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Abstract. We present an efficient null space free Jacobi-Davidson method to compute the
positive eigenvalues of time harmonic Maxwell’s equations. We focus on a class of spatial discretiza-
tions that guarantee the existence of discrete vector potentials, such as Yee’s scheme and the edge
elements. During the Jacobi—Davidson iteration, the correction process is applied to the vector po-
tential instead. The correction equation is solved approximately as in the standard Jacobi-Davidson
approach. The computational cost of the transformation from the vector potential to the corrector is
negligible. As a consequence, the expanding subspace automatically stays out of the null space and
no extra projection step is needed. Numerical evidence confirms that the proposed scheme indeed
outperforms the standard and projection-based Jacobi-Davidson methods by a significant margin.
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1. Introduction. Photonic crystals are made of dielectric materials with pe-
riodic structure. The shape and permittivity of the dielectric material completely
determines the band structure of the photonic crystal. Over the past few decades,
photonic crystals with specific band structures have been of practical interest and
have been extensively studied. The governing equation for three-dimensional pho-
tonic crystals is the time harmonic Maxwell’s equations:

(1.1) V x H =iweE,
(1.2) Vx E=—iwuH,
(1.3) V-(eE)=0,

(1.4) V- (uH) =0,

where w is the frequency and ¢ = .69, ¢ = prpo. The constants ¢ = 8.854 x
10~*2 Farad/meter and po = 1.257x10~% Henry/meter represent vacuum permittivity
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and vacuum permeability, respectively. The relative permittivity e, and relative
permeability u, are dimensionless, material dependent parameters.
We can recast the Maxwell’s equations in terms of the electric field E alone:

(1.5) V x u 'V x E=\¢,E,
V. (e.E) =0,

where \ = gqpuow? is the eigenvalue. The degenerate elliptic operator V x p, 1V x is
self-adjoint and nonnegative. Since pu, and g, are material dependent and therefore
piecewise constant, (1.5) constitutes an elliptic interface problem [35, 16]. Equations
(1.5) and (1.6) need to be supplied with appropriate boundary conditions which we
will elaborate in the beginning of section 2.

Equation (1.6) serves as a constraint for the degenerate elliptic equation (1.5) and
is redundant for the nonzero eigenvalues A # 0 as a consequence of the basic identity
from calculus

(1.7) V-Vx =0.

A traditional wisdom to reflect this fact is to adopt spatial discretizations that ad-
mit discrete analogue of (1.7). This class of spatial discretizations includes the Yee’s
scheme [37], the Whitney form [7, 36], the co-volume discretization [25], the mimetic
discretization [20], and the edge element [23, 24, 28]. With this approach, the di-
vergence free constraint (1.6) is ignored and the resulting discretized system is a
generalized eigenvalue problem

(1.8) Ae = \Be,

where A is the matrix representation of the discretized V x 71V x and B is the mass
matrix.

In the unconstrained formulation (1.8), the matrix A is symmetric and non-
negative semidefinite. The major difficulty with this approach, however, is the large
null space associated with (1.5) in the absence of (1.6). This can be seen easily from
the identity

(1.9) V x V¢ = 0.

In other words, the null space of V x 71V x contains all the gradient vectors. The
discrete counterpart of (1.9) holds true for the generalized eigenvalue problem (1.8)
with the class of spatial discretizations under consideration. As a result, a huge
spurious null space arises from discarding the divergence free constraint (1.6). In
Yee’s discretization, for example, the dimension of the null space is the same as the
number of cells, constituting one third of the total degrees of freedom. This causes
severe numerical difficulties in numerical computation since in practice, we are mainly
interested in the lowest nonzero eigenvalues of (1.5), (1.6) which are now located deep
in the interior of the spectrum.

In this paper, we propose a novel numerical scheme to handle the null space
issue using a modified Jacobi-Davidson (JD) iteration. The JD method [1, 2, 3, 5,
12, 26, 31, 32] is a well-established, efficient eigensolver based on expanding subspace
iteration. In contrast to classical eigensolvers such as the inverse power method [9, 15]
and various Lanczos [2, 30] or Arnoldi methods [5], which require the shift-and-invert
technique to compute interior eigenpairs, the linear system for the corrector in the
JD iteration only needs to be solved approximately. This is the key to efficiency of
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the JD method. On the other hand, since the corrector is only solved approximately,
direct application of the JD method inevitably brings null vectors into the expanding
subspace. As a result, the efficiency of the JD method is significantly deteriorated.
The pollution of the spurious null space is common to other eigensolvers as well. The
standard remedy is to project the approximate eigenvector back to the orthogonal
complement of the null space. A well-known approach for the projection is through
the Helmholtz decomposition [1, 3, 15]. See also [9] for the approach of combining the
CG method with multigrid iteration.

In this paper, we take a different approach and propose a null space free Jacobi—
Davidson (NFJD) iteration inspired by the Poincaré lemma [10, 11, 29], whose discrete
analogue remains valid for the class of spatial discretizations under consideration:

Poincaré lemma. If v € C*(2) and V - v = 0 on a contractible
domain €2, then v =V x v for some vector potential v.
The Poincaré lemma on general domains can be found in, for example, [33, Theorem
1.5]. See also [14, Theorem 2.1] for the discrete counterpart.

Motivated by the Poincaré lemma, we will show in Theorem 2.2 the existence of
discrete vector potentials for the relevant vector fields. Instead of solving the cor-
rector directly, the novelty of our approach is to derive and solve an equation for the
vector potential of the corrector. The vector potential only needs to be solved approx-
imately as in the original Jacobi-Davidson approach. By taking the discrete curl of
the approximate vector potential, we annihilate completely the components in the null
space and obtain a good approximation of the corrector which is null vector free. As
a result, the expanding subspace automatically satisfies the divergence free constraint
(1.6). The total cost to get an approximate corrector from an approximate vector
potential is a single sparse matrix-vector multiplication. This is by far much cheaper
than any projection. Numerical experiments have confirmed that our approach ef-
fectively resolves the slow convergence issue caused by the spurious null space in the
original JD iteration. In addition, our scheme also outperforms the projection-based
method by a significant margin over a wide range of parameter regime and provides
a competitive alternative to existing schemes.

The rest of the paper is organized as follows. In section 2, we present detailed
mathematical formulations for the eigenvalue problem (1.8), including Theorem 2.2,
which characterizes the subspace spanned by the eigenvectors perpendicular to the
null space in terms of discrete vector potentials. This is the foundation of our new
scheme. The vector potential approach admits a magnetic field interpretation which
leads to an isospectral reformulation of (1.8). We then further interplay between these
equivalent formulations in section 3 and derive our NFJD method as an application
of Theorem 2.2. We also present a dual version of NFJD with the roles of electric
field and magnetic field interchanged during the iteration. In section 4, we conduct
extensive numerical comparison among the original JD method, the Helmholtz pro-
jected Jacobi-Davidson (HPJD), and NFJD to show the robustness and efficiency of
NFJD. The finite element version of our scheme is described in the appendix.

2. Background and mathematical formulation. The photonic crystals con-
sist of dielectric materials fabricated in periodic structure. The relative permittivity
g,(x) and relative permeability p,(x), as material dependent parameters, are therefore
periodic and piecewise constant. In other words,

(2.1) (€r,2, phr,2) in material 2,

er(xtay) =ce.(x), pr(x+ay)=un(x), (=123,

(er (), fir (X)) = { (€r1, phr,1)  in material 1,
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where the lattice translation vectors ay, ¢ = 1,2,3, span the primitive cell which
extends periodically to form the photonic crystal.

From Bloch’s theorem [21], the eigenfunctions of (1.5) satisfy the k-periodic
boundary condition:

(22) E(x+ag) =" *B(x), (=1,2,3,

for some vector k in the first Brillouin zone.

To apply our scheme, we will only consider a class of spatially compatible dis-
cretizations satisfying discrete analogue of (1.7). Such discretizations include Yee’s
scheme, the co-volume discretization, and the edge elements. In this paper, we only
report numerical results from Yee’s discretization due to its simplicity in implemen-
tation. In addition, it is also easier to find an efficient preconditioner for the corre-
sponding linear system.

For simplicity of presentation, we assume that the primitive cell is a unit cube
spanned by the basis vectors

(23) ap = (17070)7 az = (07170)5 az = (07071)
The corresponding first Brillouin zone is given by
(2.4) {k = (ki,ko,k3) e R*| — 7w <k; <m, j=1,23}

In Yee’s discretization for (1.1)—(1.4), the magnetic field and electric field are de-
fined on different locations. The centers of cell edges, cell faces, and cell centers are
abbreviated as

25) E=FE,UE,UE;3,
26)  Er=A{(zi gyt Fa=A{(mny1 )} s = {5 0)h
2.7) F=HUFUL,
9'—1 = {(xi,yj,%,zk,;)}, 9:2 = {(xi,%,yj,zk,%)}, 9:3 = {(xi,%,yj,%,zk)},

2

(2.9) V= {(zi,yj, )},

Wherelgngl,1§]§Ng,1§k§]\f3
We denote by Vi, Vg, and Vy the spaces of complex valued, k-periodic functions
on E, F, and V, respectively:
(2 10) VZ - {El(irlf% 3 yja Zk)7 E2($i7 y‘]f% ) Zk)? E3($i7 yja Zkfé) ‘
. Em(x + aé) _ e\/jlk'aeEm(X), m,f =12, 3} o~ CBN1N2N3’
(2 11) VT = {Fl (xia Z/r% ) Zkfé)v FQ(xifé yYjs Zk—%)v F3(xi—% ; yj—%v Zk) |
Fo(x+a/) = e‘/jlk'aan(x), n,l = 1,2,3} o 3N N2Ns

(212) Vq/ = {(I)(gpuyj7 Zk) | Q)(X + ag) — e\/jlk-agq)(x)’ (= 17 2’ 3} ~ CN1N2N3'
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The curl operator can be discretized naturally using standard centered differencing:
(2.13) VX : Vg = V.
For example, if E € Vi, then the first component of Vj, x E is given by

Es(xi,yj, 25— 1) — Es(2i, yj-1, 2 1)
ha
By (i yj_1,2k) — Eo(i,y;_ 1, 26-1)
h3 ’

(VhXE)l(JIi,y» 1 Zkfé):

J1—37

(2.14)

where hy = 1/Ny, ha = 1/Na, hg = 1/N3 are mesh sizes and N1, N2, N5 are numbers
of partitions in z, y, and z directions, respectively.
Similarly, one can define the discrete curl operator on Vg,

(215) VhX* : V}' — Vtz
with

HB(xi_%ayj+%7zk) - HB(xi—%ayj—%azk)
ha
Ho(x;_ 1,95, 26 1) — Ha(2- 1,95, 2 1)
h3

(Vi X" H)1 (1,5, 2k) =

(2.16) -

and so on, as well as the discrete divergence operator on Vg,

(2.17) —V5 Ve s Vg,

Ev(ziy 1,95, 26) — Er(xi 1,50 %)

(_VZE)(TM Yj, Zk) =

hy
n EQ(xia y_]+%7zk) - EQ(xivyjféazk)
ha
E3(xi, Y5, 211) — Es(@i, Y5, 21— 1)
(2.18) n J> Zlet-3 s 2
hs3
One can show that —V7} is indeed the adjoint of —V,, where the discrete gradient
V1, is given by
(2.19) Vi : Vo Vi,
P(x;, vy, 2) — Plxi—1,Y4, 2
(2.20) (Vh¢)1(xi,%,yj,zk) _ (@i, Yj, ) " (Ti—1,Y; k)’

and similarly for (V5 ®)2 (i, y;_1,2k) and (Va®)3(wi, 5, 25 1)-

Even though (2.18) is a natural finite difference interpretation of discrete diver-
gence operator on Vg, we have adopted —V7; instead of the usual notation Vj- so
that the notation is consistent with that of the edge element discretization detailed
in Appendix A. In the latter case, the divergence free constraint can only be realized
through the adjoint of the gradient operator.
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The crucial identity
(2.21) —V;, Vpx* =0,

a discrete analogue of the identity (1.7), follows from straightforward calculation. The
resulting generalized eigenvalue problem can be written as

(2.22) Vi X* p w Vi x E= e, nE, E €V,

where e, @ Ve = Vg and pu,. ,11 : V¢ — Vg represent (multiplication by) numerical
approximations of &, and p, !, respectively. Both V;x* and Vj, x are discrete ap-
proximations of the curl operator Vx; they act on different spaces and are adjoint to
each other. See Lemma 2.1 below.

For E,U € V; and F, H € V;, we denote by (-, )¢ and (-, )¢ the standard inner
products on Vg and Vg, respectively:

N1 N2 Ns
(E,U)z = hihahs Z Z Z ((ElUl)z;%,ch + (E2U2);j 1+ (E3U3)7;7j,]€7%)7
i=1 j=1 k=1
(2.23)
Ni Ny Ns
(F H)y = hahohs Y3 ((FiH) oy 0my
i=1 j=1 k=1
(2.24) + (FQHQ)F%%I@*% + (FSHB)i—%,j—%,k)-

The following lemma explains the notation used for the two discrete curl operators in
(2.16), (2.14) and is crucial to the development of our scheme.
LemMA 2.1. IfU, V € Vg, then

(2.25) (U, Vi X Vi x Vg = (Vo x U, i, 3 Vi x V) g
Proof. 1t suffices to show that
(2.26) (U, Vp x"Hyy =V, xU,H)y forallU € Vg, H € Vy.

This follows from the summation by parts identity and the k-periodic boundary con-
dition. To see this, we denote by W =V, x* H € Vz. We have

<U, Vh X* H>z = <U, W)'E
N; N5 Ng

= hihahs Z Z Z ((Ulwl)i—%,]’,k + (UQWQ)i,j—%,k + (U3W3)i,j,k—%)

i=1 j=1 k=1

(2.27) = hihohs(I1 + Iz + I3),

where

N; N2 N3 . . — . .
I T Hyiyjryn —Haigj-in
1= Li=} .5k 5
i=1 j=1 k=1 2
Hyiyjrry ~Hoiogjn-y )

)

(2.28) - P
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and I, I3 are defined similarly. The first term in I; can be rearranged as

(2.29)
N1 N3 N2 H3 177

)R I

i=1 k=1 j=1

Ni Ns /77 77
A= (Unictak U, i—dgk Ul,i—%,j—l,k
B DD D et @@HZ Hyi oy 1n

i=1 k=1

2

Ul 7,7* ]\727 H
- 7@ 3,i—%,Nat+3 .k

N1 Ng 17
Usimyik Ul,i—%,j—m

Yy

i=1 k=1 j=1

where in the last equality we have used

_ V—1k> N1k
(2.30) Ul,F%JVz,k =e U17z‘—§,07kv H3,i7%7N2+%7k =€ H3 i— ko

1
2727

which follows from the k-periodic boundary conditions (2.2), (2.3) imposed on U and
H. The second term in I; can be treated similarly. Overall, we have

N1 N2 N3 _TI7
ZZZ Ul =34,k Ul,i—%,j—l,kH
ho 3i—%.j—3%.k

i=1 j=1 k=1

U1 i—%,5.k —qul j
(2:31) + iy |

and similarly

AENEAE R U21j—lk UQZJ—— k—1
R 3 B T
i=1 j=1 k=1
U2,17] ik~ U27z 1,j— k
(2.32) + 2 hl H3,i—773 &>

N1 N2 N3 T7 _T7
Yy (- Us,ijh—3 = Usi—1jk—1 "o
= W 2,01 j k-1

i=1 j=1k=1

Iy Ligj—}.h—3

Consequently, (2.26) follows from (2.27), (2.31), (2.32), and (2.33). o

From Lemma 2.1, the operator V; x* u;_,llvhx is self-adjoint on Vg and
semidefinite. In addition, the operator e, ;- is positive definite. It follows that the
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eigenvalues in (2.22) are real and nonnegative. The eigenvectors constitute a basis in
Vs and are orthogonal with respect to the inner product induced by &, p:

N1 N3 Ns

(B,U)zc,, =hihahs» > > ((Elar,hUl)i—%,j7k

i=1 j=1k=1

(234) + (EQST’}IUQ)Z"]-,%J~C + (E3ET,hU3)i7j,k7%) .

We therefore have the following eigendecomposition:

(2.35) Vi = ker(V), x) @ ker(Vj, x) =,

where

(2:36) ker(Vx) = ker (Vi x* i} Vp x ) = {V € Vi, V), x V = 0}
and

ker(Vyx)"rn ={U € V; | (U, V)., =0, ¥V € ker(V;,x)}

(2.37) .
= Span{V; € Vi | Vi X" 1, Vi X Vi = Ajern Vi, Aj > 0}

The following main theorem is the foundation of our null space free algorithm.
THEOREM 2.2. U € ker(th)J‘Eth if and only if e, ) U =V, x* /‘r_,}le for some

discrete vector potential U e V.

Proof. Denote by (A;,V;) the eigenpairs of the generalized eigenvalue problem
(2.22).

Suppose that U € ker(th)lEnh; then there exist constants a; such that U =
25,5025 Vj. Thus

ernlU =crn > a;Vi= > a;Vix ) VaxA; 'V,
A; >0 A; >0
(2.38) =V x* (u;,ll Z a; Vi x /\j_lv}) =V x* Mr_,;llﬁa
A >0
where U = > ajVy X (/\;1Vj) € Vy.
A; >0

Conversely, we suppose that e, ,U = Vj x* u;}lﬁ with U € V. Then for any
V € ker(Vy,x), we have

(2.39) (U, V)se,, = (ernU, Ve = (Vi x* p U, Ve = (u, 1U, Vi x V) = 0.

Thus U € ker(th)lEM, completing the proof. O
The matrix representation of the discrete curl operator Vi x : V¢ +— Vg is given by

-1 1 .
0 h_dKS h—zdlag (KQ,...,KQ)
C= L, 0 _—ldiag(Kh...,Kl) e 3NN
hs hi
-1 1
—diag (Ka,...,Ks) —diag (Kq,...,K) 0
ho ha

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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where
[ 1 _e*\/jlkl
—1 1
(240&) Kl = ) ) c CN1><N17
I -1 1
— I[Nl _e—\/jleHNl
(240b) Ky = i v, c C(N1N2)><(N1N2)’
L _I[N1 I[Nl
i ]INl X Na —8_\/__1k3HN1><N2 T
—Inyxny  Inyxv,
(240(}) Kg = c CNXN’
L _I[N1><N2 ]IN1><N2 J

and N = N1N2N3.
The matrix representation of (2.22) is thus

(2.41) Ae = A\Be,

where A = C*BC. The diagonal matrices B and B represent multiplication by e, p(x)
for x € £ and multiplication by u, - ,1I(X) for x € F, respectively.

Before we proceed, we briefly summarize our notation for the reader’s convenience.

(a) Hatted uppercase boldface characters denote discrete vector potentials of el-
ements in Vz. The latter are denoted by (nonhatted) uppercase boldface
characters. For example, Ve V¢ is a vector potential of V' € Vi with
Vi x* ,LLT_),ll‘/} =¢e V.

(b) Lowercase boldface characters denote the column vector representation of
corresponding elements in Vg or V. For example, both T' € V; and T e Vi
have three components, each of them being an N1 x N3 x N3 array, while £ and
t are 3N, Na N3 x 1 column vector representation of T and T', respectively.

(c¢) Uppercase blackboard bold characters such as A, B, I denote matrices of
varying dimensions.

3. JD method, Helmholtz projection, and vector potential. The JD
method [32] is a subspace iteration algorithm for large sparse eigenvalue problems
and has been proved successful in many practical applications such as various quan-
tum dot models [17, 18, 19, 34].

The major advantage of the JD method for general eigenvalue problem is that the
correction equation only needs to be solved approximately. However, this advantage
becomes a drawback for (2.22) as the correcting procedure inevitably brings null space
components into the expanding subspace, causing slow convergence.

A simple remedy is to project out the null space components by means of the
Helmholtz decomposition. The Helmholtz projection has been applied in conjunction
with both the inverse power iteration [15] and the JD iteration [3] and obtained decent
convergence rate. However, there is an essential difference in the two projection-based
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approaches. While inverse power iteration requires accurate Helmholtz projection in
order to maintain accuracy of the numerical eigenpairs, the JD method seems to
be quite sensitive to inexact projections and therefore much more demanding on
the accuracy of the Helmholtz projection step. We found that for the Helmholtz
projected JD method to work properly, the projection step needs to be solved much
more accurately than the generalized eigenvalue problem (2.22) itself. More detailed,
quantitative demonstration of this assertion can be found in section 4.

In contrast, our remedy to the spurious null space components is to initialize and
expand the approximating subspace in terms of the discrete vector potential given in
Theorem 2.2. Instead of solving the correction equation directly, we lift the correc-
tion equation and the approximate solver to the vector potential level. The vector
potential version of the correction equation is similar to the original one. As in the
original JD method, the vector potential only needs to be solved approximately. An
approximate corrector is then obtained by taking the discrete curl of the approximate
vector potential. The null space components are then annihilated completely to ma-
chine accuracy at the expense of a single sparse matrix multiplication. As a result, in
our vector potential based algorithm, the approximating subspace remains null space
free throughout the iteration.

In this section, we first review the original JD method and HPJD method and
then introduce our NFJD method. A detailed numerical comparison of these methods
will be given in section 4. Our numerical experiment confirms that the vector potential
approach indeed yields superior performance against original and projection-based JD
methods.

3.1. JD method. The JD method for the generalized eigenvalue problem (2.22)
consists of the following steps:

1. To compute the ith eigenpair (\;, F;), one initializes a subspace V; :=
Span{ E1,..., E,_1,V1} C Vi, where E;y,...,E; 1, i > 2, are previously
computed eigenvectors corresponding to eigenvalues Ay, ..., \j_1.

2. For k=1,2,3,..., do

(i) Find 8 € R\ {A1,...,\i—1 } nearest to the target and U € V, with
|U|,., =1 such that

(31) (Vi X"y Vi x —02,,)U, V) =0 forall VeV

Denote by (0, Uy) the solution to (3.1).
(ii) Set

(3.2) Ry = (Vh x* u;ivh X — 0k5r,h)Uk-
(iii) If || Ry |« is less than a prescribed tolerance, then (6, Uy) is accepted
as an eigenpair. Output (\;, E;) = (0, Uy). Stop.

Else, solve approximately for T' from
(3.3)

(I = ernUr @ Ug) (Vi X" 11,3, Vi X =01erp) (1= Uy @ (e,,0U)) T = — Ry,

T 1., U,

where - U @ V)W :=W — (V, W), U.
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Orthonormalize T against Vj, with respect to the inner product (-, )z, ,
to get V1.
Expand Vi1 := Span{ Vi, Vi41 }.

The implementation detail is summarized as Algorithm 1 in matrix-vector notation.

ALGORITHM 1. JD AND HPJD METHODS. Additional projection steps in HPJD
are marked by double parentheses.
SetEoz[],A(J:@.
for i =1,2,3,...,imax do
Initialize a vector vy with ||v1|s =1, ((Prv1 = v1)) and E;_;Bv; = 0.
Set Vl = [Ei_l,vl].
Compute W; = VTAV;.
for k=1,2,3,...do
(i) Compute all the eigenpairs of (W, —61)s = 0.
Select the desired eigenpair (6, si) with 0 ¢ A;_1 nearest to the
target and ||sk|l2 = 1.
(ii) Compute uy = Visg, 7 = (A — 0B)uy.
(iii) if ||rgll2 < Typ then
Output \; = 0, €; = uy.
Update E; = [Eifl, ei], A=A, U {/\1}
Exit k.
else
Solve (approximately)
(I —Bupuy)(A — 0iB)(I — upu;B)t = —ry, t Lguyg.

t
((Apply Helmholtz projection: t «— Py (P—t) ) )
t— 3 (viBt)v,

. .
[t =301 (v;Bt)ve|ls
Wk VZA'UIC—H
V1 AVE U AV

B-orthonormalize t against Vi: vg41 =

Expand Vi1 = [Vi, vpq1], Wepr = [

end if
end for k
end for ¢

The main computational cost in the original JD method is in step (iii), where the
correction equation

(34) (H — IB%ukuZ)(A — OkIB%)(]I - ukuZIB%)t = —Tg, t J_]B g,
is solved by standard iterative methods such as GMRES with a preconditioner [32],
(3.5) M, := (I — Bupuj,)M(I — upuiB),

where M is a preconditioner for (A — 0;B). In jth iteration of the linear solver, one
solves for z(7) from

(3.6) Mpz(j) =y, 200 1guy,.
The solution to (3.6) is given by
uZIB%M_ly(j)

) =10, -1 ) _
(3.7) 20) = M1y @ — (UM 'Buy, where Q(J)_m.
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Remark 3.1. The correction equation (3.3) is equivalent to

(Vh x* ,u;,llvh X — 0]467,7}1)'11 =—R; + Ufr,hUk
(3.8) = —(Va X" p, Vi X — Ok n) U + nernUs,

where 1 = <£T,hUk, (Vh x* u;,llvh X - Hkgrlh)flgrth@;. If (3.3) were solved
accurately, then one would have T = %g;}lvh x* (u;ivh x (T + Uk)) — %Uk S

ker(Vp X)l”wh . In other words, the corrector T' and hence the approximating subspace
‘V;.CH would remain null vectors free. However, the same should not be expected when
(3.3) is only solved approximately as in the original JD method (3.5)-(3.7). Under
such circumstances, null vectors are inevitably introduced into ;.1 to deteriorate
the overall performance.

3.2. HPJD method. To overcome the slowing down caused by the null space, a
standard approach is to remove the null space components by means of Helmholtz de-
composition. An approximate solution ¢ of (3.4) is postprocessed with the Helmholtz
projection before it is appended to the expanding subspace:

t t
(3.9) t+— Pp (—) = (I - G(G*BG)"'G*B (—)
) = N\l
Here G is the matrix representation of the discrete gradient Vy, : Vo +— Vi, and —G*
is precisely the matrix representation of the discrete divergence operator (2.18).
The Helmholtz projection (3.9) requires solving an elliptic equation

(3.10) _G*BG ¢ = —G*B(L>
2]l

for each vector appended to the expanding subspace. The combination of the JD
method and Helmholtz projection has been proposed in the literature [15]. In ad-
dition to a linear solver and preconditioner for the correction equation (3.4), the
Helmholtz projection (3.9) also requires an efficient Poisson solver and preconditioner
for (3.10). The overall performance of HPJD depends on the solver/preconditioner
selected for the correction equation and the Poisson equation. Although solving the
Poisson equation (3.10) is straightforward and much easier compared to solving the
correction equation (3.4), the load balance between the Poisson equation (3.10) and
the correction equation (3.4) is somewhat delicate. We will elaborate this issue in
section 4. Both standard JD and HPJD methods are summarized in Algorithm 1.

3.3. Discrete vector potential and the NFJD method. Instead of the
Helmholtz projection, we propose an alternative approach by vector potential for-
mulation in order to filter out the null space components. The novelty of our scheme
is to derive and solve a new correction equation satisfied by the vector potential. The
vector potential T' only needs to be solved approximately as in the original JD method.
An approximate corrector for (3.3) is then obtained by taking T := g;;vh x* u;_,llT.

3.3.1. Vector potential approach for the correction equation (step (iii)).
We first explain how to derive a new correction equation for the vector potential. This
procedure can be illustrated, for example, by the evaluation of M~ 1Buy in (3.7), or
equivalently by getting an approximate solution of

(3.11) (Vh x* ur_’ivh X —ekET’h)Q = Er,hUk~
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By construction, Uy, € ker(V},x)**rn . Therefore from Theorem 2.2, we have
(3.12) ernUi = Vi x* iy Uy
We seek a solution to (3.11) of the form
(3.13) ernQ = Vi x* 11 Q.
Substituting (3.12), (3.13) into (3.11), we have
(3.14) Vi X" (it X e b Vi X i b = O 1)Q = Vi x* i Uk
Instead of solving (3.11) directly, we propose to solve for the vector potential
(8.15) (Vi % €, Vi <" = Oui 1) Q = i1, U,
or equivalently

(3.16) (Vi x e, 1 Vi X" =Oupinn) (1,Q) = Uk,

then take @ = s;;vh x* u;}l@ as an approximate solution of (3.11) which lies in

ker(Vj, x )=rn automatically.

The same idea can be used to derive an equation for the vector potential of the
corrector. We now elaborate the procedure in matrix notation. From Theorem 2.2,
we have

(3.17) u, =B 'C*Buy, t=B 'C'Bt.
We now substitute (3.17) into the correction equation
(3.18) (I —Bugui)(A — 05B)(I — upuiB)t = —ry, t Lp uy.
The left-hand side of (3.18) becomes
(I — Bugu;)(A — 0iB)(I — upu;B)t
= (I - C*Bai,u,BCB~1)(C*BC — 6,B)B~'C*B(I — @, u,BCB~'C*B)t
= (I — C*Bu, 4 BCBH)C*(BCB'C*B — 6,B)(I — GruA)t
= C*(I — BupaAB ") (A — 6,B)(I — upa A,
where A = BCB~'C*B. The right-hand side of (3.18) reduces to
(3.19) 7 = (A — 6;B)uy, = (C*BCB'C*B — 6,C*B)ay), = C*(A — 0;B)uy, := C*7y,

which implies that

(3.20) C* (1 - Bayuj AB™1)(A — 04B) (1 — At + 7) = 0,
where
(3.21) 7r = (A — 0,B) .

It suffices to solve

(3.22) (I — Ba,ay AB~") (A — 6,B)(I — wrtifA)t = —7%
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under the original constraint ¢ L wg. From (3.17), it follows that
(3.23) t*Buy =t BCB'BB~'C*B iy, = ¢ Aty

Thus the condition ¢ 1g u; now translates to tAJ_& Uy, and the correction equation
for the vector potential is given by

(3.24) (I - BayapAB ) (A — 6,B)(1 — GpafA)t = —7, € L; Gy

The solution procedure for (3.24) remains the same. One solves it iteratively with
a preconditioner similar to the one given in (3.5):

(3.25) M, := (I — Buyaj AB~")M(I — @A),

where M is a preconditioner for (1& - Gk@).
In jth GMRES iteration, one solves for

(3.26) M,z9 =g GrAz? —o.
A solution to (3.26) is therefore given by

(3.27) 20 = Mg — (OM 'Bag, where (O = M.
u;, AM~1Buy

Note that if £ is an approximate solution of (3.24), then the transformation (3.17) gives
rise to an approximate solution of (3.18) which lies in ker(Vj x )~ automatically.
The only difference between NFJD and HPJD is how an approximate solution to
(3.18) (that lies in ker(Vj,x ) *rn) is obtained. A more detailed comparison between
NFJD and HPJD can be found in section 4.

For the purpose of implementation, it is more convenient to work with the vector
potential variables. We now express the rest of the steps in Algorithm 1 in terms
of the vector potential. The B-orthonormalization for the corrector in step (iii) of
Algorithm 1,

t— 3, (viBt)ve

(3.28) V1 = % )
[t = > 01 (v;Bt)ve|

can now be recast to

— ey k kTN A
(3.29) B0 5y, = B C B~ Y (0rAL)D)
[t — 34— (viBt)ve|m

We can therefore express the orthogonalization procedure in terms of vector potentials
and A as

-0 (@ADT,  t- Y, (0,AD)D,

(330) 'EkJrl = % - k ~k T\ ’
It — Zezl(v?Bt)W”B |t - 22:1("751“)”2‘,&

where we have adopted the notation

(3.31) 2]; = (2"A2)% = (Z*BCB'C*B2): = |B~'C*BZ|s.
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3.3.2. Isospectral reformulation and the subspace eigenvalue problem
(step (i)). It remains to formulate the subspace eigenvalue problem in terms of vector
potentials. This can be done by retaining step (i) in Algorithm 1 and substituting
v =B"1C*B% to get

(3.32)
(Wk — Gk]I)sk = 0,
Wi)em = viAv,, = ’;}\*BCB_lC*BCB_lC*B'Em = E*AB_lA’;}\m; ’l/l\,k = Visg.
14 4 4

The subspace eigenvalue problem (3.32) amounts to the following:
(SEP-1) Find uj, € Range(Vy), 0 > 0, nearest to the target such
that

(B~'C*B9)* (A — 6;B)(B~'C*Baiy) = 0 for all & € Range(Vy).

This is essentially identical to standard approximation of the original pencil (A, B) on
the subspace Vi, except the subspace now takes the particular form Vj; = ]E%_lc*@@k
and remains perpendicular to the null space.

There is an alternative approach to formulate the subspace eigenvalue problem
in terms of the vector potential. Recall from (3.19) and (3.21) that (6, B~ 'CBuy)
is an approximate eigenpair of the pencil (A,B) with residual r; = (A — 0iB)uy,
provided that (6, uy) is an approximate eigenpair of the pencil (1&, IE%) with residual
;’\k = (1& — Gk@)ak and T = (C*’;’\k

In fact, it is not difficult to verify that the two pencils (A,B) = (C*BC,B) and
(1&,@) = (@CB’lc*@,@) have identical spectrum. This is not surprising since the
eigenvalue problem Ae = ABe, or equivalently

(3.33) CB~'C*h = \B™'h,

is nothing but the matrix representation of the Maxwell’s equations (1.1)—(1.4) written
in terms of the magnetic field H:

(3.34) Vi X e,V x* H = A p H.

In view of this, we now have another formulation for the subspace eigenvalue
problem: R
(SEP-2) Find u;, € Range(Vy), 0; > 0 nearest to the target such
that

5" (A — 6;B)dy, = 0, for all & € Range(Vy).

Or, in matrix notation (recall the normalization 'T)Z‘&'T)m = O;m In step (iii)),
(3.35) (]I — Gkik)sk = 0, (Zk)gm = ’l/)\z@ﬁm, ﬁk = @ksk.

Even though the pencils (A,B) and (1&,@) are isospectral, their subspace ap-
proximations (SEP-1) and (SEP-2) are generally different and correspond to the
pencils (V;AB~'AVy, ViAV,) and (ViAVy, ViBV,), respectively. The @y, selected
from (SEP-1) or (SEP-2) is implicitly processed to get an approximate eigenpair
(O, ur) = (0x, B~1C*Buy) for the pencil (A,B). Similar to A, the matrix A also
possesses a huge null space consisting of those © such that C*Bv = 0. When the
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selected @y, lies very close to ker(A), the corresponding (6x, ug) is no longer a good
approximate eigenpair for (A,B). In this situation, d; =~ 0 and the dominant part of
Uy (the ker(,&) component) is completely wiped out upon multiplication by B-1C*B.
The remaining components in ker(/&)l@ are therefore amplified to get an essentially
random vector u; = IB%’l(C*IE%ﬁk in ker(A)**. To prevent this from happening, we
have set up a threshold in the selection of the nearest-to-target approximate eigen-
value for (SEP-2). More precisely, we select the smallest 6 such that 6 > 6. > 0
in (SEP-2). The threshold value 6. and other parameters are detailed in section 4.
On the other hand, a threshold is not needed for (SEP-1) since it also corresponds
to a subspace eigenvalue problem for the pencil (,&@_11&,?&) The above mentioned
scenario (0 = 0, with 4y very close to ker(A)) does not occur. We simply choose the
smallest § > 0 for (SEP-1).

In view of (3.32) and (3.35), it is obvious that the magnetic field approach (SEP-2)
requires fewer arithmetic operations in forming the subspace matrix (W, vs Zk) We
have implemented both versions and found that (SEP-2) with the threshold indeed
prevails under otherwise identical settings and they both outperform HPJD.

Note, however, that setting up a threshold does not help in the original JD method
(that is, without Helmholtz projection). In general, JD with the same threshold per-
forms worse than the original JD and frequently fails to converge.

We summarize the NFJD method using the magnetic field subspace eigenvalue
problem (SEP-2) as Algorithm 2. A detailed comparison between HPJD and NFJD
will be given in section 4.

3.3.3. Stopping tolerance, error bounds, and variant of NFJD. In NFJD,
even though the actual working variables are the vector potentials (or magnetic field
vectors), the underlying eigenvalue problem remains the original one for the electric
field, namely, Ae = ABe. An error bound for the computed eigenpair follows from
the standard estimate [27]:

(sin Z(er, eXP9P) < LI Pller 1 BT ol R,
1y &4 — Vi ”eli\IFJDHIB - ~i ”e%\IFJDHIB )
(IPNEID oy 1| NFID| sy 2
(3.36) A = AFTIP <m1n( _( )
7 7 He%\IFJDHB 7')/1' ||6£-\IF']DHIB
<min(|||Bl|"2|rNFJD|2 i(|||Bll||2|rNFJD|2)2>
N |eNFID|p T, [eNFID [ )
where
u*Bv 2
3.37 sin/w(u.v) =1/1—- | ———MM— _min I\, — ANFID|
o | . v) \/ <|U|IB|'U|IB> ’ i qué,\qv,' i A

Since rNFID = C*7, where »NFIP = (A — OB)u, 7 = (;AS — 01@%)'&, the stopping
criterion ||7]|2 < Tnpyp implies

(3.38) PNy = [|[CF] < IC*l2l|7]l2 < IC*l2 TFsD

with

111 1 1 1
3.39 C*ly < VICTLIC [ = 2 SR R
(3.39) IC*12 < VT IC] max{ e Tt hl}
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ALGORITHM 2. NFJD METHOD. Primary working variables (hatted vectors) are
in Vs and output eigenvectors are in V.

SetIEQZ[],A():@.
for i =1,2,3,...,imax dO L
Initialize a vector potential ¥; with |v;|; = 1 and Ej | Av; = 0.
Set @1 = [Eifl,ﬁl].
Compute Zl = @*{@@1
for k=1,2,3,...do N
(i) Compute all the eigenpairs of (I — 6Z)s = 0.
Select the desired eigenpair (6, si) with 0 ¢ A;_1 nearest to the
target and ||sk|l2 = 1.
(11) Compute Uy, = @’ksk, L= (1& — Gk@)ﬁk
(iii) if (H;’\k”Q < TNFJD) then R
Output \; = 0, and e; = B~'C*Buy.
Update E; = []Ei—l, ﬁk], A=A, U {/\z}
Exit k.
else
Solve (approximately)
(]I — @ﬁkﬁ]tj&@fl)(& — 6‘;.;@)(]1 — ﬁkﬁz&)i\: —7/“\]@, EJ_& ﬁk
t— >0, (AT,
|t — 0, (A0
Zy  ViBorn
Vp 1BV gy BO

A-orthonormalize t against Vi: Opiq =

Expand Vi1 = [Vi, Op11], Zi1 =

end if
end for k
end for ¢

Upon convergence, an approximate eigenvector e is obtained by taking eN"/P =

]E%*l(C*IﬁBﬁ, which is B-normalized as in standard JD and HPJD computation:

u =

(3.40) 1€¥ Pz = [lulls = [IB™'C*Balls = |ul; = 1.

An error bound like (3.36) applies equally to JD and HPJD. In view of (3.38)
and (3.40), it follows that for NFJD to give comparable accuracy with JD or HPJD
computation, it suffices to take 7jp = ||C*||a7xrsp. This is the basis of our numerical
comparison. See section 4 for details.

With the magnetic field interpretation for NFJD, an alternative null space free ap-
proach emerges naturally. First observe that a slight change in step (iii) of Algorithm
2, from “Output \; = 6}, and e; = B~'C*Bau,,” to “Output \; = §), and h; = Bay,”
results in a (null space free) numerical scheme for the magnetic field eigenvalue prob-
lem (3.33). Alternatively, one could start with the JD method for (3.33) instead and
then apply a similar derivation as in NFJD. This approach is dual to NFJD with
the roles of electric field vectors and magnetic field vectors interchanged during the
iteration. In this new scheme, denoted as NFJD*, both the primary working variables
and output eigenvectors are the electric field vectors. The magnetic field vectors (i.e.,
the vector potentials) only appear as auxiliary variables in the derivation. We omit
the details and summarize the result in Algorithm 3.
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ALGORITHM 3. NFJD*: DUAL VERSION OF JD METHOD FOR MAXWELL'S
EQUATIONS. Primary working variables and output eigenvectors are both in V.
Set]E():[],AQ:@.
fori=1,2,3,...,imax do
Initialize a vector v; with |v1]a =1 and E} ;Av; = 0.
Set Vl = [Eifl,vl].
Compute Z; = ViBV;.
for k=1,2,3,...do
(i) Compute all the eigenpairs of (I — 0Z;)s = 0.
Select the desired eigenpair (6, s;) with 0 ¢ A;_1 nearest to the
target and | sgll2 = 1.
kSk
[Visklle’
(iii) if H’I”kHQ < 7nrJD* then
Output \; = 0, €; = uy.
Update E; = [Eifl, ei], A=A, U {/\1}
Exit k.
else
Solve (approximately)
(I— Buku,’;AIB%*l)(A —0,B)(I — ukuZA)t =—rg, t L ug.
t— 3, (viAt)ve
[t — 3, (v At)vla
Zk VZB'U]@JFl
v,’;HIB%Vk vZHkaH

(ii) Compute uj, = i = (A — 0B)uy.

A-orthonormalize t against Vi: vg1 =

Expand Vk—H = [Vk,vk+1], Zk+1 =

end if
end for k
end for ¢

The major difference between NFJD and NFJD* lies in the routine matrix-vector
multiplication. Namely, Av = IB%CIB%_l(AC*IB%'T) in NFJD versus Av = C*BCv in NFJD".
For Yee’s discretization, both B and B are diagonal matrices (with p,, =1, B =T in
most applications). The difference between NFJD and NFJD”* is insignificant. In the
finite element case, the mass matrices B and B are sparse and banded. In addition,
multiplication by A in NFJD requires solving a linear system Bv = ¢ and is more
expensive than NFJD*. In Appendix A, we will give a brief derivation for the finite
element version of NFJD*.

4. Numerical tests. Our numerical tests are based on the benchmark example
shown in Figure 1, where the periodic dielectric structure within a primitive cubic
cell is depicted. The structure consists of dielectric spheres with radius r connected
by circular cylinders with radius s. Here r/a = 0.345, s/a = 0.11, and «a is the edge
length of the cube. Inside the structure is the dielectric material with permittivity
contrast £,i/er0 = 13 and ;i = pir,o = 1 (corresponding to B = I).

Figure 2 shows the plot of w = av/A/(27) versus sample points k in the first
Brillouin zone for the benchmark problem computed using NFJD with N; = Ny =
N3 = 100. The smallest nonzero eigenvalues are calculated for 40 sample points k
distributed along the segments connecting I' = (0,0,0), X = (7,0,0), M = («, =, 0),
R = (m,7,m), and back to I" in the first Brillouin zone. A clear band gap lies between
the fifth and sixth smallest positive eigenvalues.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/22/15 to 128.122.253.212. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

NULL SPACE FREE JACOBI-DAVIDSON ITERATION A19

Fia. 1. The periodic dielectric structure within a primitive cell. Inside: dielectric material.
Outside: air. Here r/a = 0.345, s/a = 0.11, and e, ;/er,o = 13.

As a preliminary test, we summarize the result with various grid resolutions in
Table 1. Here wioy,, denotes the maximum of the fifth eigenvalue, wy, the minimum
of the sixth eigenvalue, and

Wyp — Wlow

"ng = —(U}up T wlow)/2 .

The result shows clear convergence and agrees well with those reported in the litera-
ture [6, 9].

To further illustrate the accuracy and efficiency of NFJD, we have devised several
numerical experiments for JD, HPJD, and NFJD in various settings. In the following
tests, all examples are computed using 100? cells with the initial vector obtained from
interpolating the ground state of 503 calculation. All computations are conducted
under identical settings for JD, HPJD, and NFJD, except the tolerances are scaled
according to (3.38) and (3.39),

(41) TNFJD — TJD/400.

The fast Fourier transform (FFT) is used as a preconditioner for (3.10), (3.18), and
(3.24). More precisely, we take

(4.2) M = (C*C — 651), M = (5 'CC* — 61),

-1

T o
G*G as the preconditioner for the Poisson equation (3.10). The matrices M, M, and
G*G are all FFT-invertible. Since both the correction equations and their precondi-
tioners are highly indefinite (with about one third of eigenvalues being negative), we

where & and ;! are spatial averages of &, and £ !, respectively. Similarly, we use
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F1G. 2. Band structure computed with 100 x 100 x 100 grid.

TABLE 1
The computed gap-midgap ratio with various grid sizes.

grids 50 x 50 x 50 100 x 100 x 100 200 x 200 x 200

Wlow 0.41785 0.41789 0.41782
Wup 0.48023 0.48079 0.48096
Ygm 0.1389 0.1400 0.1405

adopt GMRES as the linear solver for (3.18), (3.24), and PCG as the linear solver for

~

(3.10), in conjunction with the preconditioners M, M, and G*G. All numerical tests
are performed on a PC equipped with an Intel Q9550 2.83-GHz processor and 16 GB
main memory using Intel Fortran compiler version 11.1.

We start with investigating the effect of the null space on the original JD method.

Ezxample 4.1. Standard JD and dragging effect of the null space. Figure 3 shows
a typical convergence history of the Ritz value and the residual for the first two
eigenvalues in standard JD. The computed Ritz value 6;’s are constantly dragged
toward zero during the subspace iteration. This effect of dragging is also reflected in
the convergence history of the residual. Without further treatment on the null space,
a significant portion of the CPU time in standard JD is wasted in producing dragged
Ritz values and the resulting scheme is much too slow for practical applications. In
contrast, the Ritz value converges monotonically for NFJD, as shown in Figure 4.

A standard approach to accelerating convergence in JD is to apply Helmholtz
projection as described in section 3.2. In addition to efficient solvers and precondi-
tioners for the correction equation and the Helmholtz projection, the performance of
HPJD also relies on proper load balance between them. Denote by mgp and 7jp the
stopping tolerance for (3.10) and (3.2), respectively. More precisely, an approximate
eigenpair (6, u) with |Jullp = 1 is accepted as a solution to (1.8) provided

(4.3) (A —0B)ull2 < Typ,
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Fic. 3. (a)—(b) Convergence history of the Ritz value 0y, for A1 and A2 using standard JD with
k = (7,0.6m,0). (c)—(d) Convergence history of the residual.

while an approximate solution ¢ of (3.10) is accepted if

(4.4) H —G*IB%G(;SJF(G*]B%(m)HQ < THp.

Roughly speaking, there is a critical mp (depending on 7;p) such that HPJD does not
converge if Typ > T{p. Since the overall accuracy of HPJD is governed by 7ip only,
one should take Typ ~ 7fp in order to minimize CPU time spent on the Helmholtz
projection and get optimal performance. However, it is difficult to predict a priori
what 7fp is. This is a fairly good reason to advocate NFJD and NFJD™.

We have conducted extensive numerical experiments and concluded that
(4.5) Tip ~ TID

in the sense that 7p is generally two or three orders of magnitude smaller than 7;p.

We now proceed to illustrate (4.5) with the following examples.
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Fic. 4. (a)—(b) Convergence history of the Ritz value for A1 and A2 using NFJD with k =
(7,0.6m,0). (c)—(d) Convergence history of the residual.

Ezample 4.2. HPJD with (13p, Tap) = (1076,10~7). This is the case where Tgp
exceeds the critical value 7fp, resulting in an inexact Helmholtz projection. The
remaining null space components accumulate gradually as the subspace V. grows. As
a result, HPJD fails to converge at higher eigenvalues. We have observed a similar
dragging effect as shown in Figure 5,

Ezxample 4.3. Detailed comparison between HPJD and NFJD. We now compare
NFJD against HPJD at its optimal setting. We set 73p = 1076 and mnpjp = 2.5x107°
according to (4.1). The critical 7gp roughly corresponds to T5p = 1072 ~ 1078,
depending on other parameters (see below). As yp decreases, the overall CPU time
for HPJD increases constantly. The smallest positive eigenvalue in our simulation
occurs at k = (0.17,0,0) with A; ~ 0.045. Accordingly, we have set our threshold for
NFJD as 6. = 0.01 (see section 3.3.2 for the reason for setting up the threshold). An
approximate eigenvalue in step (i) of NFJD is considered admissible only if 6§ > 6.

In Table 2, we summarize the result for the computation of A\; through Ao with
different parameters. One of the varying parameters is the restart dimension, denoted
by Ng. To accelerate convergence, we recycle a number of Ritz vectors after \;_
converges (i > 2) and after a restart. These Ny Ritz vectors are used to build up
initial subspace for \; in the beginning and after a restart. This accelerated version of
NFJD is summarized as Algorithm 4. The accelerated version of HPJD and NFJD*
can be obtained through similar modification.
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Convergence history of the Ritz value for A5 = 6.8940166
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Fic. 5. Convergence history of Ritz value 0y, and residual 7y, for A\s at k = (0.57,0,0) when
using HPJD with T3p = 1076, /qp = 10 7.

TABLE 2
CPU time comparison for first 10 eigenvalues (averaged over k) with Tnpjp = 2.5 X 1079,
Tip = 1079, and Typ ~ Tap- Ns: restart dimension. Ngr: number of recycled Ritz vectors from
Ai—1’s subspace V.

(Nr,Ns) 7p  HPJD NFJD  Ratio (Nr,Ns) mgp HPJD  NFJD Ratio
(3,15)  10~% 5473 sec 3789 sec  1.444 (3,25) 1079 5097 sec 3695 sec 1.379
(5,15) 1078 4897 sec 3536 sec  1.385 (5,25) 1072 4720 sec 3412 sec 1.383
(7,15)  10~% 4537 sec 3442 sec  1.318 (7,25) 1079 4493 sec 3308 sec 1.358
(9,15) 1078 4347 sec 3528 sec  1.232 (9,25) 1079 4299 sec 3307 sec 1.300

The results in Example 4.3 show that NFJD outperforms HPJD by a significant
margin in all cases. In addition, HPJD is considerably slower for small Ny’s. On the
other hand, the performance of NFJD is relatively insensitive to (Ng, Ns).

Next, in Table 3, we document in more detail the relevant components of HPJD
and NFJD. One can see that, for sufficiently large Nr, the CPU time spent on the
JD part are comparable in HPJD and NFJD. The additional CPU time spent in
Helmholtz projection constitutes a significant portion in HPJD, even though such an
FFT-based Helmholtz projector is indeed extremely efficient. For smaller Ng, NFJD
is even more efficient on the JD part.

Finally, in Table 4, we record the total CPU time needed for HPJD as mgp de-
creases below 1fjp for various cases of (Ngr, Ng). As expected, the CPU time spent in
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ALGORITHM 4. ACCELERATED VERSION OF NFJD. This is modified from Algo-
rithm 2 with Ngr recycled Ritz vectors and restart dimension Ng. Accelerated
versions of HPJD and NFJD* can be similarly modified from Algorithms 1
and 3.

Set fE\Q = [ ] AO @
Initialize a vector ¥ with [01|; =
Set U() — [ }

fori=1,2, 3 imax € do
Set Vl [ i— 1,[U[ 1].
Compute Z1 %A’l*@@l.
for k =1,2,3,...,while dim(V,) <i— 1+ Ng, do
(i) Compute all the eigenpairs of (I — sz)s =0.
Select the desired eigenpair (6, si) with 0 ¢ A;_1 nearest to the
target and ||sk|l2 = 1.
Select next Ny nearest eigenpairs with 9] ,,,,, 6)\,{ ¢ A;—q1 and
[$1ll2 =-.. =[xl =1.
(i) Compute uy = Vksk, rE = (A HkIB%)
(iii) if ||7%]|2 < 7wrsp then
Output \; = 0y, e; =B~ 1(C I[i%u;.C N
Update E = [El 1,’u,]€] U = [Vksl ngw,{}. A=A, 1 U {/\z}
Exit k.
else
if dim(@'k;) =4i—1 + Ng then
Restart Vk,+1 7[ i1, VA Sk, Vk s1, @k;gwn},
Zirr = V5 AV, .
else
Solve (approxnmately)
(I— BﬁkﬁZAB )(A GkIB)(H — upuy,

~

Jt =7, L U
t— 30, (5AD)T
t— Ze 1(”@At)W|A
Zlfv\ VkakJrl
Uy 1 BV ”k+1ka+1

A-orthonormalize t against Vi: U1 =

Expand Vi1 = [Vi, Bpp1], Ziy1 =

end if
end if
end for k
end for ¢

the Helmholtz projection increases constantly as mgyp decreases, while the CPU time
for the JD part remains roughly the same (details are not shown here). The result
confirms that the CPU time in Table 2 is indeed optimal for HPJD. However, we wish
to reiterate that it is not easy to predict the critical 7jjp and get optimal performance
for HPJD. The safe play, taking 7qp to machine accuracy, may result in a significant
increase in CPU time for HPJD. In contrast, our scheme NFJD is free from such
consideration.
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TABLE 3
Detailed comparison of HPJD and NFJD with 7jp = 10~%, mnpjp = 2.5 x 1079.

HPJD NFJD HPJD NFJD
(NR, Ns, (rup)) (3,15,(107%))  (3,15)  (9,15,(107%))  (9,15)
avg. CPU time 5473 sec 3789 sec 4347 sec 3528 sec
avg. num. of JD iter. 161.5 143.8 149.0 142.5
avg. CPU time on solving correction eq. 3961 sec 3455 sec 2736 sec 2803 sec
avg. num. of M or M inversions per JD iter. 11.96 11.82 9.182 9.906
avg. CPU time on Helmholtz projection 1123 sec 959.0 sec
avg. num. of G*G inversions per JD iter. 18.95 17.55

HPJD NFJD HPJD NFJD
(NRvNS7(THP)) (37 257(1079)) (3725) (97257(1079)) (9725)
avg. CPU time 5097 sec 3695 sec 4299 sec 3307 sec
avg. num. of JD iter. 149.8 138.9 135.8 133.2
avg. CPU time on solving correction eq. 3526 sec 3381 sec 2706 sec 2788 sec
avg. num. of M or M inversions per JD iter. 11.53 11.89 9.870 10.48
avg. CPU time on Helmholtz projection 1178 sec 1061 sec
avg. num. of G*G inversions per JD iter. 21.53 21.28

TABLE 4

CPU time for HPJD on first 10 eigenvalues with Typ = 10~ and different Typ ’s.

(Nwr, Ng) (3,15) (9,15) (3,25) (9,25)

THp = 108 5473 sec 4347 sec 5056 sec  not conv.
Tap = 1079 5561 sec 4450 sec 5097 sec 4299 sec
mp = 1071 5788 sec 4635 sec 5341 sec 4434 sec
map = 10718 5954 sec 4835 sec 5593 sec 4625 sec
map = 10715 6204 sec 5062 sec 5799 sec 4814 sec

5. Conclusion. We have proposed an efficient numerical scheme for time har-
monic Maxwell’s equations. The novelty of our approach include the combination
of the JD method with the discrete vector potential and delicate interplay between
equivalent forms of Maxwell’s equations. By lifting the correction equation up to the
vector potential and mapping the (approximate) solution back to the original vector
space, our scheme retains the merits of the JD method and filters out the spurious
null space almost cost free. We believe these ideas may be generalized to other eigen-
solvers. Numerical evidence also confirms the efficiency and robustness of the new
scheme.

Appendix A. Vector potential formulation for edge elements. The com-
bination of vector potential with JD iteration is not limited to the finite difference
setting. It carries over naturally to other spatially compatible discretizations. Here
we demonstrate the procedure in the finite element setting.

Let K be an interface conforming tetrahedral tessellation of . We consider a
family of finite element spaces

(A1) Xhc HY(Q), XhcH(wlQ), X!cH(iv;Q), X!cL*Q),
based on the same tessellation K such that

(A.2) VXLC Xk VxXPcXl v-x!cXxl
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Here = [0, 1]® with periodic extension. Functions in these finite element spaces are
complex valued and satisfy the k-periodic boundary condition. The gradient, curl,
and divergence in (A.2) are realized in the sense of distribution.

Denote by ¥, E, F, and C the collections of degrees of freedoms associated
with Xq’j, Xé‘, X;, and Xé‘, respectively. In the lowest order case, v, E, F, and
C can simply be identified with the vertices, edges, faces, and barycenters of the
tetrahedrons in K.

Well-known examples in (A.1) include curl-conforming edge elements [23, 24] and
div-conforming Nédélec elements [23, 24], Raviart—Thomas elements [28], and Brezzi—
Douglas—Marini elements [8]. Proper combination of finite element spaces in (A.1)
results in discrete de Rham subcomplexes that satisfy the inclusion relation (A.2)
and the celebrated “commuting de Rham diagram” property. Examples of discrete
de Rham complexes can be found in [22, pp. 150, 209] and [4, p. 60]. See also [13] for
systematic construction of finite element de Rham complexes from the viewpoint of
differential forms and exterior calculus. In what follows, we will give a brief derivation
of finite element discretization of Maxwell’s equation in X2 and Algorithm 3. The
edge element based discretization only involves the subchain (X%, X2, Xh).

The weak formulation of (1.5) in the curl-conforming finite element space X[ is
given by the following: Find E € X}*, A > 0 such that

(A.3) (VX ® u 'V xE)g=\N®,¢cE)q foral ®cXh

Following our notational convention, we denote by E an element in X and its
column vector representation by e. That is, E(x) = leﬂl e;®;(x), where {®; }‘f:ll is
a basis for X?. From the second inclusion of (A.2), the curl operator induces a linear
mapping

Vix =V x |yn: XJt = X}

and makes it possible to generalize the vector potential formulation to (A.3). Denote
by C the matrix representation of Vj, x with respect to the (real valued) basis functions

®; € Xk, W, € X! That is, if E(x) = Y\% e,®;(x), F(x) = Y| £,¥,(x), and

=1
F(x) = V x E(x), then f; = ¥\"], Cyje;.
In matrix notation, (A.3) reads

(A4) Ae = \Be, where A = C*"M;C, B = Mg,

and M, My are the mass matrices generated by the basis functions in X} and X ?,
respectively:

(A.5) (Me)j ;= (®5,6:®500, My)is = (¥i, 1, " Ti)o.

The mass matrices Mz and My induce natural inner products on X? and X ;L:

(A.6) (B,U)., := e"Mzu = /QE(X) e, (x)U(x)dx, E,U € X}

(A7) (F,H), -1 = f"Myh = /QF‘(X) pu N (x)H(x)dx, F,H € X}
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Denote by G the matrix representation of Vj := V|xn : X}, = Xj. Then the
solutions to (A.4) with A\ # 0 satisfy the discrete analogue of the divergence free
constraint (1.6) automatically:

1
~G'Be = —G"C"M,Ce = 0.

This is a direct consequence of (1.9) and the fact that CG is the matrix representation
of V.x Von X

The finite element version of NFJD and NFJD™ are identical to Algorithm 2 and
Algorithm 3, respectively. Here we give a brief derivation of NFJD* for (A.4). We
start with the following reformulation of (A.4):

A8 Ae = \Be, where B = M,, A = M,;CM;'C*M, = BCB'C*B.
F F E F

Note that (A.8) is merely an equivalent formulation of (A.4) obtained through alge-
braic manipulation. It is not meant to be a new finite element discretization of the
magnetic field equation p 'V x e 'V x p ' E = Ay ' E on X}I.

In general, (A.8) is less suitable for numerical computation than (A.4). In stan-
dard numerical methods, the core matrix-vector multiplication A% for (A.8) is more
expensive than the corresponding operation Awv for (A.4). We will see, however, that
the situation is reversed in their NFJD formulations Algorithm 2 (for (A.4)) and
Algorithm 3 (for (A.8)).

Since both A and B are self-adjoint with B positive definite, the spectral decom-
position argument used in Theorem 2.2 remains valid. In other words, we have

ker(&)LMf = ker(M; ' C*My )7
(A.9) = Span{®; € X}' | My;CM; 'C*M;%; = \;Ms3;, A; > 0},
and the following counterpart of Theorem 2.2 holds.
THEOREM A.1. Let & € X!, Then u € ker(A)r if and only if 4 = Cu for
some u € XN

The standard JD method applied to (A.8) results in the following correction
equation:

(A.10) (I - Buga))(A — 0,B)(1 — G B)t = 7, 6 Bt =0.

In view of Theorem A.1, we can now substitute ¢ = Ct, 1y = Cuy, into (A.10) to get
(I — Buya)) (A — 6,B)(1 — GpuB)E

(I - BCupujC*)(BCB'C*B — 6;,B)C (I — CuyujC*BC)t

(A.11) _ N ~
= (I - BCupujC*)BCB ! (C*BC — 6;,B) (I — CujujA)t
= BCB (I — BujujAB 1) (A — ,B) (I — CujpujA)t
and
(A.12)

L = (1& — Gk@)ﬁk = (@(CBil(C*@ — Gk@)((luk = @CBil(A — QkIB%)uk = @CBilTk.

In addition, ﬁ;;@f: u,t(C*@(Ct = uj;At. Thus the correction equation can be trans-
lated to X[ as

(A.13) (I - BurupAB™ ') (A — 0:B) (I — wpupA)t = —r,  ujAt=0.
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Finally, we switch back to the electric field pencil (A,B) on the subspace eigenvalue
problem: Find uj € Range(Vy), 6, > 0 nearest to the target such that

(A.14) v* (A — 0;B)uy, = 0 for all v € Range(Vy).

With the orthonormalization v;Av,, = i, (A.14) leads to the following subspace
eigenvalue problem and the B-normalized approximate eigenvector:

Visk

(A15) (H — oka)Sk = 0, (Zk)gm = ’UZB'Um; Uk = 75—~
[Visk||z
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