S))
7>0 k>0 k>0
Next,
d 1 1 d o Al 2 A(s)
B0 ez T arzr st T g0 T et et

where A(s) is the meromorphic extension of >, o, 2F*1(—s)*/(2**! — 1). Plugging
(2.7) into (2.6), and (2.6) in turn into (2.5), gives

(2.8)
1+s

j[fo)l(z); S] = 4j[f071(2); 28] — 2%.,?[];170(2); 28] — 214(8),?[];1)0(2)7 28] + m

The next step is to apply the Mellin transform. Therefore, note that from [20],
we know that
O (|s|~|log s|) as s — 0;
O (|s|7?) as § — 00

j[fl)o(z);s] = {

uniformly for s with |arg(s)| < 7 — ¢, where b > 0 is an arbitrary large constant.
Moreover, again from [20], for Q(—2s) (and consequently also for A(s)), we have the
bounds

(2.9) Q(—25) = {1 +O(|s]) as s—0; Als) = {g(|s|) as s — 0;

O(Js|7*) as s — oo, (1) ass— oo,

again uniformly for s with |arg(s)| < m—¢, where b > 0 is an arbitrary large constant.
As a consequence of this and Ritt’s theorem (see Chapter 1, section 4.3 in Olver [41]),
the Mellin transform of

d - -~
50)1(8) = —2$$[f170(2); 28] + %,

which we denote by So 1(w), exists for R(w) > 3, and the Mellin transform of
fo,1(s) = —24(s)Z[f1,0(2); 2],

which we denote by T 1(w), exists for R(w) > 1. Moreover, by Proposition 5 in [13],
we have, as |t| — oo,

(2.10) Soa(c+it) =0 (e—<’f—€>‘tl) . Toalctit) =0 (e—“—e)‘tl)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

594 MICHAEL FUCHS AND CHUNG-KUEI LEE

for all ¢ € R contained in the fundamental strip. In fact, using the expression for the

Mellin transform for Z[f1 0(z); s] from [20], we obtain for S ;(w) the expression

QERYPINWI(2-w) Q2 *)I(w—-1)I(2—-w) +Q(2w’2)F(W)F(1 —w)
2@00(2w_3 - 1) Qoo Qoo .

Note that from this it follows that (2.10) holds for all ¢ € R. Finally, by applying the
Mellin transform to (2.8),

So1(w) =

So,1(w)+T0,1(w).

ML froliw] = 57w

From this and the above explicit expression for Sp1(w), we obtain by the inverse
Mellin transform

oz 1 1
lfro(2);6] = 25—310g2 (g 1) s
’ log 2
(2.11) ZI‘ (34 xu)T(—=1 = xx)s > X + O (|s|*|log s),
k;ﬁO

where ¢ =", o, 1/(2F — 1), xi was defined in Remark 1 in section 1, and the above
asymptotic expansion holds uniformly as s — 0 with |arg(s)| < m —e. Moreover, due
0 (2.9), the same asymptotic expansion holds for .Z[f1,0(2); s] as well.

Next, we apply the inverse Laplace transform. More precisely, we use Proposition
2.6 in [20], which we first recall since there is a small mistake in the statement of [20]
(Is+ 1] on the right-hand side of (29) in [20] should be replaced by |s|). We only state
the result for the transfer of O-bounds.)

PRroPOSITION 1 (Hwang, Fuchs, and Zacharovas [20]). Let f(z) be a function
whose Laplace transform exists and is analytic in C\ (—o0,0]. Assume that

Z[f(2);5] = O (Is|~*[1og s|™)

uniformly for s — oo with |arg(s)] < m — €, where « € R and m > 0 is an integer.
Moreover, assume that

LIf(2):s] =0 (IsI77)

uniformly for s — oo with |arg(s)| < —e. Then
F(2) = 0 (|22 log 2|

uniformly as z — oo and |arg(z)| < 7/2 —e.

Remark 4. A similar result holds for the transfer of terms of the form cs=? (log(1/s))™,

where ¢, 5 € C and m > 0 is an integer. More precisely, under the same assumptions
as above, we have

~ m a
AWl =es? (la) = f=es” o () toer 5o
SJism

(Note that another small mistake in Proposition 2.6 in [20] is that |,=g at the end of
this formula is missing.)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

THE WEINER INDEX OF RANDOM DIGITAL TREES 595

Applying this result to (2.11) yields
(2.12) foa(z) = 2%logy z + 22 P (logy 2) — 22 + O(|zlog 2|)

uniformly as z — oo with |arg(z)| < 7/2—¢, where P;(z) was introduced in Remark 1.

The final step is depoissonization, which is done by using the tools from sec-
tion 2.3 in [20] which rest on the notion of Jacquet—Szpankowski admissibility (JS-
admissibility, for short; see Definition 1 in that section) and its closure properties.
In particular, from Lemma 2.3 and Proposition 2.4 of that section, we obtain that
fo1(z) is JS-admissible. Hence,

E(W,) = fo1(n) — g ~6’71(n) + lower order terms.

Note that from (2.12) and Ritt’s theorem, we obtain that the second term on the
right-hand side above is of order O(nlogn). Consequently, the above gives the claimed
expansion for the mean.

Covariance of total path length and Wiener index. Here, we start from
(2.3) and use the same method as for the mean. First, in [20], we have proved that

(2.13) fr.0(2) = zlogy z + 2Py (logy 2) + O(] log z|)

uniformly as z — oo with |arg(z)| < m/2 — e. From this, (2.12), and Ritt’s theorem,
we obtain the bounds

O(]#]) as z — 0;

O(|logz|) asz— oo

(2.14) 2flo(2)fo1(2) = {

uniformly for z with |arg(z)| < 7/2 —e.
Next, we apply Laplace transform to (2.3) and divide it by Q(—2s). Then, by
similar manipulations as for the mean, we obtain

(2.15) Z[C(2);s] = 4ZL[C(z);2s] — Z%j[f/(z), 2s] — 2A(5).2[V (2); 28] + G1.1(5),

where

_ . g[szo(z) ~6/71(2)§ 5]
) =0

Before applying the Mellin transform, we note that from [20], we have

872 as s]
XW@M={00|) o

O(|s|™®) ass— o0

uniformly for s with |arg(s)] < m — ¢, where b > 0 is an arbitrary large constant.
Moreover, from (2.14) and (2.9), we obtain

71 (s) = O (|s|™|logs|) ass— 0;
grLas) = O (|s|7?) as § — 00

again uniformly for s with |arg(s)| < m—¢, where b > 0 is an arbitrary large constant.
Hence, the Mellin transform of

S1.1(8) = —2%3[\7(,2); 2s],

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

596 MICHAEL FUCHS AND CHUNG-KUEI LEE

which we denote by S11(w), exists for R(w) > 3, and the Mellin transform of

t1,1(s) = —2A(s)-L[V (2); 2] + gr.a(s),

which we denote by T 1(w), exists for f(w) > 1. Also, both Mellin transforms satisfy
a bound of the form (2.10) inside their fundamental strips. Moreover, in [20], we
showed that

MZ W) = L2

where Ga(w) is analytic for R(w) > 0 and satisfies a bound of the form (2.10) in this
half-plane. Consequently, by applying the Mellin transform to (2.15),

o~ w w 2—w w— w— w
%[X[O]Nd] - 5171(]. 1—521:::1() - 2(]. —(23W])-zfi(22wl)) * 1Tl)12(27)w'

From this by the inverse Mellin transform

1
~ log?2

j[é’(z),s] Z(2+Xk)G2(2+Xk)S_3_X’“ —|—(9(|s|_2)

k

uniformly as s — 0 with | arg(s)| < m—e. For Ga(w), we showed in [20] the expressions
given in Remark 2 in section 1. Moreover, from (2.9), we get the same asymptotics

for Z[C(2); s].
Applying Proposition 1 yields
(2.16) C(z) = 22Py(logy 2) + O(|z])

uniformly as z — oo and |arg(z)| < m/2 — €, where P»(z) is given in Remark 2 in
section 1.

The final step is depoissonization. Therefore, observe that by the results in section
2.21in [20], f1.0(2), fo,1(2), and fi1(z) are all JS-admissible. Hence,

~ ~ 2 ~ ~
Cov(Ty,,Wy,) = C(n) — gC"(n) — %f{'o(n) 0.1(n) + lower order terms.

Note that due to Ritt’s theorem, the second term on the right-hand side is O(n) and
the third term is O(nlogn). Hence, our claimed result for the covariance is proved.

Variance of Wiener index. Next, we turn to the variance of the Wiener index.
We start from (2.4), which we rewrite as

W(z) + W'(2) = 2W(2/2) + 22C(2/2) + Z;f/(z/z) + Go,2(2)
with
Go.2(2) = 4C(2/2) + (32 + 2)V(2/2) + 22 f1 0(2/2)* + 222 1 o (2/2) + 2f{ 1 (2)* + 2°.
In [20], we proved that

V(z) = zPy(log, 2) + O(1)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

THE WEINER INDEX OF RANDOM DIGITAL TREES 597

uniformly as z — oo with |arg(z)| < m/2 — e. From this, (2.16), (2.13), (2.12), and
Ritt’s theorem it follows that

_ O(|#]) as z — 0;
2.17 =
(2.17) Go2(2) {(’)(|z|2| logz|2) as z — oo

uniformly for z with |arg(z)| < 7/2 —e.
Next, applying the Laplace transform to the above differential-functional equation
and dividing by Q(—2s) yields

(2.18) o ! -
LW (2); 5] = 4.L[W (2); 25]—mgf[é(2); 2s]+m@f[‘7(z); 2s]+go,2(s),
where

Z[go,2(2); S].

o2(s) =
Q(—2s)
Using the same manipulations as for mean and covariance, we have

4 d ~ d - ~ o
(2.19) —mgofw(z); 2s] = —433[0(2); 2s] — 4A(s)Z[C(z);2s].

Moreover, observe that

ELR
gz 2V (z);2s] =

1 d_2 7 (2): 25] — A(s) d
Q(—2s) dsrg[v(); 2] 2Q(—2$) ds

LIV (2); 2]

“)280gs Q(—2s)
and note that

d? 1 d A(s) A(s)? B(s)

ds?Q(=2s) dsQ(=2s) Q(=2s) Q(-2s)

where B(s) is the meromorphic extension of

Jok+2 k
- Z ok+2 _ 1(_5)

k>0

This implies that

220) — L (225 = L 2117 (2): 26] + 24(5)L 2] (2): 25] + (A(s)?
(2.)m@ [V (2); S]—@ [V (2);2s] + (8)5 [V(2); 2s] + (A(s)

+ B(s)Z[V(2); 2s]
and plugging (2.20) and (2.19) into (2.18) yields

LW (2); 5] = 4.L[W (2); 2] — 4%2[@@); 2s] + %j[f/(z); 2s] + to.2(s)
with

75072(5) = —4A(s)j[é'(z); 28]+2A(s)%j[f/(z); 2S]+(A(S)2+B(S))j[‘~/(2); 25]4+Go,2(s).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

598 MICHAEL FUCHS AND CHUNG-KUEI LEE

Before we apply the Mellin transform, note that from (2.17) and (2.9),

7o.2(5) = O(|s| 73| logs|?) as s — 0;
9025070 0157 85 8 = 00

uniformly for s with |arg(s)| < 7 — ¢, where b > 0 is an arbitrary large constant.
Moreover, similar as for (2.9),

B(s) = {(9(1) as s — 0;

O(|s|72|1logs|?) as s — oo,

again uniformly for s with | arg(s)| < 7 —e. From this and corresponding bounds for
A(s), Z[C(2); 5], and Z[V (z); 5] obtained in the analysis of the mean and covariance,
we see that the Mellin transform of #g2(s), which we denote by Tp2(w), exists for
R(w) > 3. Similarly, the Mellin transform of

2

- d o= S
S0,2(8) = —4£$[C(z); 2s] + @.,?[V(z)7 2s],
which we denote by Sp2(w), exists for R(w) > 4. Both of these Mellin transforms
satisfy a bound of the form (2.10) inside their fundamental strip. Moreover, observe
that using the expressions from the analysis of the covariance, Sy 2(w) is given by
2272+ (w1 (w—2)Gaw—2) | 22 (w— 1T (w—1)

S0,2(w) = (1—23-w)(1 — 24-w) + 1 _ 93w)

where G2(w) is an analytic function for R(w) > 0, T1,1(w) is an analytic function for
f(w) > 1, and both satisfy a bound of the form (2.10) in their half-plane of analyticity.
Overall, we obtain for the Mellin transform of Z[W(z); s]

~ So2(w) +Tpa(w)
N 1—22-w
2279237 4+ 1) (w — 1) (w — 2)Ga(w — 2)
- (1 _ 2270.;)(1 _ 2370.;)(1 _ 2470.;)
279w —-1T11(w—1) To2(w)
+ o + e

From this, by applying the inverse Mellin transform

ML W]

ZW(z);s] D BHxE)2+x1)Ga(2 + xa)s X+ O(ls| 707

log2 .

uniformly as s — 0 with |arg(s)| < m —e. Moreover, due to (2.9), the same is also
true for Z[W(z); s].
Next, we apply Proposition 1 and obtain

W (z) = 2°Pa(logy 2) + O(|2[**)

uniformly as z — oo with |arg(z)| < 7/2 —e.

The final step is the depoissonization step, where as above we use the results
from section 2.2 in [20]. By these results, fo2(2) and fo.1(z) are both JS-admissible.
Consequently,

n_~ TL2 <1

Var(W,,) = W(n) — EW”(n) - ¢/1(n)? + smaller order terms.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

THE WEINER INDEX OF RANDOM DIGITAL TREES 599

By Ritt’s theorem, the second term on the right-hand side is O(n?) and the third term
is O(n?log?n). From this our result follows (the claimed error term in Theorem 1 is
obtained by a slightly refined analysis, which we leave as an exercise to the reader).

This concludes our proof of Theorem 1 and consequently also Corollary 1. We
will use now the latter to give a proof of Theorem 2. As a second ingredient, we need
the following central limit theorem for the total path length.

THEOREM 3 (Jacquet and Szpankowski [23]). We have

Tn - E(Tn) d
Var(T,,)

where X has a standard normal distribution.

Proof of Theorem 2. First set

T, —E(T,)
Var(T,)

Then by the above result
d
X, — X,
where X has a standard normal distribution. Consequently,

(X, Xn) -5 (X, X).

Next, define
v W, —E(W,) _ T, —E(T,)
" Var(W,,) /Var(T,))
Note that
2\ _ E(Wn - E(Wn))2 E(Tn - E(Tn))2 _ E((Wn - E(Wn))(Tn B E(Tn)))
) = Var(W,) - Var(T;,) 2 /Var(W,,)Var(T,,)

=2—2p(T,, W,).
Hence, by Markov’s inequality
E(Y,?)

n

P(IY,] >) < =5

—0 as n — oo.

€

Thus, Y, -+ 0 and consequently (0,Y},) i (0,0) (here, L5 denotes convergence
in probability). Using Slutsky’s theorem (also called Cramér’s theorem; see Theorem
11.4 in Gut [17]) now implies

(X, X))+ (0,Y,) -5 (X, X).

Since
Tn —E Tn Wn —-E WTL
(X X) + (0.Y2) = o) Mo —BW))
Var(T,,) = VVar(W,,)
this proves our claim. O

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

600 MICHAEL FUCHS AND CHUNG-KUEI LEE

Remark 5. Alternatively, one could define the random variable
Up =W, —nT, +n?

whose mean by Theorem 1 is of order O(nlogn). By the same result, also the order
of the variance is small:

Var(U,) = Var(W,,) + n*Var(T,) — 2nCov(T,, W,,) = O(n?logn).

In particular, this is of a smaller order than the variance of W,,. Thus, again by
Markov’s inequality,
U,-EU,) W,—-EW,) B n(T, —E(T,)) P
Var(W,,) Var(W,,) Var(W,,)

Consequently, Y,, from our above proof can be replaced by (U,, — E(U,,))/+/Var(W,,).
Overall, this suggests an alternative approach to Theorem 2 via a direct study of

the moments of U,,. Such a study is possible with the same tools as above since U, is

easily seen to satisfy a distributional recurrence similar to those of the Wiener index.

3. Wiener index for variants of digital search trees. In this section, we are
going to discuss results similar to those in section 1 for variants of digital search trees.
Proofs of these results follow along the same lines (or are even easier, since in some
cases the Laplace transform is not needed) and will not be given. For the reader’s
convenience, we will list the (differential-)functional equations for the poissonized
mean, variances, and covariances which are crucial to the proofs in the appendix.
Our results can be deduced from them with an approach similar to those used in
section 2.

We start by defining the variants of digital search trees we want to investigate.
The first variant is bucket digital search trees where every node can hold up to b > 2
keys with all internal nodes (nonleaf nodes) holding exactly b keys; for an example
see Figure 2. Bucket digital search trees were discussed in many papers; see [20] and
references therein. Note that there are two types of total path length in bucket digital
trees: the sum of distances of all keys to the root and the sum of distances of all nodes
to the root; the former is called key-wise path length and the latter node-wise path
length (see [20] for more details). Accordingly, we also have a key-wise Wiener index
and a node-wise Wiener index. Results for both Wiener indices in random bucket
digital search trees will be presented below.

Ry =000001---
Ry =000110- - -
R3 =110111---
R4 =011011---
Rs = 100001 - --
Rg =111110---

F1a. 2. A bucket digital search tree with b =2 built from 6 keys with key-wise path length =5,
key-wise Wiener index = 19, node-wise path length = 4, and node-wise Wiener index = 10.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

THE WEINER INDEX OF RANDOM DIGITAL TREES 601

Fic. 3. A trie built from the data from Figure 2 with external path length = 18, external
Wiener index = 72, internal path length = 9, and internal Wiener index = 35. The corresponding
PATRICIA trie is depicted on the right with total path length = 16 and Wiener index = 64.

Another variant of digital search trees is tries (from the word data retrieval),
which are one of the most important data structures on words with numerous appli-
cations; see [32], [48], and Park et al. [44] and references therein. For the reader’s
convenience, we recall the definition. As for digital search trees, start with a set of n
data whose keys are infinite 0-1 strings. However, in contrast to digital search trees,
a binary tree is built with keys only stored in the leaves. This is done as follows:
Whenever a new key is stored, we use it to search in the already existing trie until
we encounter a leaf (which already contains a key). Then the leaf is replaced by an
internal node and the two keys are distributed to the two subtrees. If they go to the
same subtree, then this procedure is repeated until both keys go to different subtrees
where they are stored as leaves; see Figure 3 for an example. Again there are two
types of total path length: the external path length (which uses the leaves) and the
internal path length (which uses the internal nodes whose number is random); see
[15]. Hence, there are also two different types of Wiener indices, namely, the external
Wiener index and the internal Wiener index. Again both of these Wiener indices will
be discussed below.

As a final variant of digital search trees, we consider PATRICIA tries; see [48].
The construction principle of PATRICIA tries is similar to that of tries, with the only
difference being that one-way branching is suppressed (or, in other words, first a trie is
built from the data and then all nodes with only one subtree are deleted); see Figure 3
for an example. Again there are two Wiener indices; however, since the number of
internal nodes is now deterministic, they exhibit the same behavior. Therefore, we
are going to give results only for the external Wiener index (which subsequently will
be called the Wiener index for brevity).

As in section 1, we will denote by T;, the total path length and by W,, the Wiener
index (both either key-wise or node-wise or external or internal depending on the
context). Moreover, for the node-wise Wiener index and the internal Wiener index,
we also need the number of nodes (internal in the case of internal Wiener index),
which will be denoted by N,,.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

602 MICHAEL FUCHS AND CHUNG-KUEI LEE

Key-wise Wiener index of bucket digital search trees. Here, we have the
following distributional recurrences for T, and W,,: for n > 0,

Toiy £ Tp, +Ti_p, +n,

Whts = WB +W, g, + B+ 1)(T,_5, +n—By)+ (n— B, +1)(Tp, + Bn),
where the notation is as in section 1 and initial conditions are given by Ty = --- =
Try=Wy=---=Wp_1 =0.

From these recurrences, we obtain the following results for the mean and variance.
THEOREM 4. We have for the mean of the key-wise path length and key-wise
Wiener index of bucket digital search trees
E(T,) = nlogy n + nP;(logy n) + O(logn),
E(W,,) = n?log, n + n?P;(logy, n) — n* + O(nlogn),
where Py(z) is a one-periodic function given in the remark below. Moreover, variances

and covariances of the key-wise path length and key-wise Wiener index of bucket digital
search trees are given by

Var(T,,) = nPy(log, n) + O(1),
Cov(T,,, W,,) = n*Py(logy n) + O(nlogn),
Var(W,,) = n3Py(logy n) + O(n?logn),
where Py(z) is again a one-periodic function given in the remark below.
Remark 6. The results for the mean and variance of the key-wise path length were

first obtained by Hubalek in [18]. In [20], the authors gave the following expressions
for the periodic functions:

v—1 1 c G12+Xk) ki
P = iz
1(2) log 2 + log 2 Ing,; T2+ xk) ¢ ’
where
[e7e] Sw—3 .
:/0 mdsa C:UPL%(Gl(W) —1/(w—12)),
and
Ga2(2 + xk) o2kmiz
Pa(z) 1og2 Z T2+ xk)
where
o0 Sw—l o0
Gw:/ 7/ e *%g(z)dzds
2() o Q(=2s)J, 5(z)
with
2 2
_ b\ =, b
= ¥ ()e) = ()
0<j<b M 0<j<b M
b 2 ry] 2 ()
- Z . (f1,0(2)+zf1,0(2))
- J
0<;5<b

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

THE WEINER INDEX OF RANDOM DIGITAL TREES 603

and fm(z) denotes the Poisson generating function of E(T,,).
Note that the result for the mean of the Wiener index also follows from [4].
Moreover, we have the following bivariate central limit theorem.
THEOREM 5. We have

<Tn —E(T,) W, —E(W,)
VVar(T,) " /Var(W,)

) 4 (X, X),

where X is a standard normal distributed random variable and —> denotes weak
convergence.

Remark 7. The central limit theorem for the key-wise path length was first proved
by Hubalek et al. [19].

Node-wise Wiener index of bucket digital search trees. Here, the distri-
butional recurrences for N,,, T, and W,, are as follows: for n > 0,

Noss £ Np, + Ni_p, +1,
Tpiv £ T, +T:_ 5 + Np, + Ni_p
Wosy £ Wp, +Wi_p + (N, + 1)(T5_p, + Ni_p,)+ (Ni_p, +1)(Ts, + Np,),

where By, is as in section 1, (N5, T, W) denotes an independent copy of (Ny,, Ty, Ws,),

and (N, T,,W,) is independent of (B,,). Initial conditions are given by Ty = --- =
Tb71:WO:"':Wb71 ZNOZOaDlez---ZNbflzl.

From this, we obtain the following result.
THEOREM 6. We have for the mean of the number of nodes, node-wise path
length, and node-wise Wiener index of bucket digital search trees
E(N,,) = nP;(logyn) + O(1),
E(T5) = n(logy n) Pi(logy n) + O(n),
E(W,) = n*(log, n) P (log, n)* + O(n?),
where Py(z) is a one-periodic function given in the remark below. Moreover, variances
and covariances of the number of nodes, node-wise path length, and node-wise Wiener
indez of bucket digital search trees are given by
Var(N,,
Cov(N,, T,
Var(T,
Cov(N,, W,
Cov(T,, W,
Var(W,,

=nPy(logyn) + O(1),

= n(logy n) P2 (logy n) + O(n),

= n(logy n)?Py(logy n) + O(nlogn),

= 2n?(log, n) Py (logy n) Pa(logy n) 4+ O(n?),

= 2n%(log, n)? Py (logy n) P2 (log, n) + O(n? logn),
= 4n3(log, n)? P1 (logy n)? Py (log, n) + O(n®logn),

~— — ~— ~— ~— ~—

where Py(z) is again a one-periodic function given in the remark below.

Remark 8. The results for the number of nodes were first proved in [19]. Moreover,
the results were re-proved in [20], where the authors also proved the results for the
node-wise path length and derived the following expressions for P;(z) and P»(z):

1 Gy (2 + Xk) eZkTriz

P =
1(2) = 1503 — T2+ xx)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

604 MICHAEL FUCHS AND CHUNG-KUEI LEE

where
[ee] Sw72 B
Gl(w):/o W(S—'_l)b lds
and
o 1 G2(2+Xk) Tiz
P(2) = 1003 — T2+ xx) i
where
Y < (s+ 1)1 — (=1)°(20 =3+ (b—1)s)
with
2 2
5(z) = ()iae) +| £ ()mre
0<j<b N 0<7<b
b\ /-)
- ¥ () (ol + #710?)
o<j<b

and f, 0(z) denotes the Poisson generating function of E(T,).
Theorem 6 yields the following trivariate central limit theorem.
THEOREM 7. We have

(Nn —E(N,) T, —E(T,) W, —EW,)

d
VVar(N,) ' /Var(T,) ' /Var(W,)) — XX,
where X is a standard normal distributed random variable and %> denotes weak
convergence.
Remark 9. The central limit theorem for the number of nodes was first proved in
[19]. Also note that the problem of proving a bivariate central limit law of number of
nodes and node-wise path length was posed as an open question in section 5 of [20].

External Wiener index of tries. Here, the distributional recurrences for T;,
and W,, are as follows: for n > 2,

T, LTg, +T: 5 +n,

n

Wa £ Wa, +Wi_p, + Bu(Ty_p, +n—By)+(n = Ba)(Ts, + Bu),

n

where the notation is as in section 1 and initial conditions are given by Ty = Ty =
Wo =W; =0.

From this, we obtain the following theorem.

THEOREM 8. We have for the mean of external path length and external Wiener
index of tries

E(T,,) = nlogy n + nPy(logyn) + O(logn),
E(W,,) = n?logyn + n?Py(logy n) — n? + O(nlogn),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

THE WEINER INDEX OF RANDOM DIGITAL TREES 605

where Py (z) is a one-periodic function given in the remark below. Moreover, variances
and covariances of the external path length and external Wiener index of tries are
given by

Var(T},,) = nPy(logyn) + O(1),
Cov(Ty, Wy,) = n?Py(logy n) + O(nlogn),
Var(W,,) = n°Py(log, n) + O(n?logn),

where Py(z) is again a one-periodic function given in the remark below.

Remark 10. The result about the mean of the total path length was first ob-
tained in [30]. A detailed analysis of the variance of the total path length was first
undertaken by Kirschenhofer, Prodinger, and Szpankowski [27] (see also Jacquet and
Régnier [21] for preliminary results). In Fuchs, Hwang, and Zacharovas [15], the
following expressions for the periodic functions were obtained:

Pl(Z)Zé %_log2z p2kmiz
and
Py(z) = @%@(—1 — x)eRTE,
where
Ga(w) = T(w + 1) (1 v ;‘;’3”) +2Z ‘”+l)+ Yiwsn-1).
1>1

Note that the result about the mean of the Wiener index also follows from [4].
From the previous result, we again obtain the following theorem.
THEOREM 9. We have

T —E(L) Wo—EWa)) a o
(VVar(T,) " /Var(W,)) — &%),

where X is a standard normal distributed random variable and —> denotes weak
convergence.

Remark 11. The central limit theorem for the external path length was first
proved in [21].

Internal Wiener index of tries. Here, the distributional recurrences for N,
T,, and W,, are as follows: for n > 2,

N, L Np, +N:_p +1,
Tn—TB +T — B, +NB +N —By»
W £ Wp, +W;i_p + (Np, + D)(T5_p, +Nj_p,)+ (Ni_p, +1)(Ts, + Np,),

where the notation is as for the node-wise Wiener index and initial conditions are
giVQIlbyNQZNl:T():Tl:WO:Wl:O.
Then we have the following result for mean values, variances, and covariances.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

606 MICHAEL FUCHS AND CHUNG-KUEI LEE

THEOREM 10. We have for the mean of the number of internal nodes, internal
path length, and internal Wiener indez of tries
E(N,,) = nP;(log,n) + O(1),
E(T) = n(logy n) Pi(logy n) + O(n),
E(W,) = n*(logy n) P (logy n)* + O(n?),
where Py(z) is a one-periodic function given in the remark below. Moreover, variances
and covariances of the number of internal nodes, internal path length, and internal
Wiener index of tries are given by
Var(N,,) = nPs(logy n) + O(1),
Cov(Ny, Tr,) = n(logy n) Py(logs n) + O(n),
Var(T},) = n(log, n)?Py(logy n) + O(nlogn),
Cov(N,,, W,,) = 2n?(log, n) Py (logy 1) Py (logy n) + O(n?),
Cov(Tn, W,,) = 2n%(logy n)? Py (log, n) Py (logy n) + O(n?logn),
Var(W,,) = 4n?(log, n)? Py (logy n)? Py (logy n) + O(n® log n),
where Pa(z) is again a one-periodic function given in the remark below.
Remark 12. The result for the mean of the number of internal nodes was first
proved in [30]. The variance of the number of internal nodes was first derived by

Régnier and Jacquet [45] (see also [21], [22]). In [15], the authors derived the following
expression for the periodic functions:

_ 1 2kmiz
Pi(z) = log 2 + log 2 ZXkF(L= e
k#0
and
_ 1 2kmiz
Py(z) = o2 %Gg(1 — xp)e?kmiz,
where
w? +4w+8 YT (w+ 141
Go(w) = (w+ 1IN (w) <1 — T) 22 l+ DI —1))(l(w+l+1)—1).

>1

The results for mean and variance of internal path length and covariance with the
number of internal nodes are due to Nguyen-The [40].
As before, we have a central limit theorem which now reads as follows.
THEOREM 11. We have

<Nn —E(N,) T,—E(T,) W, —E(W,)

VVar(N,,) © /Var(T,) " /Var(W,

where X is a standard normal distributed random variable and - denotes weak
convergence.

Remark 13. The central limit theorem for the number of internal nodes was first
proved in [21] and [22]. The bivariate central limit theorem for the number of internal
nodes and the internal path length was wrongly stated in [40] (the author of this work
did not observe that the covariance matrix is singular, leading to a wrong proof).

) 4 (X, X, X),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

THE WEINER INDEX OF RANDOM DIGITAL TREES 607

Wiener index of PATRICIA tries. Here, we have the following for 7}, and
W,: for n > 2,

74 Tp, +T, g +mn if B, #0or B, #n;
! T, otherwise,

S

—|—(n - Bn)(TBn + Bn) if B, # 0 or B,, # n;
W, otherwise,

Wn

where the notation is as in section 1 and Ty =Ty = Wy = W7 = 0.

Then we have the following result.

THEOREM 12. We have for the mean of the total path length and Wiener index
of PATRICIA tries

E(T,) = nlogy n + nP;(logyn) + O(logn),
E(W,,) = n?logyn + n?Py(logy n) — n? + O(nlogn),

where Py (z) is a one-periodic function given in the remark below. Moreover, variances
and covariances of the total path length and Wiener index of PATRICIA tries are given

by
Var(T,,) = nPy(log, n) + O(1),
Cov (T, W,) = n?Py(logy n) + O(nlogn),
Var(W,,) = n3Py(log, n) + O(n?logn),
where Pa(z) is again a one-periodic function given in the remark below.
Remark 14. The result for the mean of the external path length was first derived
in [30]. The result for the variance of the total path length is due to Kirschenhofer,

Prodinger, and Szpankowski [28]. In [15], the authors deduced the following expres-
sions for the period functions:

y-1 1 ki
P, — (= iz
12) = 1og3 + Togz 2o L (we

k+£0
and
1 .
P. = — —1—= 2kmiz
2(2) log 2 %Gg(Xk)e ,
where
243w+6 149
Go(w)=T(w+1) (2”+1(w+2)—%) 2w+22 w;l—j;))

>1

The latter result again implies the following bivariate central limit theorem.
THEOREM 13. We have

VVar(T,,) " /Var(W,

where X is a standard normal distributed random variable and %> denotes weak
convergence.

Remark 15. To the best of our knowledge, the result for the total path length
was first obtained by Neininger and Riischendorf in [39].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

608 MICHAEL FUCHS AND CHUNG-KUEI LEE

4. Conclusion. In this paper we investigated the Wiener index, which was pre-
viously studied for simply generated families of random trees, nonplane unlabeled
random trees, and a huge subclass of random grid trees. A notable family of random
grid trees which was left open were random digital trees. It was the main purpose of
this paper to fill this gap.

We studied the Wiener index for various types of random digital trees, namely,
random digital search trees, random bucket digital search trees, tries, and PATRI-
CIA tries, and proved (i) that moments exhibit periodic fluctuations (a phenomenon
observed for many shape parameters of digital trees), and (ii) that the Wiener in-
dex (suitably centralized and normalized) is asymptotically normally distributed. In
particular, the node-wise Wiener index was mentioned as an open problem in [35].
We solved this problem here for random digital trees. Also, we note that one further
notion of the Wiener index was treated recently by Fuchs and Lee in [16] (see also the
Ph.D. thesis of the second author [31]).

As for open problems, the most straightforward question is, what about the asym-
metric case? In fact, similar results can be proved for this case as well. We content
ourselves with briefly explaining the results and highlighting differences.

First, we consider random digital search trees. One difference for this class of
digital trees is that the Poisson-Laplace-Mellin method from [20] cannot be applied
since the method only works for symmetric digital search trees. However, one can still
apply a combination of analytic depoissonization and Mellin transform with the dis-
advantage that periodic functions in the results become less explicit. The asymptotic
expansions for the mean of total path length and Wiener index are then essentially
the same as in the symmetric case (with a different period for the periodic functions
which in addition become constant for log p/ log ¢ irrational where ¢ := 1—p). Asymp-
totic expansions for variances and covariances are slightly different since their order
increases from n* to n*logn. More precisely, we have

_ palog®(p/q)
3
1 2
Cov(Ty,, Wy) ~]%B(p/q)n? logn,
_ palog®(p/q)
3

Var(T,,) nlogn,

Var(W,,) n>logn,

where h = —plogp — qlogq is the entropy; for the result for the total path length,
see, for instance, [23]. The periodic functions (in case log p/logq is rational) are still
present but now constitute the second order terms of these expansions (again they
are constant when logp/loggq is irrational). From these expansions, we again have
Corollary 1 and Theorem 2. Moreover, these results also hold for the key-wise Wiener
index of bucket digital search trees, the external Wiener index of tries, and the Wiener
index of PATRICIA tries, where in the latter two cases, the periodic functions in the
second order term can be made explicit with the tools from [15].

Finally, for the node-wise Wiener index of bucket digital search trees and the
internal Wiener index of tries, there is no increase in the order and the asymptotic
expansions from the symmetric case also hold in the asymmetric case (again with
a different period for the periodic functions which become constant if logp/loggq is
irrational; for the result for the number of nodes and the internal path length of tries,
see [15]). Again, the result is less explicit for bucket digital search trees, but periodic
functions can be made explicit in the trie case with tools from [15].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

THE WEINER INDEX OF RANDOM DIGITAL TREES 609

Computations in all the above cases are long and cumbersome, but still doable
with the help of Maple. However, the resulting expressions would fill many pages.
This is why, in this paper, we decided to concentrate entirely on the symmetric case.

Appendix. We use the same notation for poissonized means, variances, and
covariances as in section 2. In addition, for the node-wise Wiener index of bucket
digital search trees and the internal Wiener index for tries, we denote by hi(z) the
Poisson generating function of E(V,,) and

Hy(2) = gn(2) = hu(2)” = 2hi(2)?,
Hr(2) = gr(z) = n(2) fro(2) = 2R3 (2) f1 0(2),
Hw (2) = gw (2) = hn(2) for(2) = 2hi () fg 1 (2),

where gn(z), gr(z), and gw(z) denote the Poisson generating function of E(N?2),
E(N,T,), and E(N, W,,), respectively.

Key-wise Wiener index of bucket digital search trees. We have

i (f) 9 (2) = 2fr0(2/2) + 2,

b . B _ 22
> (0)756) = 2oate/2+ G+ Dfrale/D+ 5 + 5

=0
and
g(ﬁ)?%):zwz/m iC) F)(2) . j_io(?)f%%) 2
- i () (Aot +210:7)”".
jz: C) CD(2) =2C(2/2) + (z + 2)V(2/2) + g (j) 79 (2) J_zbzo (j) F) (2)

- zb: <b) (fLO(Z)JEOJ(Z) + Zf{,o(z)f671(z))(j) ;

"B\ s - . 22 i N
> () WO (2) = 2W (2/2) + (22 +4)C(2/2) + (3 +3z+ 2) V(2/2) + 22 f] o(2/2)?
2 2
b b
cofiuem a2 (3 (0)e) 2 (X (0) e

=0 M =0

p> (?) (a2 + 25 0(20%) .

b
Jj=0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

610 MICHAEL FUCHS AND CHUNG-KUEI LEE

Node-wise Wiener index of bucket digital search trees. We have

= (b> (hr(2)? + 201 (2)?)

=0V

zb: (b> A (2) = 2Hr(2/2) + 2Hn (2/2) + (; C’) W9

J

i (; C)ﬁgﬂ*”(z)) ; () Tif%))

> (5) (a1 iote) + #7171 o(2))

S~—
~_
PR

%
)
T~
Sl
_=

— 2

o

—~

N

S~—

~_

j=0
jz: C’) VO (2) = 2V(2/2) + 4Hr(2/2) + 2Hn (2/2) + (jz: C’)) (2)) 2
£ O i

b
> (;’) A (2) = 28w (2/2) + 2H7(2/2)(h1(2/2) + 1) + 2Hx (2/2) (201 (2/2)
=0
b b
b\ 74
+ fro(z/2) + 1) + (2)
s+ (£ 0o (50
b
+ 2 J+1) J+1)
(£) (50

_i (b> (f01 +Zhl()fo 1(2))(J)
0

<.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

THE WEINER INDEX OF RANDOM DIGITAL TREES 611

b
(;)) CD(2) = 2C(2/2) + 2Hw (2/2) + 2V (2/2)(h1(2/2) + 1)

j=0
+2Hr(2/2)(3h1(2/2) + fro(2/2) +2) + 2Hn (2/2) (201 (/2)

chutmen+ (5 (0] (50 me)
(& 0m) (£)a)

- i (b> (fLO(Z)fOJ(Z) + zf{)o(z)%?l(z))(j))
0

=\

b
> C’) WO (2)= 2W (2/2)+4C(2/2) (h1(2/2)+1)+4Hw (2/2) (2h1(2/2)+ f1.0(2/2) +1)
=4 2V (2/2)Hn(2/2) + V(2/2)((2 4 2)h1(2/2)? + 4h1(2/2) + 2) + 2Hp(2/2)?
+ Hr(2/2)(8h1(2/2)? + 161 (2/2) + 42h)(2/2)? + 4hy1(2/2) f1.0(2/2)
+ 220 (2/2) f] (2/2) + 4) + AHN (2/2)* + 8Hn (2/2)h (2/2)?
+ 8Hn(2/2)Hr(2/2) + Hn(2/2)(8h1(2/2) + 420, (2/2) 4 8h1(2/2) f1.0(2/2)
+4zR(2/2) f] o(2/2) + 2f1,0(2/2)% + 4 f10(2/2) + 2] o(2/2)? + 2) + 221 (2/2)*
+22°h1(2/2) fro(2/2) + 2201 (2/2)* 1 0(2/2)?

. (jio (?) 749 (2)) 2 + 2 (jio (?) fé,jfrl)(z)) 2
-3 () (B i)

External Wiener index of tries. We have

fio(2) = 2f10(2/2) + 2 — ze™ %,
foa(2) =2f01(2/2) + 2f10(2/2) + 22/2

and

V(z) =2V (2/2) + e * (421, 0(2/2) +22f10(2/2) — 222 f1 0(2/2))
—z Z367z),

+e *(z—ze "+ 22e
o 5 '/ 3 22 . 23 .
C(z) =2C(z/2) + 2V (2/2) + e~ <zf170(z/2) + 7f{7o(2/2) - 7f{,0(2/2)
_ ~ . 3
+22f01(2/2) + 251 (2/2) - z2f671(z/2)> g (zz ~ ?) |

W(z) = 2W (z/2) + 22C(2/2) + <% + z) V(z/2) + foLO(z/Z)Q + 2z2f{70(z/2) +

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

612 MICHAEL FUCHS AND CHUNG-KUEI LEE

Internal Wiener index of tries. We have

hi(z) = 2h1(2/2) +1— e *(1 + 2),
f~170(2’) =2 ~170(Z/2) + 2?11(25/2),
for(2) = 2f01(2/2) + 2f1.0(2/2)h1(2/2) + 2h1(2/2)% + 2f1.0(2/2) + 2h1(2/2)
and

Hy(z) = 2Hn(2/2) + e (4h1(2/2) + 4zhy(2/2) — 2220, (2/2))
teF(14z—e 7 —2ze % — 2% % — 2377),
Hrp(z) = 2Hr(2/2) + 2HN(2/2) + € *(2h1(2/2) + 22h1(2/2) — 22R)(2/2)
+2f1,0(2/2) + 22 f10(2/2) — 221 4(2/2)),
V(z2) = 2V (2/2) + 4Hr(2/2) + 2HN(2/2),
Hw (2) = 2Hw (2/2) + 2Hr(2/2)(h1(2/2) + 1) + 2Hn (2/2) (21 (2/2)
+ fLo(z/Z) +1) 4 e *(2h1(2/2)% + 22h1(2/2) + 2h1(2/2) 4 22h1(2/2)
— 22hi(2/2)R)(2/2) — 2°h) (2/2) + 2h1(2/2) fro(2/2) + 22h1(2/2) f1,0(2/2)
— 22ha(2/2)f] 0(2/2) = 2°11(2/2) Fro(2/2) + 2f1,0(2/2) + 22 f1.0(2/2)
— 22 f10(2/2) + 2f0,1(2/2) + 22 fo1(2/2) — 22 5,1 (2/2)),
C(z) =2C(2/2) + 2Hw (2/2) + 2V (2/2)(h1(2/2) + 1)
+2Hr(2/2)(3h1(2/2) + f1.0(2/2) + 2) + 2Hn (2/2) (21 (2/2)
+ fro(z/2) + 1),
W(z) = 2W (2/2) + 4C(2/2)(h1(2/2) + 1) + 4Hw (2/2)(2h1(2/2) + f1,0(2/2) + 1)
+ 2V (2/2)Hn (2/2) + V(2/2)((2 + 2)h1(2/2)? + 4h1(2/2) + 2) + 2Hp(2/2)?
+ Hy(2/2)(8h1(2/2)? + 16h1(2/2) + 42k, (2/2)% + 4h1(2/2) f1.0(2/2)
+ 2201 (2/2) fl 0(2/2) + 4) + 4Hn (2/2)? + 8Hn (2/2)%h1(2/2)?
+8Hy(2/2)Hr(2/2) + Hn(2/2)(8h1(2/2) + 421 (2/2)* + 8h1(2/2) f1.0(2/2)
+4zh)(2/2
(

+ 22k, z/2

~— ~—

Fio(2/2) + 2F10(2/2)% + 4F10(2/2) + 2 o(2/2)? +2)
42221 (2/2) Fro(2/2) + 22y (222 o 2/2)7.

—_— —

Wiener index of PATRICIA tries. We have
Fio(z) = 2f10(2/2) + 2 — ze™*/2,

foa(2) =2fo1(2/2) + zf10(2/2) +

2,2

2
and

Vi(z) =2V (2/2) + e */%(22f1,0(2/2) — zzf{,O(z/Z)) +e#/? <z + %)

. +z3
e 2+

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

THE WEINER INDEX OF RANDOM DIGITAL TREES 613

C(z) = 2C(2/2) + 2V (2/2) + >/ (z Fro(/2)+ S Fro(2/2) + 5 Fi o(2/2)

2’3 ~ ~ 2;2 ~
Y 10(2/2) + 2 fo,1(2/2) — 5 6)1(2/2)) + 2%,

W(z) = 2W (2/2) +22C(2/2) + (Z— + z) V(z/2) + foLO(z/Z)Q + 2z2f{70(z/2) + 22,

2

Acknowledgments. We thank Svante Janson for pointing out Slutsky’s theorem

to us, which was the key tool for proving our central limit theorems. Moreover,
we thank one anonymous referee for Remark 5 and both referees for many helpful
suggestions. Parts of this work were done when the first author was visiting the
Institute of Statistical Sciences, Academia Sinica. He thanks the institute for its

hospitality.
REFERENCES

[1] R. AcuecH, N. LASMAR, AND H. MAHMOUD, Distances in random digital search trees, Acta
Inform., 43 (2006), pp. 243-264.

[2] R. AcuEcH, N. LASMAR, AND H. MAHMOUD, Limit distribution of distances in biased random
tries, J. Appl. Probab., 43 (2006), pp. 1-14.

[3] T. ALI KHAN AND R. NEININGER, Tail bounds for the Wiener index of random trees, in Pro-
ceedings of the 2007 Conference on the Analysis of Algorithms, Discrete Math. Theor.
Comput. Sci. Proc., 2007, pp. 279-289.

[4] C. CurIsTOPHI AND H. MAHMOUD, The oscillatory distribution of distances in random tries,
Ann. Appl. Probab., 15 (2005), pp. 1536-1564.

[5] L. DEVROYE, Universal limit laws for depths in random trees, SIAM J. Comput., 28 (1998),
pp. 409-432.

[6] L. DEVROYE AND R. NEININGER, Distances and finger search in random binary search trees,
SIAM J. Comput., 33 (2004), pp. 647-658.

[7] R. DoBROW, On the distribution of distances in recursive trees, J. Appl. Probab., 33 (1996),
pp. 749-757.

[8] A. A. DOBRYNIN, R. ENTRINGER, AND I. GUTMAN, Wiener index of trees: Theory and appli-
cations, Acta Appl. Math., 66 (2001), pp. 211-249.

[9] A. A. DOBRYNIN AND I. GUTMAN, The average Wiener index of trees and chemical trees, J.
Chem. Inf. Comput. Sci., 39 (1999), pp. 679-683.

[10] R. C. ENTRINGER, A. MEIR, J. W. MooN, AND L. A. SzEKELY, The Wiener index of trees
from certain families, Australas. J. Combin., 10 (1994), pp. 211-224.

[11] J. A. FiLL AND S. JANSON, Precise logarithmic asymptotics of the right tails of some limit
random variables for random trees, Ann. Comb., 12 (2009), pp. 403—416.

[12] P. FLAJOLET AND B. RICHMOND, Generalized digital trees and their difference-differential equa-
tions, Random Structures Algorithms, 3 (1992), pp. 305-320.

[13] P. FLAJOLET, X. GOURDON, AND P. DuMAS, Mellin transforms and asymptotics: Harmonic
sums, Theoret. Comput. Sci., 144 (1995), pp. 3-58.

[14] P. FLAJOLET AND R. SEDGEWICK, Digital search trees revisited, SIAM J. Comput., 15 (1986),
pp. 748-767.

[15] M. Fuchs, H.-K. HWANG, AND V. ZACHAROVAS, An analytic approach to the asymptotic vari-
ance of trie statistics and related structures, Theoret. Comput. Sci., 527 (2014), pp. 1-36.

[16] M. FucHs AND C.-K. LEE, A general central limit theorem for shape parameters of m-ary tries
and PATRICIA tries, Electron. J. Combin., 21 (2014), 1.68.

[17] A. Gut, Probability: A Graduate Course, Springer Texts in Statistics, Springer-Verlag, New
York, 2005.

(18] F. HUBALEK, On the variance of the internal path length of generalized digital trees: The Mellin
convolution approach, Theoret. Comput. Sci., 242 (2000), pp. 143-168.

[19] F. HUuBALEK, H.-K. HwanG, W. LEw, H. MAHMOUD, AND H. PRODINGER, A multivariate view

of random bucket digital search trees, J. Algorithms, 44 (2002), pp. 121-158.

[20] H.-K. HwaNG, M. FucHs, AND V. ZACHAROVAS, Asymptotic variance of random symmetric

digital search trees, Discrete Math. Theor. Comput. Sci., 12 (2010), pp. 103-166.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 04/04/15 to 129.93.16.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

614

MICHAEL FUCHS AND CHUNG-KUEI LEE

. JACQUET AND M. REGNIER, Normal Limiting Distribution of the Size and the External Path

Length of Tries, Technical Report RR-0827, INRIA-Rocquencourt, 1988.

. JACQUET AND M. REGNIER, Normal limiting distribution of the size of tries, in Performance

’87, North-Holland, Amsterdam, 1988, pp. 209-223.

. JACQUET AND W. SZPANKOWSKI, Asymptotic behavior of the Lempel-Ziv parsing scheme and

digital search trees, Theoret. Comput. Sci., 144 (1995), pp. 161-197.

. JACQUET AND W. SZPANKOWSKI, Analytical de-Poissonization and its applications, Theoret.

Comput. Sci., 201 (1998), pp. 1-62.

. JANSON, The Wiener index of simply generated random trees, Random Structures Algo-

rithms, 22 (2003), pp. 337-358.

. JANSON AND P. CHASSAING, The center of mass of the ISE and the Wiener index of trees,

Electron. Comm. Probab., 9 (2004), pp. 178-187.

. KIRSCHENHOFER, H. PRODINGER, AND W. SZPANKOWSKI, On the variance of the external

path length in a symmetric digital trie, Discrete Appl. Math., 25 (1989), pp. 129-143.

. KIRSCHENHOFER, H. PRODINGER, AND W. SZPANKOWSKI, On the balance properties of Pa-

tricia tries: External path length viewpoint, Theoret. Comput. Sci., 68 (1989), pp. 1-17.

. KIRSCHENHOFER, H. PRODINGER, AND W. SZPANKOWSKI, Digital search trees again revisited:

The internal path length perspective, SIAM J. Comput., 23 (1994), pp. 598-616.

. E. KNUTH, The Art of Computer Programming, Volume 3: Searching and Sorting, Addison-

Wesley, Reading, MA, 1973.

C.-K. LEE, Probabilistic Analysis of Additive Shape Parameters in Random Digital Trees,

Ph.D. thesis, National Chiao Tung University, 2014.

. MAHMOUD, Evolution of Random Search Trees, Wiley-Interscience Series in Discrete Math-

ematics and Optimization, John Wiley & Sons, New York, 1992.

. MAHMOUD AND R. NEININGER, Distribution of distances in random binary search trees,

Ann. Appl. Probab., 13 (2002), pp. 253-276.

. MEIR AND J. W. MOON, The distance between points in random trees, J. Combinatorial

Theory, 8 (1970), pp. 99-103.

. O. MUNSONIUS, On the asymptotic internal path length and the asymptotic Wiener index

of random split trees, Electron. J. Probab., 16 (2011), pp. 1020-1047.

. O. MuNsoNI1us, On tail bounds for random recursive trees, J. Appl. Probab., 49 (2012), pp.

566-581.

. O. MUNSONIUS AND L. RUSCHENDORF, Limit theorems for depths and distances in weighted

random b-ary recursive trees, J. Appl. Probab., 4 (2011)8, pp. 1060-1080.

. NEININGER, The Wiener index of random trees, Combin. Probab. Comput., 11 (2002), pp.

587-597.

. NEININGER AND L. RUSCHENDORF, A general limit theorem for recursive algorithms and

combinatorial structures, Ann. Appl. Probab., 14 (2004), pp. 378-418.

. NGUYEN-THE, Distribution de valuations sur les arbres, Ph.D. Thesis, LIX, Ecole polytech-

nique, 2003.
W. J. OLVER Asymptotics and Special Functions, Academic Press, New York, 1974.

. PANHOLZER, The distribution of the size of the ancestor-tree and of the induced spanning

subtree for random trees, Random Structures Algorithms, 25 (2004), pp. 179-207.

. PANHOLZER AND H. PRODINGER, Spanning tree size in random binary search trees, Ann.

Appl. Probab., 14 (2004), pp. 718-733.

. ParRk, H.-K. HWANG, P. NICODEME, AND W. SZPANKOWSKI, Profiles of tries, SIAM J.

Comput., 38 (2009), pp. 1821-1880.

. REGNIER AND P. JACQUET, New results on the size of tries, IEEE Trans. Inform. Theory,

35 (1989), pp. 203-205.

. SCHACHINGER, On the variance of a class of inductive valuations of data structures for

digital search, Theoret. Comput. Sci., 144 (1995), pp. 251-275.

. SCHACHINGER, Asymptotic normality of recursive algorithms via martingale difference ar-

rays, Discrete Math. Theor. Comput. Sci., 4 (2001), pp. 363-397.

. SZPANKOWSKI, Average Case Analysis of Algorithms on Sequences, Wiley-Interscience Series

in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2001.

S. G. WAGNER, A class of trees and its Wiener index, Acta Appl. Math., 91 (2006), pp. 119-132.
S. G. WAGNER, On the average Wiener index of degree-restricted trees, Australas. J. Combin.,

37 (2007), pp. 187-203.

S. WAGNER, On the Wiener indez of random trees, Discrete Math., 312 (2012), pp. 1502-1511.

H.

WIENER, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69 (1947),
pp. 17-20.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

