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Abstract

Epitaxial ZnO nanowires and random-growth-oriented nanobelts were grown
on c-plane sapphire with and without a pre-coated ZnO epilayer film. On the
pre-coated ZnO epilayer, ZnO nanowires are vertically aligned with good
in-plane alignment as a result of homoepitaxy, whereas on the bare c-plane
sapphire, besides a few nanowires vertically aligned with

[0001]zn0 || [0001]AL,05, the nanowires were properly aligned with
three-fold rotation symmetry. The ZnO nanowires are well-defined
hexagonal crystals with diameters of 70500 nm and lengths of up to several
micrometres. In the junction regions between the pre-coated epilayer and the
bare sapphire surface, however, ZnO nanobelts (nanoribbons) were found.
Cathodoluminescence measurements revealed that the emission at 3.26 eV is
correlated with free-exciton recombination and the broad green emission at
2.48 eV is attributed to surface defects. The stronger green emission implies
that more surface defects exist on the side walls of nanowires and nanobelts.

In Raman scattering, the E1(LO) mode is sensitive to the orientation of
nanostructure that is consistent with the cathodoluminescence results.

1. Introduction

One-dimensional (1D) ZnO nanostructures such as rods, wires,
tubes and belts (ribbons) have attracted increasing attention in
recent years because of their superior physical properties [1, 2].
In particular, aligned ZnO nanowires are regarded as promising
candidates for nanodevice assembly and in applications for
blue-UV light emitters [3-5], field emission devices [6—8] and
dye-sensitized solar cells [9]. In fact, the influence of the
orientation of ZnO nanowires on optical properties must be
understood as it limits the device performance for applications.
Therefore, control of the growth direction and shape of the
1D nanostructures and investigation of the correlation between
the growth direction and optical properties are significant
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challenges for device integration. To date, most of the work on
ZnO nanostructures has focused on the methods of synthesis
and there have been few studies on the influence of their
orientation and shape on the optical properties which could
limit device performance.

We report on epitaxial ZnO nanowires and nanobelts
(nanoribbons) grown on the sapphire c-plane with and without
a pre-coated ZnO epitaxial film. ZnO nanowires are vertically
aligned with good in-plane alignment on the ZnO epilayer;
while they are properly aligned with three-fold rotation
symmetry on bare sapphire. ZnO nanobelts (nanoribbons)
were found at the junction between the epilayer and bare
sapphire. The mechanisms of growth and the influence of the
orientation and shape of nanowires and nanobelts on the optical
properties were studied using structure, cathodoluminescence
(CL) and Raman analyses.
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Figure 1. (a) Schematic diagram showing that the substrates can be
classified into three regions: region I (ZnO thin film), region II
(sapphire) and region III (the junction between the ZnO thin film and
the sapphire). (b) Low-magnification SEM images of the synthesized
ZnO nanostructure.

2. Experiments

The ZnO nanostructures were fabricated by simple vapour
transport deposition [10]. A c-plane sapphire buffered with
an ZnO epilayer was used as the substrate. The ZnO thin
film was grown by pulsed laser deposition using a KrF
excimer laser (wavelength 248 nm and pulse duration 25 ns)
to ablate a ceramic ZnO target (99.999%) at 600°C for 2 h
and in situ annealed for 1 h at 700°C under a pressure of
1078 Torr. Simultaneously, a metal grid mask covering part of
the substrate was used to pattern the ZnO film. The thickness
of the ZnO film is about 900 nm. Figure 1(a) shows a sketch of
the ZnO/sapphire substrate. The areas of the substrates can be
classified into three regions: region I (ZnO thin film), region II
(sapphire) and region III (the junction between the ZnO thin
film and the sapphire). For x-ray diffraction measurement,
the full width at half maximum (FWHM) of the (0002) w-
rocking curve of the thin film is 207 arcsec, indicating a high
crystallinity of the thin film. Then the ZnO/sapphire substrate
was loaded 2 cm above an alumina boat containing 1 g of
zinc metal balls. The boat was put in the middle of a tube
furnace. The furnace temperature was increased to 550 °C and
high-purity argon gas was then introduced at a flow rate of
500 sccm (standard cubic centimetres per minute). When the
growth process was complete, the tube furnace was cooled to
room temperature in an Ar gas atmosphere and a white-violet
coloured product was found over the substrate.

The morphology and crystal structure of the products were
characterized by field emission scanning electron microscopy
(FESEM, JEOL 6500), and x-ray diffraction (XRD). CL
studies were carried out in the same SEM system and a fully
integrated GATAN MonoCL system equipped with a scanning
monochromator. The sample was irradiated by an electron
beam and the CL emission was collected from the normal

Figure 2. High-magnification SEM images of the synthesized ZnO
nanostructure in region I (a), region II (b) and region III (c).

to the sample surface. Micro-Raman spectra were measured
in the backscattering geometry by a Jobin-Yvon T64000
spectrometer with an Olympus BX40 microscope attachment
and equipped with a liquid nitrogen-cooled CCD. The 515 nm
line of a frequency-doubled Yb:YAG laser was used as the
excitation source. All measurements were performed at room
temperature.

3. Results and discussion

The low-magnification SEM images of the ZnO nanostructure
in figure 1(b) show a dense nanostructure grown over the
substrate. Figure 2(a) shows a high-magnification image with
a 15° inclination of region I. Vertically aligned nanowires
have diameters ranging from 80 to 350 nm with well-faceted
hexagonal cross sections. A top-view image of the nanowires
grown on region II is shown in figure 2(b). There are
three clearly noticeable orientations with in-plane components
parallel to the sides of an equilateral triangle. Besides some
wires oriented perpendicular to the surface that appear as just
small bright spots from the top view, a hillock was noted at the
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base of these nanowires. The feature of hexagonal hillocks is a
typical phenomenon in the epitaxial growth of nanowires [11].
The hillocks form at an early stage to serve as nucleation sites
for the subsequent growth of vertical nanowires.

It should be noted that the crystal surface of the pyramidal
ZnO island has its unit cell rotated by 30° with respect to that
of sapphire to reduce the lattice mismatch between ZnO and
sapphire from 32% to 18%. That is similar to the growth of
the ZnO epilayer on a c-plane sapphire substrate [12]. Baxter
et al have analysed that the epitaxial relation of nanowires on
c-plane sapphire [13] should be ZnO(1010) || sapphire(1120)
and found that nanowires that were grown at an angle of 51.8°
with ZnO[0001] || sapphire [1014] possess excellent lattice
symmetry with a lattice match within 2.3%. Combined with
the three-fold rotational symmetry of the c-plane sapphire,
these epitaxial relationships lead to ZnO nanowires being
grown on c-plane sapphire in one of three directions separated
by 120° in projection. In addition, the nanobelts (nanoribbons)
were grown in region III, as shown in figure 2(c). The
thickness, width and length of the belts are in the ranges of 50—
100 nm, 3-6 um and 5-40 pum, respectively. The nanobelts
are unlike the nanowires, whose growth and alignment were
strongly related to the ZnO buffer layer and bare c-plane
sapphire.

The growth mechanism of ZnO nanowires in region I is
probably governed by a vapour—solid process [14]. Under
zinc-rich ambient conditions a thin film will prefer column
growth [15] and the growth rate of the (0001) plane is greater
than that of the others. Since no extra O, was added in our
processing furnace, anisotropic growth should take place. The
melting points of Zn and ZnO,(x < 1) are approximately
419°C, and liquid Zn should form and react with residual
oxygen to form ZnQO, in the initial period of nucleation [16].
Simultaneously, the liquid phase Zn or ZnO, also serves as the
eutectic solvent for the oxide species. The anisotropic growth
of the crystal causes formation of a ZnO nanostructure with
a high aspect ratio and the ZnO nanowires are preferentially
oriented along the c-axis direction due to the growth rate being
fastest in this direction. Such a ‘self-catalytic’ mechanism
has been used to explain the formation of 1D metal oxide
nanostructures [16-18].

Nevertheless, the formation of nanobelts is another issue.
We believe that this is related to the crystal plane on the step
wall of the ZnO film or somehow related to the gas turbulence
at the step of the film. Supersaturation of Zn vapour occurs at
the step, leading to an enlargement of the crystal dimensions.

CL spectroscopy was carried out for all nanostructures.
Figures 3(a)—(c) show the CL spectra of vertically aligned
nanowires, tilted-growth nanowires and nanobelts, respec-
tively. All the emission bands are composed of a sharp UV
band around 3.26 eV and a green band around 2.48 eV. The
UV peak is correlated with the free exciton emission, whereas
the broad green band is commonly observed in the photo-
luminescence (PL) spectra of nominally undoped ZnO thin
films [19, 20] and nanostructures [21-23] Recent studies on
the recombination mechanisms responsible for the green emis-
sion in ZnO phosphors have suggested that the green PL arises
from the recombination of electrons in singly occupied oxygen
vacancies with photogenerated holes in the valence band [24].
The vacancy defect centres exist primarily in the thin (~30 nm)
electron-depletion layer near the surface of the ZnO [24].
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Figure 3. Room-temperature PL spectra from (a) the vertically
aligned ZnO nanowires grown in region I, (b) tilt-aligned ZnO
nanowires in region II and (c) random-growth-oriented nanobelts in
region III.
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Figure 4. Raman spectra obtained from (a) the vertically aligned
ZnO nanowires grown in region I, (b) the tilt-aligned ZnO nanowires
in region II and (c) random-growth-oriented nanobelts in region III.

The vertically aligned nanowires have the highest intensity
ratio of UV to green emission, whereas the nanobelts have
the lowest ratio. A previous study on vertically aligned ZnO
nanowires found that the intensity of the UV/green emission
has a maximum (minimum) along (perpendicular to) the c-
axis of the ZnO nanowire, and it was proposed that the
green emission is generated and emitted from the side walls
of the nanowires [25]. Shalish et al [26] show that the
intensity ratio of UV to green emission decreases when the
diameter of the ZnO nanowires is reduced. They proposed
a surface recombination layer approximation to confirm that
surface recombination dominates the luminescence spectra
with diminishing diameter. In our experiment, the emission
was collected from normal to the sample surface; there was
more UV emission along the c-axis from vertically aligned
nanowires than from tripod wires and nanobelts.  This
may be the reason why it is easier to observe the green
emission from the randomly oriented nanowires [14, 27] and
nanobelts [28, 29].

Figure 4 shows typical micro-Raman spectra of ZnO
nanostructures. The wurtzite structure of ZnO belongs to the
space group Cgv (P63mc) with two formula units in a primitive
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cell [30]. The group theory predicts the existence of the
following optic modes: A; + 2By + E; + 2E; at the " point of
the Brillouin zone; By (low) and B, (high) modes are normally
silent; Ay, E;, and E, modes are Raman active; and A; and E;
are also infrared active. Due to overlapping of several Raman
modes of ZnO materials with the sapphire substrate [30-33],
one has to analyse the spectra very carefully, for example the
E;(TO) mode of ZnO overlaps with the E, mode of sapphire
at 378 cm™! and the A;(LO) mode of ZnO overlaps with
another E, mode of sapphire near 578 cm~!. In addition, the
spectral peak at 417 cm™! is the distinct sapphire A, mode. In
spite of these features in Raman spectra, we still observe a E,
(high) mode at 437 cm™' with a width of 10 cm™!, indicating
good crystal quality. Because the propagation direction of
E;(LO) parallel to [011] is parallel neither to the XY -plane
nor to the Z-axis [33] in the backscattering configuration,
the E;(LO) mode near 586 cm™' cannot be observed from
the vertically aligned nanowires but can be observed from
the tilted nanowires and randomly oriented nanobelts. This
Raman mode for the tilted nanowires and randomly oriented
nanobelts is more efficiently collected than for the vertical
nanowires. The Raman spectra of these ZnO nanostructures
strongly depend on the collecting configuration and the crystal
face and are consistent with the CL results.

4. Conclusion

In summary, we found that ZnO nanowires grown on a pre-
coated ZnO epilayer are vertically aligned with good in-
plane alignment as a result of homoepitaxy from CL and
Raman analyses. However, besides a few nanowires that were
vertically aligned with [0001]z,0 || [0001]g-a1,0, On the bare
c-plane sapphire, the nanowires were properly aligned with
three-fold rotation symmetry. Furthermore, ZnO nanobelts
were found at the junctions between the epilayer and the bare
sapphire. The emission at 3.26 eV is correlated with the
recombination of free exciton and a broad green emission at
2.48 eV is attributed to surface defects at room temperature.
The vertically aligned nanowires have the highest ratio of UV
emission to green emission, whereas the nanobelts have the
lowest ratio. This implies that there are more surface defects
existing on the side wall of the nanowires and nanobelts due
to recombination between holes trapped at the surface defects
or electrons trapped at the oxygen vacancy. We demonstrated
that not only the photoemission but also the phonon properties
are dependent on the configuration and crystal facet of the
nanostructures.
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