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ABSTRACT 
NVM has commonly been used to address increasingly large 
last-level caches (LLCs) requirements by reducing leakage. 
However, frequent data-writing operations result in increased 
energy consumption. In this context, a promising memory tech-
nology, Non-volatile SRAM (nvSRAM), enables normal and 
standby operation modes which can be used to store various 
types of data. However, nvSRAM suffers from high dynamic 
energy usage due to frequent switching between operation 
modes. In this paper, we propose a redundant store elimination 
(RSE) scheme which, on average, discards 94% of needless bit-
write operations. Moreover, we present a retention-aware cache 
management policy to reduce data updates of cache blocks, 
based on the correlation between data lifetime and cache types. 
Experimental results demonstrate that our proposal can improve 
energy consumption of SRAM-based and RRAM-based LLCs 
by 57% and 31%, respectively. 

Categories and Subject Descriptors 

B.3.2 [Hardware]: Memory Structures—Cache memories; 
B.7.1 [Integrated Circuits]: Types and Design Styles—
Advanced technologies, Memory technologies 

General Terms 
Design, Management, Experimentation 

Keywords 
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1. INTRODUCTION 
With significant advancements in technology scaling, the per-

formance gap between processor and main memory has driven 
the demand for on-chip cache memory and it is expected this 
need will continue to grow significantly. Last-level caches 
(LLCs) are thus the best choice to bridge the performance and 
power gap between processor and main memory. Traditionally, 

SRAM has been used to implement on-chip caches in high-
performance processors due to its low operational power re-
quirements and fast read/write latency. However, the disad-
vantage of SRAM is that it consists of a low density memory 
cell that has high leakage power.   

There exist several potential candidates to replace SRAM 
with competitive read time, low leakage power consumption, 
immunity to radiation-induced soft errors and high density fea-
tures; examples of these include STT-RAM (spin-transfer torque 
magnetic random access memory) [1] and RRAM (resistive 
random-access memory) [2]. Their high-density property can 
provide 4x denser capacity than SRAM in the same surface area 
with near-zero leakage energy. More importantly, due to their 
compatibility with CMOS processes they are an attractive option 
to implement low-power high-density LLCs [3]. Combining 
SRAM with NVM in LLCs helps reduce energy consumption, 
thereby improving on the performance documented in prior 
studies [4][5]. The main focus of prior research in hybrid cach-
ing is on how to leverage the advantages of read/write ratio and 
power consumption, and to try to mitigate the well-known issue 
of asymmetric access. SRAM-based hybrid cache is in fact nor-
mally used to implement LLCs due to its large capacity and low 
leakage power. Nevertheless, hybrid cache design becomes fur-
ther complicated when considering the character of asymmetric 
read/write access with process variations [6][7]. 

The impact of data lifetime on cache blocks in on-chip caches 
and the corresponding optimization methods are not well ex-
plored at the architectural level. Figure 1 illustrates the defini-
tion of data lifetime, i.e. the time from when a block is placed 
into the LLCs until it is written into the block or leaves the 
cache. In our observations, we find that the data lifetime of 
cache blocks, as depicted in Figure 2, is distributed into different 
data lifetime bins for several workloads. If the data lifetime of 
cache blocks is distributed randomly, using only one cache type 
such as SRAM- or NVM-based options, it is not suitable for 
variable data streams. Consequently, we can distinguish the data 
lifetime of cache blocks to improve performance and energy. 

Furthermore, the non-volatile associative memory cell and ar-
chitecture was presented to achieve symmetric read/write access 
and have the non-volatility [8]. Non-volatile SRAM (nvSRAM) 
integrates SRAM cells and NVM devices, forming a direct bit-
to-bit connection in a vertical arrangement within a single cell 
[9]. This setup enables symmetric read/write access and fast 
parallel data transfer in systems. More importantly, it is able to 
operate in normal mode (using SRAM) or standby (using 
RRAM) to achieve better performance and reduce energy con-
sumption with application behavior. 
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Based on the above observations, we propose an nvSRAM-
based cache architecture employing a sophisticated management 
policy for cache hierarchy. A key challenge of this design lies in 
determining a suitable operational mode for the nvSRAM. There 
is a need to balance the reduced leakage of SRAM cells with 
cache blocks bearing short data lifetime against the overhead for 
storing cache blocks with long data lifetime to RRAM. In this 
work, we present circuit/architecture co-design techniques that 
exploit the features of nvSRAM to reduce energy consumption, 
not only in standby mode, but also during program execution. 
We have addressed several design issues, including what is the 
relationship between data lifetime and cache types, how to de-
cide an appropriate operational mode for the LLCs, and how we 
design the cache hierarchy using nvSRAM. In summary, the 
primary contributions of this paper are as follows: 
 We formulate the relationship between data lifetime of cache 

block and cache types based on SRAM and NVM. We also 
perform a detailed comparison of caches using different gen-
res of memory technology and we differentiate on the basis 
of performance, energy consumption and density. This addi-
tional contribution is based on our prior research on SRAM, 
RRAM and nvSRAM bit cells [2][9]. 

 We propose an energy-efficient cache architecture utilizing 
nvSRAM features that reduce unnecessary data write opera-
tions on bit cells, thereby enabling dynamic energy reduc-
tion. This technique does not alter data flow during program 
execution and hence does not cause any extra cache misses. 

 We propose a retention-aware cache management to signifi-
cantly reduce data updates of cache blocks and utilize a se-
quential tag-data access scheme to mitigate cache block ac-
cess conflicts for different applications. These techniques do 
not require significant architectural modification. 

 We employ a device/circuit/architecture co-design to 
demonstrate that our proposed method is an attractive option 
for the LLCs as it enables symmetric access, low dynamic 
energy and low standby power. 

2. NON-VOLATILE CACHE DESIGN  
In this section, we describe first the basic functions of 

nvSRAM including read, write, store and restore operations. We 
next make a case for the use of nvSRAM in LLCs architectures 
to analyze the differences in SRAM, RRAM and nvSRAM in 
terms of energy, performance and density. Finally, we explore 

the relationship between data lifetime and cache types and iden-
tify appropriate cache types for different data lifetime. 

2.1 Non-Volatile SRAM Preliminaries 
Figure 3 depicts the circuit scheme for a resistive memory 

based nvSRAM comprising a 6T SRAM cell, 2T RRAM-switch 
(RSWL and RWSR), and two resistive devices in one cell. The 
nvSRAM cell inherits all of the advantages of 6T SRAM includ-
ing low operating energy, symmetric and fast read/write. In the 
cell structure two resistive devices are vertical-stacked above the 
8T SRAM cell and connected directly to SRAM storage nodes 
(Q and QB) to enable storage of complementary backup data 
due to non-volatile characteristics. In order to reduce area over-
head, the nvSRAM cell does not require an additional control-
line (CL) to perform store operations like other nvSRAM cells 
that share bit lines (BL) with the NVM control-line.  

The nvSRAM is able to operate in two modes, normal and 
standby. In normal mode (or SRAM mode), the features of the 
nvSRAM cell are identical with SRAM in that it allows fast 
read/write operations and low dynamic energy consumption. 
When the cell needs to switch to standby mode, it proceeds to 
run the store operation (SET and RESET) to flush the SRAM 
data into the two memristor devices. After the data is successful-
ly backed up, the cell can be completely shut down to eliminate 
standby leakage. When the cell needs to switch to normal mode, 
the data of the two memristor devices (RL and RR) are stored to 
the SRAM storage nodes using a restore operation.  

2.2 nvSRAM vs. SRAM and RRAM  
In this section, we analyze the reliability, read/write latency, 

dynamic/static energy consumption and density of the LLCs by 
comparing different cache types. Traditionally, tags and data 
arrays in on-chip caches are implemented using SRAM. Howev-
er, frequent use and fast update are key points in tag arrays for 
which RRAM or nvSRAM implementations may not be suitable 
[1][10]. Table 1 lists important quantitative features of three 
memory technologies: SRAM [9], RRAM [2] and nvSRAM [9]. 
Several observations may be made from Table 1: 

 The SRAM cache and the SRAM component of the 
nvSRAM cache have symmetric read/write access properties 
in terms of latency and energy consumption.  

 The RRAM cache and the RRAM component of the 
nvSRAM cache have very different read and write/store 
properties in terms of latency and energy consumption, with 
particularly high write/store latency and energy. 

 The nvSRAM cache in standby mode is identical to the 
RRAM cache, both having low leakage power due to their 
non-volatile property. On the other hand, nvSRAM in nor-
mal mode also has high leakage power like SRAM due to 
the fact that the SRAM component of nvSRAM is active. 

 The restore operation overhead in the nvSRAM cache is 
insignificant due to the features of the cell structure. 
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Figure 1: Data lifetime of cache block in a reference stream 
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Figure 2: Distribution of blocks in different data lifetime 
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Figure 3: Schematic of non-volatile SRAM cell [9] 



 The high-density property of RRAM cache can provide 4 
times more capacity than SRAM and nvSRAM cache with 
the same chip area, but it also has the slowest speed. 

Considering these observations, we note that nvSRAM in-
herits all of the advantages of SRAM and RRAM, which include 
fast and symmetric read/write latency, low read/write energy 
and low leakage in standby mode. On the other hand, it also 
inherits all of the disadvantages of SRAM and RRAM, such as 
slow store latency, high store energy, high leakage in normal 
mode, and especially the low density of SRAM. 

2.3 Why nvSRAM? 
The high leakage of SRAM increases energy consumption 

significantly during program execution. On the other hand, the 
bulk of energy consumption in RRAM is determined by the 
number of cache access operations and this is due to the high 
costs of the write operation. The energy consumption for n read 
operations during the data lifetime period is estimated in Equa-
tion 1, where E is the energy consumption for the data lifetime, 
and L is leakage. ER, EW, ES, ERS are the energy consumption for 
LLCs read, write, store and restore operations, respectively. 
Only ES and ERS occur during standby mode in nvSRAM. 

1***1* SRSRW EnEnEELE ++++=                     (1) 

The energy consumption of cache block updates is plotted in 
Figure 4 as a function of data lifetime for various memory tech-
nologies. We observe that 7ms is the breakeven time for SRAM 
and RRAM. When the data lifetime of the cache block is less 
than 7ms, the data block should be placed in SRAM-based cache 
to reduce dynamic energy of the RRAM-based cache. In contrast, 
when the data lifetime of the cache block exceeds 7ms, the data 
block should be placed in the RRAM-based cache to reduce 

leakage power from the SRAM-based cache. Therefore, using 
only one cache type for different cache blocks is impractical. 

 The simplest method to deal with a cache block with variable 
data lifetime is to use two macro design caches (SRAM+RRAM) 
such that data are written to the appropriate cache type as per 
their data lifetime using perfect predict. However, the shortcom-
ing of this design is that data lifetime is distributed randomly 
depending on program behaviors and it is very difficult to pre-
cisely predict which cache type the data should be placed in. 

 As mentioned previously, every cache block has its own data 
lifetime. Furthermore, every individual cache block have a vari-
able data lifetime depending on the program execution. Accord-
ing to these factors, nvSRAM is an attractive option for LLCs 
with all of the benefits form SRAM and RRAM. In order to 
eliminate high leakage power in nvSRAM LLCs, we choose the 
nvSRAM cell which is always operated in standby mode. Hence, 
the write operation (data update) in nvSRAM cache consists of 
two continuous operations i.e. the write operation in SRAM and 
the store operation in RRAM. However, when nvSRAM is 
switching to standby mode in each data update, the cell under-
takes the store operation in which it flushes SRAM data into two 
memristor devices which increases dynamic energy significantly. 
We therefore propose a novel technique, Redundant Store Elim-
ination (RSE), to mitigate the energy overhead of the store oper-
ation. Furthermore, we require a new nvSRAM cache manage-
ment policy to avoid the performance degradation caused by 
nvSRAM and to reduce the data updates of the LLCs. 

3. ENERGY-EFFICIENT NON-VOLATILE 
SRAM CACHE ARCHITECTURE 

Distinct advantages of nvSRAM over SRAM include non-
volatility and the non-destructive read ability of the cell. Given 
nvSRAM, we further propose an energy-efficient cache architec-

Table 1: Comparison of SRAM, RRAM and nvSRAM 
 SRAM [9] RRAM [2] nvSRAM [9] 

 

Non-volatility  √ √ 
Symmetric R/W √  √ 

 

Latency 

Read 1x 1.51x 1x 
Write 1x 1.94x 1x 
Store N/A 3.88x 

Restore 0.06x 
 

Energy 

Read 1x 1.54x 1.03x 
Write 1x 5.18x 1.03x 
Store N/A 9.76x 

Restore 0.041x 
 

Leakage Normal 5.71x 1x 6.11x 
Standby 1x 

 

Density 1.3x 4x 1x 
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Figure 5: System architecture with retention-aware policy 
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ture to realize the non-volatile cache hierarchy. In our system 
architecture, we modify the cache management policy of L2 and 
cache architecture of the LLCs in the cache hierarchy.  

Figure 5(a) illustrates how a retention-aware cache manage-
ment policy may operate by searching for the victim block with 
retention counter equals zero in the L2 cache. When the reten-
tion counter of victim block does not equal zero ①, the block 
will be promote to MRU position and decrease the counter until 
the retention counter of LRU block equals zero  ② as shown in 
Figure 5(b). The more detail replacement algorithm will discuss 
in Section 3.2. Figure 6(a) presents a schematic of our RSE 
scheme, implemented in the LLCs to disable the store operation 
for redundant bit-writes. We utilize sequential tag-data access to 
reduce cache access conflict in the LLCs as indicated in Figure 
6(b). The key feature of this approach is how it leverages the 
data lifetime of the block in the LLCs, depending on the unpre-
dictable lifetime of the actual data. 

3.1 Redundant Store Elimination (RSE) 
Prior research shows that we can write data into a cache or 

memory location and there is a high probability that it does not 
change the content in the cache [11][12]. We find that on aver-
age about 94% of bit-writes are redundant in our experimental 
results and can be skipped without changing the original stored 
value. Due to this significant amount of needless bit-writes, 
there is therefore great potential for energy reduction in the 
nvSRAM cache. To reduce dynamic energy, we need to ascer-
tain if the new bit data differs from the old. 
A conventional method is to first read out the cache content, 
compare with the new values, and write back the different bits 
only. However, in this method, every write operation requires 
first an extra read operation and this increases performance 
overhead. Alternatively, the “dirty bit” in the higher level cache 
is used to terminate redundant writes into the lower level cache 
[1]. This improvement, however, depends on the granularity of 
block partitions. More importantly, it does not avoid all needless 
bit-write operations. Since the sub-block in the higher level 
cache is dirty many bits in it may still be the same. 

Based on the above methods, Early Write Termination (EWT) 
reduces redundant bit-writes effectively at the bit-level [12]. 
Compared to conventional methods, we are therefore able to do 

better without impacting performance. Our solution is based on 
the following unique properties of nvSRAM cells: 

1. Due to the cell structure of nvSRAM, when updating a cell, 
we need to first write to SRAM and then store to RRAM. 
The RRAM cell still maintains its valid previous data in 
the first stage of a data update operation. 

2. The data bit in the SRAM and RRAM components may be 
different due to the properties of nvSRAM. This means 
that we can write the new data bit into SRAM and use it to 
compare with the older data bit from RRAM. 

3. In the nvSRAM cell structure, we can read data from two 
paths (PGL and PGR or RSWL and RSWR). This presents 
a significant opportunity to minimize latency by writing 
new data bits to SRAM and comparing it with old data bits 
at the same time. We can therefore eliminate the extra 
store operation as soon as redundancy is detected. 

 Considering these observations, we propose a new detect 
scheme, Redundant Store Elimination (RSE), for writing a new 
data bit into SRAM and comparing it with the old data bit with-
out incurring extra performance overhead, as depicted in Figure 
7. Figure 8(a) depicts separate bit lines from SRAM and RRAM 
components in the cell that are used to compare the data bits and 
generate the control signals. This design makes it possible to 
write a new data bit to SRAM and compare it with the older data 
bit in RRAM concurrency. In RSE scheme, we use a AND gate 
to detect whether the new data bit and old data bit is the same. 
When a write data is applied to bit lines, WL and SWL enable 
writing the new data bit into SRAM and reading the old data bit 
from RRAM. After the old data bit is read from SBL and SBLB, 
it will input to the AND gate to determine whether to enable or 
disable the store operation. In Figure 8(c), if the detect result is 
zero ③, a control signal WEN-det is generated to terminate the 
store operation on this cell ④. Otherwise, store operation on this 
cell continues normally ① ② as shown in Figure 8(b).  

In summary, RSE detects the older data bit alongside the 
write operation without an extra read operation in front of the 
write step. However, the new cell structure of RSE has addition-
al bit lines, necessitating a 10% area overhead compared to the 
original nvSRAM in layout. The tradeoff is that RSE enables the 
elimination of all redundant store operations. 

3.2 Retention-Aware Management Policy 
To reduce the data updates of cache blocks, we propose a new 

cache management policy to coalesce write-back operations 
from L2 to LLCs. The key insight here is to prevent the data 
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block from premature eviction to the LLCs by accommodating 
the writes in the dirty block. This is done to increase the resi-
dency of the block in L2 and to reduce write-back access in 
LLCs. 

 In LRU replacement policy, the LRU block is the candidate 
for eviction and replacement. In our proposed replacement algo-
rithm, dirty blocks operate differently. We define a retention 
counter which serves as the retention count of each cache block. 
The retention counter of the cache block in L2 determines evic-
tion and replacement operations for the block. When the cache 
has a miss, the LRU block is the first candidate to be checked to 
see if the block should be evicted from the L2 or not. If the re-
tention counter of the victim block equals zero, the proposed 
algorithm makes space for the incoming block by evicting this 
block. However, if the retention counter of the victim block does 
not equal zero, the proposed algorithm extends the cache block 
lifetime in the L2 through promoting the block to MRU position 
and retention counter is decremented. A new victim block is 
then chosen and this process is repeated until the retention coun-
ter for the victim equals zero. In our proposed algorithm, the 
victim selection process is invisible due to memory latency.   

Figure 9(b) describes the behavior of our propose algorithm. 
When the reference to 'h' misses in L2, the retention counter of 
the LRU block, 'b', is queried to determine whether the first 
potential L2 victim can be evicted. When the cache controller 
responds that the retention counter of the block does not equal to 
zero, cache block ‘b’ is promoted to MRU, the retention counter 
is decremented, and sends a request to probe the next victim 
candidate 'd'. Similarly, since the retention counter of cache 
block 'd' does not equal zero, 'd' is promote to MRU and de-
creases the retention counter. Then, a request to query for the 
next victim candidate 'a' is dispatched. Since the retention coun-
ter of 'a' equals 0, the cache controller allows 'a' to be replaced in 
the LLCs. Furthermore, when 'b' is re-referenced, it hits in the 
L2 cache not in the LLCs and the retention count of retention 
counter in '‘b'’ is reset to the initial value. The proposed algo-
rithm prevents 'b' form write-back access being in dirty block 
and reduces write-back access in LLCs effectively as shown in 
Figure 9(b). Compared to LRU, retention-aware cache manage-

ment policy prevents evicting blocks creating write-back access 
to the LLCs. This is achieved by preventing “dirty block” from 
becoming victim block in L2.   

4. EXPERIMENTAL RESULTS 
In this experiment, we implement our design via Multi2Sim 

simulator [13] and modify the LLCs timing model for asymmet-
ric cache read/write latency operations and a sophisticated man-
agement policy. For this experiment, we construct 4 cores with a 
shared LLCs system as the MOESI directory cache-coherency 
protocol, and collect the latency/energy results for comparison. 
Table 2 provides parameters of the simulation platform, where 
the L1 and L2 caches are private to each core and the shared 
LLCs is 8MB. All cache module parameters such as read/write 
latency and energy are derived from our prior research [2][9]. 
We evaluated the multithreaded benchmark, PARSEC, and mul-
ti-program workload mixed with SPEC 2006 in our design. We 
measure the results by warming up the caches for 400M instruc-
tions, and then we report the results for 2B instructions. 

4.1 Performance Evaluation 
One challenge in implementing nvSRAM cache may be to 

identify at run-time the latency overhead of store operations that 
negatively impact system performance. When the latency of the 
store operation is high it will stall cache access in parallel tag-
data access. Sequential tag-data access is a well-known tech-
nique employed in LLCs to reduce energy consumption [1]. In 
sequential tag-data access, a hit or miss of the cache depends on 
the result of the queries tag array. As a result, significant access 
conflict may be avoided and energy saving on the data array can 
be achieved. Overall cache access latency increases when using 
sequential tag-data access. However, the access latency of the 
tag array is much smaller than that of the data array due to its 
smaller size. Therefore, the latency increase in LLCs does not 
have a significant impact on performance degradation. On aver-
age, less than 2% IPC (instructions per cycle) reduction when 
running the workloads using a 8MB LLCs. 

4.2 Retention Count Evaluation 
Figure 10, 11 and 12 present the comparison of writes counts, 

IPC and dynamic energy in LLCs between the retention-aware 

Table 2: Simulation platform 
CPU model 4-core, 1GHz, out-of-order 

Cache simulator Multi2Sim 
 

SRAM L1 cache Private, 32KB/32KB, 4 ways, 64B block, 
write back, 2-cycle R/W 

SRAM L2 cache Private, 256KB, 8 ways, 64B block, write 
back, 3-cycle R/W 

 

L3 cache 
Common  Shared, 8MB, 16 ways, 64 B block, write 

back 
SRAM 12-cycle R/W 
RRAM 16-cycle read, 20-cycle write 

nvSRAM 12-cycle R/W, 1-cycle restore, 40-cycle store 
 

Main memory 256-entry write buffer, 133-cycle 
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Figure 11: Retention count impact on IPC 
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Figure 12: Retention count impact on dynamic energy  



cache management policy and the LRU policy. Figure 10 shows 
that when the retention count is increased, the number of writes 
will decrease, on the contrary, the number of reads will increase. 
However, the performance and energy gains do not show the 
same behavior as shown in Figure 11 and 12. As a result, the 
retention-aware cache management policy with retention count 
is '2' can get most of the gains in the three metrics. 

4.3 Last-Level Cache Energy Evaluation 
This work makes nvSRAM a viable alternative for LLCs 

compared to SRAM and RRAM. Figure 13 shows that the ener-
gy consumption is composed of leakage, read/write energy 
(SRAM) and read/write energy (RRAM) for each cache type. 
Compared to SRAM and RRAM LLCs with the same capacity, 
on average, the total energy reduction of a 8MB nvSRAM can 
save around 57% and 31%, respectively. In the access insensi-
tive workloads, the RRAM and nvSRAM LLCs have good ener-
gy consumption because low leakage and small access count in 
LLCs such as facesim, fluid. and x264. In contrast, the 
read/write SRAM energy of nvSRAM in access sensitive work-
loads is increased obviously by compare energy of RSE scheme 
and read accesses increases due to our proposed management 
policy that throttle read/write operations. The energy improve-
ment of nvSRAM cache is due to the granularity of data updates 
is in bit level with the RSE scheme. Therefore, the read/write 
energy of RRAM is dramatically decreased while this work can 
significantly reduce store operations of nvSRAM cache.  

5. RELATTED WORK 
Several studies have explored energy and performance issues 

for general purpose processors by employing characteristics of 
NVM caches. Jaleel et al. [14] evaluated performance improve-
ment of Re-reference Interval Prediction (RRIP) by categorizing 
cache blocks as near re-reference, distant re-reference and long 
re-reference interval blocks for prevents. RRIP prevents a near 
re-reference interval cache blocks from premature eviction when 
choosing an eviction victim. Rasquinha et al. [10] presented 
STT-RAM cache management policy base on increasing the 
residency of dirty blocks that prevent the block from being 
prematurely evicted to higher level caches. However, write-
biasing can result in a noticeable performance penalty in L1 due 
to an increase in the read miss rate in L1. Wang et al. [15] used 
an obstruction-aware cache management policy to prevent the 
long write latency of STT-RAM to obstruct the cache port and 
harm performance of process running in CMPs. Ferreira et al. 
[16] presented a page replacement policy that reduces PRAM 
updates in the hybrid DRAM/PRAM main memory by keeping 
dirty data in DRAM cache and choosing an eviction victim with 
different priority of clean/dirty pages. Park et al. [17] explored 
the asymmetric penalty of flash memory read/write operations to 
choose a clean page as a victim rather than dirty pages in a re-
placement algorithm. Prior studies of NVM cache have focused 
on how to reduce energy consumption, and mitigate the impact 
of asymmetric access. However, our work fundamentally tackles 

the asymmetric access problem and focuses on how to improve 
cache management policy for nvSRAM cache. 

6. CONCLUSION 
This work proposed an energy-efficient nvSRAM cache ar-

chitecture base on the detail analysis of memory cell features to 
correlation data lifetime and cache types. We show that 
nvSRAM cache can have low dynamic energy, symmetric 
read/write latency and low leakage through switching to the 
appropriate operation mode. We propose a RSE scheme to dis-
card 94% of needless store operations on average and have a 
retention-aware cache management policy to reduce write-back 
access in advance. In our experimental results, nvSRAM can 
improve more than 57% saving in cache energy compares to 
SRAM-based cache. We also demonstrate that nvSRAM be-
comes an attractive option for designing energy-efficient LLCs 
in CMPs. 
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