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Abstract: Music is a way of expressing our feelings and emotions. Suitable music can 

positively affect people. However, current multimedia control methods, such as manual 

selection or automatic random mechanisms, which are now applied broadly in MP3 and 

CD players, cannot adaptively select suitable music according to the user’s physiological 

state. In this study, a brain computer interface-based smart multimedia controller was proposed 

to select music in different situations according to the user’s physiological state. Here, a 

commercial mobile tablet was used as the multimedia platform, and a wireless  

multi-channel electroencephalograph (EEG) acquisition module was designed for real-time 

EEG monitoring. A smart multimedia control program built in the multimedia platform was 

developed to analyze the user’s EEG feature and select music according his/her state. The 

relationship between the user’s state and music sorted by listener’s preference was also 

examined in this study. The experimental results show that real-time music biofeedback 

according a user’s EEG feature may positively improve the user’s attention state. 
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1. Introduction 

Music is a significant approach to enhancing human physiology and psychology and applied in 

many areas such as disease treatment and recovery, physical rehabilitation, and enrichment of cognitive 

function. For example, music positively affects people with dementia, heart disease, or stroke [1,2], 

increases the effectiveness of pain alleviation and relaxing during rehabilitation [3], and enables people 

to improve mood state and mental processing [4]. Recently, many studies have explored the 

relationship between music listening and task performance. For instance, some studies indicated that 

music positively enhances work performance [5–7]. 

However, current multimedia control methods, such as manual selection or automatic random 

mechanisms, which are now applied broadly in MP3 and CD players, cannot adaptively select music 

according to the user’s physiological state. In order to achieve this aim, a novel brain computer 

interface (BCI)-based smart multimedia controller is proposed in this study. Unlike manual selection 

or automatic random mechanism, our BCI-based smart multimedia controller selects music types 

according to the user’s cognitive state. Brain computer interface provides a pragmatic and  

non-invasive way for communication between the human brain and external devices [8–14]. Several 

BCI-based controllers have been proposed in previous studies; however, only a few studies have tried 

to explore it on music control [15]. However, the above BCI-based multimedia controllers require the 

user’s active mental command to control multimedia, but cannot select music automatically and 

adaptively according to the user’s current state. Moreover, most of BCI systems require bulky and 

expensive electroencephalograph (EEG) machines and personal computers to process EEG in real 

time. This also limits the feasibility of these BCI-based multimedia controllers for daily applications. 

With the rapidly increasing popularity of mobile tablet, using mobile tablets as assistive technology 

devices of music listening becomes feasible and convenient. Mobile tablets contain small-volume and 

light-weight properties. In particular, recently, mobile tablets tend to offer more advanced computing 

ability, connectivity, and music efficiency. Therefore, in the proposed BCI-based multimedia 

controller, a commercial mobile tablet was used as the development platform. A smart multimedia control 

program built in the mobile tablet was also developed to continuously monitor the user’s EEG feature. 

When a music selection nears its end, the smart multimedia control program will select the next music  

type according to the user’s EEG feature. Moreover, unlike other bulky EEG machines, a wireless 

multi-channel EEG acquisition module was also designed to provide portability and improve the 

convenience of use for daily applications. 

2. System Architecture and Design 

The basic scheme of the proposed brain computer interface-based smart multimedia controller is 

illustrated in Figure 1. The system hardware contains a wireless multi-channel EEG acquisition 

module and a multimedia platform. Here, the wireless multi-channel EEG acquisition module is 
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designed to acquire multi-channel EEG signals simultaneously and then transmit these EEG signals to 

the multimedia platform wirelessly. A smart multimedia control program is built in the multimedia 

platform to receive and analyze the acquired EEG signal and then store the estimated EEG features 

continuously. Several types of music are stored in different folders on the multimedia platform. When 

the music section nears its end, the next musical piece will be selected according to the user’s  

EEG feature. 

 

Figure 1. Basic scheme of proposed brain computer interface-based mobile multimedia controller. 

2.1. Wireless Multi-Channel EEG Acquisition Module 

The block diagram of the wireless multi-channel EEG acquisition module, as shown in Figure 2a, 

consists of three main parts: The front-end amplifier circuit, the microprocessor, and the Bluetooth 

transmission circuit. Here, the front-end amplifier circuit is designed to amplifier and filter EEG 

signals acquired from EEG electrodes, and the microprocessor is used to digitize the EEG signal, 

perform a low-pass filter, control the peripheral circuits, and send EEG signal into the Bluetooth 

transmission circuit. The front-end amplifier circuit contains an instrument amplifier and a band-pass 

filter. The gain of the front-end amplifier circuit is set to 5000 times with a frequency band of  

0.1 Hz~150 Hz. In this study, an ultra-low power 16-bit RISC mixed-signal microprocessor (MPS430, 

Texas Instruments, Dallas, TX, USA) is used as the microprocessor. It can provide an 8-channel 12-bit 

successive approximation register analog-to-digital converter (SAR ADC) used to digitize acquired 

EEG signal. Here, the sampling rate of the SAR ADC is set to 512 Hz. Before transmitting the EEG 

signal to the Bluetooth transmission circuit, the microprocessor will pass the EEG signal through a 

moving average with a 56 Hz cutoff frequency to reduce the power-line interference. The Bluetooth 

transmission circuit contains a printed circuit board (PCB) antenna and a Bluetooth module, which is 

fully compliant with the Bluetooth v2.0+ EDR specification. The microprocessor communicates with 

the Bluetooth module via a universal asynchronous receiver/transmitter (UART). The wireless  

multi-channel EEG acquisition module is designed to operate at 35 mA with a 3.7 V DC power supply, 

and can be operated continuously for over 30 h with a commercial 1100 mAh Li-ion battery. The size 
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of the wireless multi-channel EEG acquisition module is about 62 mm × 28 mm × 5 mm. Figure 2b 

shows the photograph of the wireless multi-channel EEG acquisition module. 

 

Figure 2. (a) Block diagram and (b) photograph of wireless multi-channel EEG acquisition module. 

2.2. Multimedia Platform 

In this study, a commercial mobile tablet is used as the multimedia platform, and the operation 

system (OS) of the multimedia platform is Windows 8.1. The operation system of Windows 8.1 is 

known to allow the multi-tasking, allowing users to operate more than one application at one point of 

time. Besides the basic functions of receiving, displaying and storing the raw EEG data, the smart 

multimedia control program built in the mobile tablet will also provide the functions of monitoring the 

user’s EEG feature and selecting next music type according the user’s EEG feature. 

3. System Software Design 

3.1. Implement of Smart Multimedia Control Program 

The smart multimedia control program is developed by Microsoft C#. The operation procedure of 

the smart multimedia control program is shown in Figure 3. In the beginning, the smart multimedia 

control program will build the graphical user interface (GUI). Next, the smart multimedia control 

program will call the thread of Bluetooth API to search the wireless multi-channel EEG acquisition 

module and create a SPP stream to connect with the module, and then the REC thread will receive the 

raw EEG signal and store them into the memory and the solid-state drive (SSD) of the tablet. Next, the 
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ALGOR thread will calculate EEG feature from EEG signal recorded in the locations Fz, Fp1 and Fp2 

of the EEG 10-20 electrode system. The smart multimedia control program will check the playing state 

of the music. If the musical piece is nearly over, the smart multimedia control program will calculate 

the average of the last three-minute EEG features and decide the next music type according to the 

averaged EEG feature. 

 

Figure 3. Operation procedure of smart multimedia control program. 

3.2. EEG Feature Extraction Algorithm 

Changes in the sustained necessary attention can be reflected in the EEG spectra as theta rhythm  

(4~7 Hz) [16,17]. Iramina et al. have investigated the relationship between the measured EEG signals 

and subject’s level of attention state, and they found that frontal theta increases when participants were 

studying but decreases when resting. Meanwhile, frontal alpha acts oppositely [16]. Moreover, Ishii et al. 

indicated that EEG spectra in the theta rhythm, obtained from the frontal midline, can provide 

discriminating power and has a high correlation with sustained necessary attention [17]. Based on the 

abovementioned phenomenon, EEG feature extraction algorithm was designed (its flowchart is shown 

in Figure 4a). First, EEG signals recorded from the locations Fz, Fp1, and Fp2 will be preprocessed. 

Here, EEG signal is down-sampled to 64 Hz to reduce the computation load, and a 512-point fast 

Fourier transform (FFT) with a 448-point overlap is used to obtain EEG spectra. Next, EEG spectra in 

theta, alpha (8~12 Hz), and beta (13~30 Hz) rhythms are calculated. In order to reduce the influence of 

measuring difference from session to session or from subject to subject, the normalized EEG spectra in 
theta rhythm is calculated. Let )(tEEG TFz − , )(tEEG AFz − , and )(tEEG BFz −  be EEG spectra, obtained 

from Fz at iteration t , in theta, alpha, and beta rhythms, respectively. The normalized EEG spectra in 

theta rhythm can be calculated with the following equation: 
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Next, a linear combination )(tEEGIndex  of normalized EEG spectra in theta rhythm at iteration t  can 

be calculated by: 

)()()()( 21 tNEEGtNEEGtNEEGtEEG TFpTFpTFzIndex −−− ++=  (2)

where )(1 tNEEG TFp −  and )(2 tNEEG TFp −  denote the normalized EEG spectra in theta rhythm at iteration 

t , obtained from Fp1 and Fp2 respectively. Here, the reference electrode was placed at the ear.  

The tendency of the user’s EEG spectra in theta rhythm may remain higher when he/she remains in the 

state of attention. Otherwise, the tendency of the user’s EEG spectra may decrease, if he/she trends 

toward the state of inattention. Although the change of the user’s EEG spectra in theta rhythm is not 

precisely correlated to the change of the user’s state, the change tendency of EEG spectra can still provide a 

reference index for the user’s state. The time-series diagram of multimedia control is shown in Figure 4b. 
In order to estimate the tendency of EEG spectra in theta rhythm, the averaged IndexEEG  for the last 

three minutes is calculated. 

 

 

Figure 4. (a) Flowchart of EEG feature extraction algorithm, and (b) time-series diagram 

of multimedia control. 
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4. Experiment Designs 

4.1. Experiment Design for Effect of Selecting Music Type on Cognitive State 

Before music biofeedback, the effect of selecting music type on cognitive state has to be first 

investigated. Defining a precise music recommendation rule which matches everyone’s requirement is 

difficult because of differences in cultures, backgrounds, and personalities. Several previous studies 

attempted to conduct a practical approach to recommend suitable music for the users. Shan et al. 

proposed using the user’s psychology, such as emotions, as the music selection rule because selecting 

suitable music can enhance the both the psychological and physiological response of the listeners [18]. 

Levitin and McGill suggested using the specific features of music, such as tempo, rhythm, melody, or the 

preference, as the music selection rule in different situations [19]. In this study, the preference is used as the 

music selection factor. Two predefined music selections, such as high focus and piano concerto K488, and 

a self-selected (SS) musical piece were used in this experiment. Here, high focus is usually composed for 

brain wave therapy, and K488, composed by Mozart, is the most used concerto in previous studies [20,21]. 

In this experiment, the preference rate for different music and the self-rating cognitive state level 

after listening different music were investigated. A total of 28 participants, aged from 18 to 32 years 

old, attended this experiment. Before the experiment, a staff instructed the participants to choose a 

favorite piece of music for this test and answer the self-rating cognitive state questionnaire to record 

the initial cognitive state. The participant has to rate the preference scale for the three music pieces. In 

the experiment, three types of music piece (high focus, K488, and self-selected music) were tested 

individually for every participant, and the time duration of these music piece are about 5 min. The 

participant’s EEG signal was recorded continuously during the entire experimental procedure in a 

soundproof room that minimized the influence of background noise. When the music piece was over, 

the participants were instructed to answer the self-rating cognitive state questionnaire again. Here, 

according to the definition of preference level in continuous digital response interface (CDRI), the 

preference level for music was rated from 0 to 256. The higher value of preference level denotes more 

positive responses for the participant. The attention state level was rated from 0 to10 (0: No attention 

at all, 10: Maximum attention). One-way ANOVA was used to test the significant difference between 

different music type, and the significance was set at p < 0.05. 

4.2. Experiment Design for Effect of Music Biofeedback 

In this experiment, the effect of real-time music biofeedback was examined. Here, a total of  

28 participants attended this experiment. The participants were also instructed to rate the preference 

level for three music types (high focus, K488, and self-selected music). The most preferred music was 

set as type1 music, the least preferred music was set to type 3, and the neutral music was set as type 2 

music. Here, the aim of multimedia control criterion was set to enhance the participant’s attention. 

Under the assumption of that the higher preference-level music can effectively evoke the user’s 

attention, the preferred music will be selected when the cognitive status of the participant becomes 

relatively inattentive. Therefore, the multimedia control criterion was set as follows: (a) select type 1 

music as the next piece when the averaged EEGIndex decreases over 5% of the previous averaged 

EEGIndex; (b) select type 3 music as the next piece when the averaged EEGIndex increases over 5% of 
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the previous averaged EEGIndex; and (c) select type 2 music as the next piece when the change of the 

averaged EEGIndex is between ±5% of the previous averaged EEGIndex. In this experiment, the initial 

music was randomly selected. The proposed BCI-based smart multimedia controller was used to 

monitor the user’s real-time EEG continuously during the entire experiment procedure and to select the 

next musical piece according to the user’s EEG feature. The time interval between two music pieces is 

about 5 s. Moreover, after finishing a music piece, the participant will be instructed to answer the  

self-rating cognitive state questionnaire again to evaluate the performance of music biofeedback. 

5. Results and Discussions 

5.1. Effect of Selecting Music Type on Cognitive State 

Figure 5 shows the averages and standard deviations of the music preference level corresponding to 

different music types. The symbol ** denotes significance. The experimental result shows that the 

difference between the preference levels of any two music types is significant. Therefore, for the 

participants, the preference levels of high focus, K488, and self-selected music are significantly different. 

 

Figure 5. Music preference level corresponding to different types of music. Here,  

** denotes significance. 

Next, the effect of listening different music type on the self-rating cognitive state level and EEG 

spectra in theta rhythm was investigated. Figure 6 shows two experimental results for the  

time-frequency analysis of EEG signal under different self-rating cognitive state level. The EEG 

spectra in theta rhythm obviously increases when the self-rating cognitive state level is relatively large. 

Figure 7 shows the averages and standard deviations of the participants’ cognitive state level and EEG 

spectra in theta rhythm for different music types. The experimental result shows that the effect of 

listening self-selected music on evoking attention is most significant. Moreover, the cognitive  

state level of the participant can also reflected on the EEG spectra in theta rhythm. When the cognitive 

state level is relatively large, the EEG spectra in theta rhythm exactly increases. The effect of music 

type on evoking the participant’s attention can also be improved with the increase of the music 

preference level. 
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Figure 6. Time-frequency analysis of EEG signal corresponding to different self-rating 

cognitive state level. 

 

Figure 7. Self-rating cognitive state level and EEG spectra in theta rhythm corresponding 

to different music types. Here, ** denotes significance. 

5.2. Effect of Music Biofeedback by Using BCI-Based Multimedia Controller 

Figure 8 shows four randomly selected results for real-time music biofeedback. As our expectation, 

most of the participants’ cognitive states trends toward the state of attention, and the tendency of the 

EEG spectrum in theta rhythm also increased gradually. Experimental results show that about 71.40% 

of the participants felt their cognitive state significantly trends toward an attentive state, and about 

67.86% of the participants’ EEG spectra in theta rhythm trend to increase. Figure 9 shows the averages 
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and standard deviations of self-rating cognitive state level and EEG spectra in theta rhythm under 

music biofeedback.  

 

Figure 8. Four randomly selected results for real-time music biofeedback. 

 

Figure 9. Self-rating cognitive state level and EEG spectra in theta rhythm under music 

biofeedback. Here, ** denotes significance. 

The experimental result shows that, after music biofeedback, the cognitive state level of the 

participant gradually increases, and the EEG spectra in theta rhythm also trends to increase. Next, the 

experiment of randomly music selection was also examined, and a total of 20 participants attended this 
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experiment. For randomly music selection, experimental results show that about 45% of the 

participants’ cognitive state significantly trends toward the state of attention. Therefore, real-time 

music biofeedback using the proposed system exactly improves the user’s attention state. 

3.3. Specification Comparison 

The specification comparisons between our system and other BCI-based multimedia control 

systems are listed in Table 1. Shyu et al. proposed a FPGA-based SSVEP BCI multimedia control 

system [15]. Instead of personal computers, the real-time SSVEP BCI algorithm was implemented in a 

FPGA board. Here, the user can control multimedia via SSVEP generated from four visual stimuli, 

which were labeled as four multimedia command symbols. However, both of the above BCI-based 

multimedia control systems require external visual stimulating devices and active mental command to 

control multimedia. Unlike the above system, the proposed BCI-based multimedia controller controls 

multimedia automatically and adaptively according to the user’s EEG feature. Moreover, different 

from the most frequently used bulky EEG machine, the properties of small-volume and wireless 

communication for the wireless multi-channel EEG acquisition module are more suitable for daily 

application. Furthermore, a commercial mobile tablet is also used as the multimedia platform. The 

commercial mobile tablet is small, light, and popular, and this may increase the acceptability for 

general users. 

Table 1. Specification comparison between proposed system and other BCI-based 

multimedia controller. 

BCI System SSVEP BCI Multimedia Control [15] Proposed BCI-Based Multimedia Controller 

EEG Signal SSVEP EEG spectra in theta rhythm 

Transmission RF transmission Bluetooth 

Power Supply Power line 3.7 V Li Battery 

Sampling Rate  8 kHz 512 Hz 

Gain 1000 5000 

Analog Filter 20–22 Hz 0.1–100 Hz 

Backend Signal Processing Unit FPGA board Mobile tablet 

Control Mode Active BCI [22] Passive BCI [22] 

Multimedia Applications Music Music 

6. Conclusions 

In this study, a novel brain computer interface-based smart multimedia controller was proposed to 

select music according the user’s EEG feature. Unlike other BCI-based multimedia controllers that 

require the user’s active mental command to control multimedia, the proposed system can control 

multimedia automatically and adaptively according to the user’s EEG feature. From the experimental 

results, the effect of the most preferred music on evoking attention is exactly most significant.  

By using the approach of real-time music biofeedback, the proposed BCI-based smart multimedia 

controller can positively improve the user’s attention state. Moreover, in this study, the efficiency of 

selecting music according to the user’s state on evoking attention is superior to that of randomly music 

selection. The concept of modular design is also used in the development of the proposed system. The 
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wireless multi-channel EEG acquisition module can easily communicate with any type of commercial 

tablet via Bluetooth communication to increase acceptability for a large population of users. Therefore, 

the design of the BCI-based smart multimedia controller can be viewed as a completely innovative 

system prototype, and can be applied in different researches of music biofeedback in the future. 
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