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Abstract—In this letter, fully Ni self-aligned silicided (fully Ni-
salicided) source/drain (S/D) and gate polycrystalline silicon thin-
film transistors (FSA-TFTs) have been successfully fabricated
on a 40-nm-thick channel layer. Experimental results show that
the FSA-TFTs give increased ON/OFF current ratio, improved
subthreshold characteristics, less threshold voltage rolloff, and
larger field-effect mobility compared with conventional TFTs. The
FSA-TFTs exhibit small S/D and gate parasitic resistance and
effectively suppress the floating-body effect and parasitic bipolar
junction transistor action. The characteristics of the FSA-TFTs
are suitable for high-performance driving TFTs with good output
characteristics and large breakdown voltage.

Index Terms—Floating-body effect, fully salicided, parasitic
bipolar junction transistor, polycrystalline silicon thin-film tran-
sistors (poly-Si TFTs).

I. INTRODUCTION

ECENTLY, polycrystalline silicon thin-film transistors

(poly-Si TFTs) have been widely used in many applica-
tions, particularly as the integrated peripheral driving circuits
and addressing elements in active-matrix liquid-crystal displays
(AMLCD:s) [1], [2]. However, the output characteristics exhibit
an anomalous increase of current in the saturation regime, often
called the “kink” effect because of an analogy with silicon-on-
insulator (SOI) devices [3]-[5]. This phenomenon can be
attributed to the floating-body effect [6] and the avalanche
multiplication enhanced by grain boundary traps [4]. With
increasing drain voltage, the added drain current enhances
impact ionization and parasitic bipolar junction transistor (BJT)
effect, which leads to a premature breakdown in return [6].
In the floating-body thin-film devices, the improved parasitic
BJT effect can be achieved by using deep salicidation and fully
silicided source/drain (S/D) structure [7], [8]. Similar to SOI
devices, the thin-channel poly-Si TFTs exhibit improved device
characteristics such as small leakage current and suppressed
floating-body effect compared with the thick-channel poly-Si
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Fig. 1. (a) Schematic device structure and (b) TEM micrograph of the
FSA-TFTs with gate length of 0.8 pm and channel thickness of 40 nm.

TFTs [9]. However, parasitic S/D resistances have increasingly
become a serious issue in the thin-channel poly-Si TFTs.
Several methods such as self-aligned silicide and selective
tungsten-clad technology were proposed to reduce parasitic
S/D resistance for thin-channel SOI MOSFETs and poly-Si
TFTs [8], [10], [11]. In addition, silicided gates have a higher
capacitance than poly-Si gates due to the elimination of poly-Si
depletion [12].

In this letter, fully Ni self-aligned silicided (fully Ni-
salicided) S/D and gate poly-Si thin-film transistors (FSA-
TFTs), whose S/D and gate layers are completely silicided
with Ni, have been successfully fabricated on a 40-nm-thick
channel layer. We found that the measured characteristics of the
FSA-TFTs with in situ n*-doped gate or undoped gate signifi-
cantly suppressed floating-body and parasitic BJT effects.

II. EXPERIMENT

The schematic device structure and transmission electron
microscopy (TEM) micrograph of the FSA-TFTs is shown in
Fig. 1. The FSA-TFTs were fabricated using the following
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Fig. 2. Measured transfer characteristics and field-effect mobility of the
conventional TFTs and the FSA-TFTs with W/L = 10 um/0.8 pm.

process steps. First, a 40-nm amorphous-silicon (a-Si) layer was
deposited by low-pressure chemical vapor deposition (LPCVD)
at 550 °C on oxidized silicon wafers. Next, the a-Si layer was
crystallized by solid-phase crystallization (SPC) at 600 °C for
24 h. After the active-region patterning, a 50-nm tetraethoxysi-
lane (TEOS) gate oxide layer was deposited by LPCVD. Sub-
sequently, a 50-nm a-Si gate layer and a 150-nm SigNy layer as
the hard mask were deposited by LPCVD. The a-Si gate layers
were divided into in situ n phosphorus-doped gate or un-
doped gate. After identifying the gate electrode, a self-aligned
implantation was used to form the n™ S/D with p* to dose
5 x 10'® cm~2. Dopants were activated by a furnace at 600 °C
for 12 h. A 150-nm TEOS oxide was deposited and etched
to form the sidewall spacer. Then, the SizN,4 hard-mask layer
was selectively etched in a hot phosphoric-acid bath. A Ni film
of about 40 nm was deposited by sputtering, and then full Ni
salicidation was carried out at 550 °C for 60 s by a one-step
rapid thermal annealing (RTA) in the N ambient. The fully Ni-
silicided S/D and gate were formed by the full Ni salicidation.
After contact and metallization processes, hydrogenation pro-
cedures were implemented after sintering at 400 °C for 30 min.
Conventional devices with self-aligned n* S/D and without Ni
salicidation were also fabricated to serve as controls.

III. RESULTS AND DISCUSSION

The measured transfer characteristics and field-effect mobil-
ity of the conventional TFTs and the FSA-TFTs with W/L =
10 pm/0.8 pm are shown in Fig. 2. The ON-state currents
and field-effect mobility in the FSA-TFTs are higher than in
the conventional TFTs. The ON-state currents are significantly
degraded by the parasitic S/D resistance in short-channel con-
ventional TFTs. The field-effect mobility plotted in Fig. 2 is
obtained from the channel conductance. For the conventional
TFTs with a short-channel length of 0.8 um, the field-effect
mobility is seriously decreased when gate voltage Vg > 2.5V,
but it is not found in short-channel FSA-TFTs. This improve-
ment is due to the fully Ni-salicided S/D and gate structure,
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Fig. 3. Extracted threshold voltage Vrp of the conventional TFTs and the

FSA-TFTs with different gate lengths (defined as Ip = W/L x 100 nA at
Vps =0.5V).

which has smaller parasitic S/D resistance, higher capaci-
tance, and superior scalability than the conventional TFTs with
poly-Si gates [12]. Furthermore, an anomalous subthreshold
swing (SS) and an unstable Vg are observed in conventional
TFTs with W/L = 10 um/0.8 pum at Vps = 5.0 V. Fig. 3 dis-
plays the extracted threshold voltage Virpp of the conventional
TFTs and the FSA-TFTs with different gate lengths (defined
as In = W/L x 100 nA at Vpgs = 0.5 V). The rolloff of the
threshold voltage Viry is greatly improved in FSA-TFTs. With
this fully Ni-salicided structure in FSA-TFTs, the floating-body
and parasitic bipolar effects can be suppressed, resulting in a
stable Vry; and a lower OFF-state leakage current [7], [8], [13],
[14]. Therefore, the ON/OFF current ratio (10 —10%) can be
increased by scaling down the channel length in FSA-TFTs.
The advantage of FSA-TFTs can be found also on SS. We
believe that it may be due to the higher gate capacitance and
the fully silicided S/D in the FSA-TFTs.

Fig. 3 also shows the Vry difference (0.5-0.6 V) between
in situ n™-doped gate and undoped gate FSA-TFTs. This Vry
shift is observed with additional p™ dopants in the in situ n™-
doped gate FSA-TFTs. The silicidation-induced segregation of
the impurities from poly-Si to the silicide interface indicated
that submonolayer segregation of the dopants causes a change
in the apparent Ni/Si work-function shift [12].

Fig. 4 exhibits the measured OFF-state leakage currents of the
conventional TFTs and the FSA-TFTs with different channel
lengths at Vg = —5.0 V. The enhancement of OFF-state leak-
age currents is observed in short-channel conventional TFTs.
These enhanced OFF-state leakage currents are the amplifi-
cation of gate-induced-drain leakage (GIDL) currents by the
parasitic BJT in short-channel devices due to the floating-body
effect [15]. Inasmuch as the FSA-TFTs effectively suppress
the floating-body effect, the enhancement of GIDL currents
is eliminated, and OFF-state leakage currents are almost the
same in both long- and short-channel devices. Due to the work-
function difference of Ni/Si gates between in situ n™-doped
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Fig. 4. Measured OFF-state leakage currents of the conventional TFTs and
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gate and undoped gate FSA-TFTs, a drain-voltage shift of OFF-
state leakage currents is observed [16].

The measured output characteristics of the conventional
TFTs and the FSA-TFTs with W/L =10 ym/0.8 pm are
shown in Fig. 5. Under high drain voltage, the accumulation
of holes in the body causes a profound kink effect and an
induced parasitic BJT action, which results in decreased drain
breakdown voltage by the floating-body effect in the conven-
tional TFTs [17]-[20]. Salicidation is a well-known method to
suppress the floating-body effect, because the silicide layer near
the S/D junction works as a sink and an effective lifetime killer
for holes [7], [8]. The reduced kink effect and the increased
drain breakdown voltage of FSA-TFTs strongly support the
idea that floating-body and parasitic BJT effects are signifi-
cantly suppressed by the fully silicided S/D structure.
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IV. CONCLUSION

We have developed the fully Ni-salicided S/D and gate poly-
Si TFTs to suppress the floating-body effect. The enhancement
of GIDL currents that occurred in the conventional TFTs is
eliminated by the FSA-TFTs. The FSA-TFTs show reduced
kink effect, increased breakdown voltage, stable Vi, improved
SS, and increased ON/OFF current ratio. The FSA-TFTs are
proven to be a very promising structure with low S/D parasitic
resistance and high gate capacitance capability fabricated on a
thin 40-nm-thick channel layer.
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