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Abstract. Superconducting transition generally belongs to the U (1) class of phase transitions.
However it was pointed out long time ago that if the normal state dispersion relation is "ultra-
relativistic" the transition is unusual: even the mean field critical exponents are different from
the standard ones leading to a number of observable effects. Attempts to experimentally discover
such a system included chiral condensate in graphene. Recently it was found that some 3D
topological insulators (that possess the ultrarelativistic metal on its surface) exhibit surface
superconductivity.Starting from microscopic TI Hamiltonian with local four fermions interaction, we
calculated the total set of the Gor’kov equations allowing to build the Ginzburg - Landau (GL) theory
including the magnetic field effects. It was shown that the GL equations reflect the novel chiral
universality class, very different from original GL equations. For example the temperature dependence

of the coherence length diverges at the critical temperature with critical exponent ¥ = —1 in rather than
customary v = —1/2, magnetization near the upper critical magnetic field is quadratic as a function
of deviation from the upper critical field while the Superfluid density is ¢¥? = (T. — T)?, 8 = 2, not
g=1.

1. Introduction

Since best studied Topological insulator (TI) possess a quite standard phonon spectrum [1], it was
predicted recently [2] that they become superconducting TI (STI) (this should be distinguished from
"topological superconductors", TSC, in which superconductivity appears in the bulk[3]). The predicted
critical temperature of order of 1K is rather low (despite a fortunate suppression of the Coulomb
repulsion due to a large dielectric constant e ~ 50), the nature of the "normal" state, the 2D Weyl
semi-metal, might make the superconducting properties of the system unusual. Especially interesting
is the case (that actually was originally predicted for the [111] surface of BigTes and BigSes[4]) when
the chemical potential coincides with the Weyl point. Although subsequent ARPES experiments show
the location of the cone of surface states order tenths of eV off the Fermi surface; there are experimental
means to shift the chemical potential, for example by the bias voltage [5].

Unlike the more customary poor 2D metals with several small pockets of electrons/holes on the Fermi
surface (in semiconductor systems or even some high 7, materials), STT has two peculiarities especially
important when pairing is contemplated. The first is the bipolar nature of the Weyl spectrum: there
is no energy gap between the upper and lower cones. The second is that the spin degree of freedom is
a major player in the quasiparticle dynamics. This degree of freedom determines the pairing channel.
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Figure 1. Order parameter at zero temperature as function of chemical potential of the TT surface
Weyl semi-metal at various values of coupling parametrized by the renormalized energy U, Eq.(2).
For positive U (blue lines) the superconductivity is strong and does not vanish even for zero chemical
potential. There exists the critical coupling, U = 0 (red line), at which the second order transition
occurs at quantum critical point © = 0. For negative U the superconductivity still exists at p > 0, but
is exponentially weak.

In this paper we study the thermodynamic and magnetic properties of the surface superconductivity
in TI with local attraction pairing Hamiltonian characterized by the coupling strength g and cutoff
parameter Tp within the self-consistent approximation. The phase diagram is obtained for arbitrary
temperature T' and chemical potential u < Tp We found a quantum critical point at T'= p = 0 when
the coupling strength g reaches a critical value g. dependent on the cutoff parameter. We concentrate
on properties of the superconducting state in a part of the phase diagram that is dominated by the
QCP. Various critical exponents are obtained. In particular, the coupling strength dependence of the
coherence length is € o< (9 — g.)” " with v = 1, the order parameter scales as A « (g — gC)B, B =1
It is found that near the QCP the Ginzburg - Landau effective model is rather unconventional. The
structure of the single vortex core is different from the usual Abrikosov vortex, while the magnetization
curve near the upper critical magnetic field Heo is quadratic: M = (H — HCQ)Q, not linear.

2. TT with a local pairing interaction.

Electrons on the surface of a TI are described by a Pauli spinor 1, (r), where the upper plane, r =
{z,y}, is considered. The Hamiltonian for electrons in TI, H = [ d*ript (—ihvpsijviaiﬂ — ,u6a5> Vg

where ¢/ are the Pauli matrices. and interacting via four-Fermi local coupling of strength g. The
effective local interaction might be generated by a phonon exchange or perhaps other mechanisms and
will be assumed to be weak coupling. Therefore the BCS type approximation can be employed. In the
homogeneous case, the matrix gap function can be chosen as (A real) Ag, = g (¢, (0) 93 (0)) = ioyA.
The matrix gap equation

—~ —~ ~ o~ N—1
A*t:_gthA*t (Dfl_ADtA*t> ' (1)
wg
where D;Bl = (iw—p)dyp — UFEiij'JiB. The spectrum of elementary excitations, E, =

41/ A2 + (vpp — p)?, coincides with that found within the Bogoliubov - de Gennes approach [6].
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3. Zero temperature phase diagram and QCP.

At zero temperature the integrations over frequency and momentum limited by the UV cutoff A result
in
/A2 2
U=+/A2+ Q—Hlogﬂ, (2)
2 A2+ p? —p

where the dependence on the cutoff is incorporated in the renormalized coupling with dimension of
energy defined as U = vpA (1 — g./g) with g. = 4wh*vr/A. Of course the superconducting solution
exists only for g > 0. In Fig. 1 the dependence of the gap A as function of the chemical potential u is
presented for different values of U.

For an attractive coupling g stronger than the critical one, (when U > 0), blue lines in Fig. 1, there
are two qualitatively different cases.

(i). When p << U the dependence of A on the chemical potential is parabolic A/U ~ 1+ (u/U)?.

In particular, when u = 0, the gap equals U. As can be seen from Fig. 1, the chemical potential makes
a very limited impact in the large portion of the phase diagram.

(ii) For the attraction just stronger than critical, g > g., namely for small positive U, the dependence
becomes linear, see red line in Fig. 1, A = 0.663 u. So that the already weak condensate becomes
sensitive to u.

The case (i) is more interesting than (ii) since it exhibits stronger superconductivity (larger T, see
below). Finally for ¢ < g., namely negative U (green lines in Fig. 1), the superconductivity is very
weak with exponential dependence similar to the BCS one, A & p exp[— (JU| /i — 1)]. Therefore it is
possible to neglect the effect of weak doping and consider directly the u = 0 particle-hole symmetric
case.

At zero temperature A = U, while A — 0 as a power of the parameter U x g — g. describing
the deviation from quantum criticality 7, o« U?”; zv = 1. Here z is the dynamical critical
exponent[8]. Therefore, as expected, the renormalized coupling describing the deviation from the
QCP is proportional to the temperature at which the created condensate disappears. The temperature
dependence of the gap reads, A (T) = 2T cosh™! (% exp %), typical for chiral universality classes [8, 9].

4. Ginzburg - Landau effective theory and magnetic properties of the superconductor
near QCP

The quadratic term of the Ginzburg-Landau energy Fy = Zp AJT (p) Ay is obtained exactly from
expanding the gap equation to linear terms in A for arbitrary external momentum: I'(p) =
-U/ 4777121/% + |p| /16vph?. The dependence on p is non-analytic and within our approximation higher
powers of p do not appear. The second term is very different from the quadratic term in the GL
functional for conventional phase transitions at finite temperature or even quantum phase transitions in
models without Weyl fermions [8] and has a number of qualitative consequences. The coherence length
as a power of parameter U o g—g. describing the deviation from criticality: £ (U) = JvphU™"; v = 1.
This is different from the dependence in non-chiral universality classes that is & (T) oo (T, —T)7",
v = 1/2 in mean field. Of course in the regime of critical fluctuations this exponent is corrected in
both non-chiral and chiral[9] universality classes.

Local terms in the GL energy density are calculable exactly: feonq =x —U \A|2 + %|A|3 It is
quite nonstandard compared to customary quartic term in conventional universality classes. The
GL equations in the homogeneous case for the condensate gives Ag = U? with critical exponent 3 = 1,
different from the mean field value § = 1/2 for the U (1) universality class. The condensation energy
density is fy oc U2~ with o = —1. The free energy critical exponent at QCP therefore is also different
from the classical & = 0. In the present case the equation for the order parameter is nonlocal and
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nonanalytic. Near the upper critical field H.o the Abrikosov hexagonal lattice is formed. The optimal
A at external field H close to Heo is A o< (1 — H/H2)?, o = 1, different from the ordinary Abrikosov
lattice value of o = 1/2. The magnetization is M « — (1 — H/H)", 7 = 2 in contrast to linear
dependence, 7 = 1.

5. Discussion and conclusions

To estimate the pairing efficiency due to phonons, one should rely on recent studies of surface phonons
in TT [2]. The coupling constant is obtained from the exchange of acoustic (Rayleigh) surface phonons
g= )\U%FF /27, where \ is the dimensionless effective electron - electron interaction constant of order
0.1. It was shown in ref. [2] that at zero temperature the ratio of A and p is constant with well defined
p — 0 limit with value g = 0.23 eV nm? for vp ~ 7 -10°m/s (for BisSes). The critical coupling
constant g., can be estimated from the Debye cutoff Tp = 200K determining the momentum cutoff
A = Tp/cs, where cg is the sound velocity. Taking value to be ¢y = 2-103m/s (for BizSes), one obtains
ge = 4mvpesh?/ Tp = 0.20 eV nm?. Therefore the stronger superconductivity, g > g, is realized.

In this paper we focused on the qualitatively distinct case of Weyl fermions with small chemical
potential. Note that a reasonable electron density of n = 3 - 10" 'em™2 in BiyTes already conforms
to the requirement that chemical potential u = /nhvp/2m = 100K is smaller that the Debye cutoff
energy Tp = 200K. The concept of QCP at zero temperature and varying doping constitutes a
very useful language for describing the microscopic origin of superconductivity in high 7. cuprates
and other "unconventional" superconductors. Superconducting transitions generally belong to the
U (1) class of second order phase transitions, however it was pointed out a long time ago that,
if the normal state dispersion relation is "ultra-relativistic", the transition at zero temperature as
function of parameters like the pairing interaction strength is qualitatively distinct and belongs to
chiral universality classes classified in ref. [9]. Attempts to experimentally identify second order
transitions governed by QCP included quantum magnets [8], superconductor - insulator transitions
and more recently chiral condensate in graphene.
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