INFORMATION SCIENCES
an international journal

On embedding cycles into faulty twisted cubes ${ }^{*}$

Ming-Chien Yang ${ }^{\text {a }}$, Tseng-Kuei Li ${ }^{\text {b,* }}$, Jimmy J.M. Tan ${ }^{\text {a }}$, Lih-Hsing Hsu ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan 30050, ROC
${ }^{\mathrm{b}}$ Department of Computer Science and Information Engineering, Ching Yun University, JungLi, Taiwan, 320, ROC
${ }^{\text {c }}$ Department of Information Engineering, Ta Hwa Institute of Technology, Hsinchu County 307, Taiwan, ROC

Received 18 September 2003; received in revised form 7 April 2005; accepted 8 April 2005

Abstract

The twisted cube $T Q_{n}$ is an alternative to the popular hypercube network. Recently, some interesting properties of $T Q_{n}$ were investigated. In this paper, we study the pancycle problem on faulty twisted cubes. Let f_{e} and f_{v} be the numbers of faulty edges and faulty vertices in $T Q_{n}$, respectively. We show that, with $f_{e}+f_{v} \leqslant n-2$, a faulty $T Q_{n}$ still contains a cycle of length l for every $4 \leqslant l \leqslant\left|V\left(T Q_{n}\right)\right|-f_{v}$ and odd integer $n \geqslant 3$.

 © 2005 Elsevier Inc. All rights reserved.Keywords: Cycle embedding; Twisted cube; Pancyclic; Hamiltonian; Fault tolerance

[^0]0020-0255/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.

1. Introduction

Parallel computing is important for speeding up computation. The design of an interconnection network, of course, is the first thing to be considered. In other words, network topology is an essential issue in parallel and distributed computing area. Many topologies have been proposed in the literature [2,3,8$10,13,16,19,26]$, and the desirable properties of an interconnection network include symmetry, relatively small degree, small diameter, embedding capabilities, scalability, robustness, and efficient routing. Among those proposed interconnection networks, the hypercube has been popular mainly because of its highly symmetric and easy routing structure.

The n-dimensional twisted cube $T Q_{n}$ [13], as an alternative to the hypercube, has the same number of vertices and degree as the n-dimensional hypercube does. In fact, the twisted cube is derived from the hypercube with some edges twisted. Due to these twisted edges, the diameter of $T Q_{n}$ is only about half of that of the hypercube. Some interesting studies on properties of $T Q_{n}$ can be found in $[1,6,18]$. In particular, Huang et al. studied the fault-tolerant hamiltonicity of $T Q_{n}$ in [18].

The embedding capabilities are important in evaluating an interconnection network. Given a host graph H and a guest graph G, an embedding of G into H is a mapping from each vertex of G to one vertex of H, and a mapping from each edge of G to one path of H. Graph embedding is useful because an algorithm designed for H can be applied to G directly. Therefore, the more we can embed guest graphs into a host graph, the better the host graph is. Popular guest graphs include cycles [11,15,16,18,19,25,26], paths [11,16], trees [22,23], etc. Four known parameters of an embedding are dilation, congestion, load, and expansion. The dilation is expressed by the maximum length of a path of the host graph which is mapped by an edge of the guest graph. The congestion is expressed by the maximum number of times that an edge of the host graph is mapped. The load is defined as the maximum number of vertices in the guest graph that are mapped to the same vertex in the host graph. The expansion is defined as the ratio of the number of vertices in the host graph to the number of vertices in the guest graph. If the embedding has dilation 1 , congestion 1 , and load 1 , the guest graph is a subgraph of the host graph. In this paper, all embeddings have dilation 1, congestion 1, and load 1. Therefore, each of these embeddings is the best.

The ring structure is important for distributed computing, and its benefits can be found in [20]. Let us consider a problem about the cycle embeddings. The pancycle problem involves finding all possible lengths of cycles in a graph G. More precisely, letting $V(G)$ and $|V(G)|$ be the set and the number of vertices of G, respectively, the goal is to embed a cycle of length l into G for every l satisfying $b \leqslant l \leqslant|V(G)|$, where b is a specific positive integer. This problem has attracted a great deal of mathematicians $[4,5,21,24]$ since it was brought up
by Bondy [5] in 1971. Recently, many researchers studied this problem in the area of interconnection networks [2,7,11,12,14,17,27]. Most of the previous works did not consider the issue of the fault tolerance.

Since components of an interconnection network may malfuction and we want the network to keep working, the fault-tolerant capabilities of an interconnection network are essential. Moreover, nodes and edges may fail simultaneously when a network is put in use. Hence, we study the pancycle problem on faulty twisted cubes which can tolerate failures of nodes and edges at the same time in this paper. Let f_{v} and f_{e} be the numbers of faulty vertices and edges in $T Q_{n}$, respectively. We can embed a cycle of length l into faulty $T Q_{n}$ if $f_{v}+f_{e} \leqslant n-2$ for any integer $4 \leqslant l \leqslant\left|V\left(T Q_{n}\right)\right|-f_{v}$ and odd integer $n \geqslant 3$. Therefore, the expansion of these embeddings ranges between 1 and $\frac{\left|V\left(T Q_{n}\right)\right|-f_{v}}{4}$. In addition, this result is optimal since if there are $n-1$ faulty elements around a single vertex of $T Q_{n}$, there is no hamiltonian cycle in faulty $T Q_{n}$.

This paper is organized as follows: We introduce some definitions and notation, including the definition of $T Q_{n}$, in Section 2. Then, Section 3 presents the main result, where we show the fault-tolerant pancyclicity of $T Q_{n}$. Finally, we give our conclusion in Section 4. To smooth the proof of Theorem 3 in Section 3, some details are left to Appendix A.

2. Definitions and notation

Letting G be a simple undirected graph, we use $V(G)$ and $E(G)$ to denote the sets of vertices and edges of G, respectively. Let $F_{v} \subseteq V(G), F_{e} \subseteq E(G)$, and $F=F_{v} \cup F_{e} . G-F$ denotes the subgraph of $G-F_{e}$ induced by $V(G)-F_{v}$. $|S|$ denotes the number of elements in a set S. A path, denoted by $\left\langle u_{1}, u_{2}, \ldots, u_{l}\right\rangle$, is an ordered list of distinct vertices such that u_{i} and u_{i+1} are adjacent for $1 \leqslant i \leqslant l-1$. Similarly, a cycle, denoted by $\left\langle u_{1}, u_{2}, \ldots, u_{l}, u_{1}\right\rangle$, is an ordered list of distinct vertices except u_{1}, i.e., $\left(u_{l}, u_{1}\right)$ is an edge. A hamiltonian path is a path that traverses every vertex of G exactly once. A graph G is hamiltonian connected if there is a hamiltonian path between any two vertices of G. We say that a graph G is k-fault-tolerant hamiltonian connected (abbreviated as k-hamiltonian connected) if $G-F$ is hamiltonian connected for any F with $|F| \leqslant k$. A pancyclic graph G, in its original definition [5], means that a cycle of length l can be embedded into G for every $3 \leqslant l \leqslant|V(G)|$. However, we note that the twisted cube $T Q_{n}$ does not contain any cycle of length 3 . For convenience of discussion, in this paper, we call a graph G pancyclic if, for every $4 \leqslant l \leqslant|V(G)|, G$ has a cycle of length l. We say that a graph G is k-fault-tolerant pancyclic (abbreviated as k-pancyclic) if $G-F$ is pancyclic for any F with $|F| \leqslant k$. A hamiltonian cycle is defined as a cycle which traverses every vertex of G exactly once. A graph is called hamiltonian if it has a hamiltonian cycle. We

Fig. 1. TQ_{3}.
say that a graph G is k-fault-tolerant hamiltonian (abbreviated as k-hamiltonian) if $G-F$ is hamiltonian for any F with $|F| \leqslant k$.

The twisted cube was first proposed by Hilbers et al. in [13]. In the following, we give the recursive definition of the n-dimensional twisted cube $T Q_{n}$ for any odd integer $n \geqslant 1 . T Q_{n}$ has 2^{n} vertices, and each of them is labeled by a binary string of length n. To define $T Q_{n}$, first of all, a parity function $P_{i}(x)$ is introduced. Let $u=u_{n-1} u_{n-2} \ldots u_{1} u_{0} \in V\left(T Q_{n}\right)$. For $0 \leqslant i \leqslant n-1, P_{i}(u)=$ $u_{i} \oplus u_{i-1} \oplus \cdots u_{1} \oplus u_{0}$, where \oplus is the exclusive-or operation. $T Q_{1}$ is a complete graph with two vertices labeled by 0 and 1 , respectively. For an odd integer $n \geqslant 3, T Q_{n}$ is obtained by taking four copies of $T Q_{n-2}$ and adding some additional edges to connect them. We use $T Q_{n-2}^{i j}$ to denote an $(n-2)$-dimensional twisted cube which is a subgraph of $T Q_{n}$ induced by the vertices labeled by $i j u_{n-3} \ldots u_{0}$, where $i, j \in\{0,1\}$. Each vertex $u=u_{n-1} u_{n-2} \ldots u_{1} u_{0} \in$ $V\left(T Q_{n}\right)$ is adjacent to $\bar{u}_{n-1} u_{n-2} \ldots u_{1} u_{0}$ and $\bar{u}_{n-1} \bar{u}_{n-2} \ldots u_{1} u_{0}$ if $P_{n-3}(u)=0$; and to $\bar{u}_{n-1} u_{n-2} \ldots u_{1} u_{0}$ and $u_{n-1} \bar{u}_{n-2} \ldots u_{1} u_{0}$ if $P_{n-3}(u)=1$. Fig. 1 illustrates $T Q_{3}$.

3. Main result

Lemma 1. Let G be a graph. G is k-pancyclic if $G-F$ is pancyclic for every faulty set F with $|F|=k$.

Proof. Suppose that $|F| \leqslant k$, and let $F^{\prime} \subseteq E(G)-F_{e}$ with $|F|+\left|F^{\prime}\right|=k$. So, $(G-F)-F^{\prime}$ is a subgraph of $G-F$. Trivially, if $(G-F)-F^{\prime}$ has a cycle C, $G-F$ contains C. This implies that if $(G-F)-F^{\prime}$ is pancyclic, $G-F$ is also pancyclic.

Therefore, throughout this paper, whenever we prove that a graph G is k-pancyclic, we only consider the case $|F|=k$.

Theorem 1. $T Q_{3}$ is 1-pancyclic.

Proof. Fig. 2 is another layout of $T Q_{3}$, and it is vertex-transitive. We consider two cases (1) one faulty vertex and (2) one faulty edge as follows:

Case 1. One faulty vertex. Without loss of generality, we assume that vertex 000 is faulty. We list cycles of lengths from 4 to 7 as follows: $\langle 001$, $101,111,011,001\rangle,\langle 010,100,101,111,011,010\rangle,\langle 001,101,111,110,010,011,001\rangle$, and $\langle 001,101,100,010,110,111,011,001\rangle$.

Case 2. One faulty edge. We may assume that the faulty edge e is incident to 000 because of the symmetry of $T Q_{3}$. By Case 1 , there are cycles of lengths from 4 to 7 in the faulty $T Q_{3}$. For a cycle of length 8 , suppose that $e=(000,100)$. Then $\langle 000,001,011,010,100,101,111,110,000\rangle$ is a desired one. Suppose that $e=(000,001)$. Then $\langle 000,110,111,101,001,011,010,100,000\rangle$ is a cycle of length 8 . If $e=(000,100)$, this case is symmetric to the case $e=(000,110)$.

A matching M of a graph G is a set of pairwise disjoint edges. M is a perfect matching if each vertex of G belongs to some edge in M.

Lemma 2 [18]. For $n \geqslant 1$, both of the subgraphs induced by $V\left(T Q_{n}^{00}\right) \cup V\left(T Q_{n}^{10}\right)$ and $V\left(T Q_{n}^{01}\right) \bigcup V\left(T Q_{n}^{11}\right)$ are isomorphic to $T Q_{n} \times K_{2}$. Furthermore, the edges joining $V\left(T Q_{n}^{00}\right) \bigcup V\left(T Q_{n}^{10}\right)$ and $V\left(T Q_{n}^{01}\right) \bigcup V\left(T Q_{n}^{11}\right)$ is a perfect matching of $T Q_{n+2}$.

Fig. 2. Another layout of $T Q_{3}$.

Let G and H be two graphs having the same number of vertices. $G \oplus_{M} H$ denotes a graph which has copies of G and H connected by a matching M. Let G_{n+1}^{0} and G_{n+1}^{1} be the subgraphs induced by $V\left(T Q_{n}^{00}\right) \bigcup V\left(T Q_{n}^{10}\right)$ and $V\left(T Q_{n}^{01}\right) \bigcup V\left(T Q_{n}^{11}\right)$, respectively. Then by Lemma 2, both of G_{n+1}^{0} and G_{n+1}^{1} are isomorphic to $T Q_{n} \times K_{2}$, and $G_{n+1}^{0} \oplus_{M} G_{n+1}^{1}$ is isomorphic to $T Q_{n+2}$ for a specific matching M. In addition, $T Q_{n} \times K_{2}$ has two copies of $T Q_{n}$, and we use $T Q_{n}^{0}$ and $T Q_{n}^{1}$ to denote them, respectively. For convenience of discussion, we add 0 to every vertex $v \in V\left(T Q_{n}^{0}\right)$ and 1 to every vertex $u \in V\left(T Q_{n}^{1}\right)$, respectively, as the leading bits. As a result, each vertex of $T Q_{n} \times K_{2}$ is represented by a binary string of length $n+1$.

Let F be a set of faults in $T Q_{n} \times K_{2}\left(T Q_{n+2}\right.$, respectively). We say that a vertex u in $T Q_{n}^{0}$ (G_{n+1}^{0}, respectively) is a safe crossing-point in $T Q_{n} \times K_{2}-F$ $\left(T Q_{n+2}-F\right.$, respectively) if u still connects to the neighbor v in $T Q_{n}^{1}\left(G_{n+1}^{1}\right.$, respectively $)$ in $T Q_{n} \times K_{2}-F\left(T Q_{n+2}-F\right.$, respectively), i.e., vertices u, v and edge (u, v) are fault-free. If u is in $T Q_{n}^{1}\left(G_{n+1}^{1}\right.$, respectively), we may define safe crossing-point in the same way.

Huang et al. [18] proved the following theorem concerning fault hamiltonicity and fault hamiltonian connectivity of $T Q_{n}$, and we shall use it in the proof of Theorem 3.

Theorem 2 [18]. $T Q_{n}$ is $(n-2)$-hamiltonian and $(n-3)$-hamiltonian connected for any odd integer $n \geqslant 3$.

Theorem 3. Let $n \geqslant 3$ be an odd integer. If $T Q_{n}$ is $(n-2)$-pancyclic, $T Q_{n} \times K_{2}$ is $(n-1)$-pancyclic.

Proof. Suppose that $T Q_{n}$ is $(n-2)$-pancyclic for some $n \geqslant 3$. We will show that $T Q_{n} \times K_{2}$ is $(n-1)$-pancyclic. Let $F \subseteq V\left(T Q_{n} \times K_{2}\right) \cup E\left(T Q_{n} \times K_{2}\right)$ be a set of faults. We divide F into five disjoint parts: $F_{v}^{0}=F \cap V\left(T Q_{n}^{0}\right), F_{e}^{0}=$ $F \cap E\left(T Q_{n}^{0}\right), F_{v}^{1}=F \cap V\left(T Q_{n}^{1}\right), F_{e}^{1}=F \cap E\left(T Q_{n}^{1}\right)$, and $F_{e}^{c}=F \cap\{(u, v) \mid(u, v)$ is an edge between $T Q_{n}^{0}$ and $\left.T Q_{n}^{1}\right\}$. Let $f=|F|, f_{v}^{0}=\left|F_{v}^{0}\right|, f_{e}^{0}=\left|F_{e}^{0}\right|, f_{v}^{1}=$ $\left|F_{v}^{1}\right|, f_{e}^{1}=\left|F_{e}^{1}\right|$, and $f_{e}^{c}=\left|F_{e}^{c}\right|$. For convenience of discussion, we define the following subsets of $F: \quad F_{v}=F \cap V\left(T Q_{n} \times K_{2}\right), \quad F_{e}=F \cap E\left(T Q_{n} \times K_{2}\right), \quad F^{0}=$ $F_{v}^{0} \cup F_{e}^{0}$, and $F^{1}=F_{v}^{1} \cup F_{e}^{1}$. And let $f_{v}=\left|F_{v}\right|, f_{e}=\left|F_{e}\right|, f^{0}=\left|F^{0}\right|$, and $f^{1}=\left|F^{1}\right|$. Note that $f^{0}+f^{1}=f-f_{e}^{c}$.

For further discussion, we consider the following cases.

Case 1. There is a subcube containing all the $n-1$ faults.
Without loss of generality, we assume that $T Q_{n}^{0}$ contains all the faults, i.e., $f^{0}=n-1$. Thus, $f^{1}=f_{e}^{c}=0$. We discuss the existence of cycles of all lengths from 4 to $2^{n+1}-f_{v}$ according to the following cases.

Case 1.1. Cycles of lengths from 4 to 2^{n}.
Since $T Q_{n}$ is $(n-2)$-pancyclic, $T Q_{n}^{1}$ contains cycles of lengths from 4 to 2^{n} for $n \geqslant 3$. Thus, $T Q_{n} \times K_{2}-F$ also contains cycles of these lengths.

Case 1.2. Cycles of lengths from $2^{n}+2$ to $2^{n+1}-f_{v}$ (see Fig. 3(a)).
$T Q_{n}^{0}$ is $(n-2)$-pancyclic, and hence $(n-2)$-hamiltonian. Clearly, $T Q_{n}^{0}-F^{0}$ still contains a hamiltonian path, say, $P=\left\langle u_{1}, u_{2}, \ldots, u_{2^{n}}{ }^{n} f_{v}^{0}\right\rangle$, where $f_{v}^{0}=f_{v}$. Let $2 \leqslant l \leqslant 2^{n}-f_{v}$. We construct a cycle of length $2^{n}+l$ as follows: Suppose that v_{1} and v_{l} are the neighbors in $T Q_{n}^{1}$ of u_{1} and u_{l}, respectively. By Theorem 2, $T Q_{n}$ is ($n-3$)-hamiltonian connected and $n \geqslant 3$. Therefore, there is a hamiltonian path Q in $T Q_{n}^{1}$ between v_{1} and v_{l} containing 2^{n} vertices, and $\left\langle u_{1}, \ldots, u_{l}, v_{l}, Q, v_{1}, u_{1}\right\rangle$ forms a cycle of length $2^{n}+l$. Note that there are no faults outside $T Q_{n}^{0}$. Thus, all the vertices on P are safe crossing-points.

Case 1.3. A cycle of length $2^{n}+1$ (see Fig. 3(b)).
Since $T Q_{n}^{1}$ is $(n-2)$-pancyclic and fault-free, we have a cycle $C=$ $\left\langle v_{1}, v_{2}, \ldots, v_{2^{n}-1}, v_{1}\right\rangle$ of length $2^{n}-1$ in $T Q_{n}^{1}$. There are $n-1$ faults in total, and $\frac{2^{n}-1}{2}>n-1$ for $n \geqslant 3$. So there exist two safe crossing-points v_{k} and v_{k+1} on C, and also their neighbors in $T Q_{n}^{0}$, say, u_{k} and u_{k+1}, respectively are connected in $T Q_{n}^{0}-F^{0} .\left\langle v_{k+1}, v_{k+2}, \ldots, v_{2^{n}-1}, \ldots, v_{k}, u_{k}, u_{k+1}, v_{k+1}\right\rangle$ is a fault-free cycle of length $2^{n}+1$.

Case 2. Both f^{0} and f^{1} are at most $n-2$.
Since $f^{i} \leqslant n-2$ for any $i \in\{0,1\}, T Q_{n}^{0}-F^{0}$ and $T Q_{n}^{1}-F^{1}$ are still pancyclic. Without loss of generality, we assume that $f^{0} \geqslant f^{1}$. We discuss the existence of cycles of all lengths from 4 to $2^{n+1}-f_{v}$ in the following cases.

Case 2.1. Cycles of lengths from 4 to $2^{n}-f_{v}^{1}$.

Fig. 3. Cases 1.2 and 1.3 of Theorem 3.

Since $T Q_{n}^{1}$ is $(n-2)$-pancyclic, we have cycles of lengths from 4 to $2^{n}-f_{v}^{1}$ in $T Q_{n}^{1}-F^{1}$. Hence, $T Q_{n} \times K_{2}-F$ also has cycles of these lengths.

Case 2.2. Cycles of lengths from $2^{n}-f_{v}^{1}+2$ to $2^{n+1}-f_{v}$ (see Fig. 4(a)).
For the case $f^{0}=f^{1}=n-2$, we leave it to Appendix A because of its tediousness. For $f^{1} \leqslant n-3$, the proof is as follows: $T Q_{n}^{0}-F^{0}$ is pancyclic, and hence hamiltonian. We have a hamiltonian cycle $C=\left\langle u_{1}, u_{2}, \ldots, u_{2^{n}-f_{v}^{0}}, u_{1}\right\rangle$ of length $2^{n}-f_{v}^{0}$ in $T Q_{n}^{0}-F^{0}$. Let $2 \leqslant l \leqslant 2^{n}-f_{v}^{0}$. We construct a cycle of length $2^{n}-f_{v}^{1}+l$ as follows: We claim that there exist two safe crossing-points u_{i} and u_{j} on C such that $(j-i)=l-1\left(\bmod 2^{n}-f_{v}^{0}\right)$. Suppose on the contrary that there do not exist such u_{i} and u_{j}. Then there are at least $\left\lceil\frac{2^{n}-f_{v}^{0}}{2}\right\rceil$ faults outside $T Q_{n}^{0}$. However, $\left\lceil\frac{2^{n}-f_{v}^{0}}{2}\right\rceil+f_{v}^{0} \geqslant 2^{n-1}>n-1$ for $n \geqslant 1$. We obtain a contradiction. Thus, there exist such u_{i} and u_{j}. By Theorem $2, T Q_{n}^{1}$ is $(n-3)$-hamiltonian connected and $f^{1} \leqslant n-3$, so $T Q_{n}^{1}-F^{1}$ is still hamiltonian connected. Let v_{i} and v_{j} be the neighbors in $T Q_{n}^{1}$ of u_{i} and u_{j}, respectively. There is a hamiltonian path Q in $T Q_{n}^{1}-F^{1}$ between v_{i} and v_{j}. Clearly, Q contains $\left(2^{n}-f_{v}^{1}\right)$ vertices. Then $\left\langle u_{i}, u_{i+1}, \cdots, u_{j}, v_{j}, Q, v_{i}, u_{i}\right\rangle$ forms a cycle of length $2^{n}-f_{v}^{1}+l$.

Case 2.3. A cycle of length $2^{n}-f_{v}^{1}+1$ (see Fig. 4(b)).
Since $T Q_{n}^{1}-F^{1}$ is pancyclic, there is a cycle $\left\langle v_{1}, v_{2}, \ldots, v_{2^{n}-f_{v}^{1}-1}, v_{1}\right\rangle$ of length $2^{n}-f_{v}^{1}-1$ in $T Q_{n}^{1}-F^{1}$. Furthermore, there are $(n-1)-f^{1}$ faults outside $T Q_{n}^{1}$, and $\frac{2^{n}-f_{v}^{1}-1}{2} \geqslant \frac{2^{n}-1}{2}-f^{1}>(n-1)-f^{1}$ for $n \geqslant 3$. Thus there exist two safe crossing-points v_{k} and v_{k+1} on C, and also their neighbors in $T Q_{n}^{0}$, say, u_{k} and u_{k+1}, respectively are adjacent in $T Q_{n}^{0}-F^{0} .\left\langle v_{k+1}, v_{k+2}, \ldots, v_{2^{n}-f_{v}^{1}-1}, \ldots\right.$, $\left.v_{k}, u_{k}, u_{k+1}, v_{k+1}\right\rangle$ is a fault-free cycle of length $2^{n}-f_{v}^{1}+1$ in $T Q_{n} \times K_{2}-F$. This completes the proof of the theorem.

For the following discussion, we recall that G_{n+1}^{0} and G_{n+1}^{1} are the subgraphs induced by $V\left(T Q_{n}^{00}\right) \bigcup V\left(T Q_{n}^{10}\right)$ and $V\left(T Q_{n}^{01}\right) \bigcup V\left(T Q_{n}^{11}\right)$, respectively. We say

Fig. 4. Cases 2.2 and 2.3 of Theorem 3.
that an edge is a critical edge of $T Q_{n+2}$ if it is an edge in G_{n+1}^{i} with one endpoint in $T Q_{n}^{i 0}$ and the other in $T Q_{n}^{i 1}$ for $i \in\{0,1\}$.

Lemma 3. Let $n \geqslant 3$ be an odd integer, and $\left(u_{1}, u_{2}\right)$ be a critical edge of $T Q_{n+2}$ which is in G_{n+1}^{0}, and v_{1}, v_{2} be the neighbors in G_{n+1}^{1} of u_{1} and u_{2}, respectively. Then $\left(v_{1}, v_{2}\right)$ is also a critical edge of $T Q_{n+2}$ in G_{n+1}^{1}.

Proof. Without loss of generality, we assume that $u_{1}=00 x_{n-3} x_{n-4} \ldots x_{1} x_{0}$. If $P_{n-3}\left(u_{1}\right)=0, \quad u_{2}=10 x_{n-3} x_{n-4} \ldots x_{1} x_{0}, \quad v_{1}=11 x_{n-3} x_{n-4} \ldots x_{1} x_{0}, \quad$ and $v_{2}=01 x_{n-3} x_{n-4} \ldots x_{1} x_{0}$. By definition, v_{1} and v_{2} are adjacent, and $\left(v_{1}, v_{2}\right)$ is a critical edge in G_{n+1}^{1}. It can be checked that the statement is also true if $P_{n-3}\left(u_{1}\right)=1$.

It is observed that vertices $u_{1}, u_{2}, v_{1}, v_{2}$ in the above lemma form a 4 -cycle. We call this cycle a crossed 4 -cycle in $T Q_{n+2}$. It is clear that, for each vertex $00 x_{n-3} \cdots x_{0}$, there is exactly one crossed 4 -cycle corresponding to this vertex. Thus, there are 2^{n} disjoint crossed 4 -cycles in $T Q_{n+2}$. We note that a crossed 4-cycle contains two critical edges.

Huang et al. [18] proved the following theorem.
Theorem 4 [18]. $T Q_{n} \times K_{2}$ is $(n-1)$-hamiltonian and $(n-2)$-hamiltonian connected for any odd integer $n \geqslant 3$.

Theorem 5. Let $n \geqslant 3$ be an odd integer. If $T Q_{n}$ is $(n-2)$-pancyclic, $T Q_{n+2}$ is n-pancyclic.

Proof. Suppose that $T Q_{n}$ is $(n-2)$-pancyclic for some $n \geqslant 3$. By Theorem 3, $T Q_{n} \times K_{2}$ is $(n-1)$-pancyclic. That is, both G_{n+1}^{0} and G_{n+1}^{1} in $T Q_{n+2}$ are $(n-1)$ pancyclic. We will show that $T Q_{n+2}$ is n-pancyclic. Let $F \subseteq$ $V\left(T Q_{n+2}\right) \cup E\left(T Q_{n+2}\right)$ be a set of faults. We divide F into five disjoint parts: $F_{v}^{0}=F \cap V\left(G_{n+1}^{0}\right), \quad F_{e}^{0}=F \cap E\left(G_{n+1}^{0}\right), \quad F_{v}^{1}=F \cap V\left(G_{n+1}^{1}\right), \quad F_{e}^{1}=F \cap E\left(G_{n+1}^{1}\right)$, and $F_{e}^{c}=F \cap\left\{(u, v) \mid(u, v)\right.$ is an edge between G_{n+1}^{0} and $\left.G_{n+1}^{1}\right\}$. Let $f=|F|$, $f_{v}^{0}=\left|F_{v}^{0}\right|, f_{e}^{0}=\left|F_{e}^{0}\right|, f_{v}^{1}=\left|F_{v}^{1}\right|, f_{e}^{1}=\left|F_{e}^{1}\right|$, and $f_{e}^{c}=\left|F_{e}^{c}\right|$. For convenience of discussion, we define the following subsets of $F: F_{v}=F \cap V\left(T Q_{n+2}\right)$, $F_{e}=F \cap E\left(T Q_{n+2}\right), \quad F^{0}=F_{v}^{0} \cup F_{e}^{0}$, and $F^{1}=F_{v}^{1} \cup F_{e}^{1}$. And let $f_{v}=\left|F_{v}\right|$, $f_{e}=\left|F_{e}\right|, f^{0}=\left|F^{0}\right|$, and $f^{1}=\left|F^{1}\right|$. Note that $f^{0}+f^{1}=f-f_{e}^{c}$.

For further discussion, we consider the following cases.

Case 1. There is a subcube containing all the n faults.
Without loss of generality, we assume that $f^{0}=n$. Thus, $f^{1}=f_{e}^{c}=0 . G_{n+1}^{0}$ is $(n-1)$-pancyclic, and hence $(n-1)$-hamiltonian. Clearly, $G_{n+1}^{0}-F^{0}{ }^{n+1}$ still
contains a hamiltonian path, say, $P=\left\langle u_{1}, u_{2}, \ldots, u_{2^{n+1}-f_{v}^{0}}\right\rangle$, where $f_{v}^{0}=f_{v}$. We discuss the existence of cycles of all lengths from 4 to $2^{n+2}-f_{v}$ according to the following cases.

Case 1.1. Cycles of lengths from 4 to 2^{n+1}.
Since G_{n+1}^{1} is $(n-1)$-pancyclic, G_{n+1}^{1} contains cycles of lengths from 4 to 2^{n+1} for $n \geqslant 3$. So, $T Q_{n+2}-F$ also contains cycles of these lengths.

Case 1.2. Cycles of lengths from $2^{n+1}+2$ to $2^{n+2}-f_{v}$ (see Fig. 5(a)).
Let $2 \leqslant l \leqslant 2^{n+1}-f_{v}$. We construct a cycle of length $2^{n+1}+l$ as follows: Suppose that the neighbors in G_{n+1}^{1} of u_{1} and u_{l} are v_{1} and v_{l}, respectively. By Theorem 4, G_{n+1}^{1} is ($n-2$)-hamiltonian connected and $n \geqslant 3$. Hence there is a hamiltonian path Q in G_{n+1}^{1} between v_{1} and v_{l} containing 2^{n+1} vertices. $\left\langle u_{1}, \ldots, u_{l}, v_{l}, Q, v_{1}, u_{1}\right\rangle$ forms a cycle of length $2^{n+1}+l$. Note that there are no faults outside G_{n+1}^{0}. So all the vertices on P are safe crossing-points.

Case 1.3. A cycle of length $2^{n+1}+1$ (see Fig. 5(b)).
Consider the vertices u_{1} and u_{2} on P and their neighbors in G_{n+1}^{1}, say v_{1} and v_{2}, respectively. By Theorem 4, G_{n+1}^{1} is $(n-2)$-hamiltonian connected for $n \geqslant 3$. Since $f^{1}=0$, we may find a path Q^{\prime} between v_{1} and v_{2} containing $2^{n+1}-1$ vertices in G_{n+1}^{1}. Then $\left\langle u_{1}, u_{2}, v_{2}, Q^{\prime}, v_{1}, u_{1}\right\rangle$ forms a cycle of length $2^{n+1}+1$.

Case 2. Both f^{0} and f^{1} are at most $n-1$.
Since both of G_{n+1}^{0} and G_{n+1}^{1} are $(n-1)$-pancyclic for $n \geqslant 3$, both of $G_{n+1}^{0}-F^{0}$ and $G_{n+1}^{1}-F^{1}$ are still pancyclic. Without loss of generality, we assume that $f^{0} \geqslant f^{1}$. We discuss the existence of cycles of all lengths from 4 to $2^{n}-f_{v}$ in the following cases.

Fig. 5. Cases 1.2 and 1.3 of Theorem 5.

Case 2.1. Cycles of lengths from 4 to $2^{n+1}-f_{v}^{1}$.
Since $G_{n+1}^{1}-F^{1}$ is pancyclic for $n \geqslant 3$, we have cycles of lengths from 4 to $2^{n+1}-f_{v}^{1}$ in $G_{n+1}^{1}-F^{1}$.

Case 2.2. Cycles of lengths from $2^{n+1}-f_{v}^{1}+2$ to $2^{n+2}-f_{v}$ (see Fig. 6(a)).
Since $G_{n+1}^{0}-F^{0}$ is pancyclic, we have a hamiltonian cycle $C=$ $\left\langle u_{0}, u_{1}, \ldots, u_{2^{n+1}-f_{0}^{0}-1}, u_{0}\right\rangle$ of length $2^{n+1}-f_{v}^{0}$ in $G_{n+1}^{0}-F^{0}$. Let $2 \leqslant l \leqslant$ $2^{n+1}-f_{v}^{0}$. We construct a cycle of length $2^{n+1}-f_{v}^{1}+l$ as follows: First, we claim that there exist two safe crossing-points u_{i} and u_{j} on C such that $(j-i)=l-1\left(\bmod 2^{n+1}-f_{v}^{0}\right)$. Suppose on the contrary that there do not exist such u_{i} and u_{j}. Then there are at least $\left[\frac{\int^{2+1}-f_{v}^{0}}{2}\right\rceil$ faults outside G_{n+1}^{0}. However, $\left\lceil\frac{2^{n+1}-f_{v}^{0}}{2}\right\rceil+f_{v}^{0} \geqslant 2^{n}>n$ for $n \geqslant 0$. We obtain a contradiction. Thus, there exist such u_{i} and u_{j}, and our claim is true. Secondly, we claim that $f^{1} \leqslant n-2$ for $n \geqslant 3$. Suppose for the sake of contradiction that $f^{1}=n-1$. Since $f^{0} \geqslant f^{1}$, $f^{0}=n-1$. The total number of faults is at most n. Thus $(n-1)+(n-1) \leqslant n$. This implies that $n \leqslant 2$, which is a contradiction. This completes the proof of our second claim. By Theorem 4, G_{n+1}^{1} is ($n-2$)-hamiltonian connected and $f^{1} \leqslant n-2$ for $n \geqslant 3$. Hence $G_{n+1}^{1}-F^{1}$ is hamiltonian connected. Let v_{i} and v_{j} be the neighbors in G_{n+1}^{1} of u_{i} and u_{j}, respectively. There is a hamiltonian path Q in $G_{n+1}^{1}-F^{1}$ between v_{i} and v_{j}. Clearly, Q contains $\left(2^{n+1}-f_{v}^{1}\right)$ vertices. Then $\left\langle u_{i}, u_{i+1}, \ldots, u_{j}, v_{j}, Q, v_{i}, u_{i}\right\rangle$ forms a cycle of length $2^{n+1}-f_{v}^{1}+l$.

Case 2.3. A cycle of length $2^{n+1}-f_{v}^{1}+1$ (see Fig. 6(b)).
We want to construct a cycle containing $2^{n+1}-f_{v}^{1}-1$ vertices in $G_{n+1}^{1}-F^{1}$ and two vertices in $G_{n+1}^{0}-F^{0}$. To avoid faults in G_{n+1}^{0}, we introduce a term called shadows of faults. Let $\left\langle u_{1}, u_{2}, v_{2}, v_{1}, u_{1}\right\rangle$ be a crossed 4 -cycle with u_{1}, u_{2} in

Fig. 6. Cases 2.2 and 2.3 of Theorem 5.
G_{n+1}^{0} and v_{1}, v_{2} in G_{n+1}^{1}, respectively. If there is a fault on this cycle but the fault is not in G_{n+1}^{1}, we call edge $\left(v_{1}, v_{2}\right)$ a shadow fault of F on G_{n+1}^{1} (similarly, we may define a shadow fault on G_{n+1}^{0}). Let $F^{s}=\{e \mid$ edge e is a shadow fault of F on $\left.G_{n+1}^{1}\right\}$. Then $\left|F^{s} \cup F^{1}\right| \leqslant n$. If $\left|F^{s} \cup F^{1}\right|=n$, we arbitrarily choose an edge e_{1} in F^{s}, and let $F^{\prime}=F^{s} \cup F^{1}-e_{1}$, otherwise let $F^{\prime}=F^{s} \cup F^{1}$. Then $\left|F^{\prime}\right| \leqslant n-1$ and $G_{n+1}^{1}-F^{\prime}$ is still pancyclic. Since $F^{\prime} \cap V\left(G_{n+1}^{1}\right)=F_{v}^{1}$, there is a cycle C of length $2^{n+1}-f_{v}^{1}-1$ in $G_{n+1}^{1}-F^{\prime}$. Since $2^{n+1}-f_{v}^{1}-1>2^{n}$ for $n \geqslant 3, C$ contains two critical edges. Let $(a, b) \neq e_{1}$ be a critical edge on C, so $(a, b) \notin F^{s}$. Let a^{\prime}, b^{\prime} be the neighbors of a and b in G_{n+1}^{0}, respectively. Then $\left\langle a, a^{\prime}, b^{\prime}, b, a\right\rangle$ is a fault-free crossed 4-cycle. Suppose that $C=\langle a, Q, b, a\rangle$. Then $\left\langle a^{\prime}, a, Q, b, b^{\prime}, a^{\prime}\right\rangle$ forms a cycle of length $2^{n+1}-f_{v}^{1}+1$ in $T Q_{n+2}-F$.

By Theorems 1, 5 and using the mathematical induction, we obtain the following theorem.

Theorem 6. The twisted cube $T Q_{n}$ is $(n-2)$-pancyclic for any odd integer $n \geqslant 3$.

4. Conclusion

The twisted cube, proposed by Hilbers et al. [13], is an alternative to the hypercube architecture in parallel computing. We study a property called fault-tolerant pancyclicity on the twisted cube. We prove that $T Q_{n}$ is $(n-2)$ pancyclic for any odd integer $n \geqslant 3$. That is, with maximum of $n-2$ faulty edges and/or vertices, $T Q_{n}$ has cycles of all lengths from 4 to $\left|V\left(T Q_{n}\right)\right|-f_{v}$. Furthermore, if there exist $n-1$ faulty elements around a single vertex, then $T Q_{n}$ cannot have a hamiltonian cycle. Hence, $n-2$ faults are the most that $T Q_{n}$ can tolerant with respect to pancyclic property. The above result shows that the fault-tolerant capability of $T Q_{n}$ is nice in terms of the cycle embeddings.

Fig. 7. $T Q_{3} \times K_{2}$.

Appendix A

In the following, we construct cycles of lengths from $2^{n}-f_{v}^{1}+2$ to $2^{n+1}-f_{v}$ in $T Q_{n} \times K_{2}$ for the case $f^{0}=f^{1}=n-2$. Since $f^{0}+f^{1}=$ $2 n-4 \leqslant n-1, n \leqslant 3$. Thus, we need only to discuss the case $f^{0}=f^{1}=1$ for $n=3$ here.

First, we show the case $f_{v}^{0}=f_{v}^{1}=1$, and thus find cycles of lengths from 9 to 14 in $T Q_{3} \times K_{2}-F$. Let $F=\{u, v\}$ for $u \in V\left(T Q_{3}^{0}\right)$ and $v \in V\left(T Q_{3}^{1}\right)$. We need

Table 1
Fault-free cycles of lengths from 9 to 14 in $T Q_{3} \times K_{2}$ with two faulty vertices

Length	$u=0000, v=1000$
9	$\langle 0001,0011,0010,0100,1100,1101,1111,1011,1001,0001\rangle$
10	$\langle 0001,0011,0010,0100,0101,1101,1100,1010,1011,1001,0001\rangle$
11	$\langle 0001,0011,0010,0100,0101,1101,1111,1110,1010,1011,1001,0001\rangle$
12	$\langle 0001,0011,0010,0110,0111,0101,1101,1111,1110,1010,1011,1001,0001\rangle$
13	$\langle 0001,0011,0010,0110,0111,0101,1101,1100,1010,1110,111,1011,1001,0001\rangle$
14	$\langle 0001,0011,0010,0100,0101,0111,0110,1110,1111,1101,1100,1010,1011,1001,0001\rangle$
Length	$u=0000, v=1110$
9	$\langle 0111,0110,0010,0011,1011,1010,1100,1101,1111,0111\rangle$
10	$\langle 0111,0101,0100,0010,0011,1011,1010,1100,1101,1111,0111\rangle$
11	$\langle 0111,0101,0100,0010,0011,1011,1001,1000,1100,1101,1111,0111\rangle$
12	$\langle 0111,0101,0100,0010,0011,0001,1001,1011,1010,1100,1101,1111,0111\rangle$
13	$\langle 0101,0111,0110,0010,0011,0001,1001,1000,1100,1010,1011,1111,1101,0101\rangle$
14	$\langle 0111,0110,0010,0100,0101,0001,0011,1011,1010,1100,1000,1001,1101,1111,0111\rangle$
Length	$u=0000, v=1111$
9	$\langle 0110,0111,0101,0100,0010,1010,1100,1000,1110,0110\rangle$
10	$\langle 0110,0111,0101,0100,0010,0011,0001,1001,1000,1110,0110\rangle$
11	$\langle 0110,0111,0101,0100,0010,0011,0001,1001,1011,1010,1110,0110\rangle$
12	$\langle 0110,0111,0101,0100,0010,0011,0001,1001,1101,1100,1010,1110,0110\rangle$
13	$\langle 0110,0111,0101,0100,0010,0011,0001,1001,1011,1010,1100,1000,1110,0110\rangle$
14	$\langle 0010,0100,0101,0001,0011,0111,0110,1110,1000,1100,1101,1001,1011,1010,0010\rangle$
Length	$u=0000, v=1101$
9	$\langle 0001,0011,0010,0100,0101,1101,1111,1011,1001,0001\rangle$
10	$\langle 0001,0011,0010,0110,0111,1111,1110,1010,1011,1001,0001\rangle$
11	$\langle 0001,0011,0010,0110,0111,1111,1011,1010,1100,1000,1001,0001\rangle$
12	$\langle 0001,0011,0010,0110,0111,1111,1110,1000,1100,1010,1011,1001,0001\rangle$
13	$\langle 0001,0011,0010,0110,0111,0101,0100,1100,1000,1110,1111,1011,1001,0001\rangle$
14	$\langle 0010,0100,0101,0001,0011,0111,0110,1110,1111,1011,1001,1000,1100,1010,0010\rangle$
Length	$u=0000, v=1100$
9	$\langle 0101,0001,0011,0111,1111,1110,1000,1001,1101,0101\rangle$
10	$\langle 0001,0011,0111,0101,1101,1111,1110,1010,1011,1001,0001\rangle$
11	$\langle 0001,0011,0010,0110,0111,0101,1101,1111,1110,1000,1001,0001\rangle$
12	$\langle 0001,0011,0010,0100,0101,1101,1111,1011,1010,1110,1000,1001,0001\rangle$
13	$\langle 0110,0010,0100,0101,0001,0011,0111,1111,1101,1001,1011,1010,1110,0110\rangle$
14	$\langle 0011,0001,0101,0100,0010,0110,0111,1111,1101,1001,1000,1110,1010,1011,0011\rangle$

only discuss five cases due to the symmetry of $T Q_{3} \times K_{2}$ (see Fig. 7): (1) $u=$ $0000, v=1000$, (2) $u=0000, v=1110$, (3) $u=0000, v=1111$, (4) $u=0000$, $v=1101$, and (5) $u=0000, v=1100$. They are listed one by one in Table 1.

Second, consider that $f_{v}=1$ and $f_{e}=1$. We find cycles of lengths from 8 to 14 as follows. Let $F=\left\{u_{1},\left(u_{2}, v_{2}\right)\right\}$ and $F^{\prime}=\left\{u_{1}, u_{2}\right\}$. From the above discussion, there are cycles of lengths from 9 to 14 in $T Q_{3} \times K_{2}-F^{\prime}$, which are also in $T Q_{3} \times K_{2}-F$. Furthermore, since $T Q_{3} \times K_{2}$ is 2-hamiltonian, there is a cycle of length 15 in $T Q_{3} \times K_{2}-F$.

Finally, in the same way, we can deal with the case $f_{e}=2$. In this case, cycles of lengths from 10 to 16 have to be found. Assume that $F=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right\}$. Then let $F^{\prime}=\left\{u_{1},\left(u_{2}, v_{2}\right)\right\}$. From the above discussion, there are cycles of lengths from 9 to 15 in $T Q_{3} \times K_{2}-F^{\prime}$, which are also in $T Q_{3} \times K_{2}-F$. In addition, since $T Q_{3} \times K_{2}$ is 2-hamiltonian, there is a cycle of length 16 . This completes our proof.

References

[1] S. Abraham, K. Padmanabhan, Twisted cube: a study in asymmetry, J. Parallel Distrb. Comput. 13 (1991) 104-110.
[2] Toru Araki, Yukio Shibata, PancyclicityRecursiveCirculant of recursive circulant graphs, Inform. Process. Lett. 81 (4) (2002) 187-190.
[3] L.N. Bhuyan, D.P. Agrawal, Generalized hypercube and hyperbus structures for a computer network, IEEE Trans. Comput. C-33 (4) (1984) 323-333.
[4] E. van Blanken, J. van den Heuvel, H.J. Veldman, PancyclicityRecursiveCirculant of hamiltonian line graphs, Discrete Math. 138 (1995) 379-385.
[5] J.A. Bondy, Pancyclic graphs, J. Comb. Theory Ser. B 11 (1971) 80-84.
[6] C.P. Chang, J.N. Wang, L.H. Hsu, Topological properties of twisted cubes, Inform. Sci. 113 (1999) 147-167.
[7] G.H. Chen, J.S. Fu, J.F. Fang, Hypercomplete: a pancyclic recursive topology for large-scale distributed multicomputer systems, Networks 35 (1) (2000) 56-69.
[8] P. Cull, S.M. Larson, The Möbius Cubes, IEEE Trans. Comput. 44 (5) (1995) 647-659.
[9] D.Z. Du, F.K. Hwang, Generalized de Bruijn digraphs, Networks 18 (1988) 27-38.
[10] K. Efe, The crossed cube architecture for parallel computing, IEEE Trans. Parallel Distribut. Syst. 3 (5) (1992) 513-524.
[11] J. Fan, Hamilton-connectivity and cycle-embedding of the Möbius cubes, Inform. Process. Lett. 82 (2002) 113-117.
[12] A. Germa, M.C. Heydemann, D. Sotteau, Cycles in the cube-connected cycles graph, Discrete Appl. Math. 83 (1998) 135-155.
[13] P.A.J. Hilbers, M.R.J. Koopman, J.L.A. van de Snepscheut, The twisted cube, in: Lecture Notes in Computer Science, Parallel Architect. Lang. Eur. (1987) 152-159.
[14] S.Y. Hsieh, C.H. Chen, PancyclicityRecursiveCirculant on Möbius cubes with maximal edge faults, Parallel Comput. 30 (2004) 407-421.
[15] S.Y. Hsieh, G.H. Chen, C.W. Ho, Embed longest rings onto star graphs with vertex faults, in: Proceedings of the 1998 International Conference on Parallel Processing, 1998, pp. 140-147.
[16] S.Y. Hsieh, G.H. Chen, C.W. Ho, Fault-free Hamiltonian cycles in faulty arrangement graphs, IEEE Trans. Parallel and Distrib. Syst. 10 (3) (1999) 223-237.
[17] C.H. Huang, J.Y. Hsiao, R.C.T. Lee, An optimal embedding of cycles into incomplete hypercubes, Inform. Process. Lett. 72 (1999) 213-218.
[18] W.T. Huang, J.M. Tan, C.N. Hung, L.H. Hsu, Fault-tolerant Hamiltonicity of twisted cubes, J. Parallel Distrb. Comput. 62 (2002) 591-604.
[19] S.C. Hwang, G.H. Chen, Cycles in butterfly graphs, Networks 35 (2) (2000) 161-171.
[20] A. Kanevsky, C. Feng, On the embedding of cycles in pancake graphs, Parallel Comput. 21 (1995) 923-936.
[21] M. Kouider, A. Marczyk, On pancyclism in hamiltonian graphs, Discrete Math. 251 (2002) 119-127.
[22] S.C. Ku, B.F. Wang, T.K. Hung, Construction edge-disjoint spanning trees in product networks, IEEE Trans. Parallel Distribut. Syst. 14 (3) (2003) 213-221.
[23] P. Kulasinghe, S. Bettayeb, Embedding binary trees into crossed cubes, IEEE Trans. Comput. 44 (7) (1995) 923-929.
[24] B. Randerath, I. Schiermeyer, M. Tewes, L. Volkmann, Vertex pancyclic graphs, Discrete Appl. Math. 120 (2002) 219-237.
[25] R.A. Rowley, B. Bose, Fault-tolerant ring embedding in de-Bruijn networks, IEEE Trans. Comput. 12 (1993) 1480-1486.
[26] A. Sengupta, On ring embedding in Hypercubes with faulty nodes and links, Inform. Process. Lett. 68 (1998) 207-214.
[27] M.C. Yang, T.K. Li, Jimmy J.M. Tan, L.H. Hsu, Fault-tolerant cycle-embedding of crossed cubes, Inform. Process. Lett. 88 (4) (2003) 149-154.

[^0]: This work was supported in part by the National Science Council of the Republic of China under Contract NSC 90-2213-E-009-149.

 * Corresponding author.

 E-mail addresses: tealee@ms8.hinet.net, tkli@cyu.edu.tw (T.-K. Li).

