
Leveraging Data Lifetime for Energy-Aware Last Level Non-
Volatile SRAM Caches using Redundant Store Elimination

Hsiang-Jen Tsai1, Chien-Chih Chen1, Keng-Hao Yang1, Ting-Chin Yang2, Li-Yue Huang2,

Ching-Hao Chung2, Meng-Fan Chang2 and Tien-Fu Chen1
1Department of CS, National Chiao Tung University, Hsinchu, Taiwan, ROC

{hjtsai, ccchen99, khyang, tfchen}@cs.nctu.edu.tw
2Department of EE, National Tsing Hua University, Hsinchu, Taiwan, ROC

{s101061587, s101061575}@m101.nthu.edu.tw, u9661204@oz.nthu.edu.tw, mfchang@ee.nthu.edu.tw

ABSTRACT
NVM has commonly been used to address increasingly large
last-level caches (LLCs) requirements by reducing leakage.
However, frequent data-writing operations result in increased
energy consumption. In this context, a promising memory tech-
nology, Non-volatile SRAM (nvSRAM), enables normal and
standby operation modes which can be used to store various
types of data. However, nvSRAM suffers from high dynamic
energy usage due to frequent switching between operation
modes. In this paper, we propose a redundant store elimination
(RSE) scheme which, on average, discards 94% of needless bit-
write operations. Moreover, we present a retention-aware cache
management policy to reduce data updates of cache blocks,
based on the correlation between data lifetime and cache types.
Experimental results demonstrate that our proposal can improve
energy consumption of SRAM-based and RRAM-based LLCs
by 57% and 31%, respectively.

Categories and Subject Descriptors

B.3.2 [Hardware]: Memory Structures—Cache memories;
B.7.1 [Integrated Circuits]: Types and Design Styles—
Advanced technologies, Memory technologies

General Terms
Design, Management, Experimentation

Keywords
Non-volatile SRAM, Redundant store elimination, Energy re-
duction, On-chip cache architecture, Memory structure, Non-
volatile memory, Multi-core

1. INTRODUCTION
With significant advancements in technology scaling, the per-

formance gap between processor and main memory has driven
the demand for on-chip cache memory and it is expected this
need will continue to grow significantly. Last-level caches
(LLCs) are thus the best choice to bridge the performance and
power gap between processor and main memory. Traditionally,

SRAM has been used to implement on-chip caches in high-
performance processors due to its low operational power re-
quirements and fast read/write latency. However, the disad-
vantage of SRAM is that it consists of a low density memory
cell that has high leakage power.

There exist several potential candidates to replace SRAM
with competitive read time, low leakage power consumption,
immunity to radiation-induced soft errors and high density fea-
tures; examples of these include STT-RAM (spin-transfer torque
magnetic random access memory) [1] and RRAM (resistive
random-access memory) [2]. Their high-density property can
provide 4x denser capacity than SRAM in the same surface area
with near-zero leakage energy. More importantly, due to their
compatibility with CMOS processes they are an attractive option
to implement low-power high-density LLCs [3]. Combining
SRAM with NVM in LLCs helps reduce energy consumption,
thereby improving on the performance documented in prior
studies [4][5]. The main focus of prior research in hybrid cach-
ing is on how to leverage the advantages of read/write ratio and
power consumption, and to try to mitigate the well-known issue
of asymmetric access. SRAM-based hybrid cache is in fact nor-
mally used to implement LLCs due to its large capacity and low
leakage power. Nevertheless, hybrid cache design becomes fur-
ther complicated when considering the character of asymmetric
read/write access with process variations [6][7].

The impact of data lifetime on cache blocks in on-chip caches
and the corresponding optimization methods are not well ex-
plored at the architectural level. Figure 1 illustrates the defini-
tion of data lifetime, i.e. the time from when a block is placed
into the LLCs until it is written into the block or leaves the
cache. In our observations, we find that the data lifetime of
cache blocks, as depicted in Figure 2, is distributed into different
data lifetime bins for several workloads. If the data lifetime of
cache blocks is distributed randomly, using only one cache type
such as SRAM- or NVM-based options, it is not suitable for
variable data streams. Consequently, we can distinguish the data
lifetime of cache blocks to improve performance and energy.

Furthermore, the non-volatile associative memory cell and ar-
chitecture was presented to achieve symmetric read/write access
and have the non-volatility [8]. Non-volatile SRAM (nvSRAM)
integrates SRAM cells and NVM devices, forming a direct bit-
to-bit connection in a vertical arrangement within a single cell
[9]. This setup enables symmetric read/write access and fast
parallel data transfer in systems. More importantly, it is able to
operate in normal mode (using SRAM) or standby (using
RRAM) to achieve better performance and reduce energy con-
sumption with application behavior.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Ab-
stracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DAC '14, June 01 - 05 2014, San Francisco, CA, USA
Copyright 2014 ACM 978-1-4503-2730-5/14/06…$15.00.
http://dx.doi.org/10.1145/2593069.2593153

Based on the above observations, we propose an nvSRAM-
based cache architecture employing a sophisticated management
policy for cache hierarchy. A key challenge of this design lies in
determining a suitable operational mode for the nvSRAM. There
is a need to balance the reduced leakage of SRAM cells with
cache blocks bearing short data lifetime against the overhead for
storing cache blocks with long data lifetime to RRAM. In this
work, we present circuit/architecture co-design techniques that
exploit the features of nvSRAM to reduce energy consumption,
not only in standby mode, but also during program execution.
We have addressed several design issues, including what is the
relationship between data lifetime and cache types, how to de-
cide an appropriate operational mode for the LLCs, and how we
design the cache hierarchy using nvSRAM. In summary, the
primary contributions of this paper are as follows:
 We formulate the relationship between data lifetime of cache

block and cache types based on SRAM and NVM. We also
perform a detailed comparison of caches using different gen-
res of memory technology and we differentiate on the basis
of performance, energy consumption and density. This addi-
tional contribution is based on our prior research on SRAM,
RRAM and nvSRAM bit cells [2][9].

 We propose an energy-efficient cache architecture utilizing
nvSRAM features that reduce unnecessary data write opera-
tions on bit cells, thereby enabling dynamic energy reduc-
tion. This technique does not alter data flow during program
execution and hence does not cause any extra cache misses.

 We propose a retention-aware cache management to signifi-
cantly reduce data updates of cache blocks and utilize a se-
quential tag-data access scheme to mitigate cache block ac-
cess conflicts for different applications. These techniques do
not require significant architectural modification.

 We employ a device/circuit/architecture co-design to
demonstrate that our proposed method is an attractive option
for the LLCs as it enables symmetric access, low dynamic
energy and low standby power.

2. NON-VOLATILE CACHE DESIGN
In this section, we describe first the basic functions of

nvSRAM including read, write, store and restore operations. We
next make a case for the use of nvSRAM in LLCs architectures
to analyze the differences in SRAM, RRAM and nvSRAM in
terms of energy, performance and density. Finally, we explore

the relationship between data lifetime and cache types and iden-
tify appropriate cache types for different data lifetime.

2.1 Non-Volatile SRAM Preliminaries
Figure 3 depicts the circuit scheme for a resistive memory

based nvSRAM comprising a 6T SRAM cell, 2T RRAM-switch
(RSWL and RWSR), and two resistive devices in one cell. The
nvSRAM cell inherits all of the advantages of 6T SRAM includ-
ing low operating energy, symmetric and fast read/write. In the
cell structure two resistive devices are vertical-stacked above the
8T SRAM cell and connected directly to SRAM storage nodes
(Q and QB) to enable storage of complementary backup data
due to non-volatile characteristics. In order to reduce area over-
head, the nvSRAM cell does not require an additional control-
line (CL) to perform store operations like other nvSRAM cells
that share bit lines (BL) with the NVM control-line.

The nvSRAM is able to operate in two modes, normal and
standby. In normal mode (or SRAM mode), the features of the
nvSRAM cell are identical with SRAM in that it allows fast
read/write operations and low dynamic energy consumption.
When the cell needs to switch to standby mode, it proceeds to
run the store operation (SET and RESET) to flush the SRAM
data into the two memristor devices. After the data is successful-
ly backed up, the cell can be completely shut down to eliminate
standby leakage. When the cell needs to switch to normal mode,
the data of the two memristor devices (RL and RR) are stored to
the SRAM storage nodes using a restore operation.

2.2 nvSRAM vs. SRAM and RRAM
In this section, we analyze the reliability, read/write latency,

dynamic/static energy consumption and density of the LLCs by
comparing different cache types. Traditionally, tags and data
arrays in on-chip caches are implemented using SRAM. Howev-
er, frequent use and fast update are key points in tag arrays for
which RRAM or nvSRAM implementations may not be suitable
[1][10]. Table 1 lists important quantitative features of three
memory technologies: SRAM [9], RRAM [2] and nvSRAM [9].
Several observations may be made from Table 1:

 The SRAM cache and the SRAM component of the
nvSRAM cache have symmetric read/write access properties
in terms of latency and energy consumption.

 The RRAM cache and the RRAM component of the
nvSRAM cache have very different read and write/store
properties in terms of latency and energy consumption, with
particularly high write/store latency and energy.

 The nvSRAM cache in standby mode is identical to the
RRAM cache, both having low leakage power due to their
non-volatile property. On the other hand, nvSRAM in nor-
mal mode also has high leakage power like SRAM due to
the fact that the SRAM component of nvSRAM is active.

 The restore operation overhead in the nvSRAM cache is
insignificant due to the features of the cell structure.

Time

Data Lifetime

Cache Block Lifetime

Miss Read hit Write hit Miss

Figure 1: Data lifetime of cache block in a reference stream

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f B
lo

ck
s

(%
) 5 ms 10 ms 20 ms 30 ms 40 ms 40+ ms

Figure 2: Distribution of blocks in different data lifetime

 PGR

PUR PUL
BLBBL

PGL

RSWL RSWR
PDRPDL

SWL

 CVDD

WL

Figure 3: Schematic of non-volatile SRAM cell [9]

 The high-density property of RRAM cache can provide 4
times more capacity than SRAM and nvSRAM cache with
the same chip area, but it also has the slowest speed.

Considering these observations, we note that nvSRAM in-
herits all of the advantages of SRAM and RRAM, which include
fast and symmetric read/write latency, low read/write energy
and low leakage in standby mode. On the other hand, it also
inherits all of the disadvantages of SRAM and RRAM, such as
slow store latency, high store energy, high leakage in normal
mode, and especially the low density of SRAM.

2.3 Why nvSRAM?
The high leakage of SRAM increases energy consumption

significantly during program execution. On the other hand, the
bulk of energy consumption in RRAM is determined by the
number of cache access operations and this is due to the high
costs of the write operation. The energy consumption for n read
operations during the data lifetime period is estimated in Equa-
tion 1, where E is the energy consumption for the data lifetime,
and L is leakage. ER, EW, ES, ERS are the energy consumption for
LLCs read, write, store and restore operations, respectively.
Only ES and ERS occur during standby mode in nvSRAM.

1***1* SRSRW EnEnEELE ++++= (1)

The energy consumption of cache block updates is plotted in
Figure 4 as a function of data lifetime for various memory tech-
nologies. We observe that 7ms is the breakeven time for SRAM
and RRAM. When the data lifetime of the cache block is less
than 7ms, the data block should be placed in SRAM-based cache
to reduce dynamic energy of the RRAM-based cache. In contrast,
when the data lifetime of the cache block exceeds 7ms, the data
block should be placed in the RRAM-based cache to reduce

leakage power from the SRAM-based cache. Therefore, using
only one cache type for different cache blocks is impractical.

 The simplest method to deal with a cache block with variable
data lifetime is to use two macro design caches (SRAM+RRAM)
such that data are written to the appropriate cache type as per
their data lifetime using perfect predict. However, the shortcom-
ing of this design is that data lifetime is distributed randomly
depending on program behaviors and it is very difficult to pre-
cisely predict which cache type the data should be placed in.

 As mentioned previously, every cache block has its own data
lifetime. Furthermore, every individual cache block have a vari-
able data lifetime depending on the program execution. Accord-
ing to these factors, nvSRAM is an attractive option for LLCs
with all of the benefits form SRAM and RRAM. In order to
eliminate high leakage power in nvSRAM LLCs, we choose the
nvSRAM cell which is always operated in standby mode. Hence,
the write operation (data update) in nvSRAM cache consists of
two continuous operations i.e. the write operation in SRAM and
the store operation in RRAM. However, when nvSRAM is
switching to standby mode in each data update, the cell under-
takes the store operation in which it flushes SRAM data into two
memristor devices which increases dynamic energy significantly.
We therefore propose a novel technique, Redundant Store Elim-
ination (RSE), to mitigate the energy overhead of the store oper-
ation. Furthermore, we require a new nvSRAM cache manage-
ment policy to avoid the performance degradation caused by
nvSRAM and to reduce the data updates of the LLCs.

3. ENERGY-EFFICIENT NON-VOLATILE
SRAM CACHE ARCHITECTURE

Distinct advantages of nvSRAM over SRAM include non-
volatility and the non-destructive read ability of the cell. Given
nvSRAM, we further propose an energy-efficient cache architec-

Table 1: Comparison of SRAM, RRAM and nvSRAM
 SRAM [9] RRAM [2] nvSRAM [9]

Non-volatility √ √
Symmetric R/W √ √

Latency

Read 1x 1.51x 1x
Write 1x 1.94x 1x
Store N/A 3.88x

Restore 0.06x

Energy

Read 1x 1.54x 1.03x
Write 1x 5.18x 1.03x
Store N/A 9.76x

Restore 0.041x

Leakage Normal 5.71x 1x 6.11x
Standby 1x

Density 1.3x 4x 1x

Non-volatile SRAM LLC

L2 cache (SRAM)

Retention
counter

…

 (a) The retention counter of victim block equals zero,
(b) The retention counter of victim block does not equal zero

Normal mode Standby mode

MRU

Core n
I$ D$

Missd

c

Retention count
Monitor

c c c

LRUMRU

Core 0
I$ D$

Misse

c

Retention count
Monitor

c c c

LRU

a

promote to
MRU

1

2-2

2-1

b

Figure 5: System architecture with retention-aware policy

0

5

10

15

20

0 5 10 15 20 25

En
er

gy
 Co

ns
um

pt
ion

 (n
J)

Data Lifetime (ms)

SRAM

BL-separated nvSRAM
(this work, RSE)

breakeven time of SRAM and RRAM

good for SRAM good for NVM nvSRAM

reduce by
redundant

writeRRAM

7

Figure 4: Energy consumption of cache block update as a
function of different data lifetime

Normal mode
Standby mode

(a) Redundant bit-writes discarding by RSE scheme, (b) Avoid access conflicts
based on Sequential tag-data access

Tag Index Offset

Tag

Hit/miss
Arbiter

Request address
from core

hit/miss

b

Access
Ctrl.

WL
Driver

 Pre-charger

selected

Sense Amplifier

Redundant Store Elimination Scheme

BL BLB …

Disable the store operations
for redundant bit-writes

a

Ad
dr

es
s d

ec
od

er

Figure 6: A non-volatile SRAM last-level cache

ture to realize the non-volatile cache hierarchy. In our system
architecture, we modify the cache management policy of L2 and
cache architecture of the LLCs in the cache hierarchy.

Figure 5(a) illustrates how a retention-aware cache manage-
ment policy may operate by searching for the victim block with
retention counter equals zero in the L2 cache. When the reten-
tion counter of victim block does not equal zero ①, the block
will be promote to MRU position and decrease the counter until
the retention counter of LRU block equals zero ② as shown in
Figure 5(b). The more detail replacement algorithm will discuss
in Section 3.2. Figure 6(a) presents a schematic of our RSE
scheme, implemented in the LLCs to disable the store operation
for redundant bit-writes. We utilize sequential tag-data access to
reduce cache access conflict in the LLCs as indicated in Figure
6(b). The key feature of this approach is how it leverages the
data lifetime of the block in the LLCs, depending on the unpre-
dictable lifetime of the actual data.

3.1 Redundant Store Elimination (RSE)
Prior research shows that we can write data into a cache or

memory location and there is a high probability that it does not
change the content in the cache [11][12]. We find that on aver-
age about 94% of bit-writes are redundant in our experimental
results and can be skipped without changing the original stored
value. Due to this significant amount of needless bit-writes,
there is therefore great potential for energy reduction in the
nvSRAM cache. To reduce dynamic energy, we need to ascer-
tain if the new bit data differs from the old.
A conventional method is to first read out the cache content,
compare with the new values, and write back the different bits
only. However, in this method, every write operation requires
first an extra read operation and this increases performance
overhead. Alternatively, the “dirty bit” in the higher level cache
is used to terminate redundant writes into the lower level cache
[1]. This improvement, however, depends on the granularity of
block partitions. More importantly, it does not avoid all needless
bit-write operations. Since the sub-block in the higher level
cache is dirty many bits in it may still be the same.

Based on the above methods, Early Write Termination (EWT)
reduces redundant bit-writes effectively at the bit-level [12].
Compared to conventional methods, we are therefore able to do

better without impacting performance. Our solution is based on
the following unique properties of nvSRAM cells:

1. Due to the cell structure of nvSRAM, when updating a cell,
we need to first write to SRAM and then store to RRAM.
The RRAM cell still maintains its valid previous data in
the first stage of a data update operation.

2. The data bit in the SRAM and RRAM components may be
different due to the properties of nvSRAM. This means
that we can write the new data bit into SRAM and use it to
compare with the older data bit from RRAM.

3. In the nvSRAM cell structure, we can read data from two
paths (PGL and PGR or RSWL and RSWR). This presents
a significant opportunity to minimize latency by writing
new data bits to SRAM and comparing it with old data bits
at the same time. We can therefore eliminate the extra
store operation as soon as redundancy is detected.

 Considering these observations, we propose a new detect
scheme, Redundant Store Elimination (RSE), for writing a new
data bit into SRAM and comparing it with the old data bit with-
out incurring extra performance overhead, as depicted in Figure
7. Figure 8(a) depicts separate bit lines from SRAM and RRAM
components in the cell that are used to compare the data bits and
generate the control signals. This design makes it possible to
write a new data bit to SRAM and compare it with the older data
bit in RRAM concurrency. In RSE scheme, we use a AND gate
to detect whether the new data bit and old data bit is the same.
When a write data is applied to bit lines, WL and SWL enable
writing the new data bit into SRAM and reading the old data bit
from RRAM. After the old data bit is read from SBL and SBLB,
it will input to the AND gate to determine whether to enable or
disable the store operation. In Figure 8(c), if the detect result is
zero ③, a control signal WEN-det is generated to terminate the
store operation on this cell ④. Otherwise, store operation on this
cell continues normally ① ② as shown in Figure 8(b).

In summary, RSE detects the older data bit alongside the
write operation without an extra read operation in front of the
write step. However, the new cell structure of RSE has addition-
al bit lines, necessitating a 10% area overhead compared to the
original nvSRAM in layout. The tradeoff is that RSE enables the
elimination of all redundant store operations.

3.2 Retention-Aware Management Policy
To reduce the data updates of cache blocks, we propose a new

cache management policy to coalesce write-back operations
from L2 to LLCs. The key insight here is to prevent the data

Read Write Store

Write
Detect

Conventional Method

Redundant Store Elimination (RSE)
Store

Sending store operation or not
depends on detected result

0 Time

Com-
pare

Figure 7: Comparison of the conventional and RSE schemes

Next
Ref (a) LRU

f a d b
f d b a e c

(b) Retention-aware management policy

f a d b
f d b a e c

2 0 2 3Read
h

h f a d
h f d b a e

h d b f
h f d b a e

0 1 2 2Write
a

a h f d
h f d b a e

Write
k

k a h f
k h f d b a

a d b f
a h f d b e

3 0 1 1

k b f a
k a h f d b

3 0 0 3Write
b

b k a h
b k h f d a

b k f a
k a h f d b

3 3 0 3

L2
LLC

Retention
counter

Evicted dirty block counts : 0

Evicted dirty block counts : 1

Evicted dirty block counts : 1

Evicted dirty block counts : 2

Evicted dirty block counts : 3

Evicted dirty block counts : 0

Evicted dirty block counts : 0

Evicted dirty block counts : 0

Evicted dirty block counts : 1

Evicted dirty block counts : 1

Dirty block

Clean block

Figure 9: Retention-aware management policy (in order to
reduce block update in LLCs, we keep dirty blocks in L2)

CELL
WL

SWL

BL BLB

Q QB

SBL SBLB

Read
Circuit

Write Circuit
DIN DINB

AND gate

WEN_det
detect

Normal
operation CLK

BL
BLB

SBL
SBLB

WL

floating

detect

Write

store

WEN_det

SWL

AND gate input
= (1,1)

floating

detect

Write

store

AND gate input
= (0,1)

1 3

2 4

(a) BL-spearated nvSRAM structure
with detect scheme

(b) Waveform of store operation
without redundant bit-write

(c) Waveform of store operation
with redundant bit-write

0 1

Enable store operation Disable store operation

Figure 8: Redundant store elimination scheme

block from premature eviction to the LLCs by accommodating
the writes in the dirty block. This is done to increase the resi-
dency of the block in L2 and to reduce write-back access in
LLCs.

 In LRU replacement policy, the LRU block is the candidate
for eviction and replacement. In our proposed replacement algo-
rithm, dirty blocks operate differently. We define a retention
counter which serves as the retention count of each cache block.
The retention counter of the cache block in L2 determines evic-
tion and replacement operations for the block. When the cache
has a miss, the LRU block is the first candidate to be checked to
see if the block should be evicted from the L2 or not. If the re-
tention counter of the victim block equals zero, the proposed
algorithm makes space for the incoming block by evicting this
block. However, if the retention counter of the victim block does
not equal zero, the proposed algorithm extends the cache block
lifetime in the L2 through promoting the block to MRU position
and retention counter is decremented. A new victim block is
then chosen and this process is repeated until the retention coun-
ter for the victim equals zero. In our proposed algorithm, the
victim selection process is invisible due to memory latency.

Figure 9(b) describes the behavior of our propose algorithm.
When the reference to 'h' misses in L2, the retention counter of
the LRU block, 'b', is queried to determine whether the first
potential L2 victim can be evicted. When the cache controller
responds that the retention counter of the block does not equal to
zero, cache block ‘b’ is promoted to MRU, the retention counter
is decremented, and sends a request to probe the next victim
candidate 'd'. Similarly, since the retention counter of cache
block 'd' does not equal zero, 'd' is promote to MRU and de-
creases the retention counter. Then, a request to query for the
next victim candidate 'a' is dispatched. Since the retention coun-
ter of 'a' equals 0, the cache controller allows 'a' to be replaced in
the LLCs. Furthermore, when 'b' is re-referenced, it hits in the
L2 cache not in the LLCs and the retention count of retention
counter in '‘b'’ is reset to the initial value. The proposed algo-
rithm prevents 'b' form write-back access being in dirty block
and reduces write-back access in LLCs effectively as shown in
Figure 9(b). Compared to LRU, retention-aware cache manage-

ment policy prevents evicting blocks creating write-back access
to the LLCs. This is achieved by preventing “dirty block” from
becoming victim block in L2.

4. EXPERIMENTAL RESULTS
In this experiment, we implement our design via Multi2Sim

simulator [13] and modify the LLCs timing model for asymmet-
ric cache read/write latency operations and a sophisticated man-
agement policy. For this experiment, we construct 4 cores with a
shared LLCs system as the MOESI directory cache-coherency
protocol, and collect the latency/energy results for comparison.
Table 2 provides parameters of the simulation platform, where
the L1 and L2 caches are private to each core and the shared
LLCs is 8MB. All cache module parameters such as read/write
latency and energy are derived from our prior research [2][9].
We evaluated the multithreaded benchmark, PARSEC, and mul-
ti-program workload mixed with SPEC 2006 in our design. We
measure the results by warming up the caches for 400M instruc-
tions, and then we report the results for 2B instructions.

4.1 Performance Evaluation
One challenge in implementing nvSRAM cache may be to

identify at run-time the latency overhead of store operations that
negatively impact system performance. When the latency of the
store operation is high it will stall cache access in parallel tag-
data access. Sequential tag-data access is a well-known tech-
nique employed in LLCs to reduce energy consumption [1]. In
sequential tag-data access, a hit or miss of the cache depends on
the result of the queries tag array. As a result, significant access
conflict may be avoided and energy saving on the data array can
be achieved. Overall cache access latency increases when using
sequential tag-data access. However, the access latency of the
tag array is much smaller than that of the data array due to its
smaller size. Therefore, the latency increase in LLCs does not
have a significant impact on performance degradation. On aver-
age, less than 2% IPC (instructions per cycle) reduction when
running the workloads using a 8MB LLCs.

4.2 Retention Count Evaluation
Figure 10, 11 and 12 present the comparison of writes counts,

IPC and dynamic energy in LLCs between the retention-aware

Table 2: Simulation platform
CPU model 4-core, 1GHz, out-of-order

Cache simulator Multi2Sim

SRAM L1 cache Private, 32KB/32KB, 4 ways, 64B block,
write back, 2-cycle R/W

SRAM L2 cache Private, 256KB, 8 ways, 64B block, write
back, 3-cycle R/W

L3 cache
Common Shared, 8MB, 16 ways, 64 B block, write

back
SRAM 12-cycle R/W
RRAM 16-cycle read, 20-cycle write

nvSRAM 12-cycle R/W, 1-cycle restore, 40-cycle store

Main memory 256-entry write buffer, 133-cycle

0.6

0.7

0.8

0.9

1.0

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8 mix9 facesim fluid. x264

W
ri

te
s

C
o

u
n

ts
 c

o
m

p
a
re

to

 L
R

U

1-chance 2-chance 3-chance 4-chance 5-chance

Figure 10: Retention count impact on writes counts

0.85

0.90

0.95

1.00

1.05

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8 mix9 facesim fluid. x264

IP
C

 c
o

m
p

a
re

 t
o

 L
R

U

1-chance 2-chance 3-chance 4-chance 5-chance

Figure 11: Retention count impact on IPC

0.90

0.95

1.00

1.05

1.10

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8 mix9 facesim fluid. x264

D
y
n

a
m

ic
 E

n
e
rg

y

co
m

p
a
re

 t
o

 L
R

U

1-chance 2-chance 3-chance 4-chance 5-chance

Figure 12: Retention count impact on dynamic energy

cache management policy and the LRU policy. Figure 10 shows
that when the retention count is increased, the number of writes
will decrease, on the contrary, the number of reads will increase.
However, the performance and energy gains do not show the
same behavior as shown in Figure 11 and 12. As a result, the
retention-aware cache management policy with retention count
is '2' can get most of the gains in the three metrics.

4.3 Last-Level Cache Energy Evaluation
This work makes nvSRAM a viable alternative for LLCs

compared to SRAM and RRAM. Figure 13 shows that the ener-
gy consumption is composed of leakage, read/write energy
(SRAM) and read/write energy (RRAM) for each cache type.
Compared to SRAM and RRAM LLCs with the same capacity,
on average, the total energy reduction of a 8MB nvSRAM can
save around 57% and 31%, respectively. In the access insensi-
tive workloads, the RRAM and nvSRAM LLCs have good ener-
gy consumption because low leakage and small access count in
LLCs such as facesim, fluid. and x264. In contrast, the
read/write SRAM energy of nvSRAM in access sensitive work-
loads is increased obviously by compare energy of RSE scheme
and read accesses increases due to our proposed management
policy that throttle read/write operations. The energy improve-
ment of nvSRAM cache is due to the granularity of data updates
is in bit level with the RSE scheme. Therefore, the read/write
energy of RRAM is dramatically decreased while this work can
significantly reduce store operations of nvSRAM cache.

5. RELATTED WORK
Several studies have explored energy and performance issues

for general purpose processors by employing characteristics of
NVM caches. Jaleel et al. [14] evaluated performance improve-
ment of Re-reference Interval Prediction (RRIP) by categorizing
cache blocks as near re-reference, distant re-reference and long
re-reference interval blocks for prevents. RRIP prevents a near
re-reference interval cache blocks from premature eviction when
choosing an eviction victim. Rasquinha et al. [10] presented
STT-RAM cache management policy base on increasing the
residency of dirty blocks that prevent the block from being
prematurely evicted to higher level caches. However, write-
biasing can result in a noticeable performance penalty in L1 due
to an increase in the read miss rate in L1. Wang et al. [15] used
an obstruction-aware cache management policy to prevent the
long write latency of STT-RAM to obstruct the cache port and
harm performance of process running in CMPs. Ferreira et al.
[16] presented a page replacement policy that reduces PRAM
updates in the hybrid DRAM/PRAM main memory by keeping
dirty data in DRAM cache and choosing an eviction victim with
different priority of clean/dirty pages. Park et al. [17] explored
the asymmetric penalty of flash memory read/write operations to
choose a clean page as a victim rather than dirty pages in a re-
placement algorithm. Prior studies of NVM cache have focused
on how to reduce energy consumption, and mitigate the impact
of asymmetric access. However, our work fundamentally tackles

the asymmetric access problem and focuses on how to improve
cache management policy for nvSRAM cache.

6. CONCLUSION
This work proposed an energy-efficient nvSRAM cache ar-

chitecture base on the detail analysis of memory cell features to
correlation data lifetime and cache types. We show that
nvSRAM cache can have low dynamic energy, symmetric
read/write latency and low leakage through switching to the
appropriate operation mode. We propose a RSE scheme to dis-
card 94% of needless store operations on average and have a
retention-aware cache management policy to reduce write-back
access in advance. In our experimental results, nvSRAM can
improve more than 57% saving in cache energy compares to
SRAM-based cache. We also demonstrate that nvSRAM be-
comes an attractive option for designing energy-efficient LLCs
in CMPs.

7. REFERENCES
[1] S. Park et al., “Future Cache Design using STT MRAMs for Im-

proved Energy Efficiency: Devices, Circuits and Architecture,” in
Proc. DAC, 2012, pp. 492-497.

[2] S.-S. Sheu et al., “4 Mb Embedded SLC Resistive-RAM Macro
with 7.2 ns Read-Write Random-Access Time and 160 ns MLC-
Access Capability,” in Proc. ISSCC, 2011, pp. 200-202.

[3] K. Lee et al., “Development of Embedded STT-MRAM for Mobile
System-On-Chips,” IEEE Trans. Magn., vol. 47, 2011.

[4] X. Wu et al., “Hybrid Cache Architecture with Disparate Memory
Technologies," in Proc. ISCA, 2009, pp. 34-45.

[5] G. Sun et al., “A Novel Architecture of the 3D Stacked MRAM L2
Cache for CMPs,” in Proc. HPCA, 2009, pp. 239-249.

[6] J. Wang et al., “Point and Discard: A Hard-Error-Tolerant Archi-
tecture for Non-Volatile Last Level Caches,” in Proc. DAC, 2012.

[7] Y. Zhoy et al., “Asymmetric-access aware Optimization for STT-
RAM Caches with Process Variations,” in Proc. GLSVLSI, 2013.

[8] Y. Ma et al., “An MTJ-Based Nonvolatile Associative Memory
Architecture With Intelligent Power-Saving Scheme for High-
Speed Low-Power Recognition Applications,” in Proc. ISCAS,
2013, pp. 1248-1251.

[9] P.-F. Chiu et al., “Low Store Energy, Low VDDmin, 8T2R Non-
Volatile Latch and SRAM with Vertical-Stacked Resistive
Memory (memristor) Devices for Low Power Mobile Applications,”
IEEE J. Solid-State Circuits, vol. 47, pp. 1483-1496, Jun. 2012.

[10] M. Rasquinha et al., “An Energy Efficient Cache Design Using
Spin Torque Transfer (STT) RAM,” in Proc. ISLPED, 2010.

[11] P. Zhou et al., ‘‘A Durable and Energy Efficient Main Memory
Using Phase Change Memory Technology,’’ in Proc. ISCA, 2009.

[12] P. Zhou et al., “Energy Reduction for STT-RAM using Early Write
Termination,” in Proc. ICCAD, 2009, pp. 264-268.

[13] R. Ubal et al., “Multi2Sim: A Simulation Framework to Evaluate
Multicore-Multithreaded Processors,” in Proc. SBAC-PAD, 2007.

[14] A. Jaleel et al., “High Performance Cache Replacement using Re-
Reference Interval Prediction (RRIP),” in Proc. ISCA, 2010.

[15] J. Wang et al., “OAP: An Obstruction-Aware Cache Management
Policy for STT-RAM Last-Level Cache,” in Proc. DATE, 2013.

[16] A. P. Ferreira et al., “Increasing PCM Main Memory Lifetime,” in
Proc. DATE, 2010, pp. 914-919.

[17] S.-Y Park et al, “CFLRU: A Replacement Algorithm for Flash
Memory,” in Proc. CASES, 2006, pp. 234-241.

0.0

0.2

0.4

0.6

0.8

1.0

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8 mix9 facesim fluid. x264

No
rm

al
iz

ed
 E

ne
rg

y
Co

ns
um

pt
io

n
Read/Write energy (SRAM) Read/Write energy (RRAM) Leakage

Figure 13: The energy consumption of LLCs on SRAM, RRAM and nvSRAM (normalized to the value of SRAM LLCs)

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

