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Abstract: We show that the propagating modes in a strongly-guided
chiral one-way photonic crystal are not backscattering-immune even though
they are indeed insensitive to many kinds of scatters. Since these modes are
not protected by the nonreciprocity, the backscattering does occur under
certain circumstances. We use a perturbative method to derive criteria for
the prominent backscattering in such chiral structures. From both our theory
and numerical examinations, we find that the amount of backscattering
critically depends on the symmetry of scatters. Additionally, for these chiral
photonic modes, disturbances at the most intense parts of field profiles do
not necessarily lead to the most effective backscattering.

© 2015 Optical Society of America

OCIS codes: (230.5298) Photonic crystals; (290.1350) Backscattering; (290.5855) Scattering,
polarization.

References and links
1. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos,

M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is–and what is not–an optical isolator,” Nat. Photonics 7,
579–582 (2013).

2. K. v. Klitzing, G. Dorda, and M. Pepper, “New method for high-accuracy determination of the fine-structure
constant based on quantized Hall resistance,” Phys. Rev. Lett. 45, 494–497 (1980).

3. B. I. Halperin, “Quantized Hall conductance, current-carrying edge states, and the existence of extended states
in a two-dimensional disordered potential,” Phys. Rev. B 25, 2185–2190 (1982).

4. X. G. Wen, “Gapless boundary excitations in the quantum Hall states and in the chiral spin states,” Phys. Rev. B
43, 11025–11036 (1991).

5. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with
broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).

6. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromag-
netic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).

7. S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A
78, 033834 (2008).

8. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune
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1. Introduction

The reduction of unwanted reflections and backscattering during wave transmissions and prop-
agations is important in photonic integrated systems. It lowers potential channel noises and
interferences and therefore necessitates the device isolator [1]. Such devices only transmit the
optical power along one direction but block the energy flow in the other. To implement this
functionality in a robust manner, nonreciprocal setups are required. In electronics, the one-way
phenomenon is present in the edge states of quantum Hall effect due to a high magnetic field
that breaks the time-reversal symmetry [2–4]. Analogously, in photonics, unidirectional edge
modes can be also implemented using photonic crystals (PhCs) with static magneto-optical
effects [5–12] or dynamic phase modulations (including spatially-equivalent ones) [13–15].

Despite various nonreciprocal schemes aimed at one-way behaviors of waves, their com-
patibilities with photonic systems nowadays still require some key progress. Since most of
the conventional linear optical devices are reciprocal, great efforts have to be devoted to the
integrations of nonreciprocal (magnetic) materials or complicated time-variant controls to pho-
tonic structures. These inconveniences motivate the development of reciprocal schemes which
distinguish or isolate energy flows in opposite directions. For example, asymmetric two-way
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transmissions may be achieved through designed gratings [16–18]. In wave-guiding structures,
reciprocal modes that are backscattering-immune to a variety of scatters are preferred so that
energy flows are not easily reversed. This, however, does not mean only unidirectional modes
are supported. In fact, in reciprocal environments, counter-propagating modes always exist si-
multaneously, namely, a reciprocal photonic system is bidirectional [19].

Two factors are essential to the immunity of modes (states) to backscattering in reciprocal
(time-reversible) systems. As long as (i) the counter-propagating modes (states) are firmly as-
sociated with some orthogonal degrees of freedom (DOFs), and (ii) elastic scatters do not mix
these DOFs, the backscattering is suppressed. Such characteristics can be found in the edge
modes (states) of photonic (electronic) topological insulators [20–25]. In fact, these prerequi-
sites on one-way propagations are also present in circularly-polarized (CP) guided modes of
one-dimensional (1D) chiral PhCs or waveguides (WGs) [26–32]. In this case, the key DOFs
are the two circular polarizations rotating in opposite orientations. Absence of the backscatte-
ring from simple scatters has also been demonstrated experimentally in 1D chiral PhCs [31].

While the aforementioned condition (ii) may hold for a broad range of scatters, there are
always exceptions. The failure of this condition marks the onset of backscattering. This point
motivates us to examine the robustness of reciprocal chiral guided modes against the backscat-
tering. In this work, we look into the dependencies of backscattering on geometries of different
scatters in a 1D chiral PhC covered by perfect electric conductors (PECs) at microwave fre-
quencies. We use the first-order Born approximation and coupled-mode theory to develop the
criteria of prominent scattering in the chiral structure. The outcomes indicate that the amount
of backscattering closely depends on the cross-sectional symmetry of scatters. In addition, even
if the scatter is placed at positions corresponding to the most intense parts of mode profiles, the
backscattering there is not necessarily the most prominent. The behavior is contrary to that of
typical backscattering in generic PEC WGs. All these features are qualitatively verified by rig-
orous numerical calculations. Our studies also point out what types of scatters or defects should
be avoided in one-way applications of chiral structures so that the backscattering could be min-
imized. While this work is aimed at microwave frequencies, the results may be generalized to
analogous plasmonic chiral PhCs at optical frequencies after the structure size and operating
wavelength are properly scaled down.

The rest of this paper is organized as follows. In section 2, the structure and modes of the
1D chiral PhC as well as the setup of backscattering will be briefly introduced. The theoretical
model based on coupled-mode theory are outlined in section 3. In section 4, we will discuss
the inferences from our theory on backscattering and present the numerical results and their
comparisons with theoretical predictions. The conclusion will be given in section 5.

2. Structure of chiral one-way photonic cyrstal

The schematic diagram of the 1D chiral PhC in this study is shown in Fig. 1. This chiral struc-
ture is generalized from a circular PEC WG with its radius R = 1 cm and center coincident with
the z axis. The interior of the PhC is filled with air and has a relative permittivity of unity. A
generic cross section of the PhC is shown in the top inset of the same figure. A PEC bump in
the form of a truncated sector is present at the circular rim of the cross section. The thickness
ΔR and outer arc length ΔS of the bump are 0.15R and 0.3R, respectively. The chiral PhC is a
right-handed (RH) structure and has a pitch P. Since its cross section does not have any sym-
metries, the pitch P is also the period of this PhC. The bottom inset of Fig. 1 shows a scatter
to be inserted into the PhC. We focus on chiral scatters with a pitch Ps and cross sections of
different rotational symmetries. As will be shown later, chiral scatters reflect the propagating
modes effectively even though other types of scatters could also result in backscattering.

In absence of the bump, eigenmodes of the circular PEC WG are analytically solvable [33].
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Fig. 1. The schematic diagram of the one-way chiral PhC covered by PECs. The top inset
shows a generic cross section inside the PhC. The bottom inset indicates a chiral scatter to
be inserted into the the wave-guiding structure.

They can be divided into transverse-electric (TE) modes TEmn and transverse-magnetic (TM)
modes TMmn, where m ∈ Z and n ≥ 1 are the azimuthal and radial mode numbers, respectively.
Hereafter, we adopt the representation exp(imφ)/

√
2π for azimuthal parts of various cylindrical

field components, where φ is the azimuthal angle. The fundamental modes are two degenerate
TE modes TE±1,1. These two modes are of interest since their polarization patterns resemble
circular polarizations and can properly grasp features of the chirality. With optic conventions for
waves propagating toward the +ẑ direction, the TE+1,1 and TE−1,1 modes are similar to the left-
handed circularly-polarized (LHCP) and right-handed circularly-polarized (RHCP) waves with
polarizations ê+ = (x̂+ iŷ)/

√
2 and ê− = ê∗+, respectively. On the other hand, upon reversing

the propagation toward the −ẑ direction, the LHCP and RHCP waves change their polarizations
into ê− and ê+ and are therefore associated with TE−1,1 and TE+1,1 modes, respectively.

To make the chiral nature of backscattering clear, we attempt to rule out the characteristics of
higher-order modes other than TE±1,1 ones in this process. Therefore, we adopt the frequency
range below which the next guided mode TM0,1 and other even higher-order modes are all cut
off. Accordingly, the pitch P is set to 6 cm so that the chiral bandgap responsible for one-way
propagations is opened between the cutoff frequencies of TE±1,1 and TM0,1 modes. Figure 2(a)
shows bandstructures of the chiral PhC around the frequency range of interest in the first Bril-
louin zone (BZ) for wave number kz ≥ 0. The calculations are carried out with the eigenfre-
quency solver of commercial software COMSOL. A phase difference exp(ikzP) is imposed on
the fields at two sides of the unit cell to setup the boundary condition of Bloch modes. The
dispersion curves of TE±1,1 modes are also shown in the scheme of reduced zones for compar-
isons. The chiral bump breaks the degeneracy of TE±1,1 modes and turn them into the LHCP-
like and RHCP-like modes. While the dispersion curve of LHCP-like modes is only slightly
shifted in frequencies as compared to that of TE±1,1 modes, an additional chiral bandgap from
9.90 to 10.42 GHz is developed on the counterpart of RHCP-like modes at the BZ center due to
the RH chiral structure. In the frequency range of this chiral bandgap, only LHCP-like modes
can propagate while RHCP-like ones behave like evanescent waves. Since the forward- and
backward-propagating LHCP-like modes have distinct polarizations patterns similar to ê+ and
ê−, respectively, the two waves would simply pass by those scatters which cannot mix polar-
izations ê± and hence are not effectively reflected.

As a test of the similarity between the TE+1,1 and forward-propagating LHCP-like modes, we
monitor the incidence of the TE+1,1 mode from the circular WG to the chiral PhC at a frequency
of 10.25 GHz within the chiral bandgap, which is also the frequency of LHCP-like modes at the
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Fig. 2. (a) Bandstructures of the 1D chiral PhC. The dispersion curves of unperturbed
TE±1,1 modes are split into those of the LHCP-like and RHCP-like modes. The RHCP-like
mode has a chiral bandgap at the BZ center. (b) The incidence of a forward-propagating
TE+1,1 mode from the circular WG into chiral PhC. The cross-sectional distributions of
square field magnitudes in the WG and PhC regions are shown at the bottom. Except for
areas near the bump, the two field patterns look similar.

BZ center. The cross-sectional view of the field pattern near the junction of the WG and PhC
is illustrated in Fig. 2(b). Only minor reflections and field variations due to the discontinuity
of the wave-guiding structure are observed. As shown at the bottom of Fig. 2(b), the cross-
sectional distributions of field strengths in the WG and PhC regions are similar except for areas
near the bump. This examination confirms the resemblance between the TE+1,1 mode of the
circular WG and forward-propagating LHCP-like mode of the chiral PhC. Since no significant
reflections are observed here, this incidence scheme will also be utilized in later calculations to
excite the forward-propagating LHCP-like mode inside the chiral PhC.

3. Theoretical model of backscattering

We use a perturbative scheme to investigate the backscattering in chiral structures. While the
chiral PEC bump in Fig. 1 and some scatters to be considered are not really weak perturbations,
the derivation here does provide some insights into the backscattering in this chiral PhC. In
sections 3.1 and 3.2, we briefly describe some preliminary knowledge on the modeling. Details
about the backscattering are presented in sections 3.3.

3.1. Scatters as effective radiation sources: first-order Born approximation

In the presence of a scatter, the total field E(r) in a chiral PhC, of which the permittivity profile
is slightly different from that of a circular PEC WG, satisfies the following wave equation:

∇×∇×E(r)−
(ω

c

)2
εr(r,ω)E(r) = 0, ∀ 0 < ρ < R,

εr(r,ω) = Δεr,s(r,ω)+ εr,c(r,ω), εr,c(r,ω) = Δεr,c(r,ω)+ εr,b(ω), (1)

where ω is the angular frequency of the field; c is the speed of light in the vacuum; ρ = |ρρρ| is the
magnitude of the transverse coordinate (ρρρ = xx̂+yŷ); εr(r,ω) is the overall relative permittivity
distribution inside the chiral PhC; Δεr,s(r,ω) is the permittivity variation due to the scatter;
and εr,c(r,ω) is the permittivity profile of the chiral PhC, which includes a chiral component
Δεr,c(r,ω) and uniform background εr,b(ω) (set to unity). The total field E(r) = Ei(r)+Es(r)
is composed of an incident field Ei(r) and scattered part Es(r). The field Es(r) is induced by
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the scatter and is our target. If the scatter is a mild one, we may use the perturbation theory [in
the order of Δεr,s(r,ω)] to approximate the governing equation of Es(r).

The zeroth-order equation is the wave equation of Ei(r) in the scatter-free chiral PhC. Along
with the first-order equation of Es(r), they are shown as follows:

∇×∇×Ei(r)−
(ω

c

)2
εr,c(r,ω)Ei(r) = 0. (2a)

∇×∇×Es(r)−
(ω

c

)2
εr,c(r,ω)Es(r)≈ iωμ0Js(r), Js(r)≡−iωε0Δεr,s(r,ω)Ei(r), (2b)

where Js(r) is an effective source resulted from the coupling between Ei(r) and Δεr,s(r,ω).
Equation (2b) indicates that the scattered field Es(r) could be regarded as being radiated from
the source Js(r) in the chiral PhC. Such a simplification is analogous to the first-order Born
approximation in quantum mechanics [34]. It turns the full calculation of E(r) into an effective
radiation problem, which could be further analyzed through mode expansions later.

3.2. Generalized reciprocity theorem in waveguide-like structures and mode orthogonality

Let us consider two sets of electric and magnetic fields [E1(r),H1(r)] and [E2(r),H2(r)] which
are independently generated by two sources J1(r) and J2(r) at a frequency ω in two different
WG-like structures 1 and 2 extending along the z axis, respectively. The permittivity distribu-
tions of structures 1 and 2 are denoted as εr,1(r,ω) and εr,2(r,ω), and their relative permeabil-
ities μr,1 and μr,2 are both assumed to be unity. At a common transverse cross section A of the
two structures at z, which contains areas of nonvanishing fields, the two sets of fields satisfy the
following generalized reciprocity theorem in the differential form [35]:

∂
∂ z

∫

A
dρρρ ẑ · [E1(r)×H2(r)−E2(r)×H1(r)]

=− iωε0

∫

A
dρρρ [εr,1(r,ω)− εr,2(r,ω)]E1(r)·E2(r)−

∫

A
dρρρ [E1(r)·J2(r)−E2(r)·J1(r)] . (3)

Later, we will set [E1(r),H1(r)] to modal fields of the circular PEC WG with J1(r) = 0 and
εr,1(r,ω) = εb(ω), ∀ 0 < ρ < R. The fields [E2(r),H2(r)] will be identified as the scattered
fields [Es(r),Hs(r)] generated by J2(r) = Js(r) in the chiral PhC [εr,2(r,ω) = εr,c(r,ω)], where
Hs(r) is the magnetic field associated with Es(r).

As an application of Eq. (3), we obtain the orthogonality relation for modes in the circular
PEC WG. Let us denote the electric and magnetic fields [Eσ

mns(r),H
σ
mns(r)] of these modes as

[Eσ
mns(r),H

σ
mns(r)] = [EEE σ

mns(ρρρ),HHH σ
mns(ρρρ)]

eimφ
√

2π
eiσβmnsz, (4)

where s indicates TE/TM types; σ =+1 and −1 (or “f” and “b”) means forward- and backward-
propagating/evanescent modes along the z axis, respectively; EEE σ

mns(ρρρ) and HHH σ
mns(ρρρ) are trans-

verse profiles of mode (m,n,s,σ) aside from the azimuthal part exp(imφ)/
√

2π; and βmns is the
associated propagation constant which is identical to β−m,ns (degenerate if m 	= 0) and is either
positive (propagating) or purely imaginary with Im[βmns]> 0 (evanescent). We then assign two
sets of fields in Eq. (3) as follows:

[E1(r),H1(r)] = [Eσ
mns(r),H

σ
mns(r)], [E2(r),H2(r)] = [Eσ ′

m′n′s′(r),H
σ ′
m′n′s′(r)], (5)

where (m′,n′,s′,σ ′) are mode labels for the second set of fields. With εr,1(r,ω) = εr,2(r,ω) and
J1,2(r,ω) = 0, the right-hand side (RHS) of Eq. (3) vanishes. Hence, the left-hand side (LHS)
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of the same equation, after dropping the factor exp[i(σβmns +σ ′βm′n′s′)z], has to be zero:

i(σβmns+σ ′βm′n′s′)
∫

A
dρρρẑ·

[
EEE σ

mns(ρρρ)×HHH σ ′
m′n′s′(ρρρ)−EEE σ ′

m′n′s′(ρρρ)×HHH σ
mns(ρρρ)

]ei(m+m′)φ

2π
=0, (6)

where the area A is now the circular cross section of the WG. In Eq. (6), if σβmns+σ ′βm′n′s′ = 0,
the surface integral can be nonzero. This situation occurs only when (i) σ = −σ ′ (counter-
propagating/evanescent modes), and (ii) βmns = βm′n′s′ (degenerate modes). Condition (ii) is
further limited to the case m = −m′ since the integration of exp[i(m+m′)φ ]/2π over φ in
Eq. (6) brings about a Kronecker delta δm+m′,0. These conditions lead to the following mode
orthogonality relation in the circular PEC WG:

∫

A
dρρρ ẑ ·

[
EEE σ

mns(ρρρ)×HHH σ ′
m′n′s′(ρρρ)−EEE σ ′

m′n′s′(ρρρ)×HHH σ
mns(ρρρ)

] ei(m+m′)φ

2π
=σNmns(ω)δm+m′,0δnn′δss′δσ+σ ′,0, (7)

where Nmns(ω) is a (complex) normalization factor which could be set frequency-dependent
but must be symmetric with respect to m and −m, namely, Nmns(ω) = N−m,ns(ω).

3.3. Coupled-mode theory

We utilize Eq. (3) to formulate the coupled-mode theory for scattered fields Es(r) and Hs(r) in
the chiral PhC. As mentioned in section 3.2, we may set [E1(r),H1(r)] = [E−σ

−m,ns(r),H
−σ
−m,ns(r)]

and [E2(r),H2(r)] = [Es(r),Hs(r)]. In this way, Eq. (3) is rewritten as

∂
∂ z

∫

A
dρρρ ẑ · [E−σ

−m,ns(r)×Hs(r)−Es(r)×H−σ
−m,ns(r)

]

=iωε0

∫

A
dρρρΔεr,c(r,ω)E−σ

−m,ns(r) ·Es(r)−
∫

A
dρρρE−σ

−m,ns(r) ·Js(r), (8)

in which the chiral component Δεr,c(r,ω) of the permittivity profile εr,c(r,ω) inside the chiral
PhC appears at the RHS. This chiral component Δεr,c(r,ω) can be reexpressed as

Δεr,c(r,ω) = Δεr,c(ρ ,φ −qz,ω) =
∞

∑
l=−∞

Δε(l)r,c (ρ ,ω)eil(φ−qz), (9)

where q = 2π/P is the reciprocal period of pitch P; and Δε(l)r,c (ρ ,ω) is the azimuthal Fourier
component of Δεr,c(r,ω)|z=0 at order l. The chiral PhC is a RH (LH) structure if the argument
φ −qz (φ +qz) is adopted for Δεr,c(r,ω). Therefore, we use φ −qz for the structure in Fig. 1.

The scattered fields Es(r) and Hs(r) could be expanded well, though incompletely, with
transverse mode profiles in the circular PEC WG:

[Es(r),Hs(r)]≈ ∑
m′n′s′σ ′

Aσ ′
m′n′s′(z)

[
EEE σ ′

m′n′s′(ρρρ),HHH
σ ′
m′n′s′(ρρρ)

] eim′φ
√

2π
, (10)

where Aσ ′
m′n′s′(z) is the z-dependent amplitude of mode (m′,n′,s′,σ ′). The amplitude Aσ ′

m′n′s′(z)
contains the characteristics of Bloch modes in the 1D chiral PhC and features of the scatter
[source Js(r)]. We then substitute Eq. (10) into Eq. (8). The surface integral at the LHS of
Eq. (8) directly picks up the amplitude Aσ

mns(z) through the orthogonality relation in Eq. (7) and
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leads to the following differential equation:

∂Aσ
mns(z)
∂ z

− iσβ−m,nsA
σ
mns(z) =− iσωε0 ∑

m′n′s′σ ′
e−i(m−m′)qzκσ ,σ ′

(mns),(m′n′s′)(ω)Aσ ′
m′n′s′(z)

+σJσ
mns(z), (11a)

κσ ,σ ′
(mns),(m′n′s′)(ω)≡

∫ R

0
dρρΔε(m−m′)

r,c (ρ ,ω)
EEE −σ

−m,ns(ρρρ) ·EEE σ ′
m′n′s′(ρρρ)

N−m,ns(ω)
, (11b)

Jσ
mns(z)≡

∫

A
dρρρ

e−imφ
√

2π
EEE −σ

−m,ns(ρρρ) ·Js(r)

N−m,ns(ω)
, (11c)

where κσ ,σ ′
(mns),(m′n′s′)(ω) are the coupling coefficients between various modal amplitudes; Jσ

mns(z)

is the projection of the source Js(r) to mode (m,n,s,σ); and we have used the integral identity∫ 2π
0 dφ exp[i(l−m+m′)φ ]/2π = δl,m−m′ , ∀ l−m+m′ ∈ Z, in Eq. (11a).

Equation (11a) could be significantly simplified after some physical approximations. As dis-
cussed in section 2, the frequency range of the chiral bandgap is designed such that only the
TE±1,1 modes of the original circular PEC WG are not cut off. Therefore, we solely consider
the four relevant amplitude-source pairs [Aσ

mns(z),J
σ
mns(z)] related to the fundamental TE modes

with (m,σ) = (±1, f/b). For simplicity, we abbreviate these four pairs, their associated trans-
verse electric-field profiles, normalization factors, and coupling coefficients as [Aσ

m(z),J
σ
m(z)],

EEE σ
m(ρρρ), Nm(ω), and κσσ ′

mm′ (ω), respectively, by dropping mode labels n = 1 and s = TE. Also,
the identical propagation constants of these four modes are simply denoted as β (ω).

Around the frequency range of the chiral bandgap, the propagation constant β (ω) is close to
q = 2π/P. Therefore, the amplitude Aσ

m(z) behaves like the phase factor exp(iσqz). In views of
this behavior, we define a slowly-varying amplitude Ãσ

m(z) and its source counterpart J̃σ
m(z) in

addition to the rapid spatial variation of exp(iσqz) as

[Aσ
m(z),J

σ
m(z)] = eiσqz [Ãσ

m(z),σ J̃σ
m(z)

]
. (12)

Equation (12) also suggests that the phase difference between two amplitudes Aσ
m(z) and Aσ ′

m′(z)
is approximately reflected on the factor exp[i(σ −σ ′)qz]. Comparing this factor with the coun-
terpart exp[−i(m−m′)qz] at the RHS of Eq. (11a), we match their phase variations and, hence,
merely keep the coupling coefficients κσσ ′

mm′ (ω) with σ −σ ′ = −(m−m′). This simplification
is the major concept of the coupled-mode theory.

With the aforementioned approximations, we rewrite Eq. (11a) using the four slowly-varying
pairs [Ãσ

m(z), J̃
σ
m(z)] in a 4-by-4 matrix form of differential equations as

∂
∂ z

Ã(z) = iMÃ(z)+ J̃(z),

Ã(z)≡

⎛
⎜⎜⎝

Ãf
+(z)

Ãf−(z)
Ãb
+(z)

Ãb−(z)

⎞
⎟⎟⎠, J̃(z)≡

⎛
⎜⎜⎝

J̃f
+(z)

J̃f−(z)
J̃b
+(z)

J̃b−(z)

⎞
⎟⎟⎠, M=

⎛
⎜⎜⎝

Δκ(ω) 0 0 0
0 Δκ(ω) −κ(−2)(ω) 0
0 κ(2)(ω) −Δκ(ω) 0
0 0 0 −Δκ(ω)

⎞
⎟⎟⎠,

Δκ(ω) = β (ω)−κ(0)(ω)−q, κ(0)(ω) = κσσ
mm(ω),

κ(2)(ω) = κbf
+−(ω), κ(−2)(ω) = κ fb

−+(ω), (13)

where Ã(z) and J̃(z) are column vectors formed by Ãσ
m(z) and J̃σ

m(z), respectively; M is a 4-by-4
propagation matrix; Δκ(ω), and κ(±2)(ω) are nonzero matrix elements of M; and κ(0)(ω) is the
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diagonal coupling coefficient. The parameters Δκ(ω) and κ(0)(ω) are both real if Δεr,c(r,ω) is
real, and with proper choices of N±(ω), κ(±2)(ω) can be also set real.

The matrix M is block diagonal. Only its second and third rows/columns are coupled. The
eigenvalues λu(ω) (u = 1 to 4) of M can be obtained from its characteristic polynomial and are

λ1(ω) =−λ4(ω) = Δκ(ω), λ2(ω) =−λ3(ω) =

√
Δκ2(ω)−κ(−2)(ω)κ(2)(ω). (14)

In fact, λu(ω) (u = 1 to 4) are wave numbers of the Bloch modes near the chiral bandgap. Note
that amplitudes Ãf

+(z) and Ãb−(z) do not mix with others through matrix M, and they correspond
to eigenvalues λ1(ω) and λ4(ω), respectively. These two eigenvalues are real, indicating that
Ãf
+(z) and Ãb−(z) [or Af

+(z) and Ab−(z)] are propagating modes toward the +ẑ and −ẑ directions,
respectively. The mode labels (m,σ) of Ãf

+(z) and Ãb−(z) indicate that they are LHCP-like
modes discussed in section 2. The other set of eigenvalues λ2,3(ω) originate from the coupling
between amplitudes Ãb

+(z) and Ãf−(z). They are imaginary if Δκ2(ω)−κ(−2)(ω)κ(2)(ω) < 0,
which signifies the regime of chiral bandgaps. In this case, the eigenvectors corresponding to
λ2(ω) and λ3(ω) represent the forward- and backward-evanescent modes of the chiral PhC,
respectively. Also, the mode labels (m,σ) of amplitudes Ãf−(z) and Ãb

+(z) which constitute
these two PhC modes reveal that they are RHCP-like.

In the chiral bandgap, only the LHCP-like modes Af
+(z) and Ab−(z) corresponding to eigen-

values λ1,4(ω) can propagate. Their magnitudes directly determine the amounts of power flows
radiated by Js(r) in the forward and backward directions. Let us consider a scatter which is
present inside the chiral PhC at z ∈ [zL,zR], where zL and zR are the leftmost and rightmost
ends of the scatter. The incident field Ei(r) is assumed to be solely composed of the forward-
propagating LHCP-like mode with a propagation constant q+λ1(ω) = β (ω)−κ(0)(ω):

Ei(r) = Af
+,i(z)EEE

f
+(ρρρ)

eiφ
√

2π
, Af

+,i(z) = A f
+,ie

i[β (ω)−κ(0)(ω)](z−zL), (15)

where A f
+,i is the amplitude of the incident field; and the reference point is now set at zL.

From Eqs. (2b), (11c), and (15), the projected source Jb−(z) corresponding to the backward-
propagating LHCP-like mode is

Jb
−(z) =

−iωε0

N+(ω)
A f

+,ie
i[β (ω)−κ(0)(ω)](z−zL)

∫

A
dρρρ

e2iφ

2π

[
Δεr,s(r,ω)EEE f

+(ρρρ) ·EEE f
+(ρρρ)

]
. (16)

We may directly solve Ab−(z) in terms of Jb−(z) using their differential equation which is con-
verted from that of [Ãb−(z), J̃b−(z)] in Eq. (13):

∂
∂ z

Ab
−(z)+ i

[
β (ω)−κ(0)(ω)

]
Ab
−(z) =−Jb

−(z). (17)

With the boundary condition Ab−(zR) = 0, the modal amplitude Ab−(z) at z ≤ zR is

Ab
−(z) =

∫ zR

z
dz′ei[β (ω)−κ(0)(ω)](z′−z)Jb

−(z
′). (18)

We then define the reflection coefficient r(ω) as the ratio between the backward-propagating
amplitude Ab−(zL) and incident amplitude Af

+,i(zL) = A f
+,i to quantify the amount of backscat-

tering. Substituting Eq. (16) into Eq. (18), we express r(ω) as

r(ω)=
Ab−(zL)

A f
+,i

=
−iωε0

N+(ω)

∫

Ωs

dr′
e2i{φ ′+[β (ω)−κ(0)(ω)]z′}

2π

[
Δεr,s(r′,ω)EEE f

+(ρρρ ′) ·EEE f
+(ρρρ ′)

]
, (19)

where Ωs is the scatter region. From Eq. (19), the backscattering in the chiral PhC depends on
a volume integral involving Δεr,s(r,ω). This dependency will be addressed in the next section.
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4. Comparison between theory and numerical results

4.1. Criteria for prominent backscattering

The reflection coefficient r(ω) in Eq. (19) is affected by the interplay between Δεr,s(r,ω) and
two factors. The first factor is the phase part exp(2i{φ ′+[β (ω)−κ(0)(ω)]z′})≈exp[2i(φ ′+qz′)],
and the second one is the transverse mode profile EEE f

+(ρρρ ′).
For the former, the cancelation of exp[2i(φ ′+qz′)] generally enhances the volume integral in

Eq. (19) even though the effect is relatively minor for small scatters. In other words, the promi-
nent backscattering would occur if Δεr,s(r′,ω) ∼ exp[−2i(φ ′+ qz′)] in the frequency range of
the chiral bandgap. From the analogy of the chiral component Δεr,c(r,ω) in Eq. (9), we expect
an effective scatter to be a LH chiral structure with (i) a pitch Ps close to P, and (ii) a signifi-
cant azimuthal Fourier component of Δεr,s(r′,ω) at the order l = −2. Let us further write the
permittivity variation Δεr,s(r′,ω) of such a LH chiral scatter as

Δεr,s(r′,ω) =U(r′)
∞

∑
l=−∞

Δε(l)r,s (ρ ′,ω)eil(φ ′+qsz′), (20)

where U(r′) is an indicator function which is unity in Ωs but zero elsewhere; and qs = 2π/Ps.
If Δεr,s(r′,ω) has the g-fold rotational symmetry along the z axis (invariant if φ ′ → φ ′+2π/g),

only the components Δε(l=τg)
r,s (ρ ′,ω) (τ ∈ Z) are present, namely, the components exist only if

their orders l are multiples of g. It can be verified that for g ≥ 3, the component Δε(−2)
r,s (ρ ′,ω)

vanishes. Therefore, the prominent backscattering only occurs for proper LH chiral scatters
with two-fold or rotationally asymmetric cross sections (g = 1,2).

For effects of EEE f
+(ρρρ ′), we consider a small scatter region Ωs with ρ ′ −ρs ∈ [−Δρs/2,Δρs/2],

where ρs is the transverse distance of the scatter, and Δρs is its range (Δρs/R � 1). The radial
and azimuthal components E f±,ρ(ρ ′) and E f

±,φ (ρ ′) of the fundamental TE mode profiles EEE f±(ρρρ ′)
have radial dependencies as follows (dropped prefactors are set real):

[
E f
±,ρ(ρ ′), E f

±,φ (ρ ′)
]
∼
[

J1(ktρ ′)
ktρ ′ , ± iJ′1(ktρ ′)

]
, (21)

where J1 and J′1 are Bessel function of the first kind and its derivative at the order 1, respectively;
and kt ≈ 1.84/R is the transverse wave number of the fundamental TE modes. We note that
EEE f

+(ρρρ ′) ·EEE f
+(ρρρ ′) = |E f

+,ρ(ρ ′)|2 −|E f
+,φ (ρ ′)|2 	= |EEE f

+(ρρρ ′)|2 and rewrite r(ω) in Eq. (19) as

r(ω) = · · ·
∫ ρs+Δρs/2

ρs−Δρs/2
dρ ′ρ ′Δεr,s(r′,ω)

[
|E f

+,ρ(ρ ′)|2 −|E f
+,φ (ρ ′)|2

]
,

≈ ·· ·ρsΔρs f−(ρs)
〈
Δεr,s(r′,ω)

〉
ρ ′=ρs

,

〈
Δεr,s(r′,ω)

〉
ρ ′=ρs

=
∫ ρs+Δρs/2

ρs−Δρs/2
dρ ′ Δεr,s(r′,ω)

Δρs
, f∓(ρs) =

[
J1(ktρs)

ktρs

]2

∓ [
J′1(ktρs)

]2
, (22)

where “· · ·” represents details other than the radial integral; ρsΔρs is the scatter area per unit
azimuthal angle at ρ ′ = ρs; 〈Δεr,s(r′,ω)〉ρ ′=ρs is an average of Δεr,s(r′,ω) at ρ ′ = ρs; f−(ρs)
is a function characterizing the position dependency of small scatters in the chiral PhC; and
f+(ρs) describes the radial dependency of |EEE f

+(ρρρ ′)|2ρ ′=ρs
.

The two functions f∓(ρs) are depicted in Fig. 3 for comparisons. The function f−(ρs) van-
ishes at ρs = 0 but peaks at ρs ≈ 0.81R, while f+(ρs) is the largest and smallest at ρs = 0 and
R, respectively. The behavior of f−(ρs) indicates that the prominent backscattering in the chiral
PhC takes place as the scatter is near the rim of the structure, at which the modal intensity is
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Fig. 3. The two functions f∓(ρs) versus ρs. The function f−(ρs) vanishes at ρs = 0 but
peaks at ρs ≈ 0.81R, while f+(ρs) is the largest and smallest at ρs = 0 and R, respectively.

low. The reason for the oddness is that the scattering channels from LHCP-like to RHCP-like
modes are suppressed, as the latter become evanescent within the chiral bandgap. If the chi-
rality of the PhC were absent, the backscattered amplitude Ab

+(z), which is generated by the
source Jb

+(z) and related to an integrand Δεr,s(r′,ω)EEE f−(ρρρ ′) ·EEE f
+(ρρρ ′) ∝ |EEE f

+(ρρρ ′)|2 ∝ f+(ρ ′),
could carry power flows. This backscattered amplitude would then show the typical scattering
trend of f+(ρs) for the fundamental TE modes in circular PEC WGs.

4.2. Numerical results

With the LHCP-like incident mode of the circular PEC WG at 10.25 GHz, we solve the scat-
tered field inside the chiral PhC using the three-dimensional finite-element method imple-
mented in COMSOL. The two ends of the computation domain are set to perfectly matched lay-
ers to make the scattered field an outgoing wave. The power reflectivity |r(ω)|2 is then obtained
from the incident and total fields. Unless otherwise mentioned, there are 32 pitches of chiral
structures in the front and backside of scatters. We first consider fictitious chiral scatters with
g-fold (g = 1 to 4) rotationally (a)symmetric cross sections, which are composed of 2g identi-
cal truncated sectors with permittivity variations alternating in signs [Δεr,s(r,ω) =±Δεr,s]. For
conveniences, we will simply call the scatters as g-fold LH/RH scatters hereafter (g ≥ 2). The
radii Rs of these scatters will be varied, but for fair comparisons, their radial widths Ws shall be
adjusted accordingly so that the cross-sectional areas As remain unaltered.

The cross-sectional geometry of the 2-fold LH scatters as the radius Rs increases is shown in
Fig. 4(a) (arrow indicates the handness). The cross-sectional areas are fixed at As = 2πRsWs =
0.3πR2. The pitches Ps and lengths of the scatters are both set to P. The reflectivities |r(ω)|2
versus Rs at different permittivity variations Δεr,s = 0.51, 0.64, and 0.75 are shown in Fig. 4(b).
Although these variations are comparable to the background permittivity εr,b(ω) = 1, the trends
of |r(ω)|2 versus Rs qualitatively follow the function | f−(Rs)|2 in Fig. 3, indicating that the first-
order Born approximation and coupled-mode theory work well in these cases. As Rs ≈ 0.27R,
the scatter cross sections are filled circles and have the best overlap with the most intense
portion of the LHCP-like mode. However, the corresponding power reflectivities are minimal.
As Rs becomes large, the reflectivities significantly increase. This characteristic indicates that
to avoid the prominent backscattering in this chiral PhC, the fluctuations and defects near the
rim of the wave-guiding structure should be reduced. On the other hand, the 2-fold RH scatters
only backscatter weakly, as shown in Fig. 4(c). They exhibit small power reflectivities that do
not seem to have a consistent trend as Rs increases, partly due to the compromise between
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Fig. 4. (a) Cross sections of 2-fold LH scatters as Rs is varied. The cross-sectional areas
are fixed at 0.3πR2. (b) The reflectivities of the 2-fold LH scatters as a function of Rs at
various Δεr,s. The maximal backscattering occurs at the largest Rs in these calculations.
(c) The reflectivities of the 2-fold RH scatters as a function of Rs at various Δεr,s. They
are much smaller than their counterparts in (b). (d) The field distributions near the 2-fold
LH (top) and RH (bottom) scatters with Rs = 0.7R and Δεr,s = 0.75 on the y− z plane,
respectively. The incident field is hardly backscattered by the RH scatter.

computational accuracies and dense meshes used in calculations. However, it is certain that the
smallness of |r(ω)|2 originates from the inability of 2-fold RH scatters to compensate the phase
factor exp(2i{φ ′+[β (ω)−κ(0)(ω)]z′}) in Eq. (19). In Fig. 4(d), we show the field distributions
|E(r)|2 around the 2-fold LH and RH scatters with Rs = 0.7R and Δεr,s = 0.75 on the y−z plane.
The RH one seems to backscatter little, as can be told from seemingly unaltered magnitudes of
the propagating waves at its two sides.

Similar to the 2-fold RH scatter, the 3-fold and 4-fold LH scatters do not backscatter signif-
icantly because they only have the azimuthal fourier components at |l| ≥ 3 and hence cannot
compensate the phase factor. The power reflectivities |r(ω)|2 of these two scatters as a function
Rs at different Δεr,s are shown in Fig. 5(a) and (b), respectively. The field distributions near
the 3-fold and 4-fold LH scatters with Rs = 0.3R and Δεr,s = 0.75 are depicted in Fig. 5(c).
There are significant local fields confined in the two scatters. However, the local fields mostly
correspond to the evanescent modes in the chiral PhC. One can tell that the magnitudes of the
propagating waves in the front and backsides of the two scatters remain nearly identical.

The expression of the reflection coefficient r(ω) in Eq. (22) indicates that the rotationally
asymmetric LH scatters (g= 1) can also backscatter as long as the azimuthal Fourier component
at l =−2 is present. From this point, we pick up a group of such scatters exemplified by the inset
in Fig. 6(a) intentionally. These LH scatters have no azimuthal Fourier components at l = −2
and should not bring about the prominent backscattering in theory. However, their reflectivities
at Δεr,s = 0.51, 0.64, and 0.75 are quite significant, as shown in Fig. 6(a). In addition, the
dependencies of the reflectivities on Rs are similar to the function | f+(Rs)|2. These phenomena
mark the breakdown of the first-order Born approximation. We suggest that the failure may be
caused by the too large permittivity variation Δεr,s. As shown in Fig. 6(b), we choose two scatter
radii Rs = 0.27R and 0.7R and numerically calculate |r(ω)|2 as a function of Δεr,s. Indeed, at
Rs = 0.27R, no significant reflections occur at Δεr,s ≤ 0.2, which indicates that the first-order
Born approximation is still valid in this regime. The working range of Δεr,s for the first-order
Born approximation is even larger at Rs = 0.7R. From these observations, we speculate that the
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Fig. 5. (a) The reflectivities of the 3-fold LH scatters versus Rs at various Δεr,s, and (b) the
counterparts of the 4-fold LH scatters. Both scatters do not backscatter significantly. (c)
The field distributions near the 3-fold (left) and 4-fold (right) LH scatters with Rs = 0.3R
and Δεr,s = 0.75 on the y− z plane, respectively. Except for the prominent local fields, the
magnitudes of the propagating waves change little in these two cases.
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Fig. 6. (a) The reflectivities of the rotationally asymmetric LH scatters versus Rs at various
Δεr,s. While the scatters have no azimuthal Fourier components at l = −2, the backscat-
tering is prominent. (b) The reflectivities of the rotationally asymmetric LH scatters with
Rs = 0.27R and 0.7R versus Δεr,s, respectively. The first-order Born approximation breaks
down as Δεr,s becomes too large.

validity of the first-order Born approximation could be quite limited for the chiral scatters with
asymmetric cross sections as compared to those with high-order rotational symmetries.

At last, we model the numerical reflection coefficient of a small scatter as a function of its
position ρs from the center of the chiral PhC using the functional form of f−(ρs). As shown
in the inset of Fig. 7, we consider a small copper block with a size of 0.3R× 0.5R× 0.3R
and move it along the direction perpendicular to the line joining the centers of the circular
WG and bump. Since the true LHCP-like propagating modes in the chiral PhC slightly deviate
from the guiding modes of the circular PEC WG, and the copper block is not infinitesimally
small, a finite residual reflection is expected at ρs = 0 even though the complete transparency
is suggested by f−(ρs = 0). Therefore, we approximate the realistic reflection coefficient r(ω)
of the copper scatter with the following form:

r(ω)≈ a f−(ρs)+b, (23)
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Fig. 7. The reflectivity of a small copper block with a size of 0.3R×0.5R×0.3R versus the
position ρs. The fitting curve shows a decent agreement with the numerical data.

where a is a proportional factor; and b accounts for the residual reflection. In numerical calcu-
lation, only 8 pitches of the chiral structures are placed in the front and backside of the scatter
due to the necessary fine meshes around the copper block. The numerical data are then fitted
with |r(ω)|2 based on Eq. (23). As shown in Fig. 7, the fitting curve using Eq. (23) agrees well
with the numerical data. The results also indicate that an arbitrary scatter, even if it is not chiral,
also backscatters more efficiently as it is farther away from the center of the chiral PhC.

5. Conclusion

We have analyzed the backscattering in a chiral one-way PhC at microwave frequencies. A
perturbative method is utilized to obtain criteria for the prominent backscattering. The scat-
tered amplitude depends on the azimuthal Fourier components of scatter cross sections at or-
der |l|= 2. Chiral scatters without these Fourier components would not reflect the chiral propa-
gating modes efficiently. This leads to the close dependency of the backscattering on rotational
symmetries of chiral scatters. In addition, the disturbance at high-intensity points of the chiral
mode does not necessarily lead to the most effective backscattering. Scatters near the rim of the
PhC actually backscatter more easily. These characteristics are all qualitatively verified with nu-
merical calculations of the backscattering based on different configurations of scatterers. They
also reveal what types of scatters or defects should be avoided in one-way applications of chiral
structures in order to minimize the backscattering.
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