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1. Introduction

In this letter we investigate the influence of the addition of a 
dimension-6 operator to a chirally invariant Higgs–Yukawa model. 
This model can be understood as a limit of the standard model 
(SM) without gauge fields. In particular, we consider a complex 
scalar doublet and one doublet of mass-degenerate quarks. Our 
aim is to explore, whether a dimension-6 operator, for which we 
will employ a (ϕ†ϕ)3-term with a coupling constant λ6, can mod-
ify the phase structure of the Higgs–Yukawa sector of the SM and 
may alter the lower Higgs boson mass bound as already observed 
in [1,2]. For a phenomenological analysis of a (ϕ†ϕ)3-term see e.g. 
[3,4].

The motivation for adding a (ϕ†ϕ)3-term is twofold. First, since 
the Higgs–Yukawa sector of the SM is trivial, the cut-off cannot be 
removed and hence such a term is in principle allowed. In addition, 
if small values of the cut-off of O (1)–O (10) TeV are considered as 
done in this work, such a term can have a significant effect. Sec-
ond, the appearance of a (ϕ†ϕ)3-term can be understood to arise 
from an extension of the SM. Studying the system with such a 
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term could hence provide bounds on the couplings of such exten-
sions in case the lower Higgs boson mass bound is incompatible 
with the Higgs boson mass of about 126 GeV. The effects of higher 
dimensional operators on the vacuum stability are discussed in 
[5–8].

We use a lattice regularization of the Higgs–Yukawa model 
which eventually also allows non-perturbative numerical simula-
tions for large values of λ6. The notion of an exact lattice chiral 
symmetry [9] which derives from the Ginsparg–Wilson relation 
[10] allows us to emulate the continuum Higgs–Yukawa sector of 
the standard model on a discrete Euclidean space–time lattice. To 
this end, the overlap operator [11,12] as a local [13] lattice Dirac 
operator has been employed to study the phase structure of the 
lattice theory [14,15], to derive lower and upper Higgs boson mass 
bounds [16–19] and to analyze the Higgs boson resonance non-
perturbatively [20]. For a review, see [21].

For our investigations we perform analytical calculations of the 
phase structure of the model by computing the constraint effec-
tive potential (CEP) [22] to the first non-trivial order in lattice 
perturbation theory. In this calculation, we employ the same chi-
rally invariant lattice formulation of the Higgs–Yukawa model as 
it is used for the numerical computations. We compare results for 
the phase structure obtained from numerical simulations to our 
perturbative predictions. In addition, we will provide first results 
for the lower Higgs boson mass bounds in the presence of the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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dimension-6 operator as obtained from the analytical, perturbative 
calculations of the CEP.

2. Basic definitions

In this work, we restrict ourselves to the case of one fermion 
doublet ψ = (t, b)T with mass degenerate quarks. The scalar fields 
are a complex doublet ϕ . Here, we will only provide the basic def-
initions of the model and refer to Ref. [21] for a more detailed 
explanation. In Euclidean space time the continuum action is given 
by:

Scont[ψ̄,ψ,ϕ] =
∫

d4x

{
1

2

(
∂μϕ

)† (
∂μϕ

) + 1

2
m2

0ϕ
†ϕ

+ λ
(
ϕ†ϕ

)2 + λ6

(
ϕ†ϕ

)3
}

+
∫

d4x
{

t̄/∂t + b̄/∂b

+ y
(
ψ̄L ϕ bR + ψ̄L ϕ̃ tR

) + h.c.
}
, (1)

with ϕ̃ = iτ2ϕ
∗ and τ2 being the second Pauli matrix. Besides 

the standard bare parameters m2
0 and λ for the Higgs potential 

and y for the Yukawa coupling, we add the dimension-6 operator 
λ6

(
ϕ†ϕ

)3
to the action.

For the numerical implementation of this model we use a poly-
nomial hybrid Monte Carlo algorithm [23] with dynamical overlap 
fermions, see Ref. [24] for details. On the lattice, it is convenient 
to rewrite the bosonic part of the action in the following way1:

S B [�] = −κ
∑
x,μ

�
†
x
[
�x+μ + �x−μ

]

+
∑

x

(
�

†
x�x + λ̂

[
�

†
x�x − 1

]2 + λ̂6

[
�

†
x�x

]3
)

. (2)

Here the scalar field, �, is represented as a real four-vector and 
the relation to the continuum notation is given by:

ϕ = √
2κ

(
�2 + i�1

�0 − i�3

)
, m2

0 = 1 − 2λ̂ − 8κ

κ
,

λ = λ̂

4κ2
, λ6 = λ̂6

8κ3
. (3)

As said above, our main goal is the exploration of the phase struc-

ture of the model in the presence of the 
[
�

†
x�x

]3
term with cou-

pling strength λ6. We will use the magnetization m as the order 
parameter.2 The magnetization is given by the modulus of the av-
erage scalar field and is related to the vacuum expectation value 
(vev) via:

m =
〈∣∣∣∣∣ 1

V

∑
x

�x

∣∣∣∣∣
〉

, vev = √
2κ · m. (4)

For a determination and detailed discussion of the phase struc-
ture of the model for λ6 = 0, we refer to Refs. [14,15].

1 The lattice spacing is set to one throughout this paper.
2 Here we are only interested in transitions between the symmetric and the spon-

taneously broken phases and thus will not consider the staggered magnetization 
[14,15].
3. The constraint effective potential

Before resorting to numerical simulations, we study the phase 
structure analytically in lattice perturbation theory for which we 
employ the CEP [25,22]. We assume the scalar field to be in 
the broken phase, so the scalar field decomposes into the Higgs 
mode, h, and the three Goldstone modes, gα , with α = 1, 2, 3. 
The CEP U (v̂) is described by the zero mode of the Higgs field, 
h̃0 = V −1/2 v̂ . The perturbative calculations are done by keeping 
the lattice regularization explicitly, i.e. the overlap operator is used 
for the fermionic contribution and all sums over lattice momenta 
are performed numerically.

To obtain the potential the bosonic non-zero modes are in-
tegrated out. To do so, the bosonic action is separated into a 
Gaussian contribution which can be integrated out leading to the 
bosonic propagators. The remaining terms are treated as an inter-
action part and can be expanded in powers of the couplings. This 
separation into a Gaussian and an interaction part however is not 
unique and we employ two versions of the CEP.

A derivation of such a lattice constrained effective potential can 
be found in [15,24]. Following the procedure in these references, 
the Gaussian contribution to the action reads:

Sgauss
1 [h, gα]

= 1

2

∑
p �=0

(
h̃−p

(
p̂2 + m2

0

)
hp +

∑
α

g̃α−p

(
p̂2 + m2

0

)
g̃α

p

)
, (5)

which leads to the propagator sums:

P H = P G = 1

V

∑
p �=0

1

p̂2 + m2
0

. (6)

As in [16], m2
0 is replaced by the renormalized masses in the prop-

agator sums. The mass of the Goldstone boson is set explicitly to 
zero. This leads to:

P H = 1

V

∑
p �=0

1

p̂2 + m2
H

, P G = 1

V

∑
p �=0

1

p̂2
. (7)

The determinant from integrating out Eq. (5) is independent of v̂
and can therefore be neglected for the CEP.

The CEP up to the first order in λ and λ6 is then given by:

U1(v̂) = U f (v̂) + m2
0

2
v̂2 + λv̂4 + λ6 v̂6

+ λ · v̂2 · 6(P H + P G)

+ λ6 · (v̂2 · (45P 2
H + 54P G P H + 45P 2

G)

+ v̂4 · (15P H + 9P G)
)
. (8)

The fermionic contribution, U f , originates from integrating out the 
fermions in the background of a constant field. It takes the form

U f (v̂) = − 4

V

∑
p

log

∣∣∣∣ν+(p) + y · v̂ ·
(

1 − ν+(p)

2ρ

)∣∣∣∣
2

, (9)

where ν±(p) denotes the eigenvalues of the overlap operator,

ν±(p) = ρ

⎛
⎜⎝1 + ±i

√
p̃2 + r p̂2 − ρ√

p̃2 + (
r p̂2 − ρ

)2

⎞
⎟⎠ ,

p̂2 = 4
∑
μ

sin2
( pμ

2

)
, p̃2 =

∑
μ

sin2 (
pμ

)
. (10)
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Fig. 1. Data which were obtained from numerical simulations and the perturbative approaches described in Section 3 are compared. The plots show the vev as a function of 
κ while λ6 is kept fixed to λ6 = 0.001 (left) and λ6 = 0.1 (right) for various λ. The simulation data are depicted by the open squares, the crosses indicate the vev obtained 
from U1, Eq. (8), while the dots show the corresponding results from U2, Eq. (12). All data have been obtained on 163 × 32 lattices.
In this equation r denotes the Wilson parameter and ρ (0 ≤ ρ ≤
2r) is a free parameter of the overlap operator which can be tuned 
to optimize its locality properties [13]. Throughout this work, we 
set r = 1 and ρ = 1.

In addition to the procedure leading to U1(v̂), Eq. (8), another 
ansatz in performing the Gaussian integral is to collect all the 
terms that are quadratic in the bosonic non-zero modes from the 
self-interaction:

Sgauss
2 [h, gα] = 1

2

∑
p �=0

(
h̃−p

(
p̂2 + m2

0 + 12λv̂2 + 30λ6 v̂4
)

h̃p

+
∑
α

g̃α−p

(
p̂2 + m2

0 + 4λv̂2 + 6λ6 v̂4
)

g̃α
p

)
. (11)

In this approach the bosonic determinant can no longer be ne-
glected for in potential calculation, since it depends explicitly on 
the zero mode. Further, at first order in λ and λ6 of perturbation 
theory, the propagator sums and combinatorial factors change,

U2(v̂) = U f (v̂) + m2
0

2
v̂2 + λv̂4 + λ6 v̂6

+ 1

2V

∑
p �=0

log
[(

p̂2 + m2
0 + 12λv̂2 + 30λ6 v̂4

)

·
(

p̂2 + m2
0 + 4λv̂2 + 6λ6 v̂4

)3]
+ λ

(
3 P̃ 2

H + 6 P̃ H P̃ G + 15 P̃ 2
G

)
+ λ6 v̂2

(
45 P̃ 2

H + 54 P̃ H P̃ G + 45 P̃ 2
G

)
+ λ6

(
15 P̃ 3

H + 27 P̃ 2
H P̃ G + 45 P̃ H P̃ 2

G + 105 P̃ 3
G

)
, (12)

with the propagator sums given by:

P̃ H = 1

V

∑
p �=0

1

p̂2 + m2
0 + 12v̂2λ + 30v̂4λ6

,

P̃ G = 1

V

∑
p �=0

1

p̂2 + m2
0 + 4v̂2λ + 6v̂4λ6

. (13)

In this approach logarithmic terms appear. Depending on the 
choice of the bare parameters (m2

0, λ, λ6), the arguments of the 
logarithms may become negative, leading to the well-known prob-
lem that the effective potential becomes complex [26]. We remind, 
that the lattice spacing is set to one implicitly such that, even 
though we use the continuum notation, all quantities are dimen-
sionless.

Using the analytical form of the CEP, the vev can be obtained 
by the (absolute) minimum of the potential. In order to introduce 
a physical scale, we set the lattice vev to the phenomenologically 
known value of 246 GeV and define the cutoff, � as the inverse 
lattice spacing:

dU (v̂)

dv̂

∣∣∣∣
v̂=vev

!= 0, � = 246 GeV

vev
. (14)

Further, the squared Higgs boson mass m2
H is determined by the 

second derivative of the potential at its minimum,

d2U (v̂)

dv̂2

∣∣∣∣
v̂=vev

= m2
H . (15)

Due to the explicit appearance of the Higgs boson mass in the 
propagator sum Eq. (7) for the potential U1, Eq. (8), we have to 
use an iterative approach in the determination of a solution for 
the minimum of the CEP and the Higgs boson mass. To this end, 
we fix the parameters m2

0, y, λ and λ6, guess an initial Higgs boson 
mass and simply iterate Eqs. (14)–(15) until we find convergence.

We will compare results obtained from both forms of the po-
tential to results from our non-perturbative simulations. As we will 
see below, we indeed find parameter sets, where the perturbative 
CEP describes the non-perturbative data well, even on a quan-
titative level. This will allow us to obtain results for the phase 
structure of the Higgs–Yukawa model considered here from the 
analytical perturbative CEP, where a non-perturbative simulation 
is not feasible anymore, i.e. for large lattices or large cut-offs.

4. Results

For our study of the phase structure we performed simulations 
for two values of λ6 (0.001 and 0.1). Note, that having set the 
lattice spacing to one, λ6 is treated as a dimensionless coupling 
constant. For each value of λ6 we choose a set of values for the 
quartic coupling, λ. The Yukawa coupling, y, is chosen such that 
the quarks in our model have a mass of that of the physical top 
quark, mt = y ·vev ·� ≈ 175 GeV. The phase transition between the 
symmetric and spontaneously broken phases is probed by scanning 
in the hopping parameter, κ .

In Fig. 1 we show results for the bare vev computed on lat-
tices with volume 163 × 32 for λ6 = 0.001 (left) and λ6 = 0.1
(right). Our data show the same qualitative behaviour for both 
values of λ6. The phase transition is of second order when λ is 
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Fig. 2. We show the finite volume effects of the phase structure scan for λ6 = 0.001. The plot on the left hand side shows data for λ = −0.0085 where the simulations 
(open boxes) indicate a second order phase transition. The plot on the right hand side shows results for λ = −0.0088, where the transition is first order. In addition to the 
simulation data we show the data obtained from U2 Eq. (12) (dots) for both and from U1 Eq. (8) (crosses) for the left plot.

Fig. 3. The left plot shows the trajectories for ensembles generated around the first order phase transition generated on 16 × 32 lattices. The data correspond to λ6 = 0.1
and λ = −0.38. The right plot shows the corresponding CEP as it was obtained by taking the logarithm of the histograms of the magnetization. The lines in (b) just serve to 
guide the eye.
chosen negative and its absolute value is small. Increasing the ab-
solute value of λ will finally result in a change to a first order 
phase transition. The appearance of these first order phase transi-
tions is a natural consequence of adding the dimension-6 operator, (
ϕ†ϕ

)3
, which can lead to multiple minima of the potential with 

non-vanishing vev.
For λ6 = 0.001 which is shown in Fig. 1(a), the simulation data 

and the analytical results from both versions of the effective po-
tential agree quite well. The results from U2, Eq. (12), actually 
coincide with the simulation data on a quantitative level as long as 
the transition is of second order. The effective potential U1 repro-
duces the behaviour of the simulation data qualitatively. However, 
the exact numerical results for the vev differ and the phase transi-
tions are shifted to larger absolute values of λ.

For λ6 = 0.1 which is shown in Fig. 1(b), the effective potential 
U1 shows qualitative agreement with the simulations. The effective 
potential U2 fails to describe the numerical data and the 1-loop 
evaluation of the CEP seems not to be sufficient.

The results discussed above are obtained on a relatively small 
lattice of size 163 × 32. To verify the order of the phase transi-
tions, simulations and analytical calculations on significantly larger 
lattices are necessary. In Fig. 2, we show results for the vev as a 
function of κ on various volumes. The parameters are chosen in a 
region where the small volume data indicate a second order transi-
tion, Fig. 2(a), and a first order transition, Fig. 2(b). In addition, we 
compare the simulation data to the analytical results from Eq. (8)
and Eq. (12).

As it is shown in Fig. 2(a), the larger volume data confirm the 
second order nature of the phase transition. Furthermore, the finite 
volume dependence of the second order transition is very well de-
scribed by both versions of the effective potential.

In Fig. 2(b), we show the vev obtained from the effective po-
tential U2 and from our non-perturbative lattice simulations on 
various volumes. Both methods give compatible results on a qual-
itative level and just the exact position of the phase transition is 
slightly altered. The jump in the vev indicates strongly the exis-
tence of a first order phase transition at a κtrans ≈ 0.12277. For 
these parameter choices, finite size effects are very small. In par-
ticular, for κ � κtrans the vev stays non-zero. This means that the 
first order transition occurs between two minima of the potential 
with non-zero vev. Hence, this transition must occur between two 
broken phases.

Close to the point where κ ≈ κtrans, tunneling events occur be-
tween the two minima in the simulations and hence the lattice 
simulation data may not agree with the results from the effec-
tive potential. This stems from the fact that the CEP gives only 
solutions at one of the minima and thus cannot take into ac-
count tunneling effects. In Fig. 3(a) we show the Monte Carlo time 
history of v̂ at different values of κ which clearly shows tunnel-
ing events. While for κ = 0.11757 and κ = 0.11763 v̂ fluctuates 
around the mean value of vev ≈ 0.15 and vev ≈ 0.40, respectively, 
for κ = 0.11760 tunneling events between these two values ap-
pear, typical for a first order phase transition.

From the histogram of v̂ with an appropriate binning size, we 
can construct an effective potential from the simulation data. This 
is shown in Fig. 3(b). It is demonstrated nicely how the absolute 
minimum at around v̂ ≈ 0.15 abruptly jumps to v̂ ≈ 0.35. Such a 
behaviour is typical for a first order transition.
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Fig. 4. Here we show the CEP U1, Eq. (8), for fixed λ6 = 0.001 and various κ values around the phase transition. The left plot (λ = −0.0088) shows a second order phase 
transition for κ ≈ 0.122715. Note that the effective potential at κ ≈ 0.122764 actually corresponds to a crossover transition, see the discussion in the text and Fig. 5. The 
right hand plot (λ = −0.0089) also shows a second order transition at κ ≈ 0.12271 and a first order transition κ ≈ 0.1227565.

Fig. 5. Here the volume dependence of the location of the minimum of the CEP U1, i.e. the vev (upper plots) and its inverse curvature in the minimum as a measurement 
for the magnetic susceptibility (lower plots) are shown as a function of κ for λ6 = 0.001 and a set of λ-values.
Given the fact that for small values of λ6 the effective poten-
tials describe the simulation data on a quantitative level, it can be 
utilized to investigate the behaviour of the vev further. Due to the 
wider range of applicability we restrict ourselves in the following 
discussion to the potential U1, Eq. (8).

We plot the behaviour of the effective potential as a function 
of κ in Fig. 4 for a fixed value of λ6 = 0.001. In Fig. 4(a), the 
behaviour of the effective potential shows a second order phase 
transition: the minimum moves from a zero to a non-zero value in 
a smooth way, indicating the second order nature of the transition.

However, when λ is slightly changed to λ = −0.0089 we ob-
serve, in addition to a second order transition at κ ≈ 0.12271, 
a phase transition from one non-zero value of the vev to another 
non-zero value of the vev at large κ-values, as shown in Fig. 4(b). 
This transition happens through a double well potential which is 
almost realized at κ = 0.1227565.

To determine the location of a second order transition in the 
CEP, we investigate the curvature of the potential at its minimum, 
U ′′(vev). The curvature of the potential in its minimum is related 
to the susceptibility χ of the magnetization, χ ∝ 1/U ′′(vev), and 
is therefore minimal at the location of the second order transition. 
The susceptibility at the phase transition diverges when the vol-
ume goes to infinity corresponding to U ′′(vev) going to zero. To 
study this finite size effect, we investigate the behaviour of the 
vev and the inverse curvature of the potential for volumes up to 
1283 ×256. Some example plots are shown in Fig. 5 where we plot 
1/U ′′(vev) as a measure of the magnetic susceptibility. In Fig. 5(a) 
the typical behaviour for a second order transition is apparent for 
λ = −0.007. For λ = −0.0085 (Fig. 5(b)) a second maximum in the 
inverse curvature of the potential is visible. This second maximum 
is volume independent and indicates a crossover transition in the 
broken phase. In Fig. 5(c) the second transition at κ = 0.12275 has 
turned into a first order one, while the second order transition be-
tween the symmetric and broken phase is still present at smaller 
values of κ .

Our results for the phase structure computed within the frame-
work of the CEP are summarized in Fig. 6 for both λ6 values. For 
λ6 = 0.001 we clearly observe a second order phase transition at 
small absolute values of λ. At intermediate absolute values of λ
an additional crossover transition sets in within the broken phase. 
This crossover turns into a first order phase transition around 
λ ≈ −0.0089. The second order transition still exists at this point 
separating the broken and symmetric phases. Around λ ≈ −0.0098
and κ ≈ 0.12267 the line of second order transition runs into the 
line of first order transition. From that point on only the first order 
transition remains separating the symmetric and broken phases.

For λ6 = 0.1 the general behaviour is very similar. However, 
the region in parameter space where the additional transitions be-
tween two broken phases occur is extremely narrow, see the inlet 
in Fig. 6(b). In fact, the region is so narrow that it is well possi-
ble that in infinite volume only a single transition line exists with 
second order transitions for larger and first order transitions for 
smaller quartic couplings.

With the CEP the Higgs boson mass can also be obtained from 
Eq. (15). In Fig. 7 we show some first results for the cut-off de-
pendence of the Higgs boson mass obtained by the CEP U1 for a 
series of λ values around the region where the first order transi-
tions appear. For λ6 = 0.001 we observe, see Fig. 7(a), that for the 
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Fig. 6. Phase structure obtained from the CEP U1 (8). There are two phases – a broken and a symmetric one – separated by lines of first and second order phase transitions. 
Furthermore there is a small region in parameter space, where a first order transition between two broken phases exists for λ6 = 0.001 and λ6 = 0.1. The lines between the 
data points are just to guide the eye.

Fig. 7. Shown is the cut-off dependence of the Higgs boson mass obtained from the CEP according to Eq. (14) for λ = 0.001 on a 643 × 128-lattice (left) and λ = 0.1 on a 
1923 × 384 (right). In both plots we also show the standard model lower mass bound (λ6 = λ = 0).
range of cut-off values considered here, the Higgs boson mass can 
be lowered compared to the lower Higgs boson mass for vanishing 
self-couplings λ and λ6 as was also found in Ref. [1].

Inspecting, however, Fig. 7(b) we find that for λ6 = 0.1 and for 
small cut-off values, the Higgs boson mass is significantly larger 
than the lower bound at vanishing λ and λ6. Note that mH/� ≈
0.1, i.e. we are still staying in the scaling region of the model. The 
increase of the Higgs boson mass at small cut-off can be under-
stood from the fact that the λ6(�†�)3 term in the action provides 
a positive contribution to the Higgs boson mass shift, dominat-
ing the negative contribution from the Yukawa coupling. For larger 
values of the cut-off, the λ6 coupling becomes less and less rele-
vant and the Yukawa term provides the major contribution to the 
mass-shift such that we eventually find the standard behaviour of 
the Higgs boson mass as a function of the cut-off in Fig. 7(b).

We plan to investigate the cut-off dependence of the Higgs bo-
son mass through non-perturbative numerical simulations in the 
future. However, if the picture of Fig. 7(b) is confirmed, this would 
lead to a bound on the values of λ6 since the 126 GeV Higgs bo-
son mass would be in conflict with the cut-off dependent mass 
at low values of the cut-off. As a consequence, only rather small 
values of λ6 ∝ O (0.001) would be compatible with the 126 GeV 
Higgs boson mass.

5. Conclusions

In this letter we focused on the investigation of the phase struc-
ture of a chirally invariant lattice Higgs–Yukawa model including 
an additional higher dimensional operator, (ϕ†ϕ)3, with coupling 
strength λ6 in the action. For the analysis of such a system we re-
stricted ourselves to small values of λ6 for now. This allowed us to 
compare our numerically obtained results with analytical predic-
tions from the constraint effective potential evaluated in the same 
lattice setup as the numerical simulations were carried through.

In general, we obtained a very good qualitative and even quan-
titative agreement between both approaches leading to the phase 
structure shown in Fig. 6 for fixed values of λ6 = 0.001 and 
λ6 = 0.1.

Fixing λ6 > 0 stabilizes the potential, allowing thus to drive the 
values of λ more and more negative. For sufficiently small val-
ues of λ we observe smooth transitions in the magnetization, fully 
compatible with the second order phase transitions observed for 
λ6 = 0. However, from a certain negative value of λ on, we find 
an additional phase transition which can be a crossover or first 
order transition. Indications for these transitions can be detected 
from the behaviour of the magnetization computed both in the ef-
fective potential and the numerical simulations, see e.g. Fig. 4(b). 
Thus, the resulting phase diagram in Fig. 6 turned out to be rather 
rich with second and first order phase transition lines when chang-
ing κ . We note in passing that by fixing the hopping parameter κ
and hence the bare Higgs boson mass, it is possible, to move to a 
broken phase by only changing the quartic coupling of the theory.

A natural extension of the investigation here would be the ex-
ploration of the phase structure of the model at non-zero tem-
perature. Our results show that a simple extension of the Higgs–

Yukawa sector of the standard model by a 
(
ϕ†ϕ

)3
term leads to 

first order phase transitions. This might open the possibility to 
generate a strong enough first order phase transition at a non-zero 
temperature which is compatible with baryogenesis [27] even at a 
value of the Higgs boson mass of 126 GeV.
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The constraint effective potential also allows to compute the 
Higgs boson mass from the second derivative at its minimum. By 
fixing the value of λ6 = 0.001 and driving λ more and more neg-
ative, we obtain lower and lower values of the Higgs boson mass 
and, in particular, substantially smaller values than obtained for 
λ6 = 0 at a comparable value of the cut-off. This finding is fully 
compatible with the results of [1]. As a criterion to obtain an ab-
solute lower bound for the Higgs boson mass one may choose the 
value of the quartic coupling, where the second order standard 
model like phase transition turns into a first order one since in 
the Higgs–Yukawa sector of the SM itself only second order phase 
transitions occur.

We have also found that for larger values of λ6 = 0.1 and at 
small values of the cut-off the positive contribution of the λ6 term 
to the Higgs boson mass-shift leads to significantly enhanced Higgs 
boson masses. In fact, we can already exclude certain values of 
the quartic and λ6 couplings since there the 126 GeV Higgs boson 
mass is in conflict with the lower bounds obtained here. It will be 
interesting to perform a more systematic study of the lower Higgs 
boson mass bounds at additional values of λ6 . By employing also 
numerical simulations this can provide exclusion bounds for the 
coupling values and hence for models which lead to an extension 
of the standard model with a 

(
ϕ†ϕ

)3
term. We plan to carry out 

such investigations in the future.
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