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An Efficient Tag-Based Routing Algorithm for the
Backward Network of a Bidirectional General

Shuffle-Exchange Network
in Honor of Frank K. Hwang’s 65th Birthday

Chiuyuan Chen and Jing-Kai Lou

Abstract— This letter considers the problem of designing
efficient routing algorithms for the backward network of a
bidirectional general shuffle-exchange network (BNBGSEN for
short); switch elements in the network are of size k × k. It has
been shown in [1] that the algorithm in [5] can be used to obtain
(as many as k) backward control tags for a source j to get to
a destination i in a BNBGSEN. In this letter, we show that a
BNBGSEN has a wonderful property: for each destination i,
there are two backward control tags associated with it such that
every source j can get to i by using one of the two tags. We use
this property to derive an efficient tag-based routing algorithm.

Index Terms— Multistage interconnection network, Omega
network, shuffle-exchange, tag-based routing algorithm.

I. INTRODUCTION

THE purpose of this letter is to derive an efficient tag-
based routing algorithm for the backward network of

a bidirectional general shuffle-exchange network. Throughout
this letter, N ′ denotes the number of inputs and outputs of the
network and all the switch elements are of size k × k.

Shuffle-exchange networks have been proposed as a popular
architecture for interconnection networks; see [2], [3], [4], [5],
[6]. The general shuffle-exchange operation on N ′ terminals
(k | N ′) is the permutation π defined by

π(i) = (ki +
⌊

ki

N ′

⌋
) mod N ′, 0 ≤ i ≤ N ′ − 1.

A shuffle-exchange network is a network with N ′ = kd inputs
and outputs and each stage consists of the general shuffle on
N ′ terminals followed by N ′/k switch elements.

In a multistage interconnection network, a path from a
source to a destination can be described by a sequence of
labels that label the successive links on this path. Such a
sequence is called a control tag [5] or tag [1]. The control
tag may be used as a header for routing a message: each suc-
cessive switch element uses the first element of the sequence
to route the message, and then discards it.

When N ′ is a power of k and when the number of stages is
exactly logk N ′, the shuffle-exchange network is the Omega
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network (see [4]) and its control tags depend only on the
destination. In [5], Padmanbhan proposed the general shuffle-
exchange network (GSEN), which allows N ′ �= kd and
contains exactly �logk N ′� stages. Padmanbhan proposed an
elegant tag-based routing algorithm for a GSEN and showed
that the control tags depend on both the source and the
destination when N ′ �= kd.

In [1], Chen, Liu and Qiu enhanced the GSEN with bidirec-
tional links. Their reason for the enhancement is that although
unidirectional links are widely used, bidirectional links also
have many applications as suggested in [2]. A bidirectional
GSEN can be divided into two dependent networks: the
forward network and the backward network. The forward
(backward) network is from the left-hand (right-hand) side of
the network to the right-hand (left-hand) side of the network;
thus a request in it is sent from left (right) to right (left). The
control tags used in the forward (backward) network are called
the forward (backward) control tags.

Since a forward network is a GSEN, Padmanbhan’s tag-
based routing algorithm can be used in it. As for the backward
network, Chen et al. [1] implemented a tag-based routing
algorithm (call it CLQ-algorithm for convenience) by using
the forward tag inversely. More precisely, CLQ-algorithm first
runs Padmanbhan’s tag-based routing algorithm to derive the
forward control tag; then, it runs another procedure to convert
the forward control tag into the backward control tag. If the
number of stages is n + 1, then CLQ-algorithm takes O(n)
time to derive the tag for a source j to get to a destination
i and takes O(N ′2n) time to construct the routing table (a
table that contains the backward control tags for routing the
N ′ × N ′ pairs of nodes in the backward network).

In this letter, we show that the backward network has
a wonderful property: for each destination i, there are two
backward control tags associated with it such that every source
j can get to i by using one of the two tags. We show that the
two tags can be derived in O(n) time. Therefore, it is possible
to derive in O(n) time not only a tag for a j to get to i but also
the tags for every j to get to i. So, constructing the routing
table can be done in O(N ′n) time. We summarize below.

time required to CLQ-algo. our algo.

find a tag for a j to get to i O(n) O(n)

find the tags for every j to get to i O(N ′n) O(n)

construct the routing table O(N ′2n) O(N ′n)
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Fig. 1. GSEN(2,11,5). The switch elements that can get to i = 6 are
highlighted; if j ≥ 16, then j can get to i = 6 using the tag 0 0 0 1 0.

II. BIDIRECTIONAL GSEN AND CONVENTIONS

The following definition was given in [1]. A bidirectional
general shuffle-exchange network GSEN(k, r, n+1) is a GSEN
with bidirectional links. The switch elements are aligned in n+
1 stages, labelled 0, 1, · · · , n. Each stage consists of r switch
elements, labelled 0, 1, · · · , r− 1. And each switch element is
a k × k bidirectional crossbar. For example, the network in
Figure 1 is GSEN(2,11,5).

Note that in GSEN(k, r, n + 1), there are a total of N ′ =
k × r ports on each side of a stage, labelled 0, 1, · · · , N ′ − 1.
The parameters k, r and n satisfy the following equation:

�logk(k · r)� = �logk N ′� = n + 1.

Throughout this letter, in a stage, the switch element la-
belled 0 is considered to be the successive switch element
of the switch element labelled r − 1. Also, terminal i (j) is
assumed on the left-hand (right-hand) side of the network.

III. OUR ALGORITHM

In this section, we will propose an algorithm to compute the
two backward control tags sn sn−1 · · · s0, s′n s′n−1 · · · s′0
and a critical value v(i) associated with a given i. We will
prove that if j < v(i), then j can get to i by using the tag
sn sn−1 · · · s0 and if j ≥ v(i), then j can get to i by using
the tag s′n s′n−1 · · · s′0.

The following observations are crucial to our algorithm: At
stage 0, only one switch element can get to i. At stage 1, ex-
actly k switch elements can get to i and these switch elements
are consecutive. At stage 2, exactly k2 switch elements can
get to i and these switch elements are consecutive. In general,
at stage �, 0 ≤ � ≤ n − 1, exactly k� switch elements can
get to i and these switch elements are consecutive. Clearly,
at stage n (the last stage), all the r switch elements can get
to i. Since at stage � the switch elements that can get to i
are consecutive, we only need to store the label of the first
one. Let C� denote this label. Clearly, we have C� = i × k�

(mod r). A critical value v(i) associated with i is defined to
be v(i) = Cn × k. The following is our algorithm.

BACKWARD-CONTROL-TAGS.
Input: i on the left-hand side of a bidirectional

GSEN(k, r, n + 1).
Output:The critical value v(i) and the two backward control

tags sn sn−1 · · · s0 and s′n s′n−1 · · · s′0 associated
with i.

1. /* Compute C0, C1, · · · , Cn. */
for � = 0 to n do

C� ← i × k� (mod r);
2. /* Compute the critical value v(i). */

v(i) ← Cn × k;
3. /* Compute F0, F1, · · · , Fn. */

if (r − Cn−1) × k ≥ r
then

begin
for � = 0 to n − 1 do F� ← 0;

Fn ← 1;
end

else
for � = 0 to n do

if C� + k� > r then F� ← 1 else F� ← 0;
4. /* Compute the tag s′n s′n−1 · · · s′0. */

s′0 ← ⌊
i
r

⌋
;

for � = 1 to n do s′� ←
⌊

k×C�−1
r

⌋
;

5. /* Compute the tag sn sn−1 · · · s0. */
for � = 0 to n do s� ← s′� + F� (mod k);

END-of-BACKWARD-CONTROL-TAGS.

Again, take Figure 1 as an example. Suppose i = 6. Then
C0 = 6, C1 = 1, C2 = 2, C3 = 4, C4 = 8, v(i) = 16,
F0 = 0, F1 = 0, F2 = 0, F3 = 0, F4 = 1. Thus

s4 s3 s2 s1 s0 = 1 0 0 1 0, s′4 s′3 s′2 s′1 s′0 = 0 0 0 1 0.

It is not difficult to verify that: if j < 16, then j can get to 6
by using the tag 1 0 0 1 0; if j ≥ 16, then j can get to 6 by
using the tag 0 0 0 1 0.

Recall that there are a total of N ′ ports on each side of
a stage, labelled 0, 1, · · · , N ′ − 1. A port R consists of two
parts: the number y of the switch element where R is located,
and the sub port number z in the switch element where R is
located; see [1]. R and y and z satisfy R = k · y + z. The
following result was proved in [1].

Lemma 1: [1] Suppose port u of stage �− 1 and port v of
stage � are connected by a link, where u = k · y1 + z1 and
v = k · y2 + z2. Then z2 =

⌊
k·u
N ′

⌋
.

Thus we have
Lemma 2: Let u, v, y1, z1, y2, z2 be defined as in Lemma

1 and consider the switch elements labelled y1 and y2. Then
the backward control tag for y2 to get to y1 (or for y2 to get
to u) is z2; moreover, z2 =

⌊
u
r

⌋
.

Proof: Clearly, the tag is z2. Since N ′ = k×r, by Lemma
1, z2 =

⌊
u
r

⌋
.

We now prove that
Lemma 3: If j = v(i), then j can get to i by using the tag

s′n s′n−1 · · · s′0.
Proof: If j = v(i), then j can get to i via switch elements

labelled Cn, Cn−1, · · · , C0. For each �, 1 ≤ � ≤ n, C� is
linked to C�−1 via sub port 0 of C�−1. Sub port 0 of C�−1 is



298 IEEE COMMUNICATIONS LETTERS, VOL. 10, NO. 4, APRIL 2006

port u of C�−1, where u = k ×C�−1. Thus by Lemma 2, the
tag for C� to get to C�−1 is

⌊
k×C�−1

r

⌋
. Also by Lemma 2,

the tag for C0 to get to i is
⌊

i
r

⌋
. In Step 3, we set s′0 =

⌊
i
r

⌋

and s′� =
⌊

k×C�−1
r

⌋
, for � = 1, 2, · · · , n. Hence the lemma.

Lemma 4: If j > v(i), then j can get to i by using the tag
s′n s′n−1 · · · s′0.

Proof: Note that kn < N ′ ≤ kn+1. Set d = j − v(i) for
easy writing. Then 0 < d ≤ N ′ − 1. Thus 0 < d

kn−�+1 ≤
N ′−1
kn+1

k�

≤ N ′−1
N ′ k� < k� and therefore 0 ≤ ⌊

d
kn−�+1

⌋
< k�.

Note that j can get to i via switch elements labelled Cn +⌊
d
k

⌋
, Cn−1 +

⌊
d
k2

⌋
, Cn−2 +

⌊
d
k3

⌋
, · · ·, C� +

⌊
d

kn−�+1

⌋
, · · ·,

C1 +
⌊

d
kn

⌋
, C0 +

⌊
d

kn+1

⌋
. The connection of a GSEN ensures

that if C�, 1 ≤ � ≤ n, is connected to C�−1 via sub port
z2, then C� +

⌊
d

kn−�+1

⌋
is connected to C�−1 +

⌊
d

kn−�+2

⌋
via

sub port z2. By Lemma 2, the tag for C� +
⌊

d
kn−�+1

⌋
to get

to C�−1 +
⌊

d
kn−�+2

⌋
is z2; by Lemma 3, z2 = s′�. Note that

0 < d
kn+1 ≤ N ′−1

N ′ < 1. Thus C0 +
⌊

d
kn+1

⌋
= C0. By Lemma

3, the tag for C0 to get to i is s′0. Hence the lemma.

Lemma 5: If j < v(i) and (r−Cn−1)× k ≥ r, then j can
get to i by using the tag sn sn−1 · · · s0.
Proof: Set d = j−v(i)+N ′ for easy writing. Then j can get
to i via switch elements labelled Cn +

⌊
d
k

⌋− r, Cn−1 +
⌊

d
k2

⌋
,

Cn−2+
⌊

d
k3

⌋
, · · ·, C�+

⌊
d

kn−�+1

⌋
, · · ·, C1+

⌊
d

kn

⌋
, C0+

⌊
d

kn+1

⌋
.

The connection of a GSEN ensures that if Cn is connected
to Cn−1 via sub port z2, then Cn +

⌊
d
k

⌋ − r is connected to
Cn−1+

⌊
d
k2

⌋
via sub port z2+1 (mod k). By Lemma 2, the

tag for Cn+
⌊

d
k

⌋−r to get to Cn−1+
⌊

d
k2

⌋
is z2+1 (mod k).

By Lemma 3, z2 = s′n. In our algorithm, we set Fn = 1 and
set sn = s′n + Fn (mod k). Thus sn = z2 + 1 (mod k).
Again, the connection of a GSEN ensures that if C�, 1 ≤ � ≤
n−1, is connected to C�−1 via sub port z2, then C�+

⌊
d

kn−�+1

⌋

is connected to C�−1 +
⌊

d
kn−�+2

⌋
via sub port z2. By Lemma

2, the tag for C� +
⌊

d
kn−�+1

⌋
to get to C�−1 +

⌊
d

kn−�+2

⌋
is

z2. By Lemma 3, z2 = s′�. In our algorithm, we set F� = 0
and set s� = s′� + F� (mod k). Thus s� = z2. Note that
0 < d

kn+1 ≤ N ′−1
N ′ < 1. Thus C0 +

⌊
d

kn+1

⌋
= C0. By Lemma

3, the tag for C0 to get to i is s′0. In our algorithm, we set
F� = 0 and set s0 = s′0 + F0 (mod k). Thus s0 = s′0. We
now have this lemma.

Lemma 6: If j < v(i) and (r−Cn−1)× k < r, then j can
get to i by using the tag sn sn−1 · · · s0.

Proof: Set d = j−v(i)+N ′ for easy writing. Then j can
get to i via switch elements labelled Ln, Ln−1, · · ·, L�, · · ·,
L1, L0, where

Ln = Cn +
⌊

d

k

⌋
− r

and for � = n − 1, n − 2, · · · , 0,

L� =

{
C� +

⌊
d

kn−�+1

⌋
if C� + k� ≤ r,

C� +
⌊

d
kn−�+1

⌋ − r if C� + k� > r.

The connection of a GSEN ensures that if Cn is connected
to Cn−1 via sub port z2, then Ln is connected to Ln−1 via
sub port z2 + 1 (mod k). By Lemma 2, the tag for Ln to
get to Ln−1 is z2 + 1 (mod k). By Lemma 3, z2 = s′n.

Note that Cn + kn > r. Thus our algorithm sets Fn = 1.

Since our algorithm sets sn = s′n + Fn (mod k), clearly
sn = z2 + 1 (mod k). Again, the connection of a GSEN
ensures that if C�, 1 ≤ � ≤ n − 1, is connected to C�−1 via
sub port z2, then L� is connected to L�−1 via sub port z2 if
L� = C�+

⌊
d

kn−�+1

⌋
and via sub port z2+1 (mod k) if L� =

C� +
⌊

d
kn−�+1

⌋−r. Thus by Lemma 2, the tag for L� to get to
L�−1 is z2 if L� = C� +

⌊
d

kn−�+1

⌋
and is z2 + 1 (mod k) if

L� = C�+
⌊

d
kn−�+1

⌋−r. By Lemma 3, z2 = s′n. Our algorithm
sets F� = 0 if C� + k� ≤ r (i.e., if L� = C� +

⌊
d

kn−�+1

⌋
), sets

F� = 1 if C�+k� > r (i.e., if L� = C�+
⌊

d
kn−�+1

⌋−r) and sets
s� = s′� +F� (mod k). Thus s� = z2 if L� = C� +

⌊
d

kn−�+1

⌋

and s� = z2 + 1 (mod k) if L� = C� +
⌊

d
kn−�+1

⌋− r. Note
that 0 < d

kn+1 ≤ N ′−1
N ′ < 1. Thus L0 = C0. By Lemma 3,

the tag for L0 to get to i is s′0. Note that C0 + k0 ≤ r. Thus
our algorithm sets F0 = 0 and set s0 = s′0 + F0 (mod k).
Thus s0 = s′0. We now have this lemma.

The following is our main result:
Theorem 7: If j < v(i), then j can get to i by using the tag

sn sn−1 · · · s0; if j ≥ v(i), then j can get to i by using the
tag s′n s′n−1 · · · s′0. Moreover, it takes O(n) time to compute
v(i) and the two tags.

Proof: Since k� can be computed from k�−1 by k� =
k · k�−1, it takes O(1) time to compute k�. So, it takes O(n)
time to compute v(i) and the two tags. This theorem now
follows from Lemma 3, Lemma 4, Lemma 5 and Lemma 6.

The following is the routing table for GSEN(2, 11, 5), which
is generated by a computer program implemented from our
algorithm.

i v(i) s4...s0 s′4...s
′
0 i v(i) s4...s0 s′4...s

′
0

0 0 10000 00000 11 0 10001 00001
1 10 01000 10000 12 10 01001 10001
2 20 11000 01000 13 20 11001 01001
3 8 10100 00100 14 8 10101 00101
4 18 01100 10100 15 18 01101 10101
5 6 00010 11100 16 6 00011 11101
6 16 10010 00010 17 16 10011 00011
7 4 11010 01010 18 4 11011 01011
8 14 00110 11010 19 14 00111 11011
9 2 01110 10110 20 2 01111 10111
10 12 11110 01110 21 12 11111 01111

REFERENCES

[1] Z. Chen, Z. Liu and Z. Qiu, “Bidirectional shuffle-exchange network and
tag-based routing algorithm,” IEEE Commun. Lett., vol. 7, no. 3, pp.
121-123, Mar. 2003.

[2] M. Gerla, E. Leonardi, F. Neri, and P. Palnati, “Routing in the bidi-
rectional shufflenet,” IEEE/ACM Trans. Networking, vol. 9, no. 1, pp.
91-103, Feb. 2001.

[3] F. K. Hwang, “The mathmatical theory of nonblocking switching net-
works,” Series on Applied Mathematics, vol. 15, ch. 1, pp. 12-22, 2004.

[4] D. H. Lawrie, “Access and alignment of data in an array processor,” IEEE
Trans. Comput., vol. 24, no. 12, pp. 1145-1155, Dec. 1975.

[5] K. Padmanabham, “Design and analysis of even-sized binary shuffle-
exchange networks for multiprocessors,” IEEE Trans. Parallel and Dis-
trib. Syst., vol. 2, no. 4, pp. 385-397, Oct. 1991.

[6] R. Ramaswami, “Multi-wavelength lightwave networks for computer
communication,” IEEE Commun. Mag., vol. 31, no. 2, pp. 78-88, Feb.
1993.




