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1. Introduction

Parallel computing is important for speeding up computation. The design of

an interconnection network, of course, is the first thing to be considered. In

other words, network topology is an essential issue in parallel and distributed

computing area. Many topologies have been proposed in the literature [2,3,8–
10,13,16,19,26], and the desirable properties of an interconnection network

include symmetry, relatively small degree, small diameter, embedding capabil-

ities, scalability, robustness, and efficient routing. Among those proposed inter-

connection networks, the hypercube has been popular mainly because of its

highly symmetric and easy routing structure.

The n-dimensional twisted cube TQn [13], as an alternative to the hypercube,

has the same number of vertices and degree as the n-dimensional hypercube

does. In fact, the twisted cube is derived from the hypercube with some edges
twisted. Due to these twisted edges, the diameter of TQn is only about half of

that of the hypercube. Some interesting studies on properties of TQn can be

found in [1,6,18]. In particular, Huang et al. studied the fault-tolerant hamilto-

nicity of TQn in [18].

The embedding capabilities are important in evaluating an interconnection

network. Given a host graph H and a guest graph G, an embedding of G intoH

is a mapping from each vertex of G to one vertex of H, and a mapping from

each edge of G to one path of H. Graph embedding is useful because an algo-
rithm designed for H can be applied to G directly. Therefore, the more we can

embed guest graphs into a host graph, the better the host graph is. Popular

guest graphs include cycles [11,15,16,18,19,25,26], paths [11,16], trees [22,23],

etc. Four known parameters of an embedding are dilation, congestion, load,

and expansion. The dilation is expressed by the maximum length of a path

of the host graph which is mapped by an edge of the guest graph. The conges-

tion is expressed by the maximum number of times that an edge of the host

graph is mapped. The load is defined as the maximum number of vertices in
the guest graph that are mapped to the same vertex in the host graph. The

expansion is defined as the ratio of the number of vertices in the host graph

to the number of vertices in the guest graph. If the embedding has dilation

1, congestion 1, and load 1, the guest graph is a subgraph of the host graph.

In this paper, all embeddings have dilation 1, congestion 1, and load 1. There-

fore, each of these embeddings is the best.

The ring structure is important for distributed computing, and its benefits

can be found in [20]. Let us consider a problem about the cycle embeddings.
The pancycle problem involves finding all possible lengths of cycles in a graph

G. More precisely, letting V(G) and jV(G)j be the set and the number of vertices

of G, respectively, the goal is to embed a cycle of length l into G for every l sat-

isfying b 6 l 6 jV(G)j, where b is a specific positive integer. This problem has

attracted a great deal of mathematicians [4,5,21,24] since it was brought up
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by Bondy [5] in 1971. Recently, many researchers studied this problem in the

area of interconnection networks [2,7,11,12,14,17,27]. Most of the previous

works did not consider the issue of the fault tolerance.

Since components of an interconnection network may malfuction and we

want the network to keep working, the fault-tolerant capabilities of an inter-

connection network are essential. Moreover, nodes and edges may fail simulta-
neously when a network is put in use. Hence, we study the pancycle problem on

faulty twisted cubes which can tolerate failures of nodes and edges at the same

time in this paper. Let fv and fe be the numbers of faulty vertices and edges in

TQn, respectively. We can embed a cycle of length l into faulty TQn if

fv + fe 6 n � 2 for any integer 4 6 l 6 jV(TQn)j � fv and odd integer n P 3.

Therefore, the expansion of these embeddings ranges between 1 and
jV ðTQnÞj�fv

4
. In addition, this result is optimal since if there are n � 1 faulty ele-

ments around a single vertex of TQn, there is no hamiltonian cycle in faulty
TQn.

This paper is organized as follows: We introduce some definitions and nota-

tion, including the definition of TQn, in Section 2. Then, Section 3 presents the

main result, where we show the fault-tolerant pancyclicity of TQn. Finally, we

give our conclusion in Section 4. To smooth the proof of Theorem 3 in Section

3, some details are left to Appendix A.
2. Definitions and notation

Letting G be a simple undirected graph, we use V(G) and E(G) to denote the

sets of vertices and edges of G, respectively. Let Fv � V(G), Fe � E(G), and

F = Fv ¨ Fe. G � F denotes the subgraph of G � Fe induced by V(G) � Fv.

jSj denotes the number of elements in a set S. A path, denoted by hu1,u2, . . .,uli,
is an ordered list of distinct vertices such that ui and ui + 1 are adjacent for

1 6 i 6 l � 1. Similarly, a cycle, denoted by hu1,u2, . . .,ul,u1i, is an ordered list
of distinct vertices except u1, i.e., (ul,u1) is an edge. A hamiltonian path is a path

that traverses every vertex of G exactly once. A graph G is hamiltonian con-

nected if there is a hamiltonian path between any two vertices of G. We say that

a graph G is k-fault-tolerant hamiltonian connected (abbreviated as k-hamilto-

nian connected) if G � F is hamiltonian connected for any F with jFj 6 k. A

pancyclic graph G, in its original definition [5], means that a cycle of length l

can be embedded into G for every 3 6 l 6 jV(G)j. However, we note that the

twisted cube TQn does not contain any cycle of length 3. For convenience of
discussion, in this paper, we call a graph G pancyclic if, for every

4 6 l 6 jV(G)j, G has a cycle of length l. We say that a graph G is k-fault-tol-

erant pancyclic (abbreviated as k-pancyclic) if G � F is pancyclic for any F with

jFj 6 k. A hamiltonian cycle is defined as a cycle which traverses every vertex of

G exactly once. A graph is called hamiltonian if it has a hamiltonian cycle. We
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say that a graph G is k-fault-tolerant hamiltonian (abbreviated as k-hamiltonian)

if G � F is hamiltonian for any F with jFj 6 k.
The twisted cube was first proposed by Hilbers et al. in [13]. In the follow-

ing, we give the recursive definition of the n-dimensional twisted cube TQn for

any odd integer n P 1. TQn has 2n vertices, and each of them is labeled by a

binary string of length n. To define TQn, first of all, a parity function Pi(x) is

introduced. Let u = un � 1un � 2 . . .u1u0 2 V(TQn). For 0 6 i 6 n � 1, Pi(u) =

ui � ui � 1 � � � �u1 � u0, where � is the exclusive–or operation. TQ1 is a com-

plete graph with two vertices labeled by 0 and 1, respectively. For an odd inte-

ger n P 3, TQn is obtained by taking four copies of TQn � 2 and adding some
additional edges to connect them. We use TQij

n�2 to denote an (n � 2)-dimen-

sional twisted cube which is a subgraph of TQn induced by the vertices labeled

by ijun � 3. . .u0, where i,j 2 {0, 1}. Each vertex u = un � 1un � 2 . . .u1u0 2
V(TQn) is adjacent to �un�1un�2 . . . u1u0 and �un�1�un�2 . . . u1u0 if Pn � 3(u) = 0;

and to �un�1un�2 . . . u1u0 and un�1�un�2 . . . u1u0 if Pn � 3(u) = 1. Fig. 1 illustrates

TQ3.
3. Main result

Lemma 1. Let G be a graph. G is k-pancyclic if G � F is pancyclic for every

faulty set F with jFj = k.
Proof. Suppose that jFj 6 k, and let F 0 � E(G) � Fe with jFj + jF 0j = k. So,

(G � F) � F 0 is a subgraph of G � F. Trivially, if (G � F) � F 0 has a cycle C,

G � F contains C . This implies that if (G � F) � F 0 is pancyclic, G � F is also

pancyclic. h
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Therefore, throughout this paper, whenever we prove that a graph G is

k-pancyclic, we only consider the case jFj = k.

Theorem 1. TQ3 is 1-pancyclic.
Proof. Fig. 2 is another layout of TQ3, and it is vertex-transitive. We consider

two cases (1) one faulty vertex and (2) one faulty edge as follows:

Case 1. One faulty vertex. Without loss of generality, we assume that vertex

000 is faulty. We list cycles of lengths from 4 to 7 as follows: h001,
101,111,011,001i, h010,100,101,111,011,010i, h001,101,111,110,010,011,001i,
and h001,101,100,010,110,111,011,001i.

Case 2. One faulty edge. We may assume that the faulty edge e is incident to

000 because of the symmetry of TQ3. By Case 1, there are cycles of lengths

from 4 to 7 in the faulty TQ3. For a cycle of length 8, suppose that

e = (000,100). Then h000,001,011,010,100,101,111,110,000i is a desired one.
Suppose that e = (000,001). Then h000,110,111,101,001,011,010,100,000i is a
cycle of length 8. If e = (000,100), this case is symmetric to the case

e = (000,110). h

A matching M of a graph G is a set of pairwise disjoint edges. M is a perfect

matching if each vertex of G belongs to some edge in M.

Lemma 2 [18]. For n P 1, both of the subgraphs induced by V ðTQ00
n Þ

S
V ðTQ10

n Þ
and V ðTQ01

n Þ
S
V ðTQ11

n Þ are isomorphic to TQn · K2. Furthermore, the edges

joining V ðTQ00
n Þ

S
V ðTQ10

n Þ and V ðTQ01
n Þ

S
V ðTQ11

n Þ is a perfect matching of

TQn+2.
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Fig. 2. Another layout of TQ3.
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Let G and H be two graphs having the same number of vertices. G�MH
denotes a graph which has copies of G and H connected by a matching M.

Let G0
nþ1 and G1

nþ1 be the subgraphs induced by V ðTQ00
n Þ

S
V ðTQ10

n Þ and

V ðTQ01
n Þ

S
V ðTQ11

n Þ, respectively. Then by Lemma 2, both of G0
nþ1 and G1

nþ1

are isomorphic to TQn · K2, and G0
nþ1�MG

1
nþ1 is isomorphic to TQn+2 for a

specific matching M. In addition, TQn · K2 has two copies of TQn, and we

use TQ0
n and TQ1

n to denote them, respectively. For convenience of discussion,

we add 0 to every vertex v 2 V ðTQ0
nÞ and 1 to every vertex u 2 V ðTQ1

nÞ, respec-
tively, as the leading bits. As a result, each vertex of TQn · K2 is represented by

a binary string of length n + 1.

Let F be a set of faults in TQn · K2 (TQn + 2, respectively). We say that a ver-

tex u in TQ0
n (G0

nþ1, respectively) is a safe crossing-point in TQn · K2 � F

(TQn+2 � F, respectively) if u still connects to the neighbor v in TQ1
n (G1

nþ1,

respectively) in TQn · K2 � F (TQn+2 � F, respectively), i.e., vertices u,v and

edge (u,v) are fault-free. If u is in TQ1
n (G

1
nþ1, respectively), we may define safe

crossing-point in the same way.
Huang et al. [18] proved the following theorem concerning fault hamiltonic-

ity and fault hamiltonian connectivity of TQn, and we shall use it in the proof

of Theorem 3.

Theorem 2 [18]. TQn is (n � 2)-hamiltonian and (n � 3)-hamiltonian connected

for any odd integer n P 3.
Theorem 3. Let n P 3 be an odd integer. If TQn is (n � 2)-pancyclic, TQn · K2

is (n � 1)-pancyclic.
Proof. Suppose that TQn is (n � 2)-pancyclic for some n P 3. We will show

that TQn · K2 is (n � 1)-pancyclic. Let F � V(TQn · K2) [ E(TQn · K2) be a

set of faults. We divide F into five disjoint parts: F 0
v ¼ F \ V ðTQ0

nÞ, F 0
e ¼

F \ EðTQ0
nÞ; F 1

v ¼ F \ V ðTQ1
nÞ; F 1

e ¼ F \ EðTQ1
nÞ, and F c

e ¼ F \ fðu; vÞjðu; vÞ is
an edge between TQ0

n and TQ1
ng. Let f = jFj, f 0

v ¼ jF 0
v j; f 0

e ¼ jF 0
e j; f 1

v ¼
jF 1

v j; f 1
e ¼ jF 1

e j, and f c
e ¼ jF c

ej. For convenience of discussion, we define the fol-
lowing subsets of F: Fv = F \ V(TQn · K2), Fe = F \ E(TQn · K2), F 0 ¼
F 0

v [ F 0
e , and F 1 ¼ F 1

v [ F 1
e . And let fv = jFvj, fe = jFej, f 0 = jF 0j, and f 1 = jF1j.

Note that f 0 þ f 1 ¼ f � f c
e .

For further discussion, we consider the following cases.

Case 1. There is a subcube containing all the n � 1 faults.

Without loss of generality, we assume that TQ0
n contains all the faults, i.e.,

f 0 = n � 1. Thus, f 1 ¼ f c
e ¼ 0. We discuss the existence of cycles of all lengths

from 4 to 2n+1 � fv according to the following cases.
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Case 1.1. Cycles of lengths from 4 to 2n.

Since TQn is (n � 2)-pancyclic , TQ1
n contains cycles of lengths from 4 to 2n

for n P 3. Thus, TQn · K2 � F also contains cycles of these lengths.

Case 1.2. Cycles of lengths from 2n + 2 to 2n + 1 � fv (see Fig. 3(a)).

TQ0
n is (n � 2)-pancyclic, and hence (n � 2)-hamiltonian. Clearly, TQ0

n � F 0

still contains a hamiltonian path, say, P ¼ hu1; u2; . . . ; u2n�f 0
v
i, where f 0

v ¼ fv.
Let 2 6 l 6 2n � fv. We construct a cycle of length 2n + l as follows: Suppose

that v1 and vl are the neighbors in TQ1
n of u1 and ul, respectively. By Theorem 2,

TQn is (n � 3)-hamiltonian connected and nP 3. Therefore, there is a

hamiltonian path Q in TQ1
n between v1 and vl containing 2n vertices, and

hu1, . . .,ul,vl,Q,v1,u1i forms a cycle of length 2n + l. Note that there are no

faults outside TQ0
n. Thus, all the vertices on P are safe crossing-points.

Case 1.3. A cycle of length 2n + 1 (see Fig. 3(b)).

Since TQ1
n is (n � 2)-pancyclic and fault-free, we have a cycle C ¼

hv1; v2; . . . ; v2n�1; v1i of length 2n � 1 in TQ1
n. There are n � 1 faults in total,

and 2n�1
2

> n� 1 for n P 3. So there exist two safe crossing-points vk and vk + 1

on C, and also their neighbors in TQ0
n, say, uk and uk+1, respectively are

connected in TQ0
n � F 0. hvkþ1; vkþ2; . . . ; v2n�1; . . . ; vk; uk; ukþ1; vkþ1i is a fault-free

cycle of length 2n + 1.

Case 2. Both f 0 and f 1 are at most n � 2.

Since f i 6 n � 2 for any i2{0,1}, TQ0
n � F 0 and TQ1

n � F 1 are still pancyclic.
Without loss of generality, we assume that f 0 P f 1. We discuss the existence of

cycles of all lengths from 4 to 2n + 1 � fv in the following cases.

Case 2.1. Cycles of lengths from 4 to 2n � f 1
v .
v1

v
n f

u
2

vl

Q

(a) case 1.2

u1

ul

0
nTQ 1

nTQ

(b) case 1.3

C

0
nTQ 1

nTQ

uk

uk+1

vk

vk+1

vk+2

Fig. 3. Cases 1.2 and 1.3 of Theorem 3.
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Since TQ1
n is (n � 2)-pancyclic, we have cycles of lengths from 4 to 2n � f 1

v in

TQ1
n � F 1. Hence, TQn · K2 � F also has cycles of these lengths.

Case 2.2. Cycles of lengths from 2n � f 1
v þ 2 to 2n + 1 � fv (see Fig. 4(a)).

For the case f 0 = f 1 = n � 2, we leave it to Appendix A because of its

tediousness. For f 1 6 n � 3, the proof is as follows: TQ0
n � F 0 is pancyclic, and

hence hamiltonian. We have a hamiltonian cycle C ¼ hu1; u2; . . . ; u2n�f 0
v
; u1i of

length 2n � f 0
v in TQ0

n � F 0. Let 2 6 l 6 2n � f 0
v . We construct a cycle of length

2n � f 1
v þ l as follows: We claim that there exist two safe crossing-points ui and

uj on C such that ðj� iÞ ¼ l� 1ðmod 2n � f 0
v Þ. Suppose on the contrary that

there do not exist such ui and uj. Then there are at least d2
n�f 0

v
2

e faults outside

TQ0
n. However, d2

n�f 0
v

2
e þ f 0

v P 2n�1 > n� 1 for n P 1. We obtain a contradic-

tion. Thus, there exist such ui and uj. By Theorem 2, TQ1
n is (n � 3)-hamiltonian

connected and f 1 6 n � 3, so TQ1
n � F 1 is still hamiltonian connected. Let vi

and vj be the neighbors in TQ1
n of ui and uj, respectively. There is a hamiltonian

path Q in TQ1
n � F 1 between vi and vj. Clearly, Q contains ð2n � f 1

v Þ vertices.

Then hui,ui + 1,� � �,uj,vj,Q,vi,uii forms a cycle of length 2n � f 1
v þ l.

Case 2.3. A cycle of length 2n � f 1
v þ 1 (see Fig. 4(b)).

Since TQ1
n � F 1 is pancyclic, there is a cycle hv1; v2; . . . ; v2n�f 1

v �1; v1i of length
2n � f 1

v � 1 in TQ1
n � F 1. Furthermore, there are (n � 1) � f 1 faults outside

TQ1
n, and

2n�f 1
v �1

2
P 2n�1

2
� f 1 > ðn� 1Þ � f 1 for n P 3. Thus there exist two

safe crossing-points vk and vk + 1 on C, and also their neighbors in TQ0
n, say, uk

and uk + 1, respectively are adjacent in TQ0
n � F 0. hvkþ1; vkþ2; . . . ; v2n�f 1

v �1; . . . ;
vk; uk; ukþ1; vkþ1i is a fault-free cycle of length 2n � f 1

v þ 1 in TQn · K2 � F.

This completes the proof of the theorem. h

For the following discussion, we recall that G0
nþ1 and G1

nþ1 are the subgraphs

induced by V ðTQ00
n Þ

S
V ðTQ10

n Þ and V ðTQ01
n Þ

S
V ðTQ11

n Þ, respectively. We say
ui+1

ui vi

Q

uj

vj

(a) case 2.2 

0
nTQ 1

nTQ

(b) case 2.3

C

0
nTQ 1

nTQ

uk

uk+1

vk

vk+1

vk+2

Fig. 4. Cases 2.2 and 2.3 of Theorem 3.
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that an edge is a critical edge of TQn + 2 if it is an edge in Gi
nþ1 with one endpoint

in TQi0
n and the other in TQi1

n for i2{0,1}.

Lemma 3. Let n P 3 be an odd integer, and (u1,u2) be a critical edge of TQn+2

which is in G0
nþ1, and v1,v2 be the neighbors in G1

nþ1 of u1 and u2, respectively.

Then (v1,v2) is also a critical edge of TQn + 2 in G1
nþ1.
Proof. Without loss of generality, we assume that u1 = 00xn � 3xn � 4 . . .x1x0. If
Pn � 3(u1) = 0, u2 = 10xn � 3xn � 4 . . .x1x0, v1 = 11xn � 3xn � 4. . .x1x0, and

v2 = 01xn � 3xn � 4. . .x1x0. By definition, v1 and v2 are adjacent, and (v1,v2) is
a critical edge in G1

nþ1. It can be checked that the statement is also true if

Pn � 3(u1) = 1. h

It is observed that vertices u1,u2,v1,v2 in the above lemma form a 4-cycle. We

call this cycle a crossed 4-cycle in TQn + 2. It is clear that, for each vertex
00xn � 3� � �x0, there is exactly one crossed 4-cycle corresponding to this vertex.

Thus, there are 2n disjoint crossed 4-cycles in TQn + 2. We note that a crossed

4-cycle contains two critical edges.

Huang et al. [18] proved the following theorem.

Theorem 4 [18]. TQn · K2 is (n � 1)-hamiltonian and (n � 2)-hamiltonian con-

nected for any odd integer n P 3.
Theorem 5. Let n P 3 be an odd integer. If TQn is (n � 2)-pancyclic, TQn + 2 is

n-pancyclic.
Proof. Suppose that TQn is (n � 2)-pancyclic for some n P 3. By Theorem 3,

TQn · K2 is (n � 1)-pancyclic. That is, both G0
nþ1 and G1

nþ1 in TQn+2 are (n � 1)-

pancyclic. We will show that TQn + 2 is n-pancyclic. Let F �
V(TQn + 2) [ E(TQn + 2) be a set of faults. We divide F into five disjoint parts:
F 0

v ¼ F \ V ðG0
nþ1Þ; F 0

e ¼ F \ EðG0
nþ1Þ; F 1

v ¼ F \ V ðG1
nþ1Þ; F 1

e ¼ F \ EðG1
nþ1Þ,

and F c
e ¼ F \ fðu; vÞ j ðu; vÞ is an edge between G0

nþ1 and G1
nþ1g. Let f = jFj,

f 0
v ¼ jF 0

v j; f 0
e ¼ jF 0

e j; f 1
v ¼ jF 1

v j; f 1
e ¼ jF 1

e j, and f c
e ¼ jF c

ej. For convenience of

discussion, we define the following subsets of F: Fv = F \ V(TQn + 2),

Fe = F \ E(TQn + 2), F 0 ¼ F 0
v [ F 0

e , and F 1 ¼ F 1
v [ F 1

e . And let fv = jFvj,
fe = jFej, f 0 = jF0j, and f 1 = jF1j. Note that f 0 þ f 1 ¼ f � f c

e .

For further discussion, we consider the following cases.

Case 1. There is a subcube containing all the n faults.

Without loss of generality, we assume that f 0 = n. Thus, f 1 ¼ f c
e ¼ 0. G0

nþ1 is

(n � 1)-pancyclic, and hence (n � 1)-hamiltonian. Clearly, G0
nþ1 � F 0 still
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contains a hamiltonian path, say, P ¼ hu1; u2; . . . ; u2nþ1�f 0
v
i, where f 0

v ¼ fv. We

discuss the existence of cycles of all lengths from 4 to 2n+2 � fv according to the

following cases.

Case 1.1. Cycles of lengths from 4 to 2n+1.

Since G1
nþ1 is (n � 1)-pancyclic , G1

nþ1 contains cycles of lengths from 4 to

2n+1 for n P 3. So, TQn+2 � F also contains cycles of these lengths.

Case 1.2. Cycles of lengths from 2n+1+2 to 2n+2 � fv (see Fig. 5(a)).

Let 2 6 l 6 2n+1 � fv. We construct a cycle of length 2n+1+ l as follows:

Suppose that the neighbors in G1
nþ1 of u1 and ul are v1 and vl, respectively. By

Theorem 4, G1
nþ1 is (n � 2)-hamiltonian connected and n P 3. Hence there is a

hamiltonian path Q in G1
nþ1 between v1 and vl containing 2n+1 vertices.

hu1, . . .,ul,vl,Q,v1,u1i forms a cycle of length 2n+1+ l. Note that there are no

faults outside G0
nþ1. So all the vertices on P are safe crossing-points.

Case 1.3. A cycle of length 2n+1+1 (see Fig. 5(b)).

Consider the vertices u1 and u2 on P and their neighbors in G1
nþ1, say v1 and

v2, respectively. By Theorem 4, G1
nþ1 is (n � 2)-hamiltonian connected for

n P 3. Since f 1 = 0, we may find a path Q 0 between v1 and v2 containing

2n+1 � 1 vertices in G1
nþ1. Then hu1,u2,v2,Q 0,v1,u1i forms a cycle of length

2n+1+1.

Case 2. Both f 0 and f 1 are at most n � 1.

Since both of G0
nþ1 and G1

nþ1 are (n � 1)-pancyclic for n P 3, both of

G0
nþ1 � F 0 and G1

nþ1 � F 1 are still pancyclic. Without loss of generality, we

assume that f 0 P f 1. We discuss the existence of cycles of all lengths from 4 to

2n � fv in the following cases.
v1

v
n f

u 12

vl

Q

(a) case 1.2 

u1

ul

Q'

(b) case 1.3

u1

u2

v
n f

u  12

v1

v2

0
1nG 1

1nG
0

1nG 1
1nG

+
+

Fig. 5. Cases 1.2 and 1.3 of Theorem 5.
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Case 2.1. Cycles of lengths from 4 to 2nþ1 � f 1
v .

Since G1
nþ1 � F 1 is pancyclic for n P 3, we have cycles of lengths from 4 to

2nþ1 � f 1
v in G1

nþ1 � F 1.

Case 2.2. Cycles of lengths from 2nþ1 � f 1
v þ 2 to 2n+2 � fv (see Fig. 6(a)).

Since G0
nþ1 � F 0 is pancyclic, we have a hamiltonian cycle C ¼

hu0; u1; . . . ; u2nþ1�f 0
v �1; u0i of length 2nþ1 � f 0

v in G0
nþ1 � F 0. Let 2 6 l 6

2nþ1 � f 0
v . We construct a cycle of length 2nþ1 � f 1

v þ l as follows: First, we

claim that there exist two safe crossing-points ui and uj on C such that

ðj� iÞ ¼ l� 1ðmod 2nþ1 � f 0
v Þ. Suppose on the contrary that there do not exist

such ui and uj. Then there are at least d2
nþ1�f 0

v
2

e faults outside G0
nþ1. However,

d2
nþ1�f 0

v
2

e þ f 0
v P 2n > n for n P 0. We obtain a contradiction. Thus, there exist

such ui and uj, and our claim is true. Secondly, we claim that f 1 6 n � 2 for

n P 3. Suppose for the sake of contradiction that f 1 = n � 1. Since f 0 P f 1,

f 0 = n � 1. The total number of faults is at most n. Thus (n � 1)+(n � 1) 6 n.

This implies that n 6 2, which is a contradiction. This completes the proof of
our second claim. By Theorem 4, G1

nþ1 is (n � 2)-hamiltonian connected and

f 1 6 n � 2 for n P 3. Hence G1
nþ1 � F 1 is hamiltonian connected. Let vi and vj

be the neighbors in G1
nþ1 of ui and uj, respectively. There is a hamiltonian path

Q in G1
nþ1 � F 1 between vi and vj. Clearly, Q contains ð2nþ1 � f 1

v Þ vertices. Then
hui,ui+1, . . .,uj,vj,Q,vi,uii forms a cycle of length 2nþ1 � f 1

v þ l.

Case 2.3. A cycle of length 2nþ1 � f 1
v þ 1 (see Fig. 6(b)).

We want to construct a cycle containing 2nþ1 � f 1
v � 1 vertices in G1

nþ1 � F 1

and two vertices in G0
nþ1 � F 0. To avoid faults in G0

nþ1, we introduce a term

called shadows of faults. Let hu1,u2,v2,v1,u1i be a crossed 4-cycle with u1,u2 in
(b) case 2.3  
real fault

a

b Q

a'

b'

shadow- fault

ui+1

ui vi

uj

vj

(a) case 2.2 

0
1nG 1

1nG 0
1nG 1

1nG

Q

Fig. 6. Cases 2.2 and 2.3 of Theorem 5.
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G0
nþ1 and v1,v2 in G1

nþ1, respectively. If there is a fault on this cycle but the fault

is not in G1
nþ1, we call edge (v1,v2) a shadow fault of F on G1

nþ1 (similarly, we

may define a shadow fault on G0
nþ1). Let F s ¼ fej edge e is a shadow

fault of F onG1
nþ1g. Then jFs [ F1j 6 n. If jF s [ F1j = n, we arbitrarily choose

an edge e1 in F s, and let F 0 = Fs [ F1 � e1, otherwise let F 0 = Fs [ F1 . Then

jF 0j 6 n � 1 and G1
nþ1 � F 0 is still pancyclic. Since F 0 \ V ðG1

nþ1Þ ¼ F 1
v , there is a

cycle C of length 2nþ1 � f 1
v � 1 in G1

nþ1 � F 0. Since 2nþ1 � f 1
v � 1 > 2n for

n P 3, C contains two critical edges. Let (a,b)5e1 be a critical edge on C, so

(a,b) 62F s. Let a 0,b 0 be the neighbors of a and b in G0
nþ1, respectively. Then

ha,a 0,b 0,b,ai is a fault-free crossed 4-cycle. Suppose that C = ha,Q,b,ai. Then
ha 0,a,Q,b,b 0,a 0i forms a cycle of length 2nþ1 � f 1

v þ 1 in TQn+2 � F. h

By Theorems 1, 5 and using the mathematical induction, we obtain the fol-

lowing theorem.

Theorem 6. The twisted cube TQn is (n � 2)-pancyclic for any odd integer

n P 3.
4. Conclusion

The twisted cube, proposed by Hilbers et al. [13], is an alternative to the

hypercube architecture in parallel computing. We study a property called

fault-tolerant pancyclicity on the twisted cube. We prove that TQn is (n � 2)-

pancyclic for any odd integer n P 3. That is, with maximum of n � 2 faulty

edges and/or vertices, TQn has cycles of all lengths from 4 to jV(TQn)j � fv.

Furthermore, if there exist n � 1 faulty elements around a single vertex, then

TQn cannot have a hamiltonian cycle. Hence, n � 2 faults are the most that
TQn can tolerant with respect to pancyclic property. The above result shows

that the fault-tolerant capability of TQn is nice in terms of the cycle

embeddings.
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Fig. 7. TQ3 · K2.
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Appendix A

In the following, we construct cycles of lengths from 2n � f 1
v þ 2 to 2n+1 � fv

in TQn · K2 for the case f 0 = f 1 = n � 2. Since f 0+ f 1 =

2n � 4 6 n � 1, n 6 3. Thus, we need only to discuss the case f 0 = f 1 = 1 for

n = 3 here.
First, we show the case f 0

v ¼ f 1
v ¼ 1, and thus find cycles of lengths from 9 to

14 in TQ3 · K2 � F. Let F = {u,v} for u 2 V ðTQ0
3Þ and v 2 V ðTQ1

3Þ. We need
Table 1

Fault-free cycles of lengths from 9 to 14 in TQ3 · K2 with two faulty vertices

Length u = 0000, v = 1000

9 h0001,0011,0010,0100,1100,1101,1111,1011,1001,0001i
10 h0001,0011,0010,0100,0101,1101,1100,1010,1011,1001,0001i
11 h0001,0011,0010,0100,0101,1101,1111,1110,1010,1011,1001,0001i
12 h0001,0011,0010,0110,0111,0101,1101,1111,1110,1010,1011,1001,0001i
13 h0001,0011,0010,0110,0111,0101,1101,1100,1010,1110,1111,1011,1001,0001i
14 h0001,0011,0010,0100,0101,0111,0110,1110,1111,1101,1100,1010,1011,1001,0001i

Length u = 0000, v = 1110

9 h0111,0110,0010,0011,1011,1010,1100,1101,1111,0111i
10 h0111,0101,0100,0010,0011,1011,1010,1100,1101,1111,0111i
11 h0111,0101,0100,0010,0011,1011,1001,1000,1100,1101,1111,0111i
12 h0111,0101,0100,0010,0011,0001,1001,1011,1010,1100,1101,1111,0111i
13 h0101,0111,0110,0010,0011,0001,1001,1000,1100,1010,1011,1111,1101,0101i
14 h0111,0110,0010,0100,0101,0001,0011,1011,1010,1100,1000,1001,1101,1111,0111i

Length u = 0000, v = 1111

9 h0110,0111,0101,0100,0010,1010,1100,1000,1110,0110i
10 h0110,0111,0101,0100,0010,0011,0001,1001,1000,1110,0110i
11 h0110,0111,0101,0100,0010,0011,0001,1001,1011,1010,1110,0110i
12 h0110,0111,0101,0100,0010,0011,0001,1001,1101,1100,1010,1110,0110i
13 h0110,0111,0101,0100,0010,0011,0001,1001,1011,1010,1100,1000,1110,0110i
14 h0010,0100,0101,0001,0011,0111,0110,1110,1000,1100,1101,1001,1011,1010,0010i

Length u = 0000, v = 1101

9 h0001,0011,0010,0100,0101,1101,1111,1011,1001,0001i
10 h0001,0011,0010,0110,0111,1111,1110,1010,1011,1001,0001i
11 h0001,0011,0010,0110,0111,1111,1011,1010,1100,1000,1001,0001i
12 h0001,0011,0010,0110,0111,1111,1110,1000,1100,1010,1011,1001,0001i
13 h0001,0011,0010,0110,0111,0101,0100,1100,1000,1110,1111,1011,1001,0001i
14 h0010,0100,0101,0001,0011,0111,0110,1110,1111,1011,1001,1000,1100,1010,0010i

Length u = 0000, v = 1100

9 h0101,0001,0011,0111,1111,1110,1000,1001,1101,0101i
10 h0001,0011,0111,0101,1101,1111,1110,1010,1011,1001,0001i
11 h0001,0011,0010,0110,0111,0101,1101,1111,1110,1000,1001,0001i
12 h0001,0011,0010,0100,0101,1101,1111,1011,1010,1110,1000,1001,0001i
13 h0110,0010,0100,0101,0001,0011,0111,1111,1101,1001,1011,1010,1110,0110i
14 h0011,0001,0101,0100,0010,0110,0111,1111,1101,1001,1000,1110,1010,1011,0011i
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only discuss five cases due to the symmetry of TQ3 · K2 (see Fig. 7): (1) u =

0000, v = 1000, (2) u = 0000, v = 1110, (3) u = 0000, v = 1111, (4) u = 0000,

v = 1101, and (5) u = 0000, v = 1100. They are listed one by one in Table 1.

Second, consider that fv = 1 and fe = 1. We find cycles of lengths from 8 to

14 as follows. Let F = {u1,(u2,v2)} and F 0 = {u1,u2}. From the above discussion,

there are cycles of lengths from 9 to 14 in TQ3 · K2 � F 0, which are also in
TQ3 · K2 � F. Furthermore, since TQ3 · K2 is 2-hamiltonian, there is a cycle

of length 15 in TQ3 · K2 � F.

Finally, in the same way, we can deal with the case fe = 2. In this case, cycles

of lengths from 10 to 16 have to be found. Assume that F = {(u1,v1), (u2,v2)}.

Then let F 0 = {u1, (u2,v2)}. From the above discussion, there are cycles of

lengths from 9 to 15 in TQ3 · K2 � F 0, which are also in TQ3 · K2 � F. In addi-

tion, since TQ3 · K2 is 2-hamiltonian, there is a cycle of length 16. This com-

pletes our proof. h
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